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Abstract

Asymptotic linearity plays a key role in estimation and testing in the presence of nui-
sance parameters. This property is established, in the very general context of a multivariate
general linear model with elliptical VARMA errors, for the serial and nonserial multivariate
rank statistics considered in Hallin and Paindaveine (2002a and b) and Oja and Paindav-
eine (2002). These statistics, which are multivariate versions of classical signed rank statis-
tics, involve (i) multivariate signs based either on (pseudo-)Mahalanobis residuals, or on a
modified version (absolute interdirections) of Randles’ s interdirections, and (ii) a concept of
ranks based either on (pseudo-)Mahalanobis distances or on lift-interdirections.

1 Introduction.

1.1 Rank-based inference for multivariate observations.

Whereas the classical univariate theory of rank-based inference (rank tests and R-estimation)
presents a pretty complete and coherent body of methods applicable to a variety of models,
ranging from simple location and scale problems to general linear and time series models, the
corresponding multivariate theory is much less systematic and elaborate. The reason for this
relative underdevelopment certainly lies in the difficulty of defining an adequate multivariate
concept of ranks. And indeed, except for the theory of componentwise ranks (Puri and Sen
1971), which suffers a severe lack of affine invariance, the results in the area are rather piecemeal,
scattered, and incomplete.

Recently, however, an important activity has been developed in this area. Hettmansperger
et al. (1994, 1997), Möttönen et al. (1995, 1997, 1998), Oja (1999), Ollila et al. (2001), and
Visuri et al. (2002) are proposing estimation and testing methods based either on spatial signs
and ranks, or on an affine-equivariant concept of signs and ranks related with the well-known
Oja (1983) median. Randles (1989), Peters and Randles (1990), Randles and Peters (1991),
Jan and Randles (1994), Randles and Um (1998) are proposing affine-invariant multivariate
signed rank procedures based on Randles (1989)’s concept of interdirections (a multivariate

∗Research supported by a P.A.I. contract of the Belgian federal Government, and an A.R.C. contract of the
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sign concept) and the ranks of Mahalanobis distances. Their procedures require elliptically
symmetric errors, while Oja’s are valid under a more general assumption of central symmetry.

Invariance, in this strand of literature, is mainly considered in connection with robustness (as
opposed to efficiency). Moreover, all methods are restricted to location and regression models
with independent observations.

Inspired by Le Cam’s asymptotic theory of statistical experiments, a different point of view
is taken in a series of papers by Hallin and Paindaveine (2002a, b, d, and e) and Oja and
Paindaveine (2002), where, based on the same concepts of multivariate signs and ranks as above,
locally asymptotically optimal procedures are developed for a broader class of models, including
multivariate time series ones.

These results however only address those testing problems for which exact residuals can be
computed under the null hypothesis—essentially, thus, null hypotheses of the form θθθ = θθθ0, under
which the parameter of interest θθθ is completely specified.

In practice, null hypotheses of interest seldom are of that type, and usually consist in impos-
ing some limited number of constraints under which θθθ still remains partially unspecified. The
univariate literature on ranks then usually proposes tests based on the so-called aligned ranks,
computed from estimated residuals. The key result in the study of the asymptotic behaviour of
these aligned ranks is an asymptotic linearity property of the test statistics under consideration :
see Jurečková (1969), van Eeden (1972), Heiler and Willers (1988), Koul (1992), Hallin and
Puri (1994), and many others for univariate rank and signed rank results of the same type.

The purpose of this paper is to derive an asymptotic linearity property in the multivariate
case, for the serial and nonserial statistics proposed in Hallin and Paindaveine (2002 a, b, d, and
e) and Oja and Paindaveine (2002), in the very broad context of linear models with VARMA
errors. The resulting multivariate aligned rank tests are studied in a companion paper (Hallin
and Paindaveine 2002f).

2 Multivariate ranks, multivariate signs, and rank-based statis-

tics.

2.1 Serial and nonserial statistics.

Let Z := (Z1, . . . ,Zn) be an n-tuple of i.i.d. k-variate random vectors. Denoting by ΣΣΣ a symmet-
ric positive definite k×k matrix (the scatter matrix), and by f : R

+
0 → R

+ a nonnegative function
(the radial density) such that f > 0 a.e. and

∫∞
0 rk−1f(r) dr < ∞, we assume throughout that

Z has an elliptical density. More precisely, we make the following assumption.

Assumption (A1). Z has an elliptical density, of the form
∏n

t=1 f(zt;ΣΣΣ, f), (z1, . . . , zn) ∈ R
nk,

where
f(z;ΣΣΣ, f) := ck,f (detΣΣΣ)−1/2 f(‖z‖ΣΣΣ), z ∈ R

k. (1)

As usual, ‖z‖ΣΣΣ := (z′ΣΣΣ−1z)1/2 denotes the norm of z in the metric associated with ΣΣΣ. The con-
stant ck,f is the normalization factor (ωk µk−1;f)−1, where ωk stands for the (k− 1)-dimensional
Lebesgue measure of the unit sphere Sk−1 ⊂ R

k, and µl;f :=
∫∞
0 rlf(r) dr.

Here and in the sequel, we write ΣΣΣ−1/2 for the unique upper-triangular k × k array with
positive diagonal elements satisfying ΣΣΣ−1 = (ΣΣΣ−1/2)

′

ΣΣΣ−1/2. Each vector Zt decomposes into
Zt = dt(ΣΣΣ)ΣΣΣ1/2Ut(θθθ,ΣΣΣ), where dt(ΣΣΣ) := ‖Zt‖ΣΣΣ, and Ut(ΣΣΣ) := ΣΣΣ−1/2Zt/dt(ΣΣΣ). Note that
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U1(ΣΣΣ), . . . , Un(ΣΣΣ) are i.i.d., and uniformly distributed over Sk−1, hence generalizing the tradi-
tional concept of signs : we henceforth call them multivariate signs. Similarly, d1(ΣΣΣ), . . . , dn(ΣΣΣ)
are i.i.d. with probability density function

f̃k(r) := (µk−1;f )−1 rk−1f(r) I[r>0], r ∈ R. (2)

Denote by F̃k the corresponding distribution function.
The ULAN property of the multiresponse linear model with elliptical VARMA errors and

the structure of the corresponding central sequence (see the Appendix) imply that all the rele-
vant information (in this very general framework) about the serial component of the model is
contained in generalized cross-covariance matrices of the form

ΓΓΓ
(n)
i;ΣΣΣ,K := (n−i)−1ΣΣΣ

′−1/2




n∑

t=i+1

K1(dt(ΣΣΣ))K2(dt−i(ΣΣΣ)) Ut(ΣΣΣ)U′
t−i(ΣΣΣ)


ΣΣΣ

′1/2, i = 1, . . . , n−1,

(3)
where K1 and K2 are adequate real-valued score functions. For the trend part of the model,
this information is contained in nonserial statistics of the form

ΛΛΛ
(n)
i;ΣΣΣ,K := (n− i)−1 ΣΣΣ

′−1/2
n∑

t=i+1

K0(dt(ΣΣΣ))Ut(ΣΣΣ)x′t−iK
(n), i = 1, . . . , n− 1, (4)

where K0 again is an adequate score function, whereas x′t−iK
(n) are nonrandom weights related

with the regression constants in the model; see Section 3.1 for details.

2.2 Pseudo-Mahalanobis signs and ranks.

Both the serial statistics in (3) and the nonserial ones in (4) are measurable with respect to

(a) the distances dt(ΣΣΣ) between the sphericized vectors ΣΣΣ−1/2Zt and the origin in R
k which,

under the assumptions made, are i.i.d. over the positive real line, so that their ranks have
the same distribution-freeness and maximal invariance properties as those of the absolute
values of any univariate symmetrically distributed univariate n-tuple, and

(b) the multivariate signs Ut(ΣΣΣ) := ΣΣΣ−1/2Zt/dt(ΣΣΣ) which, under the same conditions, are
uniformly distributed over the unit sphere.

These statistics however both involve the (generally unknown) scatter matrix ΣΣΣ. If finite
second-order moments exist, a “natural” root-n consistent candidate for estimating ΣΣΣ is the
empirical covariance matrix n−1∑n

t=1 ZtZ
′

t. The robustness properties of empirical covariances
however are rather poor, and finite second order moments need not exist. More generally, we
thus assume the following.

Assumption (B1). A sequence Σ̂ΣΣ
(n)

of estimators of ΣΣΣ exists, such that

(i)
√

n(Σ̂ΣΣ
(n)− aΣΣΣ) = OP(1) as n →∞ for some positive real a, and

(ii) Σ̂ΣΣ
(n)

is invariant under permutations and reflections (with respect to the origin in R
k) of

the vectors Zt.
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Assumption (B1) will be sufficient for the asymptotic linearity result in Section 4. However, the
affine-equivariance of the proposed nonparametric versions of (3) and (4) requires the following

equivariance assumption on Σ̂ΣΣ
(n)

.

Assumption (B2). The estimator Σ̂ΣΣ := Σ̂ΣΣ
(n)

is quasi-affine-equivariant, in the sense that, for all
k × k full-rank matrix M, Σ̂ΣΣ(M) = dMΣ̂ΣΣM′, where Σ̂ΣΣ(M) stands for the statistic Σ̂ΣΣ computed
from the n-tuple (MZ1, . . . ,MZn), and d denotes some positive scalar that may depend on M
and on the sample (Zt, t = 1, . . . , n), but not on t.

Note that, under Assumption (B2), the ranks R̂t, t = 1, . . . , n, of the pseudo-Mahalanobis

distances (Z′tΣ̂ΣΣ
−1

Zt)
1/2, t = 1, . . . , n, are strictly affine-invariant. Call these ranks the pseudo-

Mahalanobis ranks; the corresponding multivariate signs Wt := Ut(Σ̂ΣΣ) will be referred to as
pseudo-Mahalanobis signs. The terminology Mahalanobis signs and Mahalanobis ranks will be
used in case Σ̂ΣΣ is the classical covariance matrix.

Denoting, by Σ̂ΣΣ
−1/2

(M) the statistic Σ̂ΣΣ
−1/2

computed from the n-tuple (MZ1, . . . ,MZn),

Σ̂ΣΣ
−1/2

under Assumption (B2) enjoys the equivariance property

Σ̂ΣΣ
−1/2

(M) = d−1/2OΣ̂ΣΣ
−1/2

M−1, (5)

where O is some k × k orthogonal matrix.
For each ΣΣΣ and n, the group of continuous monotone radial transformations

G(n)
ΣΣΣ = {G(n)

g }, acting on (Rk)n and characterized by

G
(n)
g (Z1, . . . ,Zn) :=

(
g(d1(ΣΣΣ))ΣΣΣ1/2U1(ΣΣΣ), . . . , g(dn(ΣΣΣ))ΣΣΣ1/2Un(ΣΣΣ)

)
, (6)

where g : R
+ → R

+ is a continuous monotone increasing function such that g(0) = 0 and

limr→∞ g(r)= ∞, is a generating group for the family of elliptical densities
⋃

f

{∏n
t=1 f(. ;ΣΣΣ, f)

}
.

