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Abstract

This work was motivated by the need to find surrogate endpoints for
survival of patients in oncology studies. The goal of this article is to
determine associations between five time-to-event outcomes coming from
three clinical trials for non small cell lung cancer. To this end we propose
to use the multivariate Dale model for time-to-event data introduced by
Tibaldi et al. (2002). We fit the model to these data, using a pseudo-
likelihood approach to estimate the model parameters.

We evaluate and compare the performance of different dimensional
models and we relate the Dale model association parameter, i.e., the odds

ratio, to well known quantities such as Kendall’s 7 and Spearman’s p.



Finally, the results are discussed with a perspective on surrogate marker
validation. Some suggestions are made regarding further studies in this

field.

1 INTRODUCTION

Survival time of patients is one of the most common outcomes when assessing
response to treatment in cancer clinical trials. While tumor response or per-
centage of tumor shrinkage has been used as a surrogate endpoint for cytotoxic
drugs, it has been questioned at several occasions [1, 2, 3]. There is a need to
detect potential surrogate endpoints to decreases costs, time, and/or to improve
the quality of life of cancer patients. Appropriate models, considering the type
of response (continuous, binary, time-to-event, etc.) have to be proposed and
applied to this effect.

In this contribution, we use a multivariate survival model to estimate as-
sociations between time-to-event responses, to explore surrogacy of candidate
markers, potentially after adjustment for other factors. The model used here
has the advantage that its association parameter, the odds ratio, can be trans-
lated without difficulty into quantities that are considered easier to interpret,
such as Spearman’s rank correlation coefficient p or Kendall’s 7. Appropriate
hypothesis tests can be applied to assess the strength of the association.

Survival-type models using copulas were developed [4] and extended [5] to
the multivariate case by using pseudo-likelihood estimation of the parameters.

In Section 2, a pilot study in cancer vaccination for non small cell lung cancer



(NSCLC) patients is described. The focus is the assessment of the association
between five time-to-event outcomes, one of which can be considered the true
endpoint from a surrogate marker point of view. The statistical model and
pseudo-likelihood estimation of its parameters are presented in Section 3. The

analysis of the data is presented in Section 4.

2 CLINICAL TRIALS FOR NON SMALL CELL

LUNG CANCER

Three pilot clinical trials were performed, with the aim of testing safety, im-
munogenicity, and survival of a therapeutic vaccine based on the epidermal
growth factor (EGF) molecule in patients with advanced non small cell lung
cancer (NSCLC) [6, 7]. A first pilot study tested the vaccine in 20 patients, with
NSCLC, randomized to the EGF vaccine with two different adjuvants Alum and
Montanide ISA-51. The vaccine was administered in a 5 doses schedule for 51
days. Immunogenicity data were collected weekly during the treatment period
and monthly during follow-up. The second pilot trial studied the same vac-
cines in an additional 20 patients, but with common 3 days pre-treatment with
cyclosfosfamide. In the third trial, 21 patients were assigned randomly to two
different EGF vaccine doses.

In all three trials, the scope of patients is reduced to very advanced cancer
patients at stages III, IIIb or IV without any other alternative of oncospecific

treatment, with ECOG performance status less than 3. Survival time was con-



sidered from the day of random treatment assignment until the day of death,
regardless of its cause. There were three participating hospitals. The mech-
anism of vaccine activity ought to induce an anti-tumoral immune response.
Time to a good immune response could be an indicator of a possible clinical
effect. The quality of the immune response is assessed by its titer and the titer
ratio with respect to the baseline value.

We consider five time-to-event outcomes. Time 1 is time to response in-
munogenecity 2X; Time 2 is time to response of inmunogenecity 1:2000 and 4X;
Time 3 is time to maximum titer; TTP is time to progression and TSV is overall
survival time. The latter is the true endpoint whereas the earlier four are poten-
tial surrogate endpoints. All times are expressed in months. Available covariate
information includes age (on a continuous scale), disease stage (categories III,
IIIb, and IV), indicator for patient’s previous treatment (e.g., chemotherapy),
and, of course, treatment assignment.

In a previous analysis, a relationship between immunological response and
survival time was detected [8]. For one of the trials, there was a clear advantage

on survival for the group of high immunological responders [9].

3 STATISTICAL MODEL

We will introduce the multivariate Dale model for survival data and combine
it with pseudo-likelihood ideas to estimate the parameters. To this end, let us

consider a trial involving N subjects with £ time-to-event measurements. In



our case study, £ = 5 with times Time 1, Time 2, Time 3, TTP, and TSV.

