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Abstract

A local linear kernel estimator of the regression function x 7→ g(x) := E[Yi|Xi = x],
x ∈ R

d of a stationary (d+1)-dimensional spatial processes {(Yi,Xi), i ∈ Z
N} observed over

a rectangular domain of the form In := {i = (i1, . . . , iN ) ∈ Z
N |1 ≤ ik ≤ nk, k = 1, . . . , N},

n = (n1, . . . , nN) ∈ Z
N is proposed and investigated. Under mild regularity assumptions,

asymptotic normality of the estimators of g(x) and its derivatives is established. Appropriate
choices of the bandwidths are proposed. The spatial process is assumed to satisfy some very
general mixing conditions, generalizing classical time-series strong mixing concepts. The size
of the rectangular domain In is allowed to tend to infinity at different rates depending on
the direction in Z

N .
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1 Introduction

Spatial data arise in a variety of fields, including econometrics, epidemiology, environmental
science, image analysis, oceanography, and many others. The statistical treatment of such
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data is the subject of an abundant literature, which cannot be reviewed here; for background
reading, we refer the reader to the monographs by Anselin and Florax (1995), Cressie (1991),
Guyon (1995), Possolo (1991), or Ripley (1981).

Let Z
N , N ≥ 1, denote the integer lattice points in the N -dimensional Euclidean space. A

point i = (i1, . . . , iN ) in Z
N will be referred to as a site. Spatial data are modelled as finite

realizations of vector stochastic processes indexed by i ∈ Z
N : random fields. In this paper, we

will consider strictly stationary (d+ 1)-dimensional random fields, of the form

{
(Yi,Xi) ; i ∈ Z

N
}
, (1.1)

where Yi, with values in R, and Xi, with values in R
d, are defined over some probability space

(Ω,F ,P).
A crucial problem for a number of applications is the problem of spatial regression, where the

influence of a vector Xi of covariates on some response variable Yi is to be studied in a context
of complex spatial dependence. More specifically, assuming that Yi has finite expectation, the
quantity under study in such problems is the spatial regression function

g : x 7→ g(x) := E
[
Yi

∣∣Xi = x
]
.

The spatial dependence structure in this context plays the role of a nuisance, and remains
unspecified. Although g of course is only defined up to a P-null set of values of x (being a
class of P-a.s. mutually equal functions rather than a function), we will treat it, for the sake of
simplicity, as a well-defined real-valued x-measurable function, which has no implication on the
probabilistic statements of this paper. In the particular case under which Xi itself is measurable
with respect to a subset of Yj’s, with j ranging over some neighborhood of i, g is called a
spatial autoregression function. Such spatial autoregression models were considered as early as
1954, in the particular case of a linear autoregression function g, by Whittle (1954, 1963); see
Besag (1974) for further developments in this context.

In this paper, we are concerned with estimating the spatial regression (autoregression) func-
tion g : x 7→ g(x); contrary to Whittle (1954), we adopt a nonparametric point of view, avoiding
any parametric specification of the possibly extremely complex spatial dependence structure of
the data.

For N = 1, this problem reduces to the classical problem of (auto)regression for serially
dependent observations, which has received extensive attention in the literature: see, for in-
stance, Roussas (1969, 1988), Masry (1983, 1986), Robinson (1983, 1987), Ioannides and Rous-
sas (1987), Masry and Györfi (1987), Yakowitz (1987), Boente and Fraiman (1988), Bosq (1989),
Györfi, Härdle, Sarda and Vieu (1989), Tran (1989), Masry and Tjøstheim (1995), Hallin and
Tran (1996), Lu and Cheng (1997), Lu (2001), Wu and Mielniczuk (2002), to quote only a few.
Quite surprisingly, despite its importance for applications, the spatial version (N > 1) of the
same problem remains essentially unexplored. Several recent papers (among which Tran 1990,
Tran and Yakowitz 1993, Carbon, Hallin, and Tran 1996, Hallin, Lu, and Tran 2001 and 2002)
are dealing with the related problem of estimating the density f of a random field of the form
{Xi ; i ∈ Z

N}, but, to the best of our knowledge, the only results available on the estima-
tion of spatial regression functions are those by Lu (2000), who investigates the properties of a
Nadaraya-Watson kernel estimator for g.

Though the Nadaraya-Watson method is central in most nonparametric regression method
in the traditional serial case (N = 1), it has been well documented (see, for instance, Fan and
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Gijbels 1996) that this approach suffers from several severe drawbacks, such as poor boundary
performances, excessive bias and low efficiency, and that the local polynomial fitting methods
developed by Stone (1977) and Cleveland (1979) are generally preferable. Local polynomial
fitting, and particularly its special case—local linear fitting —recently have become increasingly
popular in the light of recent work by Cleveland and Loader (1996), Fan (1992), Fan and
Gijbels (1992, 1995), Hastie and Loader (1993), Ruppert and Wand (1994), and several others.
In this paper, we extend this approach to the context of spatial regression (N > 1) by defining
an estimator of g based on local linear fitting and establishing its asymptotic properties.

The paper is organized as follows. In Section 2.1 we provide the notation and main assump-
tions. Section 2.2 introduces the main ideas underlying local linear regression in the context of
random fields, and sketches the main steps of the proofs to be developed in the sequel. Sec-
tion 2.3 is devoted to some preliminary results. Section 3 is the main section of the paper,
where asymptotic normality is proved under various types of asymptotics and various mixing
assumptions. Section 4 provides some numerical illustrations. Proofs and technical lemmas are
concentrated in Section 5.

2 Local linear estimation of spatial regression.

2.1 Notation and main assumptions.

For the sake of convenience, we are summarizing here the main assumptions we are making on
the random field (1.1) and the kernel K to be used in the estimation method. Assumptions
(A1)-(A4) are related to the random field itself.

(A1) The random field (1.1) is strictly stationary. For all i and j in Z
N , the vectors Xi and

Xj admit a joint density fij; moreover, |fij(x′,x′′) − f(x′)f(x′′)| ≤ C for all i, j ∈ Z
N , all

x′,x′′ ∈ R
d, where C > 0 is some constant, and f denotes the marginal density of Xi.

(A2) The random variable Yi has finite absolute moment of order (2+δ), that is, E
[
|Yi|2+δ

]
<∞

for some δ > 0.

(A3) The spatial regression function g is twice differentiable. Denoting by g ′(x) and g′′(x)
its gradient and the matrix of its second derivatives (at x), respectively, x 7→ g ′′(x) is
continuous at all x.

Assumption (A1) has been used by Masry (1986) in the serial case N = 1, and by Tran (1990)
in the spatial context (N > 1).

Assumption (A4) is an assumption of spatial mixing taking two distinct forms (either (A4)
and (A4′) or (A4) and (A4′′)). For any collection of sites S ⊂ Z

N , denote by B(S) the Borel
σ-field generated by {(Yi,Xi)| i ∈ S}; for each couple S ′,S ′′, let d(S ′,S ′′) := min{‖i′ − i′′‖ | i′ ∈
S ′, , i′′ ∈ S ′′} be the distance between S ′ and S ′′, where ‖i‖ := (i21 + . . .+ i2N )1/2 stands for the
Euclidean norm. Finally, write Card(S) for the cardinality of S.

(A4) There exist a function ϕ such that ϕ(t) ↓ 0 as t → ∞, and a function ψ : N
2 → R

+

symmetric and decreasing in each of its two arguments, such that the random field (1.1)
is mixing, with spatial mixing coefficients α satisfying

α(B(S ′),B(S ′′)) := sup{|P(AB)− P(A)P(B)|, A ∈ B(S ′), B ∈ B(S ′′)}
≤ ψ(Card(S ′),Card(S ′′))ϕ(d(S ′,S ′′)). (2.1)
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for any S ′,S ′′ ⊂ Z
N . The function ϕ moreover is such that

lim
m→∞

ma
∞∑

j=m

jN−1{ϕ(j)}δ/(2+δ) = 0 for some constant a > (4 + δ)N/(2 + δ).

The assumptions we are making on the function ψ are either

(A4′) ψ(n′, n′′) ≤ min(n′, n′′)

or

(A4′′) ψ(n′, n′′) ≤ C(n′ + n′′ + 1)κ for some C > 0 and κ > 1.

