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Abstract

The moment method is a well known mode identification technique in asteroseis-
mology, which uses a time series of the first 3 moments of a spectral line to estimate the
discrete mode parameters ¢ and m. The method, contrary to many other mode iden-
tification techniques, also yields other important real-valued parameters such as the
inclination angle ¢, and the rotational velocity v.. We developed a statistical formalism
for the moment method based on so-called generalized estimating equations (GEE).
This formalism allows the estimation of the uncertainty of the real-valued parameters

taking into account that the different moments of a line profile are correlated and that
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the uncertainty of the observed moments also depends on the model parameters. Fur-
thermore, we set up a procedure to take into account the mode uncertainty, i.e., the
fact that often several modes (¢,m) can describe the data. We applied our method
to the star HD181558, from which we learned that numerically solving the estimating
equations is an intensive task. We report on the numerical methods we use and we end
with the results for HD181558 together with our conclusions.

Keywords: Generalized estimating equations, time series, sandwich estimator, astro-

statistics, discriminant function

1 Introduction

Asteroseismology is the exploration of the stellar interior with stellar ocillations. One
uses the fact that most stars oscillate, in a regular way, and with several frequen-
cies simultaneously. These oscillations manifest themselves at the surface of the star
through brightness variations, temperature variations, and surface velocity variations,
which can be observed. A star can only oscillate in one or several of its “natural”
frequencies which are determined by the internal structure of the star. With suitable
inversion techniques it is possible to use the observed frequencies to derive information
about the internal structure of the star.

To do so, however, the characteristics of the oscillations need to be known first.
That is, a mode identification has to be carried out, where one estimates the parame-
ters characterising the oscillations from observational data. There are only few mode
identification techniques, and the properties of their estimators are hardly if at all

studied. Statistical uncertainties of the estimates, for example, are never reported.



Nevertheless, from an astrophysical point of view, uncertainties are important because
wrong mode indentifications can mislead inversion techniques. It is therefore necessary
to know a priori exactly how wrong one can be with the estimates.

In this paper, we present an in-depth study of the statistical properties of one
particular mode identification technique, namely the so-called moment method. For
examples of applications of this method we refer to, e.g., Aerts et al. (1998), Uytter-
hoeven et al. (2001), Aerts & Kaye (2001), and Chadid, De Ridder, Aerts & Mathias

(2001).

2 Astrophysical Background

As in any inferential method, the moment method uses a theoretical model to describe
the observations. To understand the statistically relevant properties of this theoretical
model and its parameters, we first need to briefly discuss some of the physics of stellar
oscillations and how they can be observed.

In Figure 1 a diagrammatic illustration of the surface of an oscillating star is given.
For our application, the most important aspect of stellar oscillation is the surface
velocity. The lighter parts of the stellar surface have an inward velocity while the
darker parts have an outward velocity. The figure is only a snapshot: the star is
varying periodically and half an oscillation cycle later the situation is reversed with
the lighter parts moving outward and the darker parts moving inward. For slowly-
rotating oscillating stars, each of the oscillation modes can be described with a spherical
harmonic Y, which is what we actually drew in Figure 1. In reality, the motion

of a surface element is more complex because it not only moves vertically but also



Figure 1: A diagrammatic illustration of the surface of an oscillating stars for the mode
(¢,m) = (5,3). In the left picture we look at the equator, and in the right picture we almost

look at the pole of the star.

horizontally.

In terms of model parameters we have to estimate 3 unknown parameters per os-
cillation mode: 2 discrete parameters and 1 real-valued parameter. The 2 discrete
parameters are the so-called mode numbers ¢ and m of the spherical harmonic, which
describe the configuration of the inward and outward going regions. To describe the 3-
dimensional motion of the stellar matter, only one parameter is needed: the amplitude
vy of the vertical motion. The reason is that there exists a theoretical linear relation
between the amplitude of the vertical motion and the amplitude of the horizontal mo-
tion. To compute the constant of proportion K, however, the mass and the radius of
the star is required and these quantities are often not very accurately known. Never-
theless, in what follows we will assume, as a first approximation, that K is known, to
considerably simplify the treatment.

