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SUMMARY. Three methods of multivariate data analysis are compared for their 

ability to identify clusters of hybridizations and genes in microarray experiments. 

Principal component analysis (PCA) and correspondence factor analysis (CFA) 

have been applied already to microarray data.  It is shown that PCA has the 

disadvantage that the resulting principal factors are not very informative, while 

CFA has difficulties regarding interpretation of the distances between objects. We 

present an alternative method, spectral map analysis (SMA) and compare it with 

the other methods using gene expression data in leukemia patients. It is shown that 

weighted SMA outperforms PCA and is at least as powerful as CFA in finding 

clusters in the hybridizations and identifying genes related to these clusters. SMA 



addresses the problem in a more appropriate manner than CFA and allows to apply 

a more flexible weighting to the genes and hybridizations. Proper weighting is 

important since it allows to downweight less reliable data and to emphasize more 

reliable information. 
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1. Introduction 

The advent of  DNA microarray technology enabling global gene expression analysis 

has been a fundamental breakthrough in the life sciences. The possibility to 

simultaneously measure the expression profile of thousands of genes allows for a 

better characterization of different types of a disease and for better insight in the 

underlying pathology, thus creating the possibility for identifying new therapeutic 

targets.  In principle, DNA microarrays consist of some solid material upon which an 

array of spots of known DNA sequences are immobilized. Labeled RNA extracted 

from biological samples, referred to as hybridizations, is hybridized to the array. The 

array is scanned and the fluorescent intensity at each position in the array is 

considered as a measure for the expression level of the corresponding gene. At 

present, a typical DNA microarray contains thousands of DNA-spots. In the near 

future, however, improvements to the technology will probably provide information 

on tens of thousands of genes, eventually encompassing entire genomes. 

 

On the other hand, the simultaneous measurement of the expression level of 

thousands of genes poses an enormous task to the information processing capability of 

present systems. Much research is still being done in the area of statistics and data 



mining to provide the scientific community with better tools for pattern recognition 

and visualisation of gene expression data. Statistical science has made significant 

contributions to the enhancement of the quality of raw measurements by introducing 

several normalisation techniques. In addition, new techniques for statistical inference 

have been introduced and data mining techniques for supervised and unsupervised 

learning have found applications. Methods of unsupervised learning clustering 

techniques,such as k-means clustering (Tavazoie, 1999), hierarchical clustering 

(Eisen, et al. 1998), and self-organizing maps (Tamayo, et al., 1999, Törönen, et al. 

1999) have found widespread application in analysing and visualising gene expression 

data. These methods however, produce results that are highly dependent on the 

distance-measure and clustering technique that is used and the number of clusters in a 

cluster analysis can is often an issue of controversy. Furthermore, conventional 

clustering methods only allow for classification of either genes or hybridizations 

alone, but do not allow interpretations of the association between genes and 

hybridizations.  

 

Another set of exploratory techniques is based upon projections of high-dimensional 

data in a lower dimensional space and plotting both genes and hybridizations in this 

lower dimensional space using the biplot (Gabriel, 1971). Principal component 

analysis (PCA) (Pearson, 1901, Hotelling 1933) is a well-established technique in 

multivariate statistics and has been applied to gene expression data (Chapman, et al., 

2001, Hilsenbeck et al., 1999, Landgrebe, et al., 2002, Lefkovits, et al., 1988). Related 

to PCA are techniques like correspondence factor analysis (Benzécri, 1973) and 

spectral mapping (Lewi, 1976). Correspondence factor analysis (CFA) has recently 

been applied to microarray data by Fellenberg, et al. (2001). In this paper, we propose 



the use of a less well known technique, spectral map analysis (SMA) (Lewi, 1976) for 

the analysis of gene expression data. In the past, SMA has been successfully applied 

to a wide variety of problems ranging from  pharmacology (Lewi, 1976), virology 

(Andries, et al. 1990), to management and marketing research (Faes and Lewi, 1987). 