Suppose that we also observe a vector of covariates Z and assume a Weibull
distribution for each time T} with A, and pr, the scale and shape parame-
ters, respectively. While we will focus on Weibull marginals, choosing different
univariate marginal survival distributions will not induce additional complexi-
ties. The choice of marginal survivorship functions will, of course, impact the
fit of the marginal outcomes but is expected to have less impact on the esti-
mated values of the association parameters. Express the observed information
on individual 4 in the format: (Tj1,..., T, A1y Diky Zi1y - - - Zin,, ) SO that
Wi = (Tij, Aij, Z;) are the values for a particular subject ¢ and time point j,
with j = 1,...,k.

Let us briefly introduce the concept of pseudo-likelihood estimation. A full
introduction in the context of survival outcomes is given in Tibaldi et al. [5]. It
is well known that full maximum likelihood estimation can become prohibitive
for many (marginal) models. For example, in the framework of a marginally
specified odds ratio model [10, 11, 12, 13, 14] for multivariate, clustered binary
data, full maximum likelihood estimation is extremely computer intensive, es-
pecially with large within-unit sizes. Hence, alternative estimation methods,
not requiring full specification of the joint distribution, are in demand. The
principal idea behind pseudo-likelihood is to replace a numerically challenging
joint density by a simpler function that is a suitable product of ratios of like-
lihoods of subsets of the variables. For example, when a joint density contains

a computationally intractable normalizing constant, one might calculate a suit-



able product of conditional densities which does not involve such a complicated
function. A bivariate distribution f(y1,y2), for example, can be replaced by
the product of both conditionals f(y1|y2)f(y2|y1). While the method achieves
important computational economies by changing the method of estimation, it
does not affect model interpretation. Model parameters can be chosen in the
same way as with full likelihood and retain their meaning. This method con-
verges quickly with only minor efficiency losses, especially for a range of realistic
parameter settings. In our case, the k-variate joint distribution will be replaced
by the product of all of its pairwise margins. It was shown [15] that this and
related procedures are consistent and asymptotically normally distributed.

The pseudo-likelihood function constructed for the estimation of the para-
meters of this model is based on considering all (in our case, ten) possible pairs
of outcomes on an individual (W, W) with 1 <1 < £ <5. These pairs pro-
duce fr.1,(Wir, W), where fr,. 1, is the density function of the Plackett-Dale
distribution.

The Plackett distribution is obtained for a constant cross-ratio 0,.¢(t,,t¢) =
6 [11, 16, 17]. Details are given in the Appendix. The joint distribution Fr, 1, is
defined by means of (1) and (2), as soon as Fr., Fr, and 6,; are known. In this
case, the dependence can be defined using a global cross-ratio at (t,t¢) given
by 0r¢(tr, te):

1+ (Fr,(te) + P, (tr)) (0 — 1) — H(Fp, (te), Fr,. (tr), 0re)

if 0, 1,
20— 1) o7
Fr, 1,(tr,te) =
Er,(te)Fr, (t) if 6,0, =1,
(1)



where

H(Pr,, Fr,, 000) = \/ (1 + (B — V[, (b) + Fr, (b)) + 46,0(1 — 6,0) Pr, () Fr, (te).
(2)

Based upon this distribution function, we can derive a bivariate Plackett
density function, fr.1,(t,, ), for two survival times using (1)—(2) by calculating
OFr 1, (tr,t¢) /0t Otg, thereby properly accounting for censoring information.

Precisely, we can define the pseudo-likelihood function PL through its log-
arithm

N

plU®) =Y pls, (3)

i=1

with
pl; = Z In fr, 7, (Wir, Wie, ®),
(r,0)es

where S = {(1,2), (1,3),(1,4),(1,5),(2,3),(2,4),(2,5), (3,4),(3,5), (4,5) } is the
set of all ten possible pairs of outcomes, fr,7, is the value of the function de-
fined earlier and evaluated in the corresponding outcomes for subject i, and ®
is the vector of parameters. Specifically, ® = (0', 37, X, ply) with € the sub-
vector of association parameters, B the subvector of coefficients corresponding
to the covariates z and, Ar and pg subvector of parameters from the Weibull
distribution.