A last real-valued parameter related to the oscillation is the oscillation period. How-
ever, for good datasets, this oscillation period can often be quite accurately determined
from the data with other methods so that it is usually not counted as another unknown

real-valued parameter during mode identification.



In the model, 2 additional unknown parameters not connected to the oscillations
are present. A first one is the rotational velocity at the equator of the star, usually
denoted as v.. The second one is the inclination angle ¢ under which we observe the
star. This is illustrated in Figure 1. Both pictures show the same Y;", but on the left
hand side we are looking on the equator, while on the right hand side we are looking
almost on the pole. Clearly, ¢ has a large impact on how the surface velocity field is
observed.

A last unknown model parameter is specifically related to the kind of observational
data we use. In the case of the moment method it concerns high-resolution spectro-
scopic data. The gathered star light is decomposed into its colours so that a detailed
spectrum can be constructed, i.e., received light flux as a function of the wavelength
of the light. At certain wavelenghts, such a spectrum contains absorption lines where
the light has been partially blocked by certain chemical elements at the surface of the
star. An example of the Sit absorption line at A = 412.805 nm for the non-radially
oscillating star HD181558 is shown in the left hand panel of Figure 2. Here, an obser-
vational time series of 30 high-quality spectra gathered by De Cat and Aerts (2002)
is shown. The oscillations in the star cause the absorption line to change its position
and shape in time. Precisely these line profile variations are used to estimate the pa-
rameters mentioned above. To model them, another unknown parameter is needed,
denoted by o, which is related to the width the line profile would have in the absence
of pulsation. From an astrophysical point of view this parameter is unimportant and
can be considered a nuisance.

Modeling the line profiles themselves turns out to be very computationally expen-

sive. That is why Balona (1986) deviced the moment method, which replaces each line



profile by three numbers: the first, the second, and the third moment denoted by 1,
yo, and ys respectively. These quantities are measures for the average position, the
width and the skewness of the line profile. In practice, no moments higher than y3 are
considered because the higher-order observed moments are often too noisy and they
unduly complicate the calculations. It is common practice to express the moments with
the unit (km/s)", n = 1,2,3. A time series of theoretical moments can be computed
much faster than a time series of theoretical line profiles. The nuisance parameter o,
however, remains. In the right hand panels of Figure 2 we show a time series of the
three moments for the star HD181558.

A theoretical moment at one point of time is computed by integrating over the con-
tributions of all points on the visible stellar surface. The expressions for the moments
can be written in closed form (Aerts et al. 1992), but they are quite lengthy and hardly
of any practical use to computing derivatives. We preferred to use different expressions
which are computationally more advantageous, but which involve an integration with
integration bounds that depend on the inclination angle 4.

Since each of the model parameters has a physical meaning, there are restrictions on
their values. In order of importance we have: £ € {0,1,2,---}, m € {—¢,---,0,---,+¢},

i €[0°,360°[, ve >0, v,>0,and o> 0.

3 Current Statistical Status

The moment method is a multi-response problem where a time series of 3 responses is

used to extract 6 (i.e., 2 discrete + 4 real-valued) parameters. In what follows we will



use the notation
Y = (n(t), yoti); ws(t:))’ (1)
and

H; = (Ml(th&m?ﬂ)a :U’Q(tiagamwg)? /~L3(ti7€7m7/3))/ (2)

for the first three observed and theoretical moments respectively, at time point ¢; (i =
1,---,n), where we grouped the real-valued parameters in the vector 8 = (vp, 0, ve, 7).