In case (2.1) holds with ψ ≡ 1, the random field {(Yi, Xi)} is called strongly mixing.
In the serial case (N = 1), many stochastic processes and time series are known to be strongly

mixing. Withers (1981) has obtained various conditions for linear processes to be strongly
mixing. Under certain weak assumptions, autoregressive and more general nonlinear time se-
ries models are strongly mixing with exponential mixing rates : see Pham and Tran (1985),
Pham (1986), Tjøstheim (1990), and Lu (1998). Guyon (1987) has shown that the results of
Withers under certain conditions extend to linear random fields, of the formXn =

∑
j∈ZN gjZn−j,

where the Zj’s are independent random variables. Assumptions (A4′) and (A4′′) are the same
as the mixing conditions used by Neaderhouser (1980) and Takahata (1983), respectively, and
are weaker than the uniform strong mixing condition considered by Nakhapetyan (1980). They
are satisfied by many spatial models, as shown by Neaderhouser (1980), Rosenblatt (1985), and
Guyon (1987).

Throughout, we assume that the random field (1.1) is observed over a rectangular region of
the form In := {i = (i1, . . . , iN ) ∈ Z

N | 1 ≤ ik ≤ nk, k = 1, . . . , N}, for n = (n1, · · · , nN ) ∈ Z
N

with strictly positive coordinates n1, . . . , nN . The total sample size is thus n̂ :=
∏N

k=1 nk. We
write n →∞ as soon as min1≤k≤N{nk} → ∞. A more demanding way for n to tend to infinity
is the one considered in Tran (1990): we use the notation n =⇒ ∞ if n → ∞ and moreover
|nj/nk| < C for some 0 < C < ∞, 1 ≤ j, k ≤ N . In this latter case, all components of n are
required to tend to infinity at the same rate.

Assumption (A5) deals with the kernel function K : R
N → R to be used in the estimation

method. For any c := (c0, c
τ
1)τ ∈ R

d+1, define

Kc(u) := (c0 + cτ
1u)K(u). (2.2)

(A5)(i) For any c ∈ R
d+1, |Kc(u)| is uniformly bounded by some constant K+

c , and is integrable:∫

Rd+1

|Kc(x)|dx <∞.

(ii) For any c ∈ R
d+1, |Kc| has an integrable second order radial majorant, that is, QK

c (x) :=
sup‖y‖≥‖x‖[‖y‖2Kc(y)] is integrable.

Finally, for convenient reference, we are listing here some conditions on the asymptotic
behavior, as n →∞, of the bandwidth bn that will be used in the sequel.

(B1) The bandwith bn tends to zero in such a way that n̂bdn →∞ as n →∞.

(B2) There exist two sequences of positive integer vectors, p = pn := (p1, . . . , pN ) ∈ Z
N and

q = qn := (q, · · · , q) ∈ Z
N , with q = qn → ∞ such that p = pn := p̂ = o((n̂bdn)1/2),

q/pk → 0 and nk/pk →∞ for all k = 1, · · · , N , and n̂ϕ(q) → 0.
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(B2′) Same as (B2), but last condition replaced with
(
n̂κ+1/p

)
ϕ(q) → 0, where κ is the constant

appearing in (A4′′).

(B3) bn tends to zero in such a manner that qb
δd/[a(2+δ)]
n > 1 and

b−δd/(2+δ)
n

∞∑

t=q

tN−1{ϕ(t)}δ/(2+δ) → 0 as n →∞. (2.3)

2.2 Local linear fitting.

The idea of local linear fitting consists in approximating, in a neighborhood of x, the unknown
function g by a linear function. Under (A3), we have

g(z) ≈ g(x) + (g′(x))τ (z− x) := a0 + aτ
1(z− x).

Locally, this suggests estimating (a0, a
τ
1) = (g(x), g′(x)), hence constructing an estimator of g

from
(
gn(x)
g′n(x)

)
=

(
â0

â1

)
:= arg min

(a0, a1)∈Rd+1

∑

j∈In

(Yj − a0 − aτ
1(Xj − x))2K

(
Xj − x

bn

)
, (2.4)

where bn is a sequence of bandwiths tending to zero at appropriate rate as n tends to infinity,
and K(·) is a (bounded) kernel with values in R

+.
In the classical serial case (N = 1; we write i and n instead of i and n), the solution

of the minimization problem (2.4) is easily shown to be (XτWX)−1XτWY, where X is an

n× (d+1) matrix with i-th row (1, b−1
n (Xi−x)τ ), W = b−1

n diag
(
K
(

X1−x
bn

)
, . . . , K

(
Xn−x

bn

))
,

and Y = (Y1, · · · , Yn)τ (see, e.g., Fan and Gijbels 1996). In the spatial case, things are not as
simple, and we rather write the solution to (2.4) as

(
â0

â1bn

)
= U−1

n Vn, where Vn :=

(
vn0

vn1

)
and Un :=

(
un00 un01

un10 un11

)
,

with (letting
(

Xj−x

bn

)
0

:= 1)

(Vn)i := (n̂bdn)−1
∑

j∈In

Yj

(
Xj − x

bn

)

i
K

(
Xj − x

bn

)
, i = 0, . . . , d,

and

(Un)i` := (n̂bdn)−1
∑

j∈In

(
Xj − x

bn

)

i

(
Xj − x

bn

)

`
K

(
Xj − x

bn

)
, i, ` = 0, . . . , d.

It follows that

Hn :=

(
â0 − a0

â1bn − a1bn

)
=

(
gn(x)− g(x)

(g′n(x)− g′(x))bn

)
= U−1

n

{
Vn −Un

(
a0

a1bn

)}
:= U−1

n Wn, (2.5)

where

Wn :=

(
wn0

wn1

)
, (Wn)i := (n̂bdn)−1

∑

j∈In

Zj

(
Xj − x

bn

)

i
K

(
Xj − x

bn

)
, i = 0, . . . , d, (2.6)

and Zj := Yj − a0 − aτ
1(Xj − x).

The organization of the paper is as follows. If, under adequate conditions, we are able to
show that
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(C1) (n̂bdn)1/2(Wn − EWn) is asymptotically normal,

(C2) (n̂bdn)1/2EWn−→0 and Var
(
(n̂bdn)1/2Wn

)
−→ ΣΣΣ, and

(C3) Un
P−→ U,

then (2.5) and Slutsky’s classical argument imply that, for all x (all quantities involved indeed
depend on x)

(n̂bdn)1/2

(
gn(x)− g(x)

(g′n(x)− g′(x))bn

)
= (n̂bdn)1/2Hn

L−→ N (0, U−1ΣΣΣU−1τ
).

This asymptotic normality result (with explicit values of ΣΣΣ and U), under various forms (de-
pending on the mixing assumptions ((A4′) or (A4′′)), the choice of the bandwidth bn, the way
n tends to infinity, etc.), is the main contribution of this paper; see Theorems 3.1-3.5. Subsec-
tion 2.3 is dealing with (C2) and (C3) under n →∞ (hence also under the stronger assumption
that n =⇒ ∞), Subsections 3.1 and 3.2 with (C1) under n =⇒ ∞ and n →∞, respectively.

2.3 Preliminaries.

Claim (C3) is easily established from the following lemma, the proof of which is similar to that
of Lemma 2.2 below, and is therefore omitted.

Lemma 2.1 Assume that Assumptions (A1), (A4), and (A5) hold, that bn satisfies Assump-

tion (B1), and that nkb
δd/[a(2+δ)]
n > 1 as n →∞. Then, for all x,

Un
P−→ U :=

(
f(x)

∫
K(u) du f(x)

∫
uτK(u) du

f(x)
∫

uK(u) du f(x)
∫

uuτK(u) du

)

as n →∞.

The remainder of this section is devoted to claim (C2). The usual Cramér-Wold device will
be adopted. For all c := (c0, c

τ
1)τ ∈ R

1+d, let

An := (n̂bdn)1/2cτWn = (n̂bdn)−1/2
∑

j∈In

Zj Kc

(
Xj − x

bn

)
,

with Kc(u) defined in (2.2). The following lemma provides the asymptotic variance of An for
all c, hence that of (n̂bdn)1/2Wn.

Lemma 2.2 Assume that Assummptions (A1), (A2), (A4), and (A5) hold, that bn satisfies

Assumption (B1), and that nkb
δd/[(2+δ)a]
n > 1 for all k = 1, · · · , N , as n →∞. Then,

lim
n→∞

Var[An] = Var(Yj|Xj = x)f(x)

∫

Rd

K2
c(u)du = cτΣΣΣc, (2.7)

where

ΣΣΣ := Var(Yj|Xj = x)f(x)

( ∫
K2(u)du

∫
uτK2(u)du∫

uK2(u)du
∫

uuτK2(u)du

)
.