The pseudo-likelihood estimator @ is defined as the maximizer of (3). Con-
sistency has been shown [15, 18, 19]. Correct estimates of precision can be
obtained using sandwich estimator ideas, not dissimilar to those proposed by
Liang and Zeger [20]. A brief outline of the estimation procedure is provided in

the Appendix.



The Plackett-Dale model allows us to estimate and interpret the strength of
the association between a pair of survival times via global cross ratios (the 6
parameters in the model). It is often convenient to consider a transformation
of § that has the interpretational properties of a correlation coefficient, such as
Spearman’s p or Kendall’s 7 .

Kendall’s 7 lies in the [—1, 1] interval and a zero value implies independence
between T;. and T;. There exists a relationship between Kendall’s 7 and 6 for

any copula C(t,,t;,6) [21]

1 1
7(0) =4 / / Cr,ry (try t1,0) Oy (b, dty, 0) — 1. (4)
0 0

This relationship is independent of the marginal distributions and only de-
pends on Frp [22]. Kendall’s 7 thus measures the association between both
time points after adjustment for the covariates used in the model. Estimates
and confidence intervals, using the delta method, are accordingly easily ob-
tained. There is no closed form for Kendall’s 7 in the Plackett-Dale case and
an estimate has to be obtained from (4). We have developed a SAS IML 8.02
macro to this effect.

Spearman’s p is also independent of the margins, and belongs to the unit

interval. The relationship between Spearman’s p and 6 is

_0+1 20.1n0

pO)=g— — -1 (5)

An estimate follows from p = p(§), with variance estimated using a straight-

forward application of the delta method. This allows estimation of the associa-

tions between the five outcomes by fitting a multivariate model and adjusting



for other variables as age of the patients, previous treatment status, stage of the
diseases, etc, as we will see in Section 4.

Pseudo-likelihood estimates were obtained using Newton-Raphson with ana-
lytical first derivatives and numerical second derivatives, as implemented in SAS
IML 8.02 and using routine NLPNRR (SAS Institute Inc. 1999-2001). Stan-
dard errors of the parameters were calculated using the inverse of the observed
matrix of second derivatives.

This model has important implications in the assessment of surrogacy. In
previous studies [4], the validation of a new variable as surrogate was performed
on only one surrogate and only one true endpoint. In our case, the model allows
to study several surrogates and several true endpoints at the same time. It gives
also the possibility of developing new strategies not only to validate already
identified candidates, but also to identify new variables that have potential
regarding surrogacy.

Both Kendall’s 7 and Spearman’s p quantities can serve as an indication
of individual level surrogacy in the sense of Buyse et al. [23]. In case data
are available from a sufficciently large number of trials and/or centers, these

authors’ meta-analytic perspectives can be adopted as well.

4 ANALYSIS OF THE DATA

We will now fit the proposed model to the data described in Section 2. Even

when the association between outcomes is of primary scientific interest, as is



the case here, it is mandatory to appropriately adjust the marginal survival
regressions for covariate effects. We have included patients’ characteristics: age
(as a continuous variable), disease stage (three categories labelled III, I1Ib, and
IV), whether or not a patient received previous treatment (e.g., chemotherapy),
and treatment arm. The time unit for the outcomes was months.

We will use the indices 1, 2, 3, 4 and 5 to identify the outcomes Time 1,
Time 2, Time 3, TTP and TSV, respectively. Thus, for example, 615 denotes
the association between outcomes Time 1 and TSV. Note that the models of
primary interest are those containing the variable TSV, considered to be the
true endpoint in this study. Nevertheless, the other models are useful to further
insight into the association structure.

In the first part of the analysis we explored the importance of hospital and
trial to estimate the pairwise associations. We fitted all possible bivariate models
using as covariates age, stage, previrt and group in four different situations.
Firstly, we fitted models with the variables hospital and trial, secondly with
the variable hospital only, thirdly with the variable trial only, and fourthly
with neither of these variables. The results, not shown here, reveal that no
large differences were observed between the association parameters across the
four choices, so it was decided to retain the simplest model and both trial and
hospital were dropped from further consideration.