It is important to understand how the moment method is currently used. The-
oretically it can be shown that for a monoperiodic star, the time dependence of the

moments takes the following form:

w1 = ap sin(2avt + ay), (3)
e = bo+ by sin(2rvt + 1) + by sin(dnvt + dy), 4)
s = ¢ sin(2avt + 1) + o sin(dnvt + y2) + cg sin(6wvt + v3), (5)

where v is the oscillation frequency. The phases a1, ¢;, 7; are constants, while the
amplitudes ay, b;, ¢c; depend on the parameters (¢,m,3). A discriminant I'T*(3) is
constructed to estimate these parameters by comparing the observed amplitudes with

their theoretical counterparts:

p = J (s 1~ anl) +§0 (55 VB ul) +g (5 fle—al) . ©)

where the tilde denotes observed quantities, and where the weights f are introduced

to incorporate the estimated standard errors Aa;, Ab; and Ac; of the corresponding

observed amplitudes:

K08 -1 b G
Ady’ - Ab; A

fle = W_l
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W

(Aerts 1996). Expression (6) for I')* avoids that the third moment y3 with its large
values overshadows the first moment g1, but it has the disadvantage that it cannot dis-
criminate the sign of the mode number m. The parameters are estimated by searching
for the minimum of I'}* in a rectangular grid in the parameter space. For the real-
valued parameters, it is hoped for that the grid is fine enough in order not to miss the
global minimum. Finally, a table is produced with the top 5 or 6 best fitting (¢, m, 3)
parameter sets.

The best strategy to obtain the final estimate for (¢,m) and 8 together with their
uncertainties, is currently open to debate. Despite the usefulness of the table with
the best parameter sets, it was never attempted to estimate the uncertainties of the
parameters obtained with the moment method, because of the severe difficulties in-
volved. In this work, we set a first step by trying to estimate the uncertainties of the
real-valued parameters 3. Estimating the uncertainties of the discrete parameters £
and m is a more challenging problem, and will be left for future research.

Even for a given (¢,m) value, it is currently unknown how precise the real-valued
parameters are estimated. For example, is the uncertainty of the inclination angle as
small as 5°, or is perhaps 30° a more typical value? Moreover, very often several (¢,m)
couples give almost equally good fits. The question is raised as to how should we take
this into account for our best estimate of 3 and its uncertainty? In what follows, we

will try to answer these questions.



4 New Statistical Approach

We need a new estimating method which not only produces point estimates, but in
addition interval estimates.

A first step is to explore the use of the least squares method. Of course the three
responses Y1, yo and y3 are dependent, and their covariance matrix V is unknown.
As Seber and Wild (1989) show, the multi-response least-squares method allows one
to compute consistent estimates of the covariance matrix of the responses, the model
parameters, and the covariance matrix of the model parameters. However, this is only
true if V does not depend on the parameters 3, which is not the case for the moment
method. For example, the uncertainty of the first moment of a line profile (y1) can be
estimated with the second moment (y2), and the latter depends on ¢, m, and 3. Or,
with an astrophysical example, the faster the star rotates (larger v.) the broader the
line profile, and the less precise we know the position or the first moment of the line
profile. Therefore, in the case of the moment method, minimizing the weighted sum of
squares is not appropriate. In particular, ignoring the 3 dependence of V deteriorates
the efficiency of the estimator.

The generalized estimating equations (GEE) methodology, as developed by Liang
and Zeger (1986), is better suited for the purpose of the moment method. We recall that
this method does not assume a particular joint probability density for the responses
Y1, ¥2 and ys, nor that they are i.i.d. The theory neither assumes that the theoretical
model is linear in its parameters, and the exact covariance matrix V of the responses
does not need to be known in full detail. The method does assume, however, that the
different observations Y; (i = 1,---,n) are independent, that a working approximation

of the covariance matrix of the responses is available, and that the expectation values



E[Y;] = p;(¢,m,B) (i =1,---,n) are correctly specified.
We will use GEE to estimate the uncertainties of the real-valued parameters 8. We
recall that in the GEE method, the parameters are estimated by locating the root of

the quasi-score function U(3):
n
UB)=> D; W - (Yi — ), (7)
i=1

where n is the size of the time series. The 3 x 4 matrix D is defined by D, = du,/00s,
and the 3 x 3 symmetric matrix W; is a working approximation of the true covariance

matrix V; of the quantities Y;:

Vi = E[(Yi — 1:(8) (Y — 1:(8))']; ®)

where 3 are the true (but unknown) parameters. It can be shown (e.g., Liang and
Zeger 1986; Zeger and Liang 1986; Diggle, Heagerty, Liang and Zeger 2002) that the
root 3 is a consistent and asymptotically normal estimate of the true 3, with sandwich

covariance matrix

Cov[B] =15t 1, I Y, (9)

where we used the abbreviations

_ 9u(B) W
Iy=-F|—5-| =Y D!W; ! D, 10
o= 5] > (10)
and
I, = Cov[U(B)] = znng W, 'V, W, ! D,. (11)
=1

The unknown covariance matrices V; in the expression for I; are estimated by

Vi= (Y = 1i(B)) - (Yi— ;(B))"- (12)



The so-called sandwich estimator in expression (9) makes the estimate of the covari-
ance matrix of 3 more robust against misspecification of the covariance matrix of the
responses.

For the working approximation W for the covariance matrix V, we suggest the
following idea. Consider the mirror image w(v,t) = 1 — p(v,t) of the normalized
spectral line p(v,t) (where the abscissa values are expressed in the unit km/s) as a

distribution function for the variable v, and compute, for a given time #;:

Wis = E[(yr — pr)(Ys — is)]

B Yow; vl dow; vf
= EK—E“’J'] —ur> (—ij] —us>

ijv—,ur ijv— }

(ij 7
= w E'U Vs r Hs
(ij I ; [0 Vi1 = pr pas)
= T (trys — pr ps), (13)

where the sum over the index j runs over all the pixels of the spectral line, and where
we define
) 2
FEij/<ij> . (14)
J J
Here, we assume that the different observed points of the line profile are uncorrelated.
In summary, to estimate the uncertainty of the first three moments of the line pro-

file we use the higher theoretical moments of the line profile, up to the sixth moment

MG(&m?ﬂ)'

Having derived an estimator for 3 and its uncertainty, given a couple (¢,m), we
should take into account that we do not actually know the correct (¢, m) values. Given

that (¢,m) is a couple of discrete parameters, this problem is notoriously hard. We



can do this by “weighting” each mode (¢,m) with a goodness-of-fit function. The best
guess for both @ and its uncertainty is then computed with a weighted mean over all

relevant modes (¢,m). The entire estimation procedure can be sumarized as follows:
1. Set up a set of couples of the degree £ and the azimuthal number m: {(¢;,m;)}.

2. For each of the couples (¢;,m;), solve the quasi-score equations and estimate the

real-valued parameters ,éj and their covariance matrix Cov[,@j].

3. Compute for each of the modes (¢;,m;), the weight GJZ which indicates how well

the theoretical moments p(3) fit the observational moments y:

G? = L& (ywlt) — (85, 1)) (15)
TS S k(B t) — 3 (B, t)
4. The best estimate for the degree and the azimuthal number (!7, m) is the (¢;,m;)

that has the lowest weight G?. The corresponding best estimate for the real-

valued parameters B can be computed with

> B Gy?

~  {;my)}

ﬂ: G‘_Q (16)
{mnt 7

and the corresponding covariance matrix is the sum of the intra-mode variance

and the inter-mode variance:

Y Cov[] G2 Y (B-By)-(B-B) G

~ {(¢j,m;4)} {(¢5,m4)}
Cov[B] = - + - (17)
Z GJ 2 Z GJ 2
{(¢5.:m;)} {(¢5.:m;)}

For both practical and astrophysical reasons, only modes with a degree £ up to a certain
limit (e.g. ¢ < 4) are considered.
In the following section this estimation procedure is applied to a dataset of the star

HD181558.



5 Application to HD181558

HD181558 belongs to the class of the Slowly Pulsating B stars (SPBs). Although the
star is multi-periodic (De Cat and Aerts 2002) it has a very dominant (in amplitude)
first mode, which allows us to use a mono-periodic model in a good approximation. In
fact, the amplitude of this mode is the largest ever observed for an SPB. The dataset
used for this GEE application has already been shown in Figure 2. In what follows we
always assume K = 21.