Along with the signs (U1(ΣΣΣ), . . . ,Un(ΣΣΣ)), the ranks (R
(n)
1 (ΣΣΣ), . . . , R

(n)
n (ΣΣΣ)) of the distances

d
(n)
t (ΣΣΣ) constitute a maximal invariant for that group G (n)

ΣΣΣ of radial transformations. These
genuine ranks cannot be computed from Z1, . . . ,Zn. However, they can be consistently recovered

by considering the pseudo-Mahalanobis ranks R̂
(n)
t , as shown by the following result (see Peters

and Randles 1990 for a proof).

Lemma 1 Assume that Assumptions (A1) and (B1) hold. Then, for all t,
(
R̂

(n)
t −R

(n)
t (ΣΣΣ)

)
is

oP(n) as n →∞.

The pseudo-Mahalanobis signs W
(n)
t := Ut(Σ̂ΣΣ

(n)
) are obviously invariant under G(n)

ΣΣΣ , irre-
spective of the true value of ΣΣΣ. They also are affine-equivariant in the following sense : if

W
(n)
t (M) denotes a sign computed from (MZ1, . . . ,MZn), then W

(n)
t (M) = OW

(n)
t , where O

is the orthogonal matrix involved in (5). Finally, the following consistency result is proved in
Hallin and Paindaveine (2002d).

Lemma 2 Assume that Assumptions (A1) and (B1) hold. Then, for all t, W
(n)
t =U

(n)
t (ΣΣΣ) +

OP(n−1/2) as n →∞.

For k = 1, pseudo-Mahalanobis ranks and pseudo-Mahalanobis signs reduce to the ranks of
absolute values and traditional signs, respectively.
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2.3 Hyperplane-based signs and ranks.

Pseudo-Mahalanobis signs and ranks were entirely based on an estimation of the underlying
scatter matrix. A completely different approach can based on counts of hyperplanes, and leads to
a modification of Randles’ s interdirections (namely, the absolute interdirections) for multivariate
signs, to Oja and Paindaveine (2002)’s concept of lift interdirection ranks for the ranks.

Writing Q := {i1, i2, . . . , ik−1} (1 ≤ i1 < i2 < . . . < ik−1 ≤ n) for an arbitrary ordered
set of indices with size (k − 1), let ZQ := (Zi1 , . . . ,Zik−1

). Denote by eQ the vector whose

components are the cofactors of the last column in the array (ZQ
... z). This vector eQ is

orthogonal to the hyperplane spanned by the k− 1 columns of ZQ. Writing sign( . ) for the sign
function x 7→ sign(x) := I[x>0] − I[x<0], the quantity sign(e′Qz) provides a precise meaning for
the statement “z lies above, on, or below the hyperplane with equation e′Qz = 0” (the ordering
in Q determines what is meant by “above”, as opposed to “below”).

A hyperplane-based empirical angular distance between two vectors v,w in R
k then can be

defined as

c(v,w) :=
1

2

∑

Q

{1− sign(e′Qv) sign(e′Qw)}.

The statistics q
(n)
ij := c(Zi,Zj) are the so-called Randles interdirections (see Randles 1989);

q
(n)
ij is—up to a small-sample correction—the number of hyperplanes in R

k passing through
the origin and (k − 1) out of the (n − 2) points Z1, . . . ,Zi−1,Zi+1, . . . ,Zj−1,Zj+1, . . . ,Zn that
separate Zi and Zj . Interdirections provide affine-invariant estimations of the Euclidean angles

between the sphericized vectors ΣΣΣ−1/2Zi, that is, they estimate the scalar products between
the corresponding spatial signs Ui(ΣΣΣ) defined in Section 2.1. More precisely, one can show the
following (see Hallin and Paindaveine (2002a) for a proof based on U-statistics).

Lemma 3 Assume that Assumption (A1) holds. Then,
( n
k−1

)−1
c(n)(v,w) is an unbiased and

consistent estimator for

π−1 arccos



(

ΣΣΣ−1/2v

‖ΣΣΣ−1/2v‖

)′ (
ΣΣΣ−1/2w

‖ΣΣΣ−1/2w‖

)
 .

Lemma 3 implies that Randles’ interdirections allow for an estimation of the cosines
U′

i(ΣΣΣ)Uj(ΣΣΣ). These cosines (the signs Ui(ΣΣΣ) themselves are not required) are sufficient in
some important particular cases (such as one-way analysis of variance), since the parametric
versions of locally asymptotically optimal test statistics involve the Ui(ΣΣΣ)’s only through their
mutual cosines. In such cases, Randles’ interdirections can be used with the same success as in
Hallin and Paindaveine (2002a) and (2002b), or Randles and Um (1998).

For more sophisticated testing problems however, such as the problem of testing for the
adequacy of a VARMA model (see Hallin and Paindaveine 2002d), locally asymptotically optimal
parametric procedures involve the Ui(ΣΣΣ)’s through quantities of the form U′

i(ΣΣΣ)NUj(ΣΣΣ), where
N is some symmetric positive definite matrix (which often depends on the shape matrix ΣΣΣ, and
therefore has to be estimated). In such cases, Randles’ interdirections are not sufficient anymore,
as they cannot estimate the scalar products (N1/2Ui(ΣΣΣ))

′

(N1/2Uj(ΣΣΣ)). We therefore introduce
the following concept of absolute interdirections. Denoting by {e1, . . . , ek} the canonical basis

in R
k, consider the interdirection c

(n)
i;l := c(Σ̂ΣΣ

1/2
el,Zi) associated with the pair (Σ̂ΣΣ

1/2
el,Zi) in

the sample (Z1, . . . ,Zn), and let V
(n)
i := (cos(πp

(n)
i;1 ), . . . , cos(πp

(n)
i;k ))

′

, where p
(n)
i;l :=

( n
k−1

)−1
c
(n)
i;l .
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Call V
(n)
i the absolute interdirection associated with residual Z

(n)
i . Absolute interdirections

enjoy the following consistency and equivariance properties.

Lemma 4 (i) |c(u,w) − c(v,w)| ≤ c(u,v), for all u,v,w ∈ R
k.

Assume that Assumptions (A1) and (B1) hold. Then,

(ii)
( n
k−1

)−1
c(Σ̂ΣΣ

1/2
v,w) =

( n
k−1

)−1
c(ΣΣΣ1/2v,w) + oL1(1), as n →∞ , for all v,w ∈ R

k, and

(iii) V
(n)
i = U

(n)
i (ΣΣΣ) + oP(1), as n →∞.

Assume moreover that Assumption (B2) holds. Then, denoting by Vi(M) the statistic Vi com-
puted from the n-tuple (MZ1, . . . ,MZn), where M is a k × k full-rank matrix,

(iv) Vi(M) = OUi(ΣΣΣ) + oP(1) as n → ∞ (so that V
(n)
i (M) = OV

(n)
i + oP(1) as n → ∞),

where O is the orthogonal matrix involved in the equivariance relation (5).

Proof. (i) Clearly,

|c(u,w) − c(v,w)| = (1/2)
∣∣∣
∑

Q

[sign(eQ
′u)− sign(eQ

′v)] sign(eQ
′w)

∣∣∣

≤ (1/2)
∑

Q

|sign(eQ
′u)− sign(eQ

′v)|

= (1/2)
∑

Q

(1− sign(eQ
′u)sign(eQ

′v)) = c(u,v).

(ii) In view of (i) and Lemma 3, we get

E

[( n
k−1

)−1|c(Σ̂ΣΣ1/2
v,w) − c(ΣΣΣ1/2v,w)|

∣∣∣ Σ̂ΣΣ
]
≤ E

[( n
k−1

)−1
c(Σ̂ΣΣ

1/2
v,ΣΣΣ1/2v)

∣∣∣ Σ̂ΣΣ
]

= π−1 arccos

((
ΣΣΣ−1/2Σ̂ΣΣ

1/2
v

‖ΣΣΣ−1/2Σ̂ΣΣ
1/2

v‖

)′

v

‖v‖

)
,

which vanishes in probability as n → ∞. Since the corresponding conditional expectation is
bounded, this convergence also holds in the L1-sense, so that the unconditional expectation
goes to zero, as n →∞.

(iii) The mean value theorem implies that

E
[
|e′l(V

(n)
i −U

(n)
i (ΣΣΣ))|

∣∣∣Zi

]
≤ πE

[
|pi;l − π−1 arccos(e

′

lU
(n)
i (ΣΣΣ))|

∣∣∣Zi

]

≤ πE

[( n
k−1

)−1|c(Σ̂ΣΣ1/2
el,Zi)− c(ΣΣΣ1/2el,Zi)|

∣∣∣Zi

]

+πE
[
|( n

k−1

)−1
c(ΣΣΣ1/2el,Zi)− π−1 arccos(e

′

lU
(n)
i (ΣΣΣ))|

∣∣∣Zi

]
.

The result then follows from (ii) and from Lemma 3.
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(iv) Denote by c(v,w) = c(v,w;Z) (resp. by c(v,w;MZ)) the interdirection associated
with (v,w) in the sample Z1, . . . ,Zn (resp. in the sample MZ1, . . . ,MZn). Then

( n
k−1

)−1
c
(
Σ̂ΣΣ

1/2
(M)el,MZi;MZ

)
=

( n
k−1

)−1
c
(
d1/2M Σ̂ΣΣ

1/2
O

′

el,MZi;MZ
)

=
( n
k−1

)−1
c
(
Σ̂ΣΣ

1/2
O

′

el,Zi;Z
)
,

so that (working as in (iii)), we obtain

e
′

lV
(n)
i (M) = cos(πp

(n)
i;l (M)) = (O

′

el)
′

U
(n)
i (ΣΣΣ) + oP(1),

as n →∞. �

Lemma 4 shows that absolute interdirections allow to estimate any function of the stan-
dardized residuals Ui, and in particular quantities of the form U

′

iNUj . In case ΣΣΣ 7→ N(ΣΣΣ)

is continuous, and provided that N(aΣΣΣ) = N(ΣΣΣ) for any a ∈ R
+, the estimator Σ̂ΣΣ

(n)
can be

plugged in without affecting asymptotic results. Note that, unlike (pseudo-)Mahalanobis signs

Wt := Σ̂ΣΣ
−1/2

Zt/‖Σ̂ΣΣ
−1/2

Zt‖, absolute interdirections are only asymptotically affine-equivariant.