Thielemans, Lewi, and Massart (1988) have compared SMA with  PCA and CFA, 

using a relatively small data set from the field of epidemiology. They concluded that 

the appropriate technique depends upon the data to be analyzed and the features one is 

interested in. Up to now, the applications of SMA have always been limited to small 

or moderate sized data sets. The present paper illustrates the applicability of the 

method to large data sets and the importance of appropriate weighting in the analysis 

of microarray gene expression data. We will show that SMA provides the researcher 

with a visual data representation , useful as a tool for distinguishing patterns in the 

gene expression data that could be related to important biological questions and as a 

technique for quality control of microarray experiments.  

 

The outline of this paper is as follows: In Section 2 a general framework for 

multivariate projection methods will be set up and the similarities and specifics of  

PCA, CFA, and SMA will be indicated. In Section 3, the different techniques will be 

compared using the gene expression profiles of leukemia patients (Golub, 1999). In 

Section 4, the advantages of weighted SMA for gene expression data will be 

highlighted and possible applications and limitations of the technique will be 

discussed. 



2. Multivariate Projection Methods 

The similarities and characteristics of the three multivariate projection methods, PCA, 

CFA, and SMA will be presented, following Lewi (1995) and Thielemans, et al. 

(1988). 

 
2.1 Notation 

Let X  denote the matrix containing the original expression levels n p× ijx  for the 

expression level of n genes (rows) in each of p different hybridizations (columns). We 

also define two diagonal matrices with row weights and column weights . The 

diagonal elements of and are the weight coefficients associated with the rows 

and columns of the matrix . The weight coefficients are non-negative and 

normalized to unit sum. An unweighted analysis is obtained by 

nW pW

nW pW

X

(ag 1nW )ndi=  and 

(1 )diagp p=W . Alternatively, the diagonal elements of  and  can be set to 

appropriate weighting schemes such as the row and column totals, normalized to 

unity, i.e. 

nW pW

( )p 1T1diagn n= X p1W X  and ( )diag n=W 1 1 XT TXp n p1 . There seems to be 

a consensus among scientists that microarray data at lower levels of expression are 

less reliable, so weighing for row means seems appropriate in this context. An 

additional advantage of defining weights is the possibility of positioning rows and 

columns by setting their corresponding weights to zero. Positioning is the operation 

where some columns or rows of the data matrix are excluded from the actual analysis, 

but still are represented on the map constructed on the basis of the remaining data. 

2.2 General algorithm for multivariate projection methods 

In the algorithms of the three multivariate projection methods the following building 

blocks can be distinguished: re-expression, closure, centering, normalization, 



factorization, and finally projection. Differences between the methods are obtained by 

variations in these building blocks.  

a. Re-expression 

It is often advantageous to re-express (i.e., transform) the data as logarithms, i.e. a 

new matrix  is obtained whose elements aA log( )ij ijx= . For this operation to be 

valid, measurements must be made on a ratio scale and the values must be positive. 

Logarithmic re-expression corrects for positive skewness and reduces the effect of 

large influential values. A further justification of a logarithmic re-expression is the 

fact that in many natural systems changes occur on a multiplicative rather than an 

additive scale.   Alternatively, one could also consider other types of re-expressions, 

such as reciprocals or arc sine re-expression. However, these do not possess the nice 

properties of logarithms, namely that differences in logarithms are related to ratios of 

the original data. There is also the trivial case in which the original data are left 

unchanged and the elements of the re-expressed matrix are equal to the elements of 

the data matrix X . 

A

b. Closure 

Closure is defined as the operation of transforming the data into relative values such 

that they sum to unity.  Closure requires the data to be non-negative and measured in 

the same units. From the matrix with the re-expressed data, a new table  is 

obtained by either column, row, or global closure. In column-closure each element 

of  is divided by the corresponding column marginal total of , i.e. 