Our first goal was to estimate 3 for each mode (¢,m) with ¢ < 4, by solving the non-
linear quasi-score equations. It turned out, however, that this was not just a technical
detail of the procedure, but was in fact a major issue.

First, it turned out that the quasi-score function U(3) is computationally slow
to evaluate, even though we programmed the computer codes in efficient C++. The
reason is that 1 evaluation requires the computation 18 time series: 6 time series for
the moments p1 up to pg for the working approximation W, and 12 time series for
the moments p; up to us for different parameters B to numerically compute (with
forward differences) the derivatives in D. For this reason we first determined a good
initial guess for B for the local search routine, by systematically making a rough scan
of the 4D parameters space for each mode (¢, m) with a computationally less expensive

goodness-of-fit function g(8):

3 n
903)=> J =3 Jyalt) — palti, B (18)
=1

The construction with the d™ root and the division by d is simply to prevent the
higher order moments from overshadowing the lower order moments. The sampling of

the parameter space was done probabilistically and non-uniformly. For each parameter



0;, a physical range was determined and this range was subdivided into intervals. After
each set of 10000 sampled points, each interval of each parameter (3; was assigned a
sampling probability according to the lowest g(3) value recorded up to then, with the
(B; component in the corresponding interval. The sum of probabilities over all intervals
of a parameter [3; was set to one. For each couple (¢,m) a total of 200000 points was
sampled. This procedure was set up to sample more the more promising regions of the
parameter space.

In Table 1 we give for the star HD181558 the lowest g(3) value recorded for each
mode (¢,m). The couple (¢/,m) = (0,0) can be excluded on astrophysical grounds
because such modes do not occur in SPBs. As can be seen, there is not just one mode
(¢,m) that stands out, but there are several candidate modes that describe the data
well. Our final estimate of 3 should take into account this mode uncertainty.

The 24 scans of a 4D parameter space with 200000 points each, was a rather time
consuming but necessary task to find suitable initial guesses for B for the local search
algorithm. Concerning this local search algorithm, we explored several alternatives.
First, we implemented the multi-dimensional Newton-Raphson method to find the
root of U, with and without Fisher scoring to approximate the Jacobian. However,
despite the fact that we included a backtracking algorithm to counter too large New-
ton steps, we found that the Newton-Raphson method was rather easily led astray.
Another option is to locate the minimum of |U|. Although this is more vulnerable
to local minima, the advantage is that there is a larger arsenal of function minimizing
techniques than of root-finding techniques. An obvious candidate local descent method
is the multi-dimensional Newton method. However, we decided not to implement this

method, the main reason being that the Hessian is not available. Approximating it nu-



m = +4 11.9
m = +3 752 11.0
m = +2 6.57 6.71 11.3

m=+41| 472 474 58> 108

m= 0] 637 637 679 11.6

m=—-1| 479 657 7.05 10.7

m= —2 468 6.86 10.5
m= -3 6.92 11.3
m=—4 11.3

Table 1: For each couple (¢, m), the 4D parameter space was scanned with the goodness-of-fit
function g defined by equation (18) and with the dataset of the star HD181558 shown in

Figure 2. The minimum g(3) value for each of the (¢,m) couples is given.



merically is likely to give unreliable results, given the fact that computing the function
|U| itself already requires computing numerical derivatives of the moments. Instead
we looked for more robust algorithms, and implemented two methods which need no
derivatives at all, only function values: the conjugate-direction (Powell’s) method (see,
e.g., Press et al. 1992, p. 420) and the Torczon (1989) simplex method. Our best expe-
rience concerning efficiency and robustness was with the conjugate-direction method,
which we subsequently used to locate the root 8 of U for all modes (£,m).