Hence, limn→∞ Var
(
(n̂bdn)1/2Wn

)
= ΣΣΣ.
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Proof. See Section 5.1 �

Next, we consider the asymptotic behavior of E[An].

Lemma 2.3 Under Assumptions (A3) and (A5),

E[An] =
√

n̂bdnb
2
n

1

2
f(x) tr

[
g′′(x)

∫
uuτKc(u)du

]
+ o

(√
n̂bdnb

2
n

)

=
√

n̂bdnb
2
n [c0B0(x) + cτ

1B1(x)] + o

(√
n̂bdnb

2
n

)
, (2.8)

where

B0(x) :=
1

2
f(x)

d∑

i=1

d∑

j=1

gij(x)

∫
ujuiK(u)du, B1(x) :=

1

2
f(x)

d∑

i=1

d∑

j=1

gij(x)

∫
ujuiuK(u)du,

gij(x) = ∂2g(x)/∂xi∂xj, i, j = 1, . . . , d, and u := (u1, . . . ud)
τ ∈ R

d.

Proof. See Section 5.2. �

3 Asymptotic Normality.

3.1 Asymptotic Normality under mixing Assumption (A4′)

The asymptotic normality of our estimators relies in a crucial manner on the following lemma
(see (2.6) for the definition of Wn(x)).

Lemma 3.1 Suppose that Assumptions (A1), (A2), (A4)-(A4′), and (A5) hold, and that the
bandwidth bn satisfies conditions (B1)-(B3). Denote by σ2 the asymptotic variance (2.7). Then
(n̂bdn)1/2(cτ [Wn(x)− EWn(x)]/σ) is asymptotically standard normal as n →∞.

Proof. Putting

ηj(x) := ZjKc(x−Xj) and ∆j(x) := ηj(x)− Eηj(x), (3.1)

define ζnj := b
−d/2
n ∆j, and let Sn :=

∑nk

jk=1
k=1,...,N

ζnj. Then,

n̂−1/2Sn = (n̂bdn)1/2cτ (Wn(x)− EWn(x)) = An − EAn.

7



Now, let us decompose n̂−1/2Sn into smaller pieces involving “large” and “small” blocks. More
specifically, consider (all sums are running over i := (i1, . . . , iN ))

U(1,n,x, j) :=

jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N

ζni(x) ,

U(2,n,x, j) :=

jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N−1

(jN +1)(pN +q)∑

iN =jN (pN +q)+pN+1

ζni(x) ,

U(3,n,x, j) :=

jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N−2

(jN−1+1)(pN−1+q)∑

iN−1=jN−1(pN−1+q)+pN−1+1

jN (pN+q)+pN∑

iN =jN (pN +q)+1

ζni(x) ,

U(4,n,x, j) :=

jk(pk+q)+pk∑

ik=jk(pk+q)+1
k=1,...,N−2

(jN−1+1)(pN−1+q)∑

iN−1=jN−1(pN−1+q)+pN−1+1

(jN +1)(pN +q)∑

iN =jN (pN +q)+pN+1

ζni(x) ,

and so on. Note that

U(2N − 1,n,x, j) :=

(jk+1)(pk+q)∑

ik=jk(pk+q)+pk+1
k=1,...,N−1

jN (pN +q)+pN∑

iN =jN (pN+q)+1

ζni(x),

and

U(2N ,n,x, j) :=

(jk+1)(pk+q)∑

ik=jk(pk+q)+pk+1
k=1,...,N

ζni(x).

Without loss of generality, assume that, for some integers r1, . . . , rN , n = (n1, . . . , nN ) is such
that n1 = r1(p1 + q), . . . , nN = rN (pN + q), with rk →∞ for all k = 1, · · · , N . For each integer
1 ≤ i ≤ 2N , define

T (n,x, i) :=
rk−1∑

jk=0
k=1,...,N

U(i,n,x, j).

Clearly Sn =
∑2N

i=1 T (n,x, i). Note that T (n,x, 1) is the sum of the random variables ζni over
“large” blocks, whereas T (n,x, i), 2 ≤ i ≤ 2N are sums over “small” blocks. If it is not the case
that n1 = r1(p1 + q), . . . , nN = rN (pN + q) for some integers r1, . . . rN , then an additional term
T (n,x, 2N + 1), say, , containing all the ζnj’s that are not included in the big or small blocks,
can be considered. This term will not change the proof much. The general approach consists in
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showing that, as n →∞,

Q1 :=

∣∣∣∣∣∣∣∣
Eexp[iuT (n,x, 1)] −

rk−1∏

jk=0
k=1,...,N

Eexp[iuU(1,n,x, j)]

∣∣∣∣∣∣∣∣
−→ 0, (3.2)

Q2 ≡ n̂−1E




2N∑

i=2

T (n,x, i)




2

−→ 0, (3.3)

Q3 := n̂−1
rk−1∑

jk=0
k=1,...,N

E[U(1,n,x, j)]2 −→ σ2, (3.4)

Q4 ≡ n̂−1
rk−1∑

jk=0
k=1,...,N

E[(U(1,n,x, j))2I{|U(1,n,x, j)| > εσn̂1/2}] −→ 0 (3.5)

for every ε > 0. Note that

[An − EAn]/σ = (n̂bdn)1/2cτ [Wn(x)− EWn(x)]/σ = Sn/(σn̂
1/2)

= T (n,x, 1)/(σn̂1/2) +
2N∑

i=2

T (n,x, i)/(σn̂1/2).

The term
∑2N

i=2 T (n,x, i)/(σn̂1/2) is asymptotically negligible by (3.3). The random variables
U(1,n,x, j) are asymptotically mutually independent by (3.2). The asymptotic normality of
T (n,x, 1)/(σn̂1/2) follows from (3.4) and the Lindeberg-Feller condition (3.5). The lemma thus
follows if we can prove (3.2)-(3.5). This proof is given in Section 5.3. The arguments there are
reminiscent of those used by Masry (1986) and Nakhapetyan (1987).

We now turn to the main consistency and asymptotic normality results. First, we consider
the case where the sample size tends to ∞ in the manner of Tran (1990), that is, n =⇒ ∞.

Theorem 3.1 Let Assumptions (A1), (A2), (A3), (A4′), and (A5) hold, with ϕ(x) = O(x−µ)
for some µ > 2(3+ δ)N/δ. Suppose that there exists a sequence of positive integers q = qn →∞
such that qn = o((n̂bdn)1/(2N)) and n̂q−µ → 0 as n =⇒ ∞, and that the bandwidth bn tends to
zero in such a manner that

qbδd/[a(2+δ)]
n > 1 for some (4 + δ)N/(2 + δ) < a < µδ/(2 + δ)−N (3.6)

as n =⇒ ∞. Then,

(n̂bdn)1/2

[(
gn(x)− g(x)

bn(g′n(x)− g′(x))

)
−U−1

(
B0(x)
B1(x)

)
b2n

]
L−→ N

(
0, U−1ΣΣΣ(U−1)τ

)
, (3.7)

as n =⇒ ∞, where U, ΣΣΣ, B0(x) and B1(x) are defined in Lemmas 2.1, 2.2, and 2.3, re-
spectively. If furthermore the kernel K(·) is a symmetric density function, then (3.7) can be
reinforced into

(
(n̂bdn)1/2

[
gn(x) − g(x) −Bg(x)b2n

]

(n̂bd+2
n )1/2[g′n(x)− g′(x)]

)
L−→ N

(
0,

(
σ2

0(x) 0
0 σσσ2

1(x)

))

9



(so that gn(x) and g′n(x) are asymptotically independent), where

Bg(x) :=
1

2

d∑

i=1

gii(x)

∫
(u)2iK(u)du, σ2

0(x) :=
Var(Yj|Xj = x)

∫
K2(u)du

f(x)
,

and

σσσ2
1(x) :=

Var(Yj|Xj = x)

f(x)

[∫
uuτK(u)du

]−1 [∫
uuτK2(u)du

] [∫
uuτK(u)du

]−1

.