A B

ija A A ij

j

a
a+

=ijb , 

where . Column-closure imposes a linear constrained on the rows of the 

matrix. As a consequence, when n ≤ p, it reduces the rank of the data matrix by one. 

In row-closure the elements of the matrix are obtained from  by dividing each 
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element by the corresponding row marginal total, i.e. ij
ij

i

ab a +
= , where . 

A linear constraint is imposed on the columns of the matrix, resulting in a rank-

reduction by one when p≤ n. Double closure consists of the combined operation of 

dividing each element  of the data matrix by its corresponding row and column 

marginal total.  The result is then multiplied by the total sum of  to yield a 

dimensionless number. We thus have: 
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. Double 

closure always involves a reduction of the rank of the original data matrix by one. The 

operation of double closure combined with weighting of rows and columns by their 

corresponding marginal totals forms the core of CFA. Of course, in an algorithmic 

approach one should also consider the trivial case of no closure in which  ij ijb a=

T
n1 m

n

p

T =m B

T T
p n

p m+

c. Centering 

Centering is defined as a correction of B  for a mean value to yield the centered 

matrix . There are different ways to derive mean values from a matrix, each 

resulting in a different way to center the data. Geometrically, centering involves a 

translation to the origin of the data in the column space, the rowspace, or in both. In 

column centering the matrix   contains deviations from the weighted 

column means . In row centering  is the matrix with 

deviations from the weighted row means . In global centering the matrix 

 contains the deviations of the elements B from the global weighted mean 

. Simultaneous centering by rows and columns yields the double-

centered matrix of deviations from row and column means 

. The operation of double-centering involves a 
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projection of the data matrix on a hyperplane that runs through the origin and is 

orthogonal to the line of identity.  The result is a reduction by one of the rank of the 

original matrix. The dimension that is lost is related to a component of “size” that is 

present in the data and is oriented along the identity line. This “size” component is 

common to all elements of the data table and often obscures the important information 

that is present in the data. Applying double-centering after logarithmic re-expression 

is the very essence of SMA. It is interesting to note the close analogy between double 

closure and double centering after logarithmic re-expression. For the centering part of 

the algorithm, we also define the trivial case of no centering with =Y B

Z

(

. 

diagD Y

2
n p

d. Normalization 

Normalization or standardization is the operation of dividing by the square root of 

the mean sums of squares or norm, yielding a normalized matrix . There are several 

ways to compute the norm of a matrix each resulting in a different method of 

normalization. In column-normalization the normalized results is obtained as 

, with the weighted column-norm  defined as 

Y

1
p
−=Z YD pD ( ) )

1
22T

p nW= . 

The effect of column-normalization in the column space is to weight each column-

dimension proportional to the inverse of its mean sum of squares. In row-space the 

effect is a sphericization, such that the points are forced to lie on a hypersphere. 

Column-normalization after column-centering is a standard operation in PCA. In row-

normalization with the weighted row-norm 1
n
−=Z D Y ( )

1
2

pW 1diag=D Y . The 

geometric interpretation of row-normalization is similar to that of column-

normalization with the row and column spaces interchanged. Normalization for the 

weighted global norm   yields the global-normalized matrix 2
n n p p= 1 W Y W 1d

n1



1
d

=Z

Z

Y . Finally, for the sake of completeness, we have the case of no normalization 

where . =Z Y

Λ

( )1 T
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1
2

n
α

−

UΛ

e. Factorization 

Factorization of yields factors that are orthogonal to one another and account for a 

maximum of the variance of the data. For a weighted analysis, the multivariate 

projection methods under consideration rely on the generalized singular value 

decomposition as factorization method. The generalized singular value decomposition 

of  is defined as:  