Even with the conjugate-direction method, the algorithm did not always converge.
The reason, as it turns out, is that the quasi-score functions have “false” zeros, for
example there are cases where the components of U approach zero for 8y = o — o0.
Quite often, the algorithm converged to a point outside the physically relevant range of
the parameters, even when several different initial guesses for ,@ were tried. Although
they did not occur for our dataset of the star HD181558, we should mention two other
possible causes of numerical difficulties. First, it may be possible that the working
approximation W is not invertible, for example if 3 approaches zero. Secondly, the
matrix Iy may not be invertable, and hence no covariance matrix can be computed.
This occurs, for example, for G4 = ¢ — 0° because 3 = v, appears only in G3sin 84 =
Ve sin 4 in the equations, so that the third row and the third column of Iy are zero. We
stress, however, that the latter example is a problem of intrinsic non-identifiability and
is not specific for the GEE approach. One simply cannot derive the rotational velocity
if the star is looked pole-on.

Making detailed 1D slices of the 4D function |U| would be too time consuming, but
we did keep record of the minimal goodness-of-fit values gmin in each of the intervals

of each parameter (; (disregarding the values of the other components ;). We



made plots of these records, and in Figure 3 we show four typical examples of them.
Although the function g(8) need not have exactly the same “surface” as the function
[U(B)| (the difference is similar to the well-known difference between Li-norm and
Lo-norm minimization), we may assume that many of the features of the surface of
|U(B)| are also visible in the surface of g(3). We observe that the minimum in the
upper left panel of Figure 3 for the well-fitting mode (¢,m) = (2, —2) is quite localized.
This is much in contrast with the almost flat surface in the lower left panel for the
badly-fitting mode (¢,m) = (4,—3). Intuitively, one can expect that the equivalent
for the case of the |U| function hampers the iterations towards the minimum, and
that this increases the chance to wander out of the physically relevant part of the
parameter space. In fact, this is exactly what happened for this mode. More generally,
we observe a quite strong correlation between how well a mode fits the data (with gmin
as goodness-of-fit value) and the likelihood that the root finding algorithm does not
converge. Concerning the lower right panel showing two minima in the plot of the
inclination angle ¢, we need to mention that there exist theoretical symmetry relations
that reveal that the moment method can only determine ¢ mod 90°. Taking this fact
into account, we never observed “real” multiple minima, although a minimum can often
be a very wide valley.

The fact that we quite often do not seem to find the root of U does not need to
contradict the theory outlined in Section 4. We solve for the root of the observed
U function because we know that E[U] = 0. However, the latter is only true if the
model is correctly specified, i.e. if E[Y] = u(¢,m,B3). Therefore, theoretically, the
existence of a root in the 4D parameter space of the real-valued parameters 3 cannot

be guaranteed for a “wrong” couple (¢,m), and this is exactly what we observe for



badly fitting modes. For this reason we interpreted a non-convergence (after repeatedly
trying) as an indication that the candidate mode should be disregarded.

In Table 2, we list the roots of the quasi-score function for those modes for which
there was convergence in the physically relevant part of the parameter space. The
closeness of |U| to zero varies from mode to mode. Restarting the algorithm at the
point were it stopped, did not bring |U| closer to zero. For some of the solutions the
algorithm might have stranded in a local minimum, for example the modes (¢, m) =
(3,—1) and (¢,m) = (4,0). In addition, we are suspicious about the solution for the
mode (¢,m) = (2,2) since the inclination angle equals exactly 270°, and the parameter
ve has an unlikely small value.

In Figure 4 we show fits for the three best fitting modes, with the function G? (see
Eq. 15) as a goodness-of-fit. As mentioned before, there is not just one, but several
modes that can fit the observed data quite well. Note that the goodness-of-fit values in
Table 1 provide us with an indication of the relative merits of wavenumber choice. Of
course, at this point we lack knowledge about the reference distribution of these values,
unlike in classical fit statistics (e.g., likelihood-ratio based). However, similar instances
exist in both a frequentist (e.g., Akaike Information Criterion) and a Bayesian context
(e.g., Bayes factors). Nevertheless, we assert that these numbers, especially when
supported by careful graphical inspection, are useful to substantially narrow down our
uncertainty about the wavenumbers, in spite of an intrinsically complicated modelling
endeavor. To this end, the last column in Figure 4 displays mode (¢,m) = (3,1) with
a fit, substantially worse than the one in the first three columns of the same figure.