We now consider hyperplane-based ranks. Write P := {j1, j2, . . . , jk} (1 ≤ j1 < j2 < . . . <
jk ≤ n) for an arbitrary ordered set of indices with size k. Denote by (d0P ,d′P )′ the vector
whose components are the cofactors of the last column in the array

(
1 1 . . . 1 1

Zj1 Zj2 . . . Zjk
z

)
.

The vector dP is orthogonal to the hyperplane going through Zj1 , . . . ,Zjk
, hence has equation

d0P+d′Pz = 0. Again, the sign of d0P+d′Pz allows to determine on which side of that hyperplane
the point z lies. A hyperplane-based empirical distance between some vector v and the origin
in R

k then can be defined as

l(n)(v) :=
∑

P

1− sign(d0P + d′Pv) sign(d0P − d′Pv)

2
,

i.e., as the number of hyperplanes in R
k passing through k out of the n points Z1, . . . ,Zn, that

are separating v and its reflection −v. This concept of distance from the origin introduced
by Oja and Paindaveine (2002) however suffers a lack of symmetry; that is why they rather
considered the symmetrized distances

l(n)(v) :=
∑

P

∑

s

1− sign(d0P (s) + dP(s)′v) sign(d0P (s)− dP(s)′v)

2
,

where, for some P = (j1, . . . , jk) and some s ∈ {−1, 1}k , (d0P (s),dP (s)′)′ stands for the vector
of cofactors associated with the last column in the array

(
1 1 . . . 1 1

s1Zj1 s2Zj2 . . . skZjk
z

)
.

The resulting (symmetrized) lift-interdirections l
(n)
i := l(n)(Zi), i = 1, . . . , n, are invariant under

reflections (w.r.t. the origin in R
k) of the Zi’s. As shown by the following result, their ranks

R
(n)
i are asymptotically equivalent to the ranks of the genuine distances di(ΣΣΣ).
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Lemma 5 Assume that Assumptions (A1) holds. Then, for all t,
(
R

(n)
t −R

(n)
t (ΣΣΣ)

)
is oP(n) as

n →∞.

This asymptotic equivalence result between the true ranks and the ranks of (symmetrized) lift-
interdirections (along with the invariance of the latter under permutations and reflections of the
observations) allows for building multivariate signed-rank procedures based on interdirections
and the ranks of lift-interdirections for a broad class of location and serial problems (see Oja
and Paindaveine 2002).

2.4 Serial and nonserial multivariate signed rank statistics.

Several rank-based versions of the serial and nonserial statistics (3) and (4) will be considered
in the sequel, each of them based on the combination of a concept of multivariate signs (either
Mahalanobis signs, pseudo-Mahalanobis signs, or absolute interdirections) with a concept of
multivariate ranks (Mahalanobis, pseudo-Mahalanobis, or lift-interdirection ranks).

The versions based on Mahalanobis or pseudo-Mahalanobis signs and ranks are, in the serial
case,

ΓΓΓ
˜

(n)
i;J := Σ̂ΣΣ

′−1/2


 1

n− i

n∑

t=i+1

J1

( R̂
(n)
t

n + 1

)
J2

( R̂
(n)
t−i

n + 1

)
W

(n)
t W

(n)′

t−i


 Σ̂ΣΣ

′1/2
, (7)

and, in the nonserial case,

ΛΛΛ
˜

(n)
i;J := (n− i)−1 Σ̂ΣΣ

′−1/2
n∑

t=i+1

J0

( R̂
(n)
t

n + 1

)
W

(n)
t x

(n)′

t−i K
(n). (8)

These versions will serve as reference versions, in the sense that, in order to avoid unnecessary
additional notation, asymptotic linearity will be stated formally for (7) and (8) only (part (i) of
Proposition 2), then extended (part (ii) of the same proposition) to the other versions (based
on the other concepts of signs and ranks). Note that, contrary to the score functions K0, K1,
and K2 appearing in (3) and (4), the score functions J0, J1, and J2 in (7) and (8) are defined
over the open unit interval ]0, 1[. The relation between the J scores and the K scores (which
depends on the underlying density) will be clarified in the asymptotic representation results of
Proposition 1.

These asymptotic representation results require some technical assumptions on the score
functions J0, J1, and J2. More precisely, we will assume the following.

Assumption (C). The score functions J` : ]0, 1[→ R, ` = 0, 1, 2, are continuous differences of
two monotone increasing functions, and satisfy

∫ 1
0 [J`(u)]2 du < ∞ (` = 0, 1, 2).

We now can state the asymptotic representation results for ΓΓΓ
˜

(n)
i;J and ΛΛΛ

˜
(n)
i;J . Letting

Γ̃ΓΓ
(n)

i;J ;ΣΣΣ,f := ΣΣΣ
′−1/2

(
1

n− i

n∑

t=i+1

J1(F̃k(d
(n)
t (ΣΣΣ)))J2(F̃k(d

(n)
t−i(ΣΣΣ))) U

(n)
t (ΣΣΣ)U

(n)′

t−i (ΣΣΣ)

)
ΣΣΣ

′1/2, (9)

and

Λ̃ΛΛ
(n)

i;J ;ΣΣΣ,f := (n− i)−1 ΣΣΣ
′−1/2

n∑

t=i+1

J0(F̃k(d
(n)
t (ΣΣΣ))) U

(n)
t (ΣΣΣ)x

(n)′

t−i K
(n), (10)

we have the following.
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Proposition 1 Assume that Assumptions (A1), (B1), and (C) hold. Then,

(i) vec (ΛΛΛ
˜

(n)
i;J − Λ̃ΛΛ

(n)

i;J ;ΣΣΣ,f ) and vec (ΓΓΓ
˜

(n)
i;J − Γ̃ΓΓ

(n)

i;J ;ΣΣΣ,f ) are oP(n−1/2) for all i, as n →∞, and

(ii) the same result still holds if the pseudo-Mahalanobis signs W
(n)
t in ΛΛΛ

˜
(n)
i;J and ΓΓΓ

˜
(n)
i;J are

replaced by the corresponding absolute interdirections, and/or if the pseudo-Mahalanobis

ranks R̂
(n)
t are replaced by the lift-interdirection ranks R

(n)
t .

Proof. (i) The result for the serial part is established in Proposition 2 of Hallin and Paindav-
eine (2002d), where, however, Tyler’s estimator of scatter is used for Σ̂ΣΣ; one can easily check
that the same proof holds for any estimate satisfying Assumption (B1). The proof for the trend
part follows along similar lines, and is left to the reader.

(ii) A closer look at the proof of (i) (see Proposition 2 of Hallin and Paindaveine (2002d))

shows that it only requires that the estimated ranks R̂
(n)
t are

(a) invariant under permutations and reflections (with respect to the origin in R
k) of the

residuals, and

(b) asymptotically equivalent to the “true” ranks, meaning that, for all t,

R̂
(n)
t /(n + 1) =

[
R

(n)
t (ΣΣΣ)/(n + 1)

]
+ oP(1) as n →∞.

Similarly, all estimators W
(n)
t (for the signs) that

(c) satisfy W
(n)
t (s1Z1, . . . , snZn) = stW

(n)
t (Z1, . . . ,Zn) for all (s1, . . . , sn) ∈ {−1, 1}n, and

(d) are asymptotically equivalent to the “true” signs, meaning that, for all t,

W
(n)
t = U

(n)
t (ΣΣΣ) + oP(1) as n →∞,

successfully can be substituted for the pseudo-Mahalanobis signs in the proof of (i). This yields
the desired result since, from Section 2.3, it is clear that lift-interdirection ranks and absolute
interdirections do satisfy (a), (b), (c), and (d). �

3 The linear model with VARMA error terms.

3.1 The model.

Asymptotic linearity properties are characterizing the impact of a “small” perturbation of un-
derlying parameters on the asymptotic behaviour of the statistics under study. Such properties
thus are intimately related to some underlying model. The model considered throughout this
paper is the very general multivariate linear model with VARMA error terms

Y(n) = X(n) βββ + U(n), (11)

where

X(n) :=




x1,1 x1,2 . . . x1,m
...

...
...

xn,1 xn,2 . . . xn,m


 :=




x′1
...

x′n


 and βββ :=




β1,1 β1,2 . . . β1,k
...

...
...

βm,1 βm,2 . . . βm,k




9



denote an n×m matrix of constants (the design matrix), and βββ the m×k regression parameter,
respectively. Instead of the traditional assumption that the error term

U(n) :=




U1,1 U1,2 . . . U1,k
...

...
...

Un,1 Un,2 . . . Un,k


 :=




U′
1

...
U′

n




is white noise, we rather assume Ut, t = 1, . . . , n to be a finite realization (of length n) of a
solution of the multivariate linear stochastic difference equation (a VARMA(p0, q0) model)

A(L)Ut = B(L)εεεt, t ∈ Z, (12)

where A(L) := Ik −
∑p0

i=1 AiL
i and B(L) := Ik +

∑q0
i=1 BiL

i for some (p0 + q0)-tuple of k × k
real matrices (A1, . . . ,Ap0 ,B1, . . . ,Bq0), {εεεt | t ∈ Z} is a k-dimensional white-noise process, and
L stands for the lag operator. Under this model, the observation

Y(n) :=




Y1,1 Y1,2 . . . Y1,k
...

...
...

Yn,1 Yn,2 . . . Yn,k


 :=




Y′
1

...
Y′

n




is the realization of a k-variate VARMA process {Yt, t ∈ Z} with trend βββ′xt.
Of course, asymptotic linearity requires some regularity assumptions. These assumptions

deal with the asymptotic behaviour of the design matrices X(n), the coefficients and the (el-
liptical) innovation density of the VARMA model (12), and the score functions involved in the
statistics under study. For convenient reference, all these assumptions are listed here.

Let us begin with some structural conditions on the trend part of the model. The following
assumptions are standard in the context (see Garel and Hallin 1995).

Assumption (D1). Let C
(n)
i := (n − i)−1∑n

t=i+1 x
(n)
t x

(n)′

t−i , i = 0, 1, . . . , n − 1, and denote by

D(n) the diagonal matrix with elements (C
(n)
0 )11, . . . , (C

(n)
0 )mm.

(i) (C
(n)
0 )jj > 0 for all j.

(ii) Let R
(n)
i := (D(n))−1/2C

(n)
i (D(n))−1/2. The limits limn→∞R

(n)
i =: Ri exist for all i; R0

is positive definite, and therefore can be factorized into R0 = (KK
′

)−1 for some full-rank
m×m matrix K. Letting K(n) := (D(n))−1/2K, note that K(n) is also of full rank.