Z

1 1
2 2 T

n p =W ZW UΛV   [1] 

where  is an  matrix of singular values,  being the rank of r r× r 1
2 2

nW ZW 1

p . In 

addition, we have U U  and  T
r= I T

r=V V I . Consequently, we have 

(2 2W )1

n
− =U I  and ( ) ( )1 1

2 2
T

p p p
− −

r=W V W W V I .  rW U

f. Projection 

Projection of the results of the generalized singular value decomposition along the 

first few common factors yields the biplot (Gabriel, 1971). Different biplots, with 

characteristic geometric properties, can be constructed using combinations of two 

factor-scaling coefficients α  and β , set to, for example, 0, 0.5, or 1, where  the 

weighted factor scores S and factor loadings are obtained from [1] by L

=S W and  
1

2

p
β

−

= VΛL W . It is easy to show that the above expressions 

for and L  can also be written as S

1
2 1

p
α −=S ZW VΛ  and 

1
2 1

n
β −= W UΛL Z . The latter form, though more complex, is 

required for positioning supplementary rows or columns by setting their respective 

weights to zero. The following cases of factor scaling can be distinguished: 



− 1α = , 1β =  referred to as eigenvector scaling. This type of symmetric scaling is 

customary in CFA. Distances of points in row-space as well as in column-space 

are reproduced in the plot, as well as the correlation structure of the column-

variables. 

− 1α = , 0β =  referred to as unit column-variance scaling, is customary in PCA. 

Only distances between row-points are preserved in this asymmetric type of 

scaling. In full factor-space the distances of the column-items from the origin are 

constant and the correlation structure between column-variables is not reproduced. 

− 0α = , 1β =  referred to as unit row-variance scaling, is also customary in PCA. 

Only distances between the column-items and the correlation structure between 

column-variables are preserved. In full factor-space the distances of the row-

points from the origin are constant.  

−  0.5α = , 0.5β =  referred to as singular value scaling, is customary in SMA. This 

type of factor-scaling is a compromise between the versions given above. 

Distances between row-points and the correlation structure of the column-

variables are not fully reproduced. The distortion is most pronounced when the 

ratios between the eigenvalues ( )2Λ  associated with the axes of the biplot are 

very large or very small. 

Having defined a general framework encompassing the three projection methods, we 

will now discuss their different characteristics. 

2.1 Principal component analysis 

Historically, PCA dates back to Pearson (1901) and Hotelling (1933). In the algorithm 

described above it is defined as: constant weighting of rows and columns, optional re-

expression, column-centering, column-normalization, and factor scaling with either 



symmetric eigenvector scaling with 1α = , 1β = ,  asymmetric unit column-variances 

with 1α = , 0β = , or asymmetric unit row-variances with 0α = , 1β = . 

Note that PCA makes a clear distinction between row- and column-items in the 

centering and normalization procedure. Therefore, one distinguishes classical R-mode 

analysis and its complement Q-mode analysis on the transposed data matrix. 

2.2 Correspondence factor analysis 

CFA has been developed by Benzécri (1973) and is adequately described by 

Greenacre (1984). This multivariate projection method was originally developed for 

the analysis of contingency tables but has also been applied to other tables with non-

negative values (Fellenberg, et al., 2001). CFA involves the following steps: 

weighting of rows and columns by marginal row and column totals, no re-expression, 

double-closure, double-centering, global normalization, and symmetric eigenvector 

factor-scaling ( 1α = , 1β = ). The double-closure and double-centering 

transformations are symmetric with respect to the rows and columns of the data table.  

In the CFA-biplot distances of the row- and column-items from the centre of the 

biplot are interpreted as chi-square values.  

2.3 Spectral map analysis 

SMA was originally developed for the display of activity spectra of chemical 

compounds (Lewi, 1976). The algorithm for spectral mapping is characterized by: 

constant weighting of rows and columns or weighting by some properly chosen 

weighting factor, logarithmic re-expression, double-centering, global normalization, 

and factor scaling using either symmetric scaling with singular values  ( 0.5α = , 

0.5β = ) or asymmetric scaling with unit-column variance ( 1α = , 0β = ). A further 

characteristic of SMA is that in the biplot the areas of the symbols are made 

proportional to a selected column, or to marginal row- and column-totals.  