We used the modes in Table 2, to compute the weighted mean ,@ and its standard

error, with Egs. (16) and (17). The results, including the intra-mode and inter-mode



GQ

~

(¢,;m) Ul B, & b i
(1,0) 0.15 2.7 2 (1) 9.0 (0.9) 13 (19) 320 (48)
(1,1) 511072 063 201 (0.08) 63(0.2) 152(0.7) 117 (2)
(1-1) 1110 1.1 40(0.2)  42(0.6) 25 (2) 336 (1)
(2,0) 0.10 3.1 0.9 (0.4) 7(2) 30 (24) 331 (13)
(2,1) 1.7 0.61  1.7(0.1)  3.8(0.8) 16 (1) 71 (1)
(2,2) 0.014 2.4 1(1) 10 (2) 0.4 (29) 270 (360)
(2,-2) 0.0032  0.72  1.62(0.06)  4.3(0.4)  17.6 (0.7) 129 (1)
31)  11107® 23 1.00(0.04) 6.8 (0.7) 18 (2) 145 (7)
(3,2) 0.40 3.1 1.1 (0.2) 6 (3) 17 (10) 49 (23)
(3,-1) 3.5 7.0 1.3 (0.3) 3 (12) 7 (12) 189 (5)
(4,0) 2.7 11 0.4 (0.3) 8 (12) 49 (188) 19 (96)
(4,-4) 0.047 8.7 0.6 (3) 7 (24) 20 (87) 295 (30)

Table 2: Roots of the quasi-score functions for those modes where there was convergence

in the physically relevant part of the parameter space, for the star HD181558. The values

between brackets are the standard errors obtained with the sandwich estimator (9). G? is

the weight of the mode as defined by Eq. (15). v,, 0 and v, are expressed in km/s, and the

inclination angle ¢ in degrees.



B;  Weighted Mean Intra-mode Variance Inter-mode Variance

@y 1.8 (1.0) 0.33 0.74
G 5.5 (4.1) 14 3.1
Be 17 (26) 612 46
i 164 (132) 7300 10079

Table 3: The weighted mean over all 12 modes mentioned in Table 2, computed with Eqs. (16)
and (17). The values mentioned between brackets are standard errors. The intra-mode
variance and inter-mode variance are computed with respectively the first and the second
term of Eq. (17). @, 7, 0. are expressed in km/s, and the inclination angle 1 is expressed in

degrees.

variance, are given in Table 3. In the specific case of HD181558, one could argue
that the modes with ¢ = 3 and ¢ = 4 can be disregarded on astrophysical grounds.
The reason is that these modes would require a very large oscillation amplitude at the
surface of the star to cause the large observed amplitude of the first moment y;. For
this reason, we also computed 8 with the £ = 1 and ¢ = 2 modes of Table 2 only. The
results are listed in Table 4. With Tables 3 and 4 we achieve the goal of this application
of the revised version of the moment method: we have obtained a best guess for the
real-valued parameters and their standard errors, where we took into account the mode
uncertainty. An important result is that the uncertainties of the parameters can be
large, in fact larger than we expected. Especially the rotational velocity v, cannot be
estimated precisely. The large inter-mode uncertainty of the inclination angle 4 is not

surprising since the inclination angle is known to be largely dependent on the mode



B;  Weighted Mean Intra-mode Variance Inter-mode Variance

@y 2.0 (1.0) 0.19 0.71
G 5.3 (2.0) 0.82 3.1
e 16 (12) 100 37
i 170 (137) 8342 10450

Table 4: The same information as in Table 3 is shown, except that the mean is computed

over those 7 modes in Table 2 with ¢ =1 and ¢ = 2.

numbers (¢,m). To conclude, we note that the values for the weighted means do not
change much by excluding the £ = 3 and ¢ = 4 modes. The reason is that the latter

modes have a lower weight anyway, as can be seen from the G2 values in Table 2.