We first considered all possible bivariate models (1B to 10B) and all different
trivariate models (1T to 10T). The association parameters obtained from these

models, as well as those from the five-variate model (1F), are presented in

10



Table 1. The primary use of the bivariate and trivariate models lies in their
comparison with the full 5-variate model. Indeed, given the marginal nature
of the models, corresponding associations have the same meaning. While each
association occurs only once in the collection of bivariate models, they do so
several times in the collection of trivariate models, disallowing their easy use.
Similarly, each association is used only once in the full 5-variate model. The
most obvious advantage is that all associations feature within a single, integrated
model. They are also estimated with increased precision as opposed to their
bivariate and trivariate counterparts. The bivariate models are also useful to
provide starting values for the 5-variate model. Indeed, the model is not easy
to bring to convergence in the absence of reasonable starting values.

Let us zoom in on the comparison of association parameters across models.
For example, the association between TTP and TSV, 645, can be found from
Models 10B, 1T, 2T, 3T, and 1F. The results are very similar, as can be seen
in most other rows in Table 1, with somewhat exceptional behavior for ;5 and
f13. Such behavior is not uncommon for relatively large odds ratios, and the
difference is less prominent on the log odds ratio scale.

Full details of the parameter estimates from the 5-variate model are given
in Tables 2 and 3. Table 2 described the association parameters. Apart from
the original odds-ratio scale (f parameters), the easier-to-interpret Kendall’s 7
and the Spearman’s p coefficient are included, together with asymptotic 95%
confidence intervals. #-confidence intervals not containing one provide evidence

for association between the corresponding pair of times, after correction for the
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covariates. Note that the covariates and other marginal regression parameters
are displayed in Table 3. A corresponding association assessment based on
Kendall’s 7 and Spearman’s p requires exclusion of the zero value from the
corresponding confidence intervals.

Several substantive conclusions can be drawn from the model fits. From
Model 1F we see that the highest association is observed between TTP and
TSV. TSV is also significantly associated with Time 2 and we further observe
a significant association between Time 1 and Time 2. While the first two of
these three associations are of direct interest, and may lead to reconsideration
of Model 2T (containing Time 2, TTP, and TSV), it is of interest to consider
a 4-variate model as well, i.e., a model with outcomes 1, 2, 4, and 5 (i.e., Time
1, Time 2, TTP, and TSV). Indeed, through its association with Time 2, Time
1 may indirectly contribute useful information. In any case, Time 3 appears to
have no association with any of the other outcomes. Thus, a 4-variate model as
presented in Table 4 will be considered our final model.

In summary, we have some evidence that TTP and Time 2 can be used as
surrogates for TSV, with some auxiliary information coming from Time 1. Of
course, the evidence apported here is just from three relatively small trials, and
is based on an assessment of the association between responses only. Clearly,
more exhaustive studies need to be designed in order to evaluate the surrogacy
in a more authoritative fashion, preferably in a meta-analytic setting such as

the one proposed by Buyse et al. [23] or Burzykowski et al. [4].
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5 CONCLUDING REMARKS

We have proposed the use of a multivariate Plackett-Dale model for estimating
associations between, possibly censored, time-to-event outcomes. Specifically,
we showed how this methodology can be useful in the context of surrogate
marker validation.

Given the difficulties of manipulating the likelihood function in this case, a
pseudo-likelihood approach was undertaken as a viable and attractive alterna-
tive to maximum likelihood. The computational complexity of the algorithm
used for the estimation of the model parameters was overcome by using initial
values obtained from the bivariate fitted models. Good numerical results were
obtained in most cases.

Kendall’s 7 and Spearman’s p coefficients can be used as measures of indi-
vidual level surrogacy [4]. In spite of the multivariate flavor of this model, the
pairwise pseudo-likelihood approach provides only bivariate association mea-
sures. Valid confidence intervals for such quantities were constructed using the
delta method.

One of the primary purposes of this study was to detect or identify possible
new surrogate endpoints for survival time. We are particularly interested in the
validation of four different surrogate variables (Time 1, Time 2, Time 3 and
TTP). This implies the need of a multivariate model considering all of these
surrogates and the true endpoint.

We want to note that the methodology we applied here focuses only on

the individual level surrogacy but similar ideas as in Buyse et al. [23] for the
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meta-analytic framework need to be developed further.

Using the selected 4-variate model a high association between Time 1 and
Time 2 can be observed. This evidenced that the time of reaching the double
baseline titer, for most of the patients, had a strong relationship with the time
to achieve a high titer value (1:2000 and 4X).

None of the times to reach a good immune response seem to have a high
association with TTP, neither with survival time. It seems that, with the accu-
mulated evidences in this patient population, time to a good immune response
is not a strong surrogate of clinical benefit endpoints such as TTP and survival.
Other immune information seems to be more important and this should be the
objective of further research.