 

The double-centering transformation in SMA is symmetric with respect to the rows 

and columns of the data table. As a result of the double-centering, all absolute aspects 

of the data are removed. What remains are contrasts between the different rows 

(genes) and contrasts between the different columns (hybridizations) of the data table. 

These contrasts can be expressed as ratios due to the logarithmic transformation. The 

contrasts can be understood as specificities of the different genes for the different 

hybridizations. Conversely, they refer also to the specificities or preferences of the 

different hybridizations for some of the genes. Therefore, one could state that SMA 

provides a visualisation of the interactions between genes and hybridizations. An 

advantage of SMA over CFA is that the scope of SMA is not limited to contingency 

tables and cross-tabulations. In addition, SMA offers the possibility to use other 

weighting factors than the marginal totals.  

2.4 Implementation 

The general algorithm as described above has been implemented in the open source 

language R. Analysis of a 5000 x 40 data matrix takes about 20 secs on a 750 MHz 

Intel processor with 500 Mbyte RAM. The library with functions for analysis, 

plotting, and printing is freely available at http:\\www.xxxxxxx.xxx. 

3. Application 

In a recent study, Golub et al. (1999) obtained gene expression profiles of 38 patients 

suffering from acute leukemia. In the following, we will refer to this data set as MIT1.  

Patients were diagnosed as suffering from either acute myeloid leukemia (18 patients) 

or acute lymphoblastic leukemia (20 patients). The latter class could further be 

subdivided in B-cell and T-cell classes. In addition to the initial 38 patients Golub, et 

al. also considered a second validation sample (MIT2) of 34 patient for which the 



gene expression profile was determined. Both data sets are available on http://www-

genome.wi.mit.edu/mpr/data_set_ALL_AML. The original data were preprocessed as 

follows: genes that were called "absent" in all hybridizations were removed from the 

data sets, since these measurements are considered unreliable by the manufacturer of 

the technology. Negative measurements that were present in the data were set to 1.. 

The resulting data set contained 5327 genes of the 6817 originally reported by Golub 

and co-workers. 

3.1 Principal component analysis 

PCA was carried out after logarithmic re-expression of the gene expression profiles in 

MIT1. Since gene expression data are positively skewed and can contain large 

influential values, we considered a logarithmic re-expression appropriate. For the 

construction of the biplot (Figure 1), an asymmetric scaling with unit-column variance 

( 1α = , 0β = ) was used to allow better visual discrimination between the different 

hybridizations. This special type of factor scaling was considered optimal for extreme 

rectangular matrices of microarray data where variability between the genes (average 

variance log transformed data = 6.4) is much higher than between the different 

hybridizations (average variance  = 2). A consequence of unit-column variance factor 

scaling is that correlations and distances between hybridizations are not represented in 

the biplot. However, in exploring gene expression data only patterns in the 

distribution of the hybridizations are of direct interest. In Figure 1, the horizontal axis 

of the biplot, represents the first principal component that accounts for 71 % of the 

total variance in the data. The second principal component is represented by the 

vertical axis of the biplot and explains another 3 % of the total variance. The 

horizontal axis is dominated entirely by a global component related to the size of the 

measurements and does not contribute any information about the differential 

http://www-genome.wi.mit.edu/mpr/data_set_ALL_AML
http://www-genome.wi.mit.edu/mpr/data_set_ALL_AML


expression of genes in the hybridizations. Differences between hybridizations are 

found only along the vertical axis. Only a difference between the ALL and AML 

groups is eminent, while data from ALL B-lineage and ALL T-lineage completely 

overlap one another. Furthermore, it is impossible to use the biplot for selecting genes 

that discriminate best between the ALL and AML classes. 

[GEERT] IK ZOU OP DEZE PLAATS EEN IETS MEER EXPLICIETE 

CONCLUSIE TOEVOEGEN. WAT IS DE LES? HOE GAAN WE MET DEZE 

BOODSCHAP VERDER? DE LEZER ZOU HIER ANDERS WAT IN HET 

ONGEWISSE GELATEN ZIJN.  