Proof. Since q is o((n̂bdn)1/(2N)), there exists sn → 0 such that q = (n̂bdn)1/(2N)sn. Take

pk := (n̂bdn)1/(2N)s
1/2
n , k = 1, . . . , N . Then q/pk = s

1/2
n → 0, p̂ = (n̂bdn)1/2s

N/2
n = o((n̂bdn)1/2),

and n̂ϕ(q) = n̂q−µ → 0. As n =⇒ ∞, p := p̂ < (n̂bdn)1/2 for large n̂. It follows that
n̂/p > (n̂b−d

n )1/2 →∞, hence nk/pk →∞ for all k. Thus, condition (B2) is satisfied.
Because ϕ(j) = Cj−µ,

ma
∞∑

j=m

jN−1{ϕ(j)}δ/(2+δ) = Cma
∞∑

j=m

jN−1j−µδ/(2+δ)

≤ CmamN−µδ/(2+δ) = m−[µδ/(2+δ)−a−N ]

a quantity that tends to 0 as m → ∞ since (4 + δ)N/(2 + δ) < a < µδ/(2 + δ) − N , hence

µδ/(2+ δ) > a+N . Assumption (A4) and the fact that qb
δd/[a(2+δ)]
n > 1 imply that b

−δd/(2+δ)
n <

qa and that (2.3) holds. Now,

Hn −U−1EWn = U−1
n (Wn − EWn) + (U−1

n −U−1)EWn.

The theorem thus follows from Lemmas 2.1, 2.3, and 3.1. �

In the important particular case under which ϕ(x) tends to zero at exponential rate, the
same results are obtained under milder conditions.

Theorem 3.2 Let Assumptions (A1), (A2), (A3), (A4′), and (A5) hold, with ϕ(x) = O(e−ξx)
for some ξ > 0. Then, if bn tends to zero as n =⇒ ∞ in such a manner that

(n̂bd(1+2Nδ/[a(2+δ)])
n )1/(2N)(log n̂)−1 →∞ for some a > (4 + δ)N/(2 + δ), (3.8)

the conclusions of Theorem 3.1 still hold.

Proof. By (3.8), there exists a monotone positive function n 7→ g(n) such that g(n) →∞ and

(n̂b
d(1+2Nδ/[a(2+δ)])
n )(1/2N)(g(n) log n̂)−1 → ∞ as n =⇒ ∞. Let q := (n̂bdn)(1/2N)(g(n))−1, and

pk := (n̂bdn)1/(2N)g−1/2(n). Then q/pk = g−1/2(n) → 0, p̂ = (n̂bdn)1/2g−N/2(n) = o((n̂bdn)1/2),
and nk/pk →∞ as n =⇒ ∞. For arbitrary C > 0, q ≥ C log n̂ for sufficiently large n̂. Thus

n̂ϕ(q) ≤ Cn̂e−ξq ≤ Cn̂ exp(−Cξ log n̂) = Cn̂−Cξ+1,

which tends to zero if we choose C > 1/ξ. Hence, condition (B2) is satisfied. Next, for 0 < ξ ′ < ξ,

qa
∞∑

i=q

iN−1ϕ(i)δ/(2+δ) ≤ Cqa
∞∑

i=q

iN−1e−ξiδ/(2+δ) ≤ Cqa
∞∑

i=q

e−ξ′iδ/(2+δ) ≤ Cqae−ξ′qδ/(2+δ).
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Note that bdn ≥ Cn̂−1 and q > C log n̂, so that Assumption (A4) holds. In addition,

qbδd/[a(2+δ)]
n = (n̂bd+2Nδd/[a(2+δ)]

n )(1/2N)(g(n))−1 > 1

for n̂ large enough. It is easily verified that this implies that condition (B3) is satisfied. The
theorem follows. �

Note that, in the one-dimensional case N = 1, and for “large” values of a, the condition (3.8)
is “close” to the condition that nbdn → ∞, which is usual in the classical case of independent
observations.

Next, we consider the situation under which the sample size tends to ∞ in the “weak” sense
(that is, n →∞ instead of n =⇒ ∞).

Theorem 3.3 Let Assumptions (A1), (A2), (A3), (A4′), and (A5) hold, with ϕ(x) = O(x−µ)
for some µ > 2(3 + δ)N/δ. Let the sequence of positive integers q = qn → ∞ and a bandwidth
bn factorizing into bn :=

∏N
i=1 bni

, such that n̂q−µ → 0, q = o((min1≤k≤N (nkb
d
nk

))1/2), and

qbδd/[a(2+δ)]
n > 1 for some (4 + δ)N/(2 + δ) < a < µδ/(2 + δ) −N.

Then the conclusions of Theorem 3.1 hold as n →∞.

Proof. Since q = o(min1≤k≤N (nkb
d
nk

)1/2), there exists a sequence snk
→ 0 such that

q = min
1≤k≤N

((nkb
d
nk

)1/2snk
) as n →∞.

Take pk = (nkb
d
nk

)1/2s
1/2
nk

. Then q/pk ≤ s
1/2
nk

→ 0, p̂ = (n̂bdn)1/2∏N
k=1 s

1/2
nk

= o((n̂bdn)1/2), and

n̂ϕ(q) = n̂q−µ → 0. As n → ∞, pk < (nkb
d
nk

)1/2, hence nk/pk > (nkb
−d
nk

)1/2 → ∞. Thus
condition (B2) is satisfied. The end of the proof is entirely similar to that of Theorem 3.1. �

In the important case that ϕ(x) tends to zero at an exponential rate, we have the following
result, which parallels Theorem 3.2.

Theorem 3.4 Let Assumptions (A1), (A2), (A3), (A4′), and (A5) hold, with ϕ(x) = O(e−ξx)
for some ξ > 0. Let the bandwidth bn factorize into bn :=

∏N
i=1 bni

in such a way that, as
n →∞,

min
1≤k≤N

{(nkb
d
nk

)1/2}bdδ/[a(2+δ)]
n (log n̂)−1 →∞ for some a > (4 + δ)N/(2 + δ). (3.9)

Then the conclusions of Theorem 3.1 hold as n →∞.

Proof. By (3.9), there exist positive sequences indexed by nk such that gnk
↑ ∞ as nk → ∞

and
min

1≤k≤N
{(nkb

d
nk

)1/2g−1
nk
}bdδ/[a(2+δ)]

n (log n̂)−1 →∞

as n → ∞. Let q := min1≤k≤N{(nkb
d
nk

)1/2(gnk
)−1}, and pk := (nkb

d
nk

)1/2g
−1/2
nk

. Then q/pk ≤
g
−1/2
nk

→ 0, p̂ = (n̂bdn)1/2∏N
k=1 g

−1/2
nk

= o((n̂bdn)1/2), and nk/pk = (nkb
−d
nk

)1/2g
1/2
nk

→∞ as n →∞.
For arbitrary C > 0, q ≥ C log n̂ for suficiently large n̂. Thus,

n̂ϕ(q) ≤ Cn̂e−ξq ≤ Cn̂ exp(−Cξ log n̂) = Cn̂−Cξ+1,
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which tends to zero for C > 1/ξ. Hence, condition (B2) is satisfied. Next, for 0 < ξ ′ < ξ,

qa
∞∑

i=q

iN−1ϕ(i)δ/(2+δ) ≤ Cqa
∞∑

i=q

iN−1e−ξiδ/(2+δ) ≤ Cqa
∞∑

i=q

e−ξ′iδ/(2+δ) ≤ Cqae−ξ′qδ/(2+δ).

Note that q > C log n̂. Assumption (A4′) and (3.6) imply that qb
δd/[a(2+δ)]
n > 1 for n large

enough. This in turn implies that condition (B3) is satisfied. The theorem follows. �

3.2 Asymptotic Normality under mixing Assumption (A4′′).

We start with an equivalent, under (A4′′), of Lemma 3.1

Lemma 3.2 Suppose that Assumptions (A1), (A2), (A4)-(A4′′), and (A5) hold, and that the
bandwidth bn satisfies conditions (B1), (B2′), and (B3). Then, the conclusions of Lemma 3.1
still hold as n →∞.

Proof. The proof is a slight variation of the argument of Lemma 3.1, and we only describe
it shortly. The only significant difference is in the checking of (3.2). Let Ũ1, . . . , ŨM be as in
Lemma 3.1. By Lemma 5.3 and Assumption (A4′′),

Q1 ≤ C
M∑

i=1

[p̂ + (M − i)p̂ + 1]κϕ(q) ≤ Cp̂κMκ+1ϕ(q) ≤ C(n̂(κ+1)/p̂)ϕ(q),

which tends to zero by condition (B2′); (3.2) follows. �

We then have the following counterpart of Theorem 3.1.