6 Summary and Conclusions

We revisited one particular mode identification technique, the moment method, to
incorporate estimates of the uncertainties of the real-valued parameters. Because of
the difficulties to overcome, this was never done for the moment method, nor for any
other mode identification technique.

We found that, in the specific case of the moment method, the method of least-
squares does not give consistent estimates of the real-valued parameters and for this
reason we resorted to the GEE method as described by Liang and Zeger (1986) which
does give a consistent normally distributed estimate. This method requires a working
approximation of the covariance matrix of the 3 responses which we set up using the

higher theoretical moments. An important source of uncertainty is the fact that often



not just one but several candidate modes can describe the data. We set up a procedure
to weight each mode and to compute a weighted mean over all modes of the parameter
vector and its uncertainty. To compute the latter we introduced the intra-mode and
the inter-mode uncertainty.

Subsequently, we applied our procedure to the SPB star HD181558. The solution
of the estimating equations turned out to be a tedious task, one of the reasons being
that the quasi-score function U is computationally slow to evaluate. We needed to
set up a strategy to systematically scan the parameter space for each mode (¢,m) to
obtain good initial guesses for the local search method. In addition, we experimented
with several local root finding methods of which we selected the method of conjugate
directions to minimize |U| as the most robust and efficient method. We nevertheless
experienced quite often convergence difficulties. In fact, one of the conclusions of this
work is that GEE applied to the moment method is computationally rather demanding.
This seems, however, intrinsic to the problem and not to GEE.

The scanning of the parameter space showed that several modes can explain the
dataset of HD181558, and that it is therefore not useful to mention only the very best
fitting mode. We retained 12 modes as candidate modes for which an estimate of the
real-valued parameters B can be computed, and used these estimates to obtain a best
guess ,@ for the real-valued parameters plus their uncertainties, taking into account the
mode uncertainty. Doing so, we discovered that the parameter uncertainties can be
large. It might be tempting for the multiperiodic case to use a two-stage approach
where the inclination angle ¢ and the rotational velocity v, is determined with the
dominant mode, and where these parameters are subsequently fixed while determining

the mode parameters of the other modes, to have the dimension of the parameter space



reduced. Our results show that such an approach can be very dangerous: in the case
of HD181558 it can hardly be justified because of the large uncertainty on .

We finally mention that we proposed a new goodness-of-fit function, which is to be
preferred above the previously used discriminant (6), as it works at least as good as
the latter and allows to discriminate between positive and negative azimuthal numbers

which was one of the shortcommings of the use of (6).
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Figure 2: In the left panel, a time series of Si* (412.805 nm) absorption lines of the non-
radially oscillating star HD181558 is shown. The line profiles are ‘sorted’ to nicely cover an
entire oscillation cycle of the dominant mode, which has a period of about 29h42m. Each
of the line profiles is vertically shifted to obtain a clear visual effect. In the right panels,
the first moment y; (in km/s), the second moment y, (in km?/s?) and the third moment y;
(in km?3/s?) of all line profiles are shown as a function of the oscillation phase which is the

fraction of the oscillation period.
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Figure 3: Representative examples of the minimal goodness-of-fit value for each sample
interval of a parameter [3;, for the star HD181558. We remark that although the size of the
intervals for the parameter v, is fixed, the relevant range of v, depends on the mode numbers

(£, m).
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Figure 4: Theoretical models (solid lines) of the observed moments (bullets) for the three
best fitting modes (¢, m) = (1,1), (¢{,m) = (2,1), and (¢,m) = (2, —2), plus the less good
fitting mode (¢, m) = (3,1), with G* as a goodness-of-fit function. The theoretical models
were obtained with the model parameters obtained with the GEE method. The first, the
second and the third row are for the first moment y; (km/s), the second moment g, (km?/s?)
and the third moment y3 (km?3/s?) respectively. The moments are shown as a function of
the phase which is the fraction of the oscillation cycle. Note that the models of the different

promising modes differ mainly for the second moment.