(iii) The classical Noether conditions hold : the (x
(n)
t )j , t = 1, . . . , n, are not all equal, and,

letting x̄
(n)
j := n−1∑n

t=1(x
(n)
t )j ,

lim
n→∞

max1≤t≤n

(
(x

(n)
t )j − x̄

(n)
j

)2

∑n
t=1

(
(x

(n)
t )j − x̄

(n)
j

)2 = 0, j = 1, . . . ,m.

Note that the Noether conditions also imply that

lim
n→∞

max1≤t≤n

(
x

(n)
t

)2

j

∑n
t=1

(
x

(n)
t

)2

j

= 0, j = 1, . . . ,m. (13)

10



For the serial part of the model, we essentially require the VARMA model (12) to be causal
and invertible. The assumptions on the difference operators are actually the same as in Hallin
and Paindaveine (2002d), where the problem of testing the adequacy of a specified VARMA
model is considered.

Assumption (D2). All solutions of det(Ik −
∑p0

i=1 Aiz
i) = 0 and det(Ik +

∑q0
i=1 Biz

i) = 0
(|Ap0 | 6= 0 6= |Bq0 |) lie outside the unit ball in C. Moreover, the greatest common left divisor of
Ik −

∑p0
i=1 Aiz

i and Ik +
∑q0

i=1 Biz
i is the identity matrix Ik.

Under Assumption (D2), {εεεt} is {Ut}’s (hence also {Yt}’s) innovation process. The set of
assumptions (A) deals with the density of this innovation. For local asymptotic normality, the
assumption of elliptical symmerty (Assumption (A1)) is to be reinforced into

Assumption (A1′). Same as Assumption (A1), but with µk+1,f < ∞.

Moreover, f 1/2 is also required to satisfy a quadratic mean differentiability property:

Assumption (A2). The square root f 1/2 of the radial density f is in W 1,2(R+
0 , µk−1), where

W 1,2(R+
0 , µk−1) denotes the subspace of L2(R+

0 , µk−1) containing all functions admitting a weak
derivative that also belongs to L2(R+

0 , µk−1).

Assumption (A2) is strictly equivalent to the assumption that f 1/2 is differentiable in quadratic

mean (see Hallin and Paindaveine 2002a). Denoting by (f 1/2)′ the weak derivative of f 1/2

in L2(R+
0 , µk−1), let ϕf := −2 (f1/2)′

f1/2 . Under (A2), the radial Fisher information Ik,f :=
∫∞
0 [ϕf (r)]2rk−1f(r) dr is finite. In the pure location or purely serial problems considered in

Hallin and Paindaveine (2002a, b, and d), this was sufficient for LAN. However, as pointed out
by Garel and Hallin (1995), LAN, in this model where serial and nonserial features are mixed,
requires the stronger assumption:

Assumption (A3).
∫∞
0 [ϕf (r)]4rk−1f(r) dr < ∞.

Finally, the score functions yielding locally and asymptotically optimal procedures are of the
form J0 = J1 := ϕf?◦F̃

−1
?k and J2 := F̃−1

?k , for some radial density f? (with obvious notation ϕf?

and F̃?k). Assumption (C) then takes the form of an assumption on f? :

Assumption (C′). The radial density f? is such that ϕf? is the continuous difference of two
monotone increasing functions, µk+1;f? < ∞, and

∫∞
0 [ϕf?(r)]

2rk−1f?(r) dr < ∞.

3.2 Uniform local asymptotic normality (ULAN).

Under the assumptions made, the model described in Section 3.1 is uniformly asymptotically
normal (ULAN : see Appendix). Letting Ai := 0 for p0 < i ≤ p1 and Bi := 0 for q0 < i ≤ q1,
denote by

θθθ :=
(
(vecβββ′)

′

, (vec A1)
′

, . . . , (vec Ap1)
′

, (vec B1)
′

, . . . , (vec Bq1)
′
)′

the vector of parameters indexing the model. The orders p1 ≥ p0 and q1 ≥ q0 are taken into
account in order to allow for testing against higher order VARMA dependencies (namely, testing
VARMA(p0, q0) against VARMA(p1, q1)). The hypothesis under which the observation has been
generated by model (11)-(12) with parameter value θθθ, scatter matrix ΣΣΣ, and radial density f
will be denoted as H(n)(θθθ,ΣΣΣ, f).
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The sequences of local alternatives to be considered for this property are associated with
sequences of models of the form

Y(n) = X(n) βββ(n) + U(n), A(n)(L)U
(n)
t = B(n)(L)εεε

(n)
t , t ∈ Z, (14)

where βββ(n) = βββ + n−1/2K(n)ηηη(n), A(n)(L) := Ik −
∑p1

i=1(Ai + n−1/2γγγ
(n)
i )Li and B(n)(L) :=

Ik +
∑q1

i=1(Bi + n−1/2δδδ
(n)
i )Li, and the sequence

τττ (n) :=
(
(vecηηη(n)′)

′

, (vecγγγ
(n)
1 )

′

, . . . , (vecγγγ(n)
p1

)
′

, (vec δδδ
(n)
1 )

′

, . . . , (vec δδδ(n)
q1

)
′
)′
∈ R

K = R
km+k2(p1+q1)

is bounded as n →∞ : supn(τττ (n))′τττ (n) < ∞. The perturbed parameter is thus

θθθ(n) := θθθ + ννν(n)τττ (n) := θθθ + n−1/2

(
K(n) ⊗ Ik 0

0 Ik2(p1+q1)

)
τττ (n).

The corresponding sequence of local alternatives will be denoted by H(n)(θθθ + ννν(n)τττ (n),ΣΣΣ, f).
Denote by Gu(θθθ), u ∈ N, the Green’s matrices associated with the autoregressive difference

operator A(L) = Ik−
∑p0

i=1 AiL
i. These matrices can be defined recursively by A(L)Gu = Gu−∑min(p0,u)

i=1 AiGu−i = δu0 Ik, where δu0 = 1 if u = 0, and δu0 = 0 otherwise. Assumption (D2)
also allows for defining Gu by means of

+∞∑

u=0

Guzu :=

(
Ik −

p0∑

i=1

Aiz
i

)−1

, z ∈ C, |z| < 1; (15)

Similarly, we denote by Hu(θθθ), u ∈ N, the Green’s matrices associated with the moving av-
erage difference operators B(L). Clearly, all these Green’s matrices are continuous functions
of θθθ. When no confusion is possible, we will not stress their dependence on θθθ. The residuals

(Z
(n)
1 (θθθ), . . . ,Z

(n)
n (θθθ)) associated with a value θθθ of the parameter then can be computed from the

initial values εεε−q0+1 . . . , εεε0,Y
(n)
−p0+1, . . . ,Y

(n)
0 and the observed series (Y

(n)
1 , . . . ,Y

(n)
n ) via the

recursion

Z
(n)
t (θθθ) =

t−1∑

i=0

p0∑

j=0

HiAj(Y
(n)
t−i−j − βββ

′

x
(n)
t−i−j) (16)

+(Ht+q0−1 . . .Ht)




Ik 0 . . . 0
B1 Ik . . . 0
...

...
. . .

...
Bq0−1 Bq0−2 . . . Ik







εεε−q0+1
...

εεε0


 .

Assumption (D2) ensures that neither the (generally unobserved) values (εεε−q0+1, . . . , εεε0) of the

innovation, nor the initial values (Y
(n)
−p0+1, . . . , Y

(n)
0 ), have an influence on asymptotic results;

they all safely can be put to zero in the sequel.
The ULAN property of the model and the structure of the central sequence (see Appendix)

imply that all the relevant information (in this elliptical context) is contained in the general-

ized cross-covariance matrices ΓΓΓ
(n)
i;ΣΣΣ,f (θθθ) and the nonserial statistics ΛΛΛ

(n)
i;ΣΣΣ,f (θθθ) (see (3) and (4))

computed from the residuals Z
(n)
t (θθθ), with the score functions K0(d) = K1(d) = ϕf (d) and

K2(d) = d. We refer to the Appendix for details.
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4 Asymptotic linearity.

We now can state and prove the main result of this paper. Define

hj = hj(θθθ) := Hj(θθθ)−
min(p0,j)∑

i=1

Hj−i(θθθ)Ai(θθθ), j = 0, 1, 2, . . . ,

ai(τττ ;θθθ) :=

min(p1,i)∑

j=1

i−j∑

l=0

min(q0,i−j−l)∑

k=0

(Gi−j−l−k(θθθ)Bk(θθθ)⊗Hl(θθθ)
′

)
′

vecγγγj, (17)

and

bi(τττ ;θθθ) :=

min(q1,i)∑

j=1

(Ik ⊗Hi−j(θθθ)) vec δδδj . (18)

Let further Dk(J ; f) :=
∫ 1
0 J(u) F̃−1

k (u) du and Ck(J ; f) :=
∫ 1
0 J(u)ϕf ◦F̃−1

k (u) du.

Proposition 2 Assume that Assumptions (A1′), (A2), (A3), (B1), (C) (or (C′)), (D1), and
(D2) hold. Then,

(i) (n− i)1/2

{
vec ΛΛΛ

˜
(n)
i;J (θθθ + ννν(n)τττ (n))− vec ΛΛΛ

˜
(n)
i;J (θθθ)

}

+
1

k
Ck(J0; f)(Im ⊗ΣΣΣ−1)




∞∑

j=0

(K
′

R|i−j|K)⊗ hj



(
vecηηη(n)′

)
= oP(1), (19)

and

(n− i)1/2
{

vec ΓΓΓ
˜

(n)
i;J (θθθ + ννν(n)τττ (n))− vec ΓΓΓ

˜
(n)
i;J (θθθ)

}

+
1

k2
Dk(J2; f)Ck(J1; f)(ΣΣΣ⊗ΣΣΣ−1)

[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]
= oP(1), (20)

as n →∞, under H(n)(θθθ,ΣΣΣ, f), and

(ii) the same result still holds if the pseudo-Mahalanobis signs W
(n)
t in ΛΛΛ

˜
(n)
i;J and ΓΓΓ

˜
(n)
i;J are

replaced by the corresponding absolute interdirections, and/or if the pseudo-Mahalanobis

ranks R̂
(n)
t are replaced by the lift-interdirection ranks R

(n)
t .

The proof of Proposition 2 relies on a series of lemmas. In the remaining of this section,

we will write Z0
t and Zn

t for Z
(n)
t (θθθ) and Z

(n)
t (θθθ + ννν(n)τττ (n)), respectively. Accordingly, let

d0
t := ‖ΣΣΣ−1/2Z0

t ‖, U0
t := ΣΣΣ−1/2Z0

t /d
0
t , dn

t := ‖ΣΣΣ−1/2Zn
t ‖, and Un

t := ΣΣΣ−1/2Zn
t /dn

t . We begin by
two preliminary results.