However, there is evidence that TTP is highly associated with survival time.
In practice, this variable is not very convienient given its closeness to the actual

survival time. The marginal gain does not justify its use as a surrogate.
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APPENDIX: MODEL DESCRIPTION

Assume that T} and T, are correlated survival times, then the joint survival

function of (71,7%) can be written as

Sty (th, te) = P(Th > t1, Ta > t2) = Cp,, {ST, (t1), Smu(t2)},  t1,t2 >0,
(6)
where St, and Sp, denote marginal survival functions and Cy,, is a copula [24].
An attractive feature of model (6) is that the margins do not depend on the
choice of the copula function.
To model the effect of specific covariates on the marginal distributions of T3

and Tb in (6) we propose to use the proportional hazard model:

s) = esp{ [ hn o) explon Z0ic) ")

Sry(ta) = exp {— /0 b (2) exp(BTQZz)drc}, ®)

where h7, and hr, are marginal baseline hazard functions and 87, and B,
are vectors of unknown regression parameters corresponding to the covariates
Z. The classical model proposed by Cox [25] is used for the hazard functions.
Estimates of the parameters for joint model (6)—(8) can be obtained using the
method of maximum likelihood [26] or the two-stage parametric procedure pro-
posed by Shih and Louis [27]. In this case the dependence can be defined using

a global cross-ratio at (t1,t2) given by

F(ty,t2)[1 — Pry (t1) — Py (t2) + F(t1, t2)]

P20 t) = T )~ Fltr, )] P (t2) — Fon )]

(9)
where Fr, and Fp, are the marginal cumulative density functions. Here, 812 =
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012(t1, t2) satisfies 0 < 015 < oo when F'(t1, t2) satisfies the Fréchet-Hoeffding [28]
bounds. For a constant cross-ratio, 612(t1,t2) = 0, the Plackett distribution is
obtained [16, 17].

The values of the Plackett distribution are found as one of the two solutions
of the following second degree polynomial equation if the marginal distribution

functions Frr, and Fr,, and the cross-ratio ;2 are known:

019(F — Fp, )(F — Fr,) — F[F — (P, + Fp, — 1)] = 0. (10)

Dale and Mardia [11, 17] gave an explicit solution for (10) and showed that

Fr, 1, (t1,t2) is always a bivariate copula, with 612 in [0, 4o00].

L+ (P, (t2) + Pry(t1))(012 — 1) — H(Fp, (t2), F'ry (11), 012)

if 010 # 1,
ST oy

Fr, 1, (t1,t2) =
FTz(tQ)FT1 (tl) if 10 =1,
(11)

where

H(Fr,, Fry,012) = /(14 (612 — 1)(Fr,(t1) + Fr,(t2)))% 4 4612(1 — 012) Fr, (t1) Fp, (t2).
(12)

Mardia [17] showed that Fr, 7, (t1,t2) is always a bivariate copula, with 612 in

[0, 4+00]. For our pseudo-likelihood approach the resulting PL function and its

log will be denoted by

N
Inpl(®) = Z Z In fr,7,(Wir, Wy, @), (13)
i=1 (r,0)eS

where S is the set of indices with all possible pairs of outcomes of interest, fr.7,
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is the value of the function that results by derivating the expression (11) and ®
is the vector of parameters.

Maximizing (13) we obtain the pseudo-likelihood estimator ®. Geys, Molen-
berghs, and Ryan; Arnold and Strauss; Le Cessie and Van Houwelingen [15, 18,
19] showed that it converges in probability to ®g, the true parameter value and
\/N(:I\) — &) converges in distribution to N, (0,.J(®o) 'K (®o)J () "!) with

J(®) and K(®) defined by

0?In fr,1, (tis, tit)
Ji=— Y Eg ( -1 ) (14)
(s,)€S 06rO¢1

(61nfTs(tisvtit) 81nth(ti5’tit)> : (15)

K== Z Ee Opr 0y

(s,t)es

This result provides an easy way to estimate consistently the asymptotic covari-
ance matrix. Indeed, the matrix J is found from evaluating the second derivate
of the log pf function at the PL estimate. The expectation in K can be re-
placed by the cross-product of the observed scores. We will refer to J~! as
the model based variance estimator, which should not be used as such because
it overestimates precision; to K as the empirical correction; and J ' KJ ! as
the empirically corrected variance estimator. Several tests as pseudo-likelihood
ratio and pseudo-score test statistics [29] can be performed. As discussed by
Arnold and Strauss [18] a PL estimator is always less efficient than the cor-
responding ML estimator but Aerts et al. [29] showed that in many realistic

settings efficiency losses are minor.
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Table 2: Pseudo-likelihood estimates of the association parameters (confidence
intervals) of the five-variate model, with outcomes Timel, Time2, Time3, TTP,
and TSV. Apart from the original odds ratio scale, Kendall’s T and Spearman’s
p are presented.