Theorem 3.5 Let Assumptions (A1), (A2), (A3), (A4′′), and (A5) hold, with ϕ(x) = O(x−µ)
for some µ > 2(3+ δ)N/δ. Suppose that there exists a sequence of positive integers q = qn →∞
such that qn = o((n̂bdn)1/(2N)) and n̂κ+1q−µ−N → 0 as n =⇒ ∞, and that the bandwidth bn
tends to zero in such a manner that (3.6) is satisfied as n =⇒ ∞. Then the conclusions of
Theorem 3.1 hold.

Proof. Choose the same values for p1, . . . , pN , and q as in the proof of Theorem 3.1. Note that
because p̂ > qN and n̂κ+1q−µ−N = o(1),

(n̂κ+1/p̂)ϕ(q) ≤ Cn̂κ+1q−Nq−µ = n̂κ+1q−µ−N → 0

as n =⇒ ∞. The end of the proof is entirely similar to that of Theorem 3.1, with Lemma 3.2
instead of Lemma 3.1. �

Analogues of Theorems 3.2, 3.3, and 3.4 can also be obtained under Assumption (A4 ′′);
details are omitted for the sake of brevity.

4 Numerical results

In this section, we report the results of a brief Monte Carlo study of the method described in
this paper. We mainly consider two models, both in a two-dimensional space (N = 2) (writing
(i, j) instead of (i1, i2) for the sites i ∈ Z

2). For the sake of simplicity, X (written as X) is
univariate (d = 1).

12



(a) Model 1. Denoting by {ui,j , (i, j) ∈ Z
2} and {ei,j , (i, j) ∈ Z

2} two mutually independent
i.i.d. N (0, 1) white noise processes, let

Yi,j = g(Xi,j) + ui,j, with g(x) :=
1

3
ex +

2

3
e−x,

where {Xi,j , (i, j) ∈ Z
2} is generated by the spatial autoregression

Xi,j = sin(Xi−1,j +Xi,j−1 +Xi+1,j +Xi,j+1) + ei,j.

(b) Model 2. Denoting again by {ei,j , (i, j) ∈ Z
2} an i.i.d. N (0, 1) white noise process, let

{Yi,j , (i, j) ∈ Z
2} be generated by

Yi,j = sin(Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1) + ei,j ,

and set
X0

i,j := Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1. (4.1)

Then the prediction function x 7→ g(x) := E
[
Yi,j|X0

i,j = x
]

provides the optimal prediction

of Yi,j based on X0
i,j in the sense of minimal mean squared prediction error. Note that, in

the spatial context, this optimal prediction function g(·) generally differs from the spatial
autoregression function itself (here, sin(·)); see Whittle (1954) for details. Beyond a simple
estimation of g, we also will investigate the impact on prediction performance of including
additional spatial lags of Yi,j into the definition of Xi,j.

Data from these two models were simulated over a grid of the form {(i, j), i = 1, . . . , 150+m,
j = 1, . . . , 150 + n}. Initial values were set to zero, and the values obtained for i or j less than
150 were discarded, thus allowing for a warming up period. For the remaining m×n data set, we
estimated the spatial regression/prediction function using the local linear approach described in
this paper. A data-driven choice of the bandwidth in this context wo uld be highly desirable.
In view of the lack of theoretical results on this point, we uniformly chose a bandwidth of 0.5 in
all our simulations. The simulation results, each with 10 replications, are displayed in Figures 1
and 2 for Models 1 and 2, respectively.

Model 1 is a spatial regression model, with the covariates Xi,j forming a nonlinear autore-
gressive process. Inspection of Figure 1 shows that the estimation of the regression function g(·)
is quite good and stable, even for sample sizes as small as m = 10 and n = 20.

Model 2 is in a spatial autoregressive model, where Yi,j forms a process with nonlinear spatial
autoregression function sin(·). Various definitions of Xi,j, involving different spatial lags of Yi,j,
yield various prediction functions, which are shown in Figures 2(a) through 2(f). The results
in Figures 2(a) and (b), correspond to Xi,j = X0

i,j := Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1, that is,
the lags of order ±1 of Yi,j which also appear in the generating process (4.1). In Figure 2(a),
the sample sizes m = 10 and n = 20 are the same as in Figure 1, but the results (still, for 10
replications) are more dispersed. In Figure 2(b), the sample sizes (m = 30 and n = 40) are
slightly larger, and the results (over 10 replications) seem much more stable. These sample sizes
therefore were maintained throughout all subsequent simulations. In Figure 2(c), we chose

Xc
i,j := +Yi,j−2 + Yi−1,j + Yi,j−1 + Yi+1,j + Yi,j+1 + Yi+2,j + Yi,j+2,

thus including lagged values of of Yi,j up to order ±2, in an isotropic way. Nonisotropic choices
of Xi,j were made in the simulations reported in Figures 2(d) through 2(f): X d

i,j := Yi−1,j +Yi,j−1
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in Figure 2(d), Xe
i,j := Yi+1,j + Yi,j+1 in Figure 2(e), and Xf

i,j := Yi−2,j + Yi,j−2 + Yi−1,j + Yi,j−1

in Figure 2(f), respectively.
A more systematic simulation study certainly would be desirable. However, it seems that

even in very small samples (see Figure 1), the performance of our method is excellent in pure
spatial regression problems (with spatially correlated covariates). Larger samples apparently are
required, though, in spatial autoregression models.

5 Appendix: proofs.

5.1 Proof of Lemma 2.2.

The proof of Lemma 2.2 relies on two intermediate results. The first one is a lemma borrowed
from Ibragimov and Linnik (1971) or Deo (1973), where we refer to for a proof.

Lemma 5.1 (i) Suppose that (A1) holds. Let Lr(F) denote the class of F-measurable random
variables ξ satisfying ‖ξ‖r := (E|ξ|r)1/r <∞. Let X ∈ Lr(B(S)) and Y ∈ LS(B(S ′)). Then, for
any 1 ≤ r, s, h <∞ such that r−1 + s−1 + h−1 = 1,

∣∣∣E[XY ]− E[X]E[Y ]
∣∣∣ ≤ C‖X‖r‖Y ‖s[α(S,S ′)]1/h. (5.1)

(ii) If moreover |X| and |Y | are P-a.s. bounded, the right-hand side of (5.1) can be replaced
with Cα(S,S ′).

The second one is a lemma of independent interest, which plays a crucial role here and in
the subsequent sections. For the sake of generality, and in order for this lemma to apply beyond
the specific context of this paper, we do not necessarily assume that the mixing coefficient α
take the form imposed in Assumption (A4).

Before stating the lemma, let us first introduce some further notation. Let

An = (n̂bdn)−1/2
∑

j∈In

ηj(x), uni` = (n̂bdn)−1
∑

j∈In

ηi`j(x),

and

Var(An) = (n̂bdn)−1
∑

j∈In

E
[
∆2

j (x)
]

+ (n̂bdn)−1
∑

{i,j∈In|∃

∑

k : ik 6=jk}

E [∆i(x)∆j(x)]

:= Ĩ(x) + R̃(x) , say

(see (3.1) for a definition of ηj and ∆j). For any cn := (cn1, · · · , cnN ) ∈ Z
N with 1 < cnk < nk

for all k = 1, · · · , N , define J̃1(x) := b
δd/(4+δ)+d
n

∏N
k=1(nkcnk) and

J̃2(x) := b2d/(2+δ)
n n̂

N∑

k=1




ns∑

|js|=1
s=1, ··· , k−1

nk∑

|jk|=cnk

ns∑

|js|=1
s=k+1, ··· ,N

{ϕ(j1, · · · , jN )}δ/(2+δ)


 .

Lemma 5.2 Let {(Yj,Xj); j ∈ Z
N} denote a stationary spatial process with general mixing

coefficient

ϕ(j) = ϕ(j1, . . . , jN ) := sup
{
|P(AB)− P(A)P(B)| : A ∈ B({Yi, Xi}), B ∈ B({Yi+j, Xi+j)}

}
,
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and assume that Assumptions (A1), (A2), and (A5) hold. Then,

|R̃(x)| ≤ C(n̂bdn)−1
[
J̃1(x) + J̃2(x)

]
. (5.2)

If furthermore ϕ(j1, . . . , jN ) takes the form ϕ(‖j‖), then

J̃2(x) ≤ Cb2d/(2+δ)
n n̂

N∑

k=1




‖n‖∑

t=cnk

tN−1{ϕ(t)}δ/(2+δ)


 . (5.3)

Proof. Set L = Ln = b
−2d/(4+δ)
n . Defining Z1j := ZjI{|Zj|≤L} and Z2j := ZjI{|Zj|>L}, let

ηij(x) := ZijKc(x−Xj) and ∆ij(x) := ηij(x) −Eηij(x), i = 1, 2.