Lemma 6 Under H(n)(θθθ,ΣΣΣ, f),

(i) max1≤t≤n ‖Zn
t −Z0

t ‖ = oP(1) as n →∞;

(ii) max1≤t≤n |dn
t − d0

t | = oP(1) as n →∞;
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(iii) denoting by IA the indicator function of the set A, max1≤t≤n

(
‖Un

t −U0
t ‖I[d0

t >ε]

)
= oP(1)

as n →∞, for all ε > 0. Moreover, ‖Un
t −U0

t ‖ = oP(1) as n →∞, for all t.

Lemma 7 Under H(n)(θθθ,ΣΣΣ, f) and for sufficiently large n, {Zn
t , t ∈ Z} is an absolutely regular

process, with mixing rates β(n)(j), j ∈ N, satisfying β(n)(j) ≤ β(j), where β(j) is exponentially
decreasing (to zero) as j →∞.

Proof of Lemma 6. (i) Writing Hn
i for Hi(θθθ + ννν(n)τττ (n)), we may write, in view of (16),

Zn
t − Z0

t =
t−1∑

i=0

Hn
i A

(n)(L)[Y
(n)
t−i − (βββ + n−1/2K(n)ηηη(n))

′

x
(n)
t−i]

−
t−1∑

i=0

HiA(L)[Y
(n)
t−i −βββ

′

x
(n)
t−i]

= n−1/2

[
n1/2

t−1∑

i=0

(Hn
i −Hi)A(L)−

t−1∑

i=0

Hn
i γγγ

(n)(L)

]
(Y

(n)
t−i − βββ

′

x
(n)
t−i)

−n−1/2
t−1∑

i=0

Hn
i A

(n)(L)ηηη(n)′K(n)′x
(n)
t−i, (21)

where γγγ(n)(L) :=
∑p1

i=1 γγγ
(n)
i Li. Using the fact that n1/2∑∞

i=0 ‖Hn
i −Hi‖ is bounded as n →∞

(see Lemma 4.3 in Garel and Hallin 1995), it can be easily checked that the sums of the norms of
the matrix coefficients of [n1/2∑t−1

i=0(H
n
i −Hi)A(L) −∑t−1

i=0 Hn
i γγγ

(n)(L)] are uniformly bounded
(for n sufficiently large). Consequently,

e
(n)
t := [n1/2

t−1∑

i=0

(Hn
i −Hi)A(L)−

t−1∑

i=0

Hn
i γγγ

(n)(L)](Y
(n)
t−i − βββ

′

x
(n)
t−i)

is a stationary process with finite variance. Therefore, max1≤t≤n ‖e(n)
t ‖ is oP(n1/2).

For the non-random term in (21), using the same type of arguments as above, it is easily
seen that

max
1≤t≤n

∥∥∥n−1/2
t−1∑

i=0

Hn
i A

(n)(L)ηηη(n)′K(n)′x
(n)
t−i

∥∥∥ ≤ Cn−1/2 max
1≤t≤n

‖K(n)′x
(n)
t−i‖.

Now, note that

‖K(n)′x
(n)
t−i‖ = ‖K′

(D(n))−1/2x
(n)
t−i‖

≤ ‖K‖ [x
(n)′

t−i (D(n))−1x
(n)
t−i]

1/2

< n1/2‖K‖




m∑

j=1

(
x

(n)
t−i

)2

j

∑n
t=1

(
x

(n)
t

)2

j




1/2

,

which, in view of (13), is o(n1/2) as n →∞, uniformly in t. The result follows.

(ii) This trivially results from (i), and from the chain of inequalities (for all t = 1, . . . , n)

|dn
t − d0

t | ≤ ‖ΣΣΣ−1/2(Zn
t − Z0

t )‖ ≤ ‖ΣΣΣ−1/2‖‖Zn
t − Z0

t ‖ ≤ ‖ΣΣΣ−1/2‖ max
1≤t≤n

‖Zn
t − Z0

t ‖.

14



(iii) Working along the same lines as in the proof of Lemma 2 of Hallin and Paindav-
eine (2002d), we obtain that ‖Un

t − U0
t ‖I[d0

t >ε] ≤ (2/ε) ‖ΣΣΣ−1/2‖ ‖Zn
t − Z0

t ‖, which, in view
of (i), yields the first statement. To establish the second one, note that

P[‖Un
t −U0

t ‖ > δ] ≤ P
[
‖Un

t −U0
t ‖I[d0

t >ε] > δ
]
+ P[d0

t ≤ ε].

Since the second term can be made as small as possible by choosing a suitable ε, the result
follows from the first part of (iii). �

Proof of Lemma 7. Letting H(n)(L) :=
∑∞

i=0 Hn
i Li, we have, from equation (16),

Zn
t = H(n)(L)A(n)(L)[Y

(n)
t − (βββ +n−1/2K(n)ηηη(n))

′

x
(n)
t ] and Z0

t = H(L)A(L)[Y
(n)
t −βββ

′

x
(n)
t ] = εεεt,

so that

Zn
t = H(n)(L)A(n)(L)G(L)B(L)εεεt − n−1/2H(n)(L)A(n)(L)ηηη(n)′K(n)′x

(n)
t ,

where the εεεt’s are i.i.d. with the probability density function f given in (1). Consequently, the

process {Z̃n
t := Zn

t − E0[Z
n
t ], t ∈ Z} (here, and in the sequel, expectation E0 is taken under

H(n)(θθθ,ΣΣΣ, f)) satisfies the infinite order linear difference equation

Z̃n
t = H(n)(L)A(n)(L)G(L)B(L)εεεt =:

∞∑

j=0

E
(n)
j εεεt−j .

Let α
(n)
l :=

∑∞
j=l ‖E

(n)
j ‖. It follows from Theorem 2.1 in Pham and Tran (1985) that, if

(i)
∫ |f(x + ∆∆∆)− f(x)| dx ≤ K‖∆∆∆‖,

(ii)
∫ ‖x‖δf(x) dx < ∞, for some δ > 0,

(iii)
∑∞

j=0 ‖E
(n)
j ‖ < ∞,

∑∞
j=0 E

(n)
j zj 6= 0, for all |z| ≤ 1, and

(iv)
∑∞

l=1(α
(n)
l )δ/(1+δ) < ∞,

then, {Z̃n
t , t ∈ Z} is absolutely regular, with mixing rates β (n)(j) ≤ K

∑∞
l=j(α

(n)
l )δ/(1+δ) .

We check that Conditions (i)-(iv) hold here. Denoting by ‖.‖2 the L2-norm and by Df1/2

the quadratic mean gradient of f 1/2, we have

∫
|f(x +∆∆∆)− f(x)| dx ≤ ‖f 1/2(. + ∆∆∆)− f1/2(.)‖2‖f1/2(. + ∆∆∆) + f1/2(.)‖2

≤ 2 ‖f 1/2(. +∆∆∆)− f1/2(.)‖2
≤ 2 ‖f 1/2(. +∆∆∆)− f1/2(.)−∆∆∆

′

Df1/2(.)‖2 + 2 ‖∆∆∆′

Df1/2(.)‖2

≤ 2
(
(1/k) Ik,f ∆∆∆

′

ΣΣΣ−1∆∆∆
)1/2

+ 2 ‖∆∆∆‖‖Df1/2(.)‖2,

where we used Lemma 2.2(i) in Garel and Hallin (1995) to bound the first term. Since the
quadratic mean gradient is in L2(Rk), Condition (i) is satisfied. Of course, Assumption (A1′)
implies that Condition (ii) is satisfied with δ = 2.

It follows from Assumption (D2) that (‖E(n)
j ‖) is exponentially decreasing to zero in j (for

fixed n), so that the first part of Condition (iii) clearly holds (note that the second part of
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Condition (iii) directly follows from Assumption (D2)). It is then a simple exercise to check that

the sequence (α
(n)
l ) is also exponentially decreasing to zero in j (still for fixed n). Consequently,

Condition (iv) is satisfied, and Pham and Tran (1985)’s Theorem 2.1 applies.

As above, the exponential decrease in l of the (α
(n)
l )’s implies the exponential decrease in l

of the mixing rates β(n)(j) of the associated absolutely regular process. The uniformity in n
of the exponential decrease of β(n)(j) is obtained, as in the univariate case, by showing (as in

Kreiss (1987), Lemma 6.1) that the above bounds on the norms ‖E(n)
j ‖ hold uniformly in n (for

sufficiently large n). �

Proof of Proposition 2. We now prove the asymptotic linearity result (20). One can check
that the proof of (19) follows along the same lines, and is actually simpler. We first consider
the following truncation of the score functions J`, ` = 1, 2. For all m ∈ N0, define

J
(m)
` (u) :=





0 if u ≤ 1
m

J`

(
2
m

)
m
(
u− 1

m

)
if 1

m < u ≤ 2
m

J`(u) if 2
m < u ≤ 1− 2

m

J`

(
1− 2

m

)
m
((

1− 1
m

)
− u

)
if 1− 2

m < u ≤ 1− 1
m

0 if u > 1− 1
m .

Since J` is continuous (see Assumption (C)), the function J
(m)
` is also continuous on ]0, 1[.

Clearly, J
(m)
` is compactly supported in ]0, 1[ for all m; consequently, it is bounded for all m. As

already mentioned, it can safely be assumed that J` is a monotone increasing function (rather
than the difference of two monotone inscreasing functions), so that (at least for m sufficiently

large) |J (m)
` | is bounded by |J`| uniformly in m and u, i.e., there exists some M such that

|J (m)
` (u)| ≤ |J`(u)| for all u ∈ ]0, 1[ and all m ≥ M .