(¢,9) 0 Kendall’s 7, Spearman’s p;;
(1,2) 8.821 (3.363;14.280)  0.454 (0.426;0.482) 0.628 (0.497;0.759)
(1,3)  4.790 (0.325;9.255) 0.337 (0.290;0.384) 0.483 (0.238;0.727)
(1,4)  0.857 (0.356;1.358)  -0.034 (-0.067:-0.002) -0.051 (-0.246;0.143)
(1,5)  0.716 (0.348;1.083)  -0.074 (-0.103:-0.046) -0.111 (-0.280;0.058)
(2,3)  1.565 (0.766;2.363) 0.099 (0.071;0.127)  0.148 (-0.019;0.315)
(2,4)  1.045 (0.311;1.779)  0.010 (-0.029:0.049)  0.015 (-0.219;0.249)
(2,5)  0.545 (0.209;0.881)  -0.134 (-0.168:-0.100) -0.200 (-0.398;-0.002)
(3,4)  1.060 (0.521;1.599)  0.013 (-0.015;0.041)  0.019 (-0.150;0.189)
(3,5) 1.896 (0.882;2.910) 0.141 (0.112;0.171) 0.210 (0.039;0.381)
(4,5) 10.567 (4.088;17.046)  0.487 (0.460;0.514) 0.665 (0.544;0.785)
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Table 3: Pseudo-likelihood estimates (standard errors) of the survival regression
parameters in the five-variate model with outcomes Timel, Time2, Time3, TTP,
and TSV.

Parameters k
1 2 3 4 5

ager 0.404 (0.077) _ 0.143 (0.060) -0.103 (0.072) -0.106 (0.057) -0.220 (0.097)
stagel, 0.746 (0.209) -0.196 (0.216)  0.235 (0.230) -0.220 (0.146) -0.143 (0.194)
stage2;,  -0.789 (0.252) -0.903 (0.241) -0.472 (0.270)  0.122 (0.180) -0.007 (0.241)
protrt 0.001 (0.158) -0.065 (0.137) -0.326 (0.124) -0.420 (0.124)  0.004 (0.156)
trtp 0.538 (0.165)  1.251 (0.162)  0.310 (0.142) -0.208 (0.118) -0.039 (0.141)
i 1.230 (0.053)  0.903 (0.039)  1.184 (0.039)  1.085 (0.041)  1.638 (0.066)
A 22,659 (0.438) -2.901 (0.551) -0.665 (0.412) -0.599 (0.284) -1.539 (0.335)
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Table 4: Pseudo-likelihood estimates (standard errors) of the survival regression
and associaton parameters in four-variate model with outcomes Timel, Time2,
TTP, and TSV.

Par. Timel-Time2-TTP-SVT
2% 0.441 (5.417)
014 0.856 (0.245)
015 0.712 (0.184)
004 1.041 (0.558)
0o5 0.543 (0.189)
0.5 10.820 (3.559)
agel 0.424 (0.112)
ages 0.141 (0.118)
agey -0.109 (0.071)
ages -0.209 (0.100)
stagely 0.826 (0.261)
stagelsy -0.164 (0.341)
stagely -0.216 (0.201)
stagels -0.140 (0.196)
stage2, -0.758 (0.287)
stage2 -0.904 (0.333)
stage2y 0.133 (0.216)
stage2s -0.022 (0.247)
protriq 0.001 (0.199)
protrtg -0.072 (0.227)
protrty -0.422 (0.153)
protris 0.008 (0.171)
trt, 0.531 (0.185)
trt 1.240 (0.272)
trty -0.203 (0.143)
trts -0.057 (0.155)
1 1.231 (0.053)
P 0.881 (0.057)
4 1.081 (0.055)
D5 1.630 (0.074)
A -2.784 (0.697)
A2 2928 (1.119)
A -0.593 (0.391)
A5 -1.561 (0.336)
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