Then, Zj = Z1j + Z2j, ∆j(x) = ∆1j(x) + ∆2j(x), and hence

E∆j(x)∆i(x) = E∆1j(x)∆1i(x) + E∆1j(x)∆2i(x) + E∆2j(x)∆1i(x) + E∆2j(x)∆2i(x). (5.4)

Firstly, we note that

b−d
n |E∆1j(x)∆2i(x)| ≤ {b−d

n Eη2
1j(x)}1/2{b−d

n Eη2
2i(x)}1/2

≤ {b−d
n EZ2

1jK
2
c((x−Xj)/bn)}1/2{b−d

n EZ2
2iK

2
c((x−Xj)/bn)}1/2

≤ C{b−d
n E|Zi|2I{|Zi|>L}Kc((x−X1)/bn)}1/2

≤ C{L−δb−d
n E|Zj|2+δI{|Zj|>L}Kc((x−X1)/bn)}1/2

≤ CL−δ/2
n = Cbδd/(4+δ)

n .

Similarly,

b−d
n |E∆2j(x)∆1i(x)| ≤ CL−δ/2

n = Cbδd/(4+δ)
n and b−d

n |E∆2j(x)∆2i(x)| ≤ Cb2δd/(4+δ)
n .

Next, for i = j, letting Kn(x) := (1/bdn)K(x/bn) and Kcn(x) := (1/bdn)Kc(x/bn),,

b−d
n E∆1j(x)∆1i(x)

= bdn{EZ1iZ1jKcn(x−Xi)Kcn(x−Xj)− EZ1iKcn(x−Xi)EZ1jKcn(x−Xj)}
= bdn

∫ ∫
Kcn(x− u)Kcn(x− v){g1ij(u,v)fi,j(u,v) − g

(1)
1 (u)g

(1)
1 (v)f(u)f(v)}dudv,

where g1ij(u, v) := E(Z1iZ1j|Xi = u, Xj = v), and g
(1)
1 (u) := E(Z1i|Xi = u). Since, by

definition, |Z1i| ≤ Ln, we have that |g1ij(u, v)| ≤ L2
n and |g(1)

1 (u)g
(1)
1 (v)| ≤ L2

n. Thus,

|g1ij(u, v)fi, j(u, v)− g
(1)
1 (u)g

(1)
1 (v)f(u)f(v)|

≤ |g1ij(u, v)(fi, j(u, v)− f(u)f(v))|+ |(g1ij(u, v)− g
(1)
1 (u)g

(1)
1 (v))f(u)f(v)|

≤ L2
n|fi, j(u, v)− f(u)f(v)|+ 2L2

nf(u)f(v).

It then follows from (A1) and the Lebesgue density theorem (see Chapter 2 of Devroye and
Györfi 1985) that

b−d
n |E∆1j(x)∆1i(x)| ≤ bdn

∫ ∫
Kcn(x− u)Kcn(x− v)L2

n|fi, j(u, v)− f(u)f(v)| dudv

+bdn

∫ ∫
2L2

nf(u)f(v)} dudv

≤ Cbdn

(
L2

n{
∫
Kcn(x− u) du}2 + 2L2

n{
∫
Kn(x− u)f(u) du}2

)

≤ CbdnL
2
n = Cbδd/(4+δ)

n . (5.5)
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Thus, by (5.4)–(5.5),

b−d
n |E∆j(x)∆i(x)| ≤ CL−δ/2

n + CbdnL
2
n = Cbδd/(4+δ)

n . (5.6)

Let cn = (cn1, · · · , cnN ) ∈ R
N be a sequence of vectors with positive components. Define

S1 := {i 6= j ∈ In : |jk − ik| ≤ cnk, for all k = 1, · · · , N} ,

and
S2 := {i, j ∈ In : |jk − ik| > cnk, for some k = 1, · · · , N} .

Clearly, Card(S1) ≤ 2N n̂
∏N

k=1 cnk. Splitting R̃(x) into (n̂bdn)−1(J1 + J2), with

J` :=
∑

i, j

∑

∈S`

E∆j(x)∆i(x), ` = 1, 2,

it follows from (5.6) that

|J1| ≤ Cbδd/(4+δ)+d
n Card(S1) ≤ 2NCbδd/(4+δ)+d

n n̂
N∏

k=1

cnk. (5.7)

Turning to J2, we have |J2| ≤
∑

i, j

∑

∈S2

|E∆j(x)∆i(x)|. Lemma 5.1, with r = s = 2 + δ and

h = (2 + δ)/δ yields

|E∆j(x)∆i(x)| ≤ C(E|ZiKc((x−Xi)/bn)|2+δ)2/(2+δ){ϕ(j− i)}δ/(2+δ)

≤ Cb2d/(2+δ)
n (b−d

n E|ZiKc((x−Xi)/bn)|2+δ)2/(2+δ){ϕ(j− i)}δ/(2+δ)

≤ Cb2d/(2+δ)
n {ϕ(j − i)}δ/(2+δ). (5.8)

Hence,
|J2| ≤ Cb2d/(2+δ)

n

∑ ∑

i, j∈S2

{ϕ(j− i)}δ/(2+δ) := Cb2d/(2+δ)
n Σ2, say. (5.9)

We now analyze the quantity Σ2 in detail. For any N -tuple 0 6= `̀̀ = (`1, . . . , `N ) ∈ {0, 1}N , set

S(`1, . . . , `N ) := {i, j ∈ In : |jk−ik| > cnk if `k = 1 and |jk − ik| ≤ cnk if `k = 0, k = 1, · · · , N},

and
V (`1, . . . , `N ) :=

∑ ∑

i,j∈S(`1, ..., `N )

{ϕ(j − i)}δ/(2+δ).

Then,
Σ2 =

∑

i,j

∑

∈S2

{ϕ(j − i)}δ/(2+δ) =
∑

06=`̀̀∈{0,1}N

V (`1, . . . , `N ). (5.10)

Without loss of generality, consider V (1, 0, . . . , 0). Because
∑

|ik−jk|>cnk

. . . decomposes into

nk−cnk−1∑

ik=1

nk∑

jk=ik+cnk+1

. . . +
nk−cnk−1∑

jk=1

nk∑

ik=jk+cnk+1

. . . , and
∑

|ik−jk|≤cnk

. . . into
nk−cnk∑

ik=1

ik+cnk∑

jk=ik+1

. . . +
nk−cnk∑

jk=1

jk+cnk∑

ik=jk+1

. . . ,
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we have

V (1, 0, . . . , 0) =
∑

|i1−j1|>cn1

∑

|i2−j2|≤cn2

. . .
∑

|iN−jN |≤cnN

{ϕ(j1 − i1, . . . , jN − iN )}δ/(2+δ)

≤ n̂





n1∑

j1=cn1

+
n1∑

−j1=cn1









cn2∑

j2=1

+
cn2∑

−j2=1



 . . .





cnN∑

jN=1

+
cnN∑

−jN=1



 {ϕ(j1, . . . , jN )}δ/(2+δ)

≤ n̂
n1∑

|j1|=cn1

cn2∑

|j2|=1

. . .
cnN∑

|jN |=1

{ϕ(j1, . . . , jN )}δ/(2+δ)

≤ n̂
n1∑

|j1|=cn1

n2∑

|j2|=1

. . .
nN∑

|jN |=1

{ϕ(j1, . . . , jN )}δ/(2+δ) .

More generally,

V (`1, `2, . . . , `N ) ≤ n̂
∑

|j1|

. . .
∑

|jk|

. . .
∑

|jN |

{ϕ(j1, . . . , jN )}δ/(2+δ) , , (5.11)

where the sums
∑

|jk|
run over all values of jk such that 1 ≤ |jk| ≤ nk if `1 = 0, such that

cn1 ≤ |jk| ≤ nk if `1 = 1. Since the summands are nonnegative, for 1 ≤ cnk ≤ nk, we have∑nk

|jk|=cnk
. . . ≤∑nk

|jk|=1 . . ., and (5.9), (5.10), and (5.11) imply

|J2| ≤ Cb2d/(2+δ)
n n̂

N∑

k=1




n1∑

|j1|=1

. . .

nk−1∑

|jk−1|=1

nk∑

|jk|=cnk

nk+1∑

|jk+1|=1

. . .
nN∑

|jN |=1

{ϕ(j1, . . . , jN )}δ/(2+δ)


 .