We have to prove that, under H(n)(θθθ,ΣΣΣ, f), as n →∞,

(n− i)1/2vec (ΓΓΓ
˜

(n)
i;J (θθθ + ννν(n)τττ (n))− ΓΓΓ

˜
(n)
i;J (θθθ))

+
1

k2
Dk(J2; f)Ck(J1; f)(ΣΣΣ⊗ΣΣΣ−1)

[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]
(22)

is oP(1). Proposition 1 shows that (n − i)1/2vec (ΓΓΓ
˜

(n)
i;J (θθθ)) − (n− i)1/2 vec (Γ̃ΓΓ

(n)

i;J ;ΣΣΣ,f (θθθ)) is oP(1),

as n →∞, under the same sequence of hypotheses. Similarly,

(n− i)1/2 vec (ΓΓΓ
˜

(n)
i;J (θθθ + ννν(n)τττ (n)))− (n− i)1/2 vec (Γ̃ΓΓ

(n)

i;J ;ΣΣΣ,f (θθθ + ννν(n)τττ (n))) (23)

is oP(1) as n → ∞, under H(n)(θθθ + ννν(n)τττ (n),ΣΣΣ, f). It follows from contiguity that (23) is also
oP(1) under H(n)(θθθ,ΣΣΣ, f), as n → ∞. Consequently, (22) is asymptotically equivalent, under
H(n)(θθθ,ΣΣΣ, f), to

(n− i)1/2 vec (Γ̃ΓΓ
(n)

i;J ;ΣΣΣ,f (θθθ + ννν(n)τττ (n)))− (n− i)1/2 vec (Γ̃ΓΓ
(n)

i;J ;ΣΣΣ,f (θθθ))

+
1

k2
Dk(J2; f)Ck(J1; f) (ΣΣΣ⊗ΣΣΣ−1)

[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]
. (24)
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Using the fact that vec (A1BA2) = (A
′

2⊗A1) vec B, (24) can be written as (ΣΣΣ1/2⊗ΣΣΣ
′−1/2)C(n),

where

C(n) := (n− i)−1/2 vec




n∑

t=i+1

J1(F̃k(d
n
t )) J2(F̃k(d

n
t−i))U

n
t U

n′

t−i




−(n− i)−1/2 vec




n∑

t=i+1

J1(F̃k(d
0
t )) J2(F̃k(d

0
t−i))U

0
t U

0′
t−i




+
1

k2
Dk(J2; f)Ck(J1; f) (ΣΣΣ

′1/2 ⊗ΣΣΣ−1/2)
[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]
. (25)

Clearly, it is sufficient to show that C(n) = oP(1), under H(n)(θθθ,ΣΣΣ, f), as n → ∞. Now,

decompose C(n) into C(n) = D
(n;m)
1 + D

(n;m)
2 + R

(n;m)
1 + R

(n;m)
2 + R

(n;m)
3 , where, denoting by

E0 the expectation under H(n)(θθθ,ΣΣΣ, f),

D
(n;m)
1 := (n− i)−1/2 vec




n∑

t=i+1

J
(m)
1 (F̃k(dn

t )) J2(F̃k(dn
t−i))U

n
t U

n′

t−i




−(n− i)−1/2 vec




n∑

t=i+1

J
(m)
1 (F̃k(d0

t )) J
(m)
2 (F̃k(d0

t−i))U
0
t U

0′

t−i




−(n− i)−1/2E0


 vec




n∑

t=i+1

J
(m)
1 (F̃k(d

n
t )) J

(m)
2 (F̃k(d

n
t−i))U

n
t U

n′
t−i




 ,

D
(n;m)
2 := (n− i)−1/2E0


 vec




n∑

t=i+1

J
(m)
1 (F̃k(d

n
t )) J

(m)
2 (F̃k(dn

t−i))U
n
t U

n′

t−i






+
1

k2
Dk(J

(m)
2 ; f)Ck(J

(m)
1 ; f) (ΣΣΣ

′1/2 ⊗ΣΣΣ−1/2)
[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]
,

R
(n;m)
1 := (n− i)−1/2 vec

[
n∑

t=i+1

[
J1(F̃k(d0

t )) J2(F̃k(d
0
t−i))

−J
(m)
1 (F̃k(d

0
t )) J

(m)
2 (F̃k(d

0
t−i))

]
U0

tU
0′
t−i

]
,

R
(n;m)
2 := (n− i)−1/2 vec

[
n∑

t=i+1

[
J1(F̃k(d

n
t )) J2(F̃k(d

n
t−i))

−J
(m)
1 (F̃k(dn

t )) J
(m)
2 (F̃k(d

n
t−i))

]
Un

t U
n′
t−i

]
,

and
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R
(n;m)
3 :=

1

k2

[
Dk(J2; f)Ck(J1; f)−Dk(J

(m)
2 ; f)Ck(J

(m)
1 ; f)

]

(ΣΣΣ
′1/2 ⊗ΣΣΣ−1/2)

[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]
.

We prove that C(n) = oP(1), under H(n)(θθθ,ΣΣΣ, f), as n →∞ (thus completing the proof of (20))

by establishing that D
(n;m)
1 and D

(n;m)
2 are oP(1) underH(n)(θθθ,ΣΣΣ, f), as n →∞, for fixed m, and

that R
(n;m)
1 , R

(n;m)
2 and R

(n;m)
3 are oP(1) under the same sequence of hypotheses, as m → ∞,

uniformly in n. For the sake of convenience, these three results are treated as separate lemmas
(Lemmas 8 and 9, and Lemma 10, respectively).

Decompose D
(n;m)
1 into D

(n;m)
1,1 + D

(n;m)
1,2 − E0

[
D

(n;m)
1,1

]
, where

D
(n;m)
1,1 := (n− i)−1/2vec




n∑

t=i+1

(
J

(m)
1 (F̃k(d

n
t ))Un

t − J
(m)
1 (F̃k(d

0
t ))U

0
t

)
J

(m)
2 (F̃k(d

n
t−i))U

n′
t−i




and

D
(n;m)
1,2 := (n− i)−1/2vec




n∑

t=i+1

J
(m)
1 (F̃k(d

0
t ))U

0
t

(
J

(m)
2 (F̃k(dn

t−i))U
n
t−i − J

(m)
2 (F̃k(d0

t−i))U
0
t−i

)′

 .

(taking into account the independence between Z0
t and Zn

t−i under H(n)(θθθ,ΣΣΣ, f)). We then have
the following.

Lemma 8 For any fixed m,

(i) E0

[∥∥∥D(n;m)
1,1 − E0

[
D

(n;m)
1,1

]∥∥∥
2
]

= o(1), as n →∞;

(ii) E0

[∥∥∥D(n;m)
1,2

∥∥∥
2
]

= o(1), as n →∞;

(iii) D
(n;m)
1 = oP(1), as n →∞, under H(n)(θθθ,ΣΣΣ, f).

Lemma 9 For any fixed m, D
(n;m)
2 = o(1), as n →∞.

Lemma 10 (i) Under H(n)(θθθ,ΣΣΣ, f), R
(n;m)
1 is oP(1), as m →∞, uniformly in n.

(ii) Under H(n)(θθθ,ΣΣΣ, f), R
(n;m)
2 is oP(1), as m →∞, uniformly in n (for n sufficiently large).

(iii) R
(n;m)
3 is o(1), as m →∞, uniformly in n.

Proof of Lemma 8. Let us begin with the second part of Lemma 8.

Part (ii). Since (vec (uv
′

))
′

vec (xy
′

) = tr [(uv
′

)
′

xy
′

] = (u
′

x)(v
′

y), for any k-vectors u,v,x,y,
we obtain

E0
[(

D
(n;m)
1,2

)′(
D

(n;m)
1,2

)]
= (n− i)−1

n∑

s,t=i+1

E0

[
J

(m)
1 (F̃k(d

0
s))U

0′

s J
(m)
1 (F̃k(d0

t ))U
0
t

×
(
J

(m)
2 (F̃k(dn

s−i))U
n
s−i − J

(m)
2 (F̃k(d0

s−i))U
0
s−i

)′ (
J

(m)
2 (F̃k(dn

t−i))U
n
t−i − J

(m)
2 (F̃k(d

0
t−i))U

0
t−i

) ]
.
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Due to the independence, for s 6= t, between Z0
max(s,t) and (Z0

min(s,t),Z
0
s−i,Z

0
t−i,Z

n
s−i,Z

n
t−i) (note

that, under H(n)(θθθ,ΣΣΣ, f), {Z0
t , t ∈ Z} is the innovation process of {Zn

t , t ∈ Z}), this is equal to

(n− i)−1
n∑

t=i+1

E0

[(
J

(m)
1 (F̃k(d

0
t ))
)2
‖J (m)

2 (F̃k(dn
t−i))U

n
t−i − J

(m)
2 (F̃k(d0

t−i))U
0
t−i‖2

]
.

Since J
(m)
1 is bounded, it is sufficient to show that

E0[‖J (m)
2 (F̃k(dn

t−i))U
n
t−i − J

(m)
2 (F̃k(d0

t−i))U
0
t−i‖2] = o(1), as n →∞, (26)

uniformly in t. Now, with η > 0 such that F̃k(η) < 1/m, we have J
(m)
2 (F̃k(d

0
t−i))I[d0

t−i≤η] = 0

(note that F̃k is a continuous strictly monotone increasing function that maps R
+
0 onto ]0, 1[).

This yields

‖J (m)
2 (F̃k(dn

t−i))U
n
t−i − J

(m)
2 (F̃k(d0

t−i))U
0
t−i‖

≤ |J (m)
2 (F̃k(dn

t−i))− J
(m)
2 (F̃k(d0

t−i))| ‖Un
t−i‖+ |J (m)

2 (F̃k(d
0
t−i))| ‖Un

t−i −U0
t−i‖

≤ |J (m)
2 (F̃k(dn

t−i))− J
(m)
2 (F̃k(d0

t−i))|+ |J (m)
2 (F̃k(d

0
t−i))| ‖Un

t−i −U0
t−i‖I[d0

t−i>η],

so that

‖J (m)
2 (F̃k(dn

t−i))U
n
t−i − J

(m)
2 (F̃k(d

0
t−i))U

0
t−i‖2

≤ C |J (m)
2 (F̃k(dn

t−i))− J
(m)
2 (F̃k(d0

t−i))|2 + C ‖Un
t−i −U0

t−i‖2I[d0
t−i>η],

for some constant C. Lemma 6(ii) and the continuity of J
(m)
2 ◦F̃k imply that J

(m)
2 (F̃k(d

n
t−i)) −

J
(m)
2 (F̃k(d0

t−i)) = oP(1) as n →∞, under H(n)(θθθ,ΣΣΣ, f). Since J
(m)
2 is bounded, this convergence

to zero also holds in quadratic mean. Similarly, using Lemma 6(iii) and the boundedness of
U0

t−i and Un
t−i, we obtain that ‖Un

t−i −U0
t−i‖2I[d0

t−i>η] is o(1) in quadratic mean, as n → ∞,

under H(n)(θθθ,ΣΣΣ, f). The convergence in (26) follows.