 

[GEERT] ALLE PLOTS ZIJN 2-DIMENSIONAAL; DE VRAAG KAN 

ONTSTAAN: IS HET WERKELIJK ZO DAT HET GEKOZEN AANTAL 

FACTOREN ALTIJD 2 IS, IS DAT GEWOON UIT GRAFISCH GEMAK, OF IS 

ER EEN ANDERE REDEN? DIT VERDIENT ENEIGE DISCUSSIE 

3.2 Correspondence factor analysis 

The biplot obtained from CFA on the original data in MIT1 is depicted in Figure 2.. 

The same asymmetric unit-column variance scaling was used as in PCA, to allow 

optimal visual discrimination of the different hybridizations.  While distances 

between hybridizations are not represented in this type of scaling, the weighted 

distances of genes from the center are interpreted as chi-square values. In CFA sums 

of squares are expressed as chi-square values and the global weighted sum of squares 

is defined as the global chi-square. The horizontal axis of the biplot in Figure 2 

accounts for 17 % of the global chi-square, while the vertical axis accounts for an 

additional 10 %. In contrast to PCA the first dominant component is not related to 

size. CFA highlights the differential genetic profiles of the different hybridizations, an 



approach that is much more relevant to the problem. In Figure 2, genes are distributed 

in a funnel-like pattern and there is a clear separation between ALL and AML patients 

with only 2 patients that overlap one another. In contrast to PCA, B-lineage and T-

lineage classes within the ALL group are also separated from one another. It is 

possible to identify a few genes that could be used in characterizing the three 

pathological classes. However, there is a problem with the interpretation of the 

numerical value of the distances between genes. Since in CFA, distances refer to chi-

square values that have a meaning only for contingency tables and not for continuous 

data as is the case in gene expression experiments, one could seriously question the 

applicability of CFA in microarray data analysis. 

3.3 Spectral map analysis 

In SMA, we considered both constant weighting and variable weighting proportional 

to the row marginal totals. The latter was motivated by the fact that differences found 

at lower levels of gene expression are less reliable than differences at a high level of 

expression. 

a. Unweighted SMA 

The results of  SMA with  constant weighting factors are depicted in Figure 3. 

Asymmetric unit column-variance was used as factor scaling in the construction of the 

biplot. Genes located near the center of the map are still displayed as dots, while the 

0.5 % (27) most distal genes are displayed as circles with areas proportional to their 

marginal row mean.  In addition, these genes were labelled with their accession 

number. SMA, like CFA, stresses the differential genetic profile of the different 

hybridizations, but in contrast to CFA relative distances can be interpreted and 

quantified as ratios. The three classes of hybridizations cluster around the three poles 

of a triangle. The horizontal axis that accounts for 10 % of the interaction variance 



appears to be dominated by the ratio in gene expression profiles of the AML to the 

ALL class. The vertical axis, accounting for an additional 7 % of the interaction, is 

related to the ratio of the ALL T-cell versus the ALL B-cell class. However, like in 

PCA there is a significant amount of overlap between these two subclasses. Genes 

that occupy the most extreme positions on the map are differentially expressed 

between the different classes of hybridizations. For instance, the gene with accession 

number X82240 on the left pole of the triangle is a gene that has on average a high 

absolute level of expression, as is indicated by the area of the associated circle, and is 

selective for the ALL-B class. This gene is contrasted to a cluster of genes 

concentrated around the right pole that are selective for AML patients and a set of 

genes located on the top pole associated with the ALL-T class. It is however, 

questionable whether the genes with relatively high values for the ALL-T class make 

sense in reality, since the three genes on the top of the triangle all correspond to 

Affymetric control genes. These genes are placed on the microarrays by the 

manufacturer as a means of internal control. 