(5.12)
Thus (5.2) is a consequence of (5.7) and (5.12). If furthermore ϕ(j1, . . . , jN ) depends on ‖j‖
only, then,

n1∑

|j1|=1

. . .

nk−1∑

|jk−1|=1

nk∑

|jk|=cnk

nk+1∑

|jk+1|=1

. . .
nN∑

|jN |=1

{ϕ(‖j‖)}δ/(2+δ)

≤
n1∑

|j1|=1

. . .

nk−1∑

|jk−1|=1

nk∑

|jk|=cnk

nk+1∑

|jk+1|=1

. . .

nN−1∑

|jN−1|=1

j2
1
+···+j2

N−1
+n2

N∑

t2=j2
1
+···+j2

N−1
+1

{ϕ(t)}δ/(2+δ)

≤
‖n‖∑

t=cnk

t∑

|j1|=1

. . .
t∑

|jN−1|=1

{ϕ(t)}δ/(2+δ) ≤
‖n‖∑

t=cnk

tN−1{ϕ(t)}δ/(2+δ) ;

(5.3) follows. �

Proof of Lemma 2.2. Observe that

Ĩ(x) = b−d
n E∆2

j (x) = b−d
n [Eη2

j − (Eηj)
2]

= b−d
n

[
EZ2

jK
2
c((x−Xj)/bn)− {EZjKc((x−Xj)/bn)}2

]
. (5.13)

Under Assumption (A5), by the Lebesgue density Theorem,

lim
n→∞

∫

Rd

b−d
n E[Z2

j |Xj = u]K2
c ((x− u)/bn)f(u) du = g(2)(x)f(x)

∫

Rd

K2
c(u) du,
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lim
n→∞

∫

Rd

b−d
n E[Zj|Xj = u]Kc((x− u)/bn)f(u) du = g(1)(x)f(x)

∫

Rd

K(u) du,

where g(i)(x) := E[Z i
j |Xj = x] for i = 1, 2. It is easily seen that b−d

n {EZjKc((x−Xj)/bn)}2 → 0.
Thus, from (5.13),

lim
n→∞

Ĩ(x) = g(2)(x)f(x)

∫

Rd

K2
c(u) du, (5.14)

where g(2)(x) = E{Z2
j |Xj = x} = E{(Yj − g(x))2|Xj = x} = Var{Yj|Xj = x}.

Let cank := b
−δd/(2+δ)
n → ∞. Clearly, cnk < nk because nkb

δd/[(2+δ)a]
n > 1 for all k. Apply

Lemma 5.2. Since N/[(2 + δ)a] < 1/(4 + δ) due to the fact that a > (4 + δ)N/(2 + δ), and

(n̂bdn)−1J̃2 ≤ C
N∑

k=1


cank

∞∑

t=cnk

tN−1{ϕ(t)}δ/(2+δ)


→ 0 (5.15)

because cnk →∞, (5.3) and Assumption (A4) imply that

(n̂bdn)−1J̃1 ≤ Cbδd/(4+δ)
n cn1 . . . cnN = Cbδd/(4+δ)

n b−δdN/[(2+δ)a]
n → 0,

hence, by (5.2), that

|R̃(x)| = (n̂bdn)−1|J̃(x)| ≤ C(n̂bdn)−1(J̃1 + J̃2) → 0. (5.16)

Finally, (2.7) follows from (5.14) and (5.16), which completes the proof of Lemma 3.2. �

5.2 Proof of Lemma 2.3.

From (2.5) and the definition of An (recall that a0 = g(x), a1 = g′(x)),

E[An] = (n̂bdn)1/2 b−d
n EZjKc

(
Xj − x

bn

)
= (n̂bdn)1/2 b−d

n E(Yj − a0 − aτ
1(Xj − x))Kc

(
Xj − x

bn

)

= (n̂bdn)1/2 b−d
n E(g(Xj)− a0 − aτ

1(Xj − x))Kc

(
Xj − x

bn

)

= (n̂bdn)1/2 b−d
n E(Xj − x)τ g′′(x + ξξξ(Xj − x))(Xj − x)Kc

(
Xj − x

bn

)
(where |ξξξ| < 1)

= (n̂bdn)1/2b2n b
−d
n trE

[
g′′(x + ξξξ(Xj − x))

Xj − x

bn

(
Xj − x

bn

)τ]
Kc

(
Xj − x

bn

)
;

the lemma follows via Assumption (A3). �

5.3 Proof of Lemma 3.1.

Before turning to the end of the proof of Lemma 3.1, we establish the following preliminary
lemma, which significantly reinforces Lemma 3.1 in Tran (1990).

Lemma 5.3 Let the spatial process {Yi,Xi} satisfy the mixing property (2.1), and denote by
Ũj, j = 1, . . . ,M , an M -tuple of measurable functions such that Ũj be measurable with respect
to {(Yi,Xi), i ∈ Ĩj}, where Ĩj ⊂ In. If Card(Ĩj) ≤ p and d(Ĩ`, Ĩj) ≥ q for any ` 6= j, then

∣∣∣∣∣∣
E


exp{iu

M∑

j=1

Ũj}

−

M∏

j=1

E
[
exp{iuŨj}

]
∣∣∣∣∣∣
≤ C

M−1∑

j=1

ψ(p, (M − j)p)ϕ(q)

where i =
√
−1.
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Proof. Let aj := exp{iuŨj}. Then

E [a1...aM ]− E [a1] · · ·E [aM ] = E [a1 · · · aM ]− E [a1] E [a2 · · · aM ]

+E [a1] {E [a2 · · · aM ]− E [a2] E [a3 · · · aM ]}+ · · ·
+E [a1] E [a2] · · ·E [aM−2] {E [aM−1aM ]− E [aM−1] E [aM ]} .

Since |E [ai] | ≤ 1,

|E [a1...aM ]− E [a1] · · ·E [aM ] | ≤ |E [a1 · · · aM ]− E [a1] E [a2 · · · aM ] |
+|E [a2 · · · aM ]− E [a2] E [a3 · · · aM ] |+ · · ·

+|E [aM−1aM ]− E [aM−1] E [aM ] |.

Note that d(I`, Ij) ≥ q for any ` 6= j. The lemma then follows by applying Lemma 5.1(ii) to
each term on the right hand side. �

Proof of Lemma 3.1 (continued). In order to complete the proof of Lemma 3.1, we still
have to prove (3.2)-(3.5).

Proof of (3.2). Ranking the random variables U(1,n,x, j) in an arbitrary manner, refer to
them as Ũ1, . . . , ŨM . Note that M =

∏N
k=1 rk = n̂{∏N

k=1(pk + q)}−1 ≤ n̂/p, where p =
∏N

k=1 pk.
Let

I(1,n,x, j) := {i : jk(pk + q) + 1 ≤ ik ≤ jk(pk + q) + pk, k = 1, · · · , N} .
The distance between two distinct sets I(1,n,x, j) and I(1,n,x, j′) is at least q. Clearly,
I(1,n,x, j) is the set of sites involved in U(1,n,x, j). As for the set of sites Ĩj associated
with Ũj , it contains p sites. Hence, in view of Lemma 5.3 and Assumption (A4′),

Q1 ≤ C
M−1∑

k=1

min{p, (M − k)p} ϕ(q) ≤ CMp ϕ(q) ≤ C n̂ ϕ(q),

which tends to zero by condition (B2).

Proof of (3.3). In order to prove (3.3), it is enough to show that

n̂−1E[T 2(n,x, i)] → 0 for any 2 ≤ i ≤ 2N .

Without loss of generality, consider E[T 2(n,x, 2)]. Ranking the random variables U(2,n,x, j) in
an arbitrary manner, refer to them as Û1, . . . ÛM . We have

E[T 2(n,x, 2)] =
M∑

i=1

Var(Ûi) + 2
∑

1≤i<j≤M

Cov(Ûi, Ûj) := V̂1 + V̂2, say. (5.17)

Since Xn is stationary (recall that ζnj(x) := b
−d/2
n ∆j(x)),

Var(Ûi) = E







pk∑

ik=1
k=1,...,N−1

q∑

iN =1

ζni(x)




2
+

∑

i6=j∈J

E [ζnj(x)ζni(x)] := V̂11 + V̂12,
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where J = J (p, q) := {i, j : 1 ≤ ik, jk ≤ pk, k = 1, . . . , N − 1, and 1 ≤ iN , jN ≤ q}. From (5.13)
and the Lebesgue density theorem (see Chapter 2 of Devroye and Györfi 1985),

V̂11 =

(
N−1∏

k=1

pk

)
q Var{ζni(x)} =

(
N−1∏

k=1

pk

)
q {b−d

n E∆2
i (x)} ≤ C

(
N−1∏

k=1

pk

)
q .