Part (i). Letting Tt;i := vec
[(

J
(m)
1 (F̃k(dn

t ))Un
t − J

(m)
1 (F̃k(d0

t ))U
0
t

)
J

(m)
2 (F̃k(dn

t−i))U
n′
t−i

]
, we

have

E0

[∥∥∥D(n;m)
1,1 − E0

[
D

(n;m)
1,1

]∥∥∥
2
]

= E0

[(
D

(n;m)
1 − E0

[
D

(n;m)
1,1

])′ (
D

(n;m)
1,1 − E0

[
D

(n;m)
1,1

])]

= tr
[
Var0

[
D

(n;m)
1,1

]]
= (n− i)−1tr

[
Var0

[ n∑

t=i+1

Tt;i

]]

= tr [Var0 [Tt;i]] +
n−i−1∑

j=1

n− j − i

n− i
tr [Cov0 [Tt;i,Tt−j;i]] .(27)

First note that

tr [Var0 [Tt;i]] = E0
[ (

Tt;i − E0
[
Tt;i

])′ (
Tt;i − E0

[
Tt;i

])
] ≤ E0[‖Tt;i‖2

]
,
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where, using again (vec (uv
′

))
′

vec (xy
′

) = (u
′

x)(v
′

y) and the boundedness of J
(m)
2 ,

E0

[
‖Tt;i‖2

]
= E0

[∥∥∥J (m)
1 (F̃k(d

n
t ))Un

t − J
(m)
1 (F̃k(d

0
t ))U

0
t

∥∥∥
2 (

J
(m)
2 (F̃k(dn

t−i))
)2
]

≤ C E0

[∥∥∥J (m)
1 (F̃k(dn

t ))Un
t − J

(m)
1 (F̃k(d0

t ))U
0
t

∥∥∥
2
]
,

which — compare with (26) — is o(1), as n →∞, uniformly in t. On the other hand, the absolute
regularity of {Zn

t , t ∈ Z} (Lemma 7) and the fact that {Z0
t , t ∈ Z} is (under H(n)(θθθ,ΣΣΣ, f)) the

innovation process of {Zn
t , t ∈ Z} imply that the process {(Zn

t ,Z0
t ), t ∈ Z} is also absolutely

regular with the same mixing rates as {Zn
t , t ∈ Z}. Using Lemma 1 of Yoshihara (1976) (with

p := k, k := 2, δ := 1, and h(x1,x2) := tr (x1x
′

2) = x
′

1x2), we obtain

∣∣∣tr [Cov0 [Tt;i,Tt−j;i]]
∣∣∣ =

∣∣∣E0[T
′

t;iTt−j;i]− E0[T
′

t;i]E0 [Tt−k;i]
∣∣∣

≤ 4E0[‖Tt;i‖2] (β(n)(j))1/2 ≤ 4E0[‖Tt;i‖2] (β(j))1/2 ,

where the sequence (β(j)) is as in Lemma 7. Consequently,
∣∣∣∣∣∣

n−i−1∑

j=1

n− j − i

n− i
tr [Cov0[Tt;i,Tt−j;i]]

∣∣∣∣∣∣
≤

∞∑

j=1

|tr [Cov0 [Tt;i,Tt−j;i]]|

≤ 4E0[‖Tt;i‖2]
∞∑

j=1

(β(j))1/2

≤ C E0[‖Tt;i‖2],

since the series converges (due to the exponential decrease of the β(j)’s; see Lemma 7 again).
This entails that both terms in (27) are bounded by (a constant multiple of) E0[‖Tt;i‖2], a
quantity which, as we showed above, is o(1) as n →∞. The result follows.

Part (iii) trivially follows from Parts (i) and (ii), and the fact that convergence in quadratic
mean implies convergence in probability. �

Proof of Lemma 9. Let

B
(n;m)
1 := (n− i)−1/2vec




n∑

t=i+1

J
(m)
1 (F̃k(d0

t )) J
(m)
2 (F̃k(d0

t−i))U
0
t U0′

t−i


 .

Proceeding as in Lemma 11, one can show that

B
(n;m)
1

L−→ Nk2

(
0,

1

k2
E[(J

(m)
1 (U))2] E[(J

(m)
2 (U))2] Ik2

)
, (28)

as n →∞, underH(n)(θθθ,ΣΣΣ, f). Under the sequence of local alternatives H(n)(θθθ+ννν(n)τττ (n),ΣΣΣ, f),

B
(n;m)
1 − 1

k2
Ck(J

(m)
1 ; f)Dk(J

(m)
2 ; f) (ΣΣΣ1/2′ ⊗ΣΣΣ−1/2)

[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]

L−→ Nk2

(
0,

1

k2
E[(J

(m)
1 (U))2] E[(J

(m)
2 (U))2] Ik2

)
,

as n →∞. Letting
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B
(n;m)
2 := (n− i)−1/2vec




n∑

t=i+1

J
(m)
1 (F̃k(d

n
t )) J

(m)
2 (F̃k(dn

t−i))U
n
t Un′

t−i


 ,

it follows from uniform local asymptotic normality that

B
(n;m)
2 +

1

k2
Ck(J

(m)
1 ; f)Dk(J

(m)
2 ; f) (ΣΣΣ1/2′ ⊗ΣΣΣ−1/2)

[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]

L−→ Nk2

(
0,

1

k2
E[(J

(m)
1 (U))2] E[(J

(m)
2 (U))2] Ik2

)
, (29)

as n →∞, under H(n)(θθθ,ΣΣΣ, f).

Now, Lemma 8(iii) yields that D
(n;m)
1 = B

(n;m)
2 −B

(n;m)
1 − E0

[
B

(n;m)
2

]
= oP(1), as n → ∞,

under H(n)(θθθ,ΣΣΣ, f). Using this and (28), we obtain that

B
(n;m)
2 − E0

[
B

(n;m)
2

] L−→ Nk2

(
0,

1

k2
E[(J

(m)
1 (U))2] E[(J

(m)
2 (U))2] Ik2

)
,

as n →∞, under H(n)(θθθ,ΣΣΣ, f). Comparing with (29), it follows that

D
(n;m)
2 = E0

[
B

(n;m)
2

]
+

1

k2
Ck(J

(m)
1 ; f)Dk(J

(m)
2 ; f) (ΣΣΣ1/2′ ⊗ΣΣΣ−1/2)

[
ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

]

is o(1), as n →∞, as was to be proved. �

We now complete the proof of (20) by proving Lemma 10.

Proof of Lemma 10. (i) In view of the independence between the d0
t ’s and the U0

t ’s under
H(n)(θθθ,ΣΣΣ, f), we obtain

E0
[‖R(n;m)

1 ‖2] =
1

n− i

n∑

s,t=i+1

E0

[
[J1(F̃k(d0

s)) J2(F̃k(d0
s−i))− J

(m)
1 (F̃k(d

0
s)) J

(m)
2 (F̃k(d

0
s−i))]

[J1(F̃k(d0
t )) J2(F̃k(d

0
t−i))− J

(m)
1 (F̃k(d

0
t )) J

(m)
2 (F̃k(d

0
t−i))]

]
E0

[
(vec (U0

sU
0′

s−i))
′

vec (U0
t U

0′

t−i)
]

=
1

n− i

n∑

t=i+1

E0

[
[J1(F̃k(d0

t )) J2(F̃k(d0
t−i))− J

(m)
1 (F̃k(d

0
t )) J

(m)
2 (F̃k(d

0
t−i))]

2
]

=

∫ 1

0

∫ 1

0
[J1(u) J2(v) − J

(m)
1 (u) J

(m)
2 (v)]2 du dv. (30)

Now, J
(m)
1 (u) J

(m)
2 (v) converges to J1(u) J2(v), for all (u, v) ∈ ]0, 1[× ]0, 1[. Also, since

|J (m)
` (u)| ≤ |J`(u)|, ` = 1, 2, for all m ≥ M , the integrand in (30) is bounded (uniformly in m)

by 4 |J1(u)|2|J2(v)|2, which is integrable on ]0, 1[× ]0, 1[ (see Assumption (C)). Consequently,

the Lebesgue dominated convergence theorem yields that E0
[‖R(n;m)

1 ‖2] = o(1), as m → ∞.

This convergence is of course uniform in n, since E0
[‖R(n;m)

1 ‖2] does not depend on n.

(ii) The claim in (ii) is the same as in (i), except that dn
t and Un

t replace d0
t and U0

t ,
respectively. Accordingly, it holds under H(n)(θθθ + ννν(n)τττ (n),ΣΣΣ, f). That it also holds under
H(n)(θθθ,ΣΣΣ, f) follows from Lemma 3.5 in Jurečková (1969).
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(iii) Note that

|Dk(J2; f)−Dk(J
(m)
2 ; f)|2 =

∣∣∣∣
∫ 1

0

(
J2(u)− J

(m)
2 (u)

)
F̃−1

k (u) du

∣∣∣∣
2

≤ µk+1;f

µk−1;f

∫ 1

0

∣∣∣J2(u)− J
(m)
2 (u)

∣∣∣
2
du.

Again, |J (m)
2 (u) − J2(u)|2 ≤ 4|J2(u)|2, with

∫ 1
0 |J2(u)|2 du < ∞. Consequently, the pointwise

convergence of (J
(m)
2 ) to J2 implies that Dk(J2; f)−Dk(J

(m)
2 ; f) = o(1) as m →∞. We similarly

obtain that Ck(J1; f)− Ck(J
(m)
1 ; f) = o(1), as m →∞.

Using the fact that the sequence (τττ (n)) is bounded (and the definitions of ai(τττ
(n);θθθ), bi(τττ

(n);θθθ)
in (17), (18)), this implies that, for some real constant C,

∥∥∥R(n;m)
3

∥∥∥ ≤ 1

k2

∣∣∣Dk(J2; f)Ck(J1; f)−Dk(J
(m)
2 ; f)Ck(J

(m)
1 ; f)

∣∣∣

×
∥∥∥ΣΣΣ

′1/2 ⊗ΣΣΣ−1/2
∥∥∥
∥∥∥ai(τττ

(n);θθθ) + bi(τττ
(n);θθθ)

∥∥∥

≤ C
∣∣∣Dk(J2; f)Ck(J1; f)−Dk(J

(m)
2 ; f)Ck(J

(m)
1 ; f)

∣∣∣ ,

which is o(1), as m →∞, uniformly in n. �

5 Appendix : ULAN.

Associated with any k-dimensional linear difference operator of the form C(L) :=
∑∞

i=0 Ci L
i

(letting Ci = 0 for i > s, this includes, of course, the operators with finite order s), define, for
any integers m and p, the k2m× k2p matrices

C(l)
m,p :=




C0 ⊗ Ik 0 . . . 0
C1 ⊗ Ik C0 ⊗ Ik . . . 0

...
. . .

...
Cp−1 ⊗ Ik Cp−2 ⊗ Ik . . . C0 ⊗ Ik

...
...

Cm−1 ⊗ Ik Cm−2 ⊗ Ik . . . Cm−p ⊗ Ik




(31)

and

C(r)
m,p :=




Ik ⊗C0 0 . . . 0
Ik ⊗C1 Ik ⊗C0 . . . 0

...
. . .

...
Ik ⊗Cp−1 Ik ⊗Cp−2 . . . Ik ⊗C0

...
...