b. Weighted SMA 

In a second SMA, we used variable weighting for the genes, with weights 

proportional to the mean expression levels of the genes. SMA and construction of the 

biplot was carried out as above. The resulting biplot is depicted in Figure 4. The 

pattern formed by the different hybridizations lies in between the result obtained by 

CFA and unweighted SMA. Also here, it is possible to identify a triangular-like shape 

with three poles corresponding to the three classes of leukemia. The horizontal axis of 

the map is dominated by the ratio in gene expression between the AML and ALL 

class and accounts for 13 % of the total interaction variance. The vertical axis is 

dominated by the contrast between the ALL T-cell and ALL B-cell group and 



accounts for an additional 12 % of the interaction. In contrast to the former 

unweighted SMA, the three classes of leukemia are completely separated from one 

another. Note that, compared to Figure 3, the direction of the vertical axis is reversed. 

All of the genes that are located distal from the center could have a physiological 

meaning. It is noteworthy to mention that only 3 of the 27 most distal genes were 

among the 50 genes selected by Golub, et al. to discriminate between the different 

classes of disease.  

[GEERT] IS DE REVERSIE VAN DE ASSEN GEWOON EEN ARTEFACT 

(INVARIANTIE OP ORIENTATIE) OF IS ER MEER STRUCTUREELS AAN DE 

HAND. OOK DIT VERDIENT ENIGE DISCUSSIE.  

 

In a subsequent analysis (Fig. 5) we carried out a weighted SMA using the 27 genes 

identified in Figure 4. Since row and column variances are now comparable, the 

biplot was constructed using singular values ( 0.5α = , 0.5β = ) as method for factor 

scaling. The horizontal and vertical axis explain 43 % and 32 % of the global 

interaction variance. Using only this small subset of 27 genes allows complete 

separation of the three pathological classes. Figure 6 shows the hybridizations 

obtained in the second data set (MIT2) positioned on the biplot based on MIT1. AML 

and ALL-B class can clearly be distinguished from one another without any overlap. 

There is only one possible mismatch, the only hybridization in MIT2 that was 

identified as ALL-T.  

c. SMA as a tool to quantify differential gene expression 

The maps shown in Figures 4 and 5 suggest an even further reduction of the data. 

Indeed, the genes located at the poles of the triangle formed by the three pathological 

classes almost completely represent the interaction that is present in the first factorial 



plane. To emphasize this point we constructed the biplot in Figure 7 using only the 

expression profile of the genes with accession numbers X82240, X76223, and 

M82546. This case of spectral map analysis where only three columns are considered 

is also referred to as multivariate ratio analysis (MRA) and has found applications in 

the field of ecology (Hermy and Lewi, 1991). MRA differs from conventional SMA 

only by the application of asymmetric unit column-variance ( 1α = , 0β = ) as method 

for factor scaling. All 72 hybridizations present in MIT1 and MIT2 data sets were 

plotted on the plane determined by these three gene-poles. In addition axes were 

drawn through the poles of the triangle. These axes allow quantification of the 

different ratios in gene expression that can be calculated from the data. The map 

allows to read-off the differential genetic profile of each of the hybridizations with 

respect to the three characteristic genes. This possibility to read off ratios is a major 

advantage of SMA as compared to CFA. Figure 7 shows that hybridizations whose 

expression profile is not specific for any of the genes and consequently are located at 

the center of the map, also have a low level of expression for all three genes, as is 

indicated by the extreme small areas of the corresponding squares. Genetic specificity 

as expressed by the differential ratio between any two genes can be substantial and 

can amount to a factor of 10,000 or more, as is illustrated by the axis M82546 versus 

X76223. Furthermore, it is shown that, using only three genes, the three pathological 

classes can be discriminated to a substantial extent. 