Thus, applying Lemma 5.2 with nk = pk, k = 1, · · · , N − 1, and nN = q yields

V̂12 = b−d
n

∑

i6=j∈J

E [∆j(x)∆i(x)]

≤ Cb−d
n


bδd/(4+δ)+d

n

(
N−1∏

k=1

pkcnk

)
qcnN + b2d/(2+δ)

n

(
N−1∏

k=1

pk

)
q

N∑

k=1




‖n‖∑

t=cnk

tN−1{ϕ(t)}δ/(2+δ)






= C

(
N−1∏

k=1

pk

)
q


bδd/(4+δ)

n

(
N∏

k=1

cnk

)
+ b−δd/(2+δ)

n

N∑

k=1




∞∑

t=cnk

tN−1{ϕ(t)}δ/(2+δ)






:= C

(
N−1∏

k=1

pk

)
q πn.

It follows that

n̂−1V̂1 = n̂−1M
(
V̂11 + V̂12

)
≤ n̂−1MC

(
N−1∏

k=1

pk

)
q[1 + πn] ≤ C(q/pN )[1 + πn]. (5.18)

Set
I(2, n,x, j) := {i : jk(pk + q) + 1 ≤ ik ≤ jk(pk + q) + pk, 1 ≤ k ≤ N − 1,

jN (pN + q) + pN + 1 ≤ iN ≤ (jN + 1)(pN + q)}.
Then U(2,n,x, j) =

∑
i∈I(2,n,x,j) ζni. Since pk > q, if j and j′ belong to two distinct sets

I(2,n,x, j) and I(2,n,x, j′), then ||j− j′|| > q. In view of (5.8) and (5.17), we obtain

|V̂2| ≤ C
∑

{i,j:‖i−j‖≥q,

∑

1≤ik,jk≤nk}

|E [ζni(x)ζnj(x)]|

≤ Cb−d
n

∑

{i,j:‖i−j‖≥q,

∑

1≤ik ,jk≤nk}

|E [∆ni(x)∆nj(x)] |

≤ Cb−d
n

∑

{i,j:‖i−j‖≥q,

∑

1≤ik ,jk≤nk}

b2d/(2+δ)
n {ϕ(‖j − i‖)}δ/(2+δ)

≤ Cb−δd/(2+δ)
n

(
N∏

k=1

nk

)

‖n‖∑

t=q

tN−1{ϕ(t)}δ/(2+δ)


 . (5.19)

Take cank = b
−δd/(2+δ)
n →∞. Condition (B3) implies that qb

δd/[a(2+δ)]
n > 1, so that cnk < q ≤ pk.

Then, as proved in (5.15) and (5.16), it follows from Assumption (A4) that πn → 0. Thus, from
(5.17), (5.18), and (5.19),

n̂−1E[T 2(n,x, 2)] ≤ C(q/pN )[1 + πn] + Cb−δd/(2+δ)
n




∞∑

t=q

tN−1{ϕ(t)}δ/(2+δ)


 ,
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which tends to zero by q/pN → 0 and condition (B3); (3.3) follows.

Proof of (3.4). Let S ′n := T (n,x, 1) and S ′′n :=
∑2N

i=2 T (n,x, i). Then S ′n is a sum of Yj’s
over the “large” blocks, S ′′n over the “small” ones. Lemma 3.2 implies n̂−1E

[|Sn|2
]→ σ2. This,

combined with (3.3), entails n̂−1E
[|S′n|2

]→ σ2. Now,

n̂−1E
[
|S′n|2

]
= n̂−1

rk−1∑

jk=0
k=1,...,N

E[U2(1,n,x, j)] + n̂−1
∑

i6=j∈J ∗

Cov (U(1,n,x, j), U(1,n,x, i)) . (5.20)

where J ∗ = J ∗(p, q) := {i, j : 1 ≤ ik, jk ≤ rk − 1, k = 1, . . . , N}. Observe that (3.4) follows
from (5.20) if the last sum in the right-hand side of (5.20) tends to zero as n → ∞. Using the
same argument as in the derivation of the bound (5.17) for V̂2, this sum can be bounded by

Cb−δd/(2+δ)
n

∑

‖i‖>q

nk−1∑

ik=1
k=1,...,N

{ϕ(||i||)}δ/(2+δ) ≤ Cb−δd/(2+δ)
n




∞∑

t=q

tN−1{ϕ(t)}δ/(2+δ)


 ,

which tends to zero by condition (B3).

Proof of (3.5). We need a trucation argument because Zi is not necessarily bounded. Set

ZL
i := ZiI{|Zi|≤L}, η

L
i := ZL

i Kc((Xi − x)/bn), ∆L
i := ηL

i − EηL
i , ζL

ni := b
−d/2
n ∆L

i , where L is a

fixed positive constant, and define UL(1,n,x, j) :=
∑

i∈I(1,n,x,j) ζ
L
ni. Put

QL
4 := n̂−1

rk−1∑

jk=0
k=1,...,N

E
[
(UL(1,n,x, j))2I{|UL(1,n,x, j)| > εσn̂1/2}

]
.

Clearly, |ζL
ni| ≤ CLb

−d/2
n . Therefore |UL(1,n,x, j)| < CLpb

−d/2
n . Hence

QL
4 ≤ Cp̂2b−d

n n̂−1
rk−1∑

jk=0
k=1,...,N

P[UL(1,n,x, j) > εσn̂1/2].

Now, UL(1,n,x, j)/(σn̂1/2) ≤ Cp̂(n̂bdn)−1/2 → 0, since p̂ = [(n̂bdn)1/2/sn], where sn →∞. Thus
P[UL(1,n,x, j) > εσn̂1/2] = 0 at all j for sufficiently large n̂. Thus QL

4 = 0 for large n̂, and (3.5)
holds for the truncated variables. Hence,

n̂−1/2SL
n := n̂−1/2

nk∑

jk=1
k=1,...,N

ζL
nj

L−→ N(0, σ2
L), (5.21)

where σ2
L := Var(ZL

i |Xi = x)f(x)
∫
K2

c(u)du.
Defining SL∗

n :=
∑nk

jk=1
k=1,...,N

(ζnj − ζL
nj), we have Sn = SL

n + SL∗
n . Note that

∣∣∣E
[
exp(iuSn/n̂

1/2)
]
− exp(−u2σ2/2)

∣∣∣ ≤
∣∣∣E[exp(iuSL

n/n̂
1/2)− exp(−u2σ2

L/2)] exp(iuSL∗
n /n̂1/2)

∣∣∣

+
∣∣∣E[exp(iuSL∗

n /n̂1/2)− 1] exp(−u2σ2
L/2)

∣∣∣+
∣∣∣exp(−u2σ2

L/2) − exp(−u2σ2/2)
∣∣∣

= E1 +E2 +E3, say.
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Letting n → ∞, E1 tends to 0 by (5.21) and the dominated convergence theorem. Letting
L go to infinity, the dominated convergence theorem also implies that σ2

L := Var(ZL
i |Xi =

x)f(x)
∫
K2

c (u)du converges to

Var(Zi|Xi = x)f(x)

∫
K2

c (u)du = Var(Yi|Xi = x)f(x)

∫
K2

c(u)du := σ2,

and hence that E3 tends to 0. Finally, in order to prove that E2 also tends to 0, it suffices to
show that SL∗

n /n̂1/2 → 0 in probability as first n → ∞ and then L → ∞, which in turn would
follow if we could show that

E
[
(SL∗

n /n̂1/2)2
]
→ Var(|Zi|I{|Zi|>L}|Xi = x)f(x)

∫
K2

c(u)du as n →∞.

This follows along the same lines as Lemma 3.2. The proof of Lemma 3.1 is thus complete. �

References

[1] Anselin, L. and Florax, R.J.G.M. (1995). New Directions in Spatial Econometrics. Berlin:
Springer.

[2] Besag, J.E. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society Series B 36, 192-225.

[3] Boente, G. and Fraiman, R. (1988). Consistency of a nonparametric estimate of a density
function for dependent variables. Journal of Multivariate Analysis 25, 90–99.
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