Ik ⊗Cm−1 Ik ⊗Cm−2 . . . Ik ⊗Cm−p




, (32)

respectively; write C
(l)
m for C

(l)
m,m and C

(r)
m for C

(r)
m,m. With this notation, note that G

(l)
m , G

(r)
m ,

H
(l)
m , and H

(r)
m are the inverses of A

(l)
m , A

(r)
m , B

(l)
m , and B

(r)
m , respectively. Denoting by C

′(l)
m,p and

C
′(r)
m,p the matrices associated with the transposed operator C

′

(L) :=
∑∞

i=0 C
′

i L
i, we also have
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G
′(l)
m = (A

′(l)
m )−1, H

′(l)
m = (B

′(l)
m )−1, etc. We will use the notation C̄

(l)
m,p, C̄

(r)
m,p, C̄

(l)
m , etc, when

the identity matrices involved in (31) and (32) are m-dimensional rather than k-dimensional.
Let π := max(p1−p0, q1− q0) and π0 := π +p0 + q0, and define the k2π0×k2(p1 + q1) matrix

Mθθθ :=

(
G

′(l)
π0,p1

...H
′(l)
π0,q1

)
; (33)

under Assumption (D2), Mθθθ is of full rank.
Consider the operator D(L) := Ik +

∑p0+q0
i=1 Di L

i (just as Mθθθ, D(L) and most quantities
defined below depend on θθθ; for simplicity, however, we are dropping this reference to θθθ), where,
putting G−1 = G−2 = ... = G−p0+1 = 0 = H−1 = H−2 = ... = H−q0+1,




D
′

1
...

D
′

p0+q0


 := −




Gq0 Gq0−1 . . . G−p0+1

Gq0+1 Gq0 . . . G−p0+2
...

. . .
...

Gp0+q0−1 Gp0+q0−2 . . . G0

Hp0 Hp0−1 . . . H−q0+1

Hp0+1 Hp0 . . . H−q0+2
...

. . .
...

Hp0+q0−1 Hp0+q0−2 . . . H0




−1




Gq0+1
...

Gp0+q0

Hp0+1
...

Hp0+q0




.

Note that D(L)G
′

t = 0 for t = q0 + 1, . . . , p0 + q0, and D(L)H
′

t = 0 for t = p0 + 1, . . . , p0 + q0.

Let {ΨΨΨ(1)
t , . . . ,ΨΨΨ

(p0+q0)
t } be a set of k×k matrices forming a fundamental system of solutions

of the homogeneous linear difference equation associated with D(L) (such a system can be
obtained, for instance, from the Green’s matrices of the operator D(L) : see Hallin 1986).
Define

Ψ̄ΨΨm(θθθ) :=




ΨΨΨ
(1)
π+1 . . . ΨΨΨ

(p0+q0)
π+1

ΨΨΨ
(1)
π+2 . . . ΨΨΨ

(p0+q0)
π+2

...
...

ΨΨΨ(1)
m . . . ΨΨΨ(p0+q0)

m



⊗ Ik (m > π),

Pθθθ :=

(
Ik2π 0

0 C−1
Ψ

)
, and Q

(n)
θθθ := H

(r)
n−1 B

′(l)
n−1

(
Ik2π 0
0 Ψ̄ΨΨn−1

)
, (34)

where CΨ is the Casorati matrix Ψ̄ΨΨπ0 .

Considering the matrices ΛΛΛ
(n)
i;ΣΣΣ,f (θθθ) associated with the scores K0 = ϕf , put

S
(n)
I;ΣΣΣ,f (θθθ) :=

(
n1/2 (vecΛΛΛ

(n)
0;ΣΣΣ,f (θθθ))

′

, . . . , (n− i)1/2 (vecΛΛΛ
(n)
i;ΣΣΣ,f (θθθ))

′

, . . . , (vecΛΛΛ
(n)
n−1;ΣΣΣ,f (θθθ))

′
)′

,

n 1/2T
(n)
I;ΣΣΣ,f (θθθ) := L

(n)′

θθθ S
(n)
I;ΣΣΣ,f (θθθ), and JI;θθθ,ΣΣΣ := lim

n→+∞
L

(n)′

θθθ (KKKn ⊗ΣΣΣ−1)L
(n)
θθθ , (35)

where L
(n)
θθθ := H̄

(r)
n (θθθ)Ā

(r)
n,1(θθθ), and where KKK ll̃ denotes the lm× l̃m matrix whose m×m block in

position (i, j) (i = 1, . . . , l, j = 1, . . . , l̃) is K
′

R|i−j|K (we write KKK l instead of KKKll). Similarly,

for the serial part and the ΓΓΓ
(n)
i;ΣΣΣ,f (θθθ) matrices associated with the score functions K1 = ϕf and

K2 : d 7→ d, let

S
(n)
II;ΣΣΣ,f (θθθ) :=

(
(n− 1)1/2 (vecΓΓΓ

(n)
1;ΣΣΣ,f (θθθ))

′

, . . . , (n− i)1/2 (vecΓΓΓ
(n)
i;ΣΣΣ,f (θθθ))

′

, . . . , (vecΓΓΓ
(n)
n−1;ΣΣΣ,f (θθθ))

′
)′

,

23



n 1/2T
(n)
II;ΣΣΣ,f (θθθ) := Q

(n)′

θθθ S
(n)
II;ΣΣΣ,f (θθθ), and JII;θθθ,ΣΣΣ := lim

n→+∞
Q

(n)′

θθθ [In−1⊗ (ΣΣΣ⊗ΣΣΣ−1)]Q
(n)
θθθ (36)

(convergence in (35) and (36) follows from the exponential decrease, as u →∞, of the Green’s
matrices Gu and Hu).

The following ULAN reinforcement of Garel and Hallin (1995)’s Proposition 3.1 then follows
along the same steps as in Section 3 of Hallin and Paindaveine (2002d).

Proposition 3 (ULAN) Assume that Assumptions (A1′), (A2), (A3), (D1), and (D2) hold.

Let θθθn be such that θθθn − θθθ = O(n−1/2). Then, the logarithm L
(n)

θθθn+ννν(n)τττ (n)/θθθn;ΣΣΣ,f
of the likelihood

ratio associated with the sequence of local alternatives H(n)(θθθn + ννν(n)τττ (n),ΣΣΣ, f) with respect to
H(n)(θθθn,ΣΣΣ, f) is such that

L
(n)

θθθn+ννν(n)τττ (n)/θθθn;ΣΣΣ,f
(Y(n)) = (τττ (n))′∆∆∆

(n)
ΣΣΣ,f (θθθn)− 1

2
(τττ (n))′ΓΓΓΣΣΣ,f (θθθ)τττ (n) + oP(1),

as n →∞, under H(n)(θθθn,ΣΣΣ, f), with the central sequence

∆∆∆
(n)
ΣΣΣ,f (θθθn) :=


 ∆∆∆

(n)
I;ΣΣΣ,f (θθθn)

∆∆∆
(n)
II;ΣΣΣ,f (θθθn)


 := n1/2

(
Ikm 0

0 M
′

θθθn
P

′

θθθn

) 
 T

(n)
I;ΣΣΣ,f (θθθn)

T
(n)
II;ΣΣΣ,f (θθθn)


 , (37)

and the information matrix

ΓΓΓΣΣΣ,f (θθθ) :=

(
ΓΓΓI;ΣΣΣ,f (θθθ) 0

0 ΓΓΓII;ΣΣΣ,f (θθθ)

)
,

where ΓΓΓI;ΣΣΣ,f (θθθ) := 1
k Ik,fJI;θθθ,ΣΣΣ and ΓΓΓII;ΣΣΣ,f (θθθ) :=

µk+1;f Ik,f

k2 µk−1;f
Nθθθ,ΣΣΣ, with Nθθθ,ΣΣΣ := M

′

θθθP
′

θθθJII;θθθ,ΣΣΣPθθθMθθθ.

Moreover, ∆∆∆
(n)
ΣΣΣ,f (θθθn), still under H(n)(θθθn,ΣΣΣ, f), is asymptotically NK(0,ΓΓΓΣΣΣ,f (θθθ)).

Le Cam’s third Lemma then yields, for the serial and nonserial statistics (9) and (10), the
following asymptotic normality result under local alternatives.

Lemma 11 Assume that (C) and the assumptions of Proposition 3 hold. Then, for all integers
l, l̃, the vector

(
n1/2 (vec Λ̃ΛΛ

(n)

0;J ;ΣΣΣ,f (θθθ))
′

, . . . , (n− l + 1)1/2 (vec Λ̃ΛΛ
(n)

l−1;J ;ΣΣΣ,f (θθθ))
′

,

(n− 1)1/2 (vec Γ̃ΓΓ
(n)

1;J ;ΣΣΣ,f (θθθ))
′

, . . . , (n− l̃)1/2 (vec Γ̃ΓΓ
(n)

l̃;J ;ΣΣΣ,f (θθθ))
′

)′

is asymptotically normal as n →∞, with mean 0 under H(n)(θθθ,ΣΣΣ, f) and mean



1
k Ck(J0; f)(Ilm ⊗ΣΣΣ−1)[limn→∞(KKK ln ⊗ Ik)L

(n)
θθθ ] (vecηηη

′

)

1
k2 Ck(J1; f)Dk(J2; f) [Il̃ ⊗ (ΣΣΣ⊗ΣΣΣ−1)]Q

(l̃+1)
θθθ Pθθθ Mθθθ ((vecγγγ)

′

, (vec δδδ)
′

)
′


 ,

under H(n)(θθθ + ννν(n)τττ ,ΣΣΣ, f), and covariance matrix
(

1
k E[J2

0 (U)] (KKK l ⊗ΣΣΣ−1) 0

0 1
k2 E[J2

1 (U)] E[J2
2 (U)] [Il̃ ⊗ (ΣΣΣ⊗ΣΣΣ−1)]

)
.

under both.
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Proof. The proof follows along the same argument as in Lemma 4.1 in Hallin and Garel (1995).�

Note that

lim
n→∞

(KKK ln ⊗ Ik)L
(n)
θθθ =




∑∞
j=0 (K

′

R|j|K)⊗ hj
...∑∞

j=0 (K
′

R|i−j|K)⊗ hj
...∑∞

j=0 (K
′

R|l−j−1|K)⊗ hj




,

and that 


a1(τττ ;θθθ) + b1(τττ ;θθθ)
...

al̃(τττ ;θθθ) + bl̃(τττ ;θθθ)


 = Q

(l̃+1)
θθθ Pθθθ Mθθθ

(
vecγγγ
vec δδδ

)

(see Section 4 for the definitions of hj, aj , and bj). This allows for a direct comparison between
Lemma 11 and the corresponding univariate result (Proposition 4.3) in Hallin and Puri (1994).
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