4. Discussion 

The results obtained in the previous section indicate that weighted SMA is a valuable 

tool for the analysis of gene expression microarray data. Weighted SMA and CFA  

outperform conventional PCA in visualizing the data, determining clusters of 

hybridizations and genes, correlating hybridizations with gene expression profiles, 



and reducing the data. An advantage of SMA over CFA is the possibility to interpret 

distances as ratios, while CFA does not allow such an intuitive approach. A limitation 

with regard to interpretation of the spectral map would be the abundance of groupings 

in the different hybridizations as is the case in some data mining applications. 

However, for such applications one could consider exploring subsets of the data 

instead of entire data sets.  

 

Assessing the quality of experiments that are as complex as microarray experiments is 

a non-trivial matter and is of paramount importance to the scientist. Quality assurance 

already starts in the laboratory by a careful conduct of the experiment. Proper 

normalisation of the raw data will further enhance the quality and make results 

comparable for different genes. However, it happens in some occasions that mistakes 

happen in the laboratory processing of the samples. It has been our experience that, in 

addition to the above, constructing spectral maps of the data is extremely helpful for 

determining such outlying results. 

 

[GEERT] WAAR DIENT DEZE LAATSTE COMMENTAAR TOE. IK DENK 

NIET DAT DE LEZER ER AL TE VEEL WIJZER VAN WORDT. OFWEL 

VERDUIDELIJKEN EN ER WAT VERDER OP IN GAAN, OFWEL SCHRAPPEN. 

 

Apart from the data analytic aspects of this report, it is noteworthy to mention that the 

three genes selected in the construction of Figure 7, could be related to leukemia. 

Only one gene was also present in the set of 50 genes used by Golub, et al. for class 

determination. M84526 is known to be an AML predictive gene and was also selected 



by Golub, et al.  The two other genes X82240 and X76223 were not selected by 

Golub, et al. but were reported to be involved in T-cell leukemia. 
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Legend to Figures 
 
Figure 1. Biplot of the results of PCA. First principal component (horizontal axis) and 

second principal component (vertical axis) account for 71 % and 4 % respectively 

of the global variance. Small dots  represent genes. The three classes of leukemia 

are identified by squares (AML), triangles with top up (ALL B-Cell), or triangles 

with top down (ALL T-cell). 

Figure 2. Biplot of the results of CFA. Horizontal axis represents 17 % and vertical 

axis 10 % of the global chi-square. Codings of the different hybridizations are  

identical to Figure 1. 

Figure 3. Biplot of the results of an unweighted SMA. Horizontal axis represents 10 

% and vertical axis 7 % of the global interaction variance. Codings of the different 

hybridizations are identical to Figure 1. The 0.5 % most distal genes are labeled 

and represented as circles with areas proportional to the marginal mean. 

Figure 4. Biplot of the results of SMA weighted for marginal row and column means. 

Horizontal axis represents 14 % and vertical axis 12 % of the total interaction 

variance. Note the reversal of the vertical axis as compared to Figure 3. Codings of 

the different hybridizations are identical to Figure 1. The 0.5 % most distal genes 

are labelled and represented as circles with areas proportional to the marginal 

mean. 

Figure 5. Biplot of the results of SMA weighted for marginal row and column means 

using only the 0.5 % genes most distant from the center. Horizontal axis represents 

43 % and vertical axis 32 % of the total interaction variance. Codings of the 

different hybridizations are identical to Figure 1. Genes are  represented as circles 

with areas proportional to the marginal mean. 



Figure 6. Positioning of the 34 additional patients (MIT2) on the biplot of Figure 4. 

Codings of the different hybridizations are identical to Figure 1. Genes are  

represented as circles with areas proportional to the marginal mean. 

Figure 7. All 72 hybridizations plotted on the plane determined by the ratios between 

the three most extreme genes X82240, X76223, and M82546, of Figure 5. 

Differential gene expressions of individual patients can  be read from the calibrated 

axes. Hybridizatons are coded as: M for  AML, B for ALL B-cell, and T for ALL 

T-cell class patients.  

 

[GEERT] DE FIGUREN ZELF VERDIENEN DUIDELIJKE ASSEN MET LABELS 

ENZ.  
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