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SUMMARY

Searching genetic databases for similarities between DNA sequences is nowadays
widely used. Well-known and very popular packages are FASTA and BLAST.
Nevertheless, past research has shown that they do not find all (dis)similarities,
found by word-based search tools.

In this paper, we use the word-based method, introduced by Wu, Burke and
Davison (1997), to develop and evaluate an equivalence test, using simulation
studies. The “closeness” of DNA sequences is quantified via a Mahalanobis-
type distance, accounting for variances and covariances between frequencies of
n-words.

Knowing the closeness between two DNA sequences is very important in the field
of accrediting new laboratories. It can also be used as a measure of consistency
if multiple sequences are generated by a single lab. The introduced methodology
can be extended to amino acid sequences instead of sequences of adjacent letters.

Key words: DNA Sequence Comparison, Mahalanobis Distance, Word Counts.
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1 Introduction

Any organism’s genetic information is coded and stored in its DNA, a linear sequence of
molecules that can be seen as a necklace of simple building stones, called nucleotides and
represented by the letters a (adenine), ¢ (cytosine), ¢ (thymine) and g (guanine). An n-word
is a subsequence of n adjacent letters constructed of these four nucleotides, so there are 4"
different possible n-words. Each sequence of three bases can be thought of as a word that
specifies a particular amino acid, of which there are 20 common types. Those molecules are
the building blocks of proteins. Some parts of the DNA code for these proteins, some code
for the time point at which a protein has to be produced, some code for how much of a

protein needs to be produced.

Nowadays, quantifying the similarity between two DNA sequences is one of the cornerstones
of modern molecular biology. With the development of dynamic programming theory and
with the availability of high-speed computers, alignment algorithms became a popular and
widely used tool in biological sequence comparisons. The prototype of a global algorithm
is the classic Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). The Smith-
Waterman algorithm is the best known local alignment algorithm (Smith and Waterman,
1981). Both alignment methods assign scores to insertions, deletions and replacements, and
compute an alignment of two sequences that corresponds to the least costly set of such

mutations, hereby maximizing the similarity between the two sequences.

Rather than comparing individual residues in two sequences, FASTA (Fast Alignment)
searches for matching sequence patterns or words, or k-tuples (Wilbur and Lipman, 1983;
Lipman and Pearson, 1985; Pearson and Lipman, 1988). These patterns comprise k consec-

utive matches in both sequences. The program attempts to build a local alignment based on



mahal3.tex  Version: January 24, 2003 3

these word matches. FASTA thus compares an input DNA or protein sequence to all of the
sequences in a target database and reports the best-matched sequences and local alignments
of these matched sequences with the input sequence. The FASTA approach is very popular
and is accepted in the biological community as being sensitive and selective. Nevertheless,
FASTA does not find all (dis)similarities, found by word-based search tools (Hide, Burke

and Davison, 1994; Blaisdell, 1989).

The paper of Wu, Burke and Davison (1997) characterized and compared the relative perfor-
mance of a family of word-based dissimilarity measures that define a distance between two
sequences by simultaneously comparing the frequencies of all n-words in the two sequences.
The Mahalanobis distance, which accounts for both the variances and covariances between

frequencies of n-words, turned out to give the best performance.

Van Steen et al. (2001, 2002) focused on the analysis of accrediting new labs, i.e., on testing
whether DNA sequences composed in different labs are sufficiently close. In Van Steen et al.
(2001), the classical Mahalanobis distance between nucleotides is used to make inferences
about the similarity of the DNA sequences. An alternative approach based on generalized

estimating equations and pseudo-likelihood is adopted in Van Steen et al. (2002).

In this paper, we focus on comparing DNA sequences generated by two different labs, which
can be seen as ratings on 1047 characteristics (loci). From this perspective, we are interested
in the closeness or similarity of ratings as a measure of agreement, or as a measure of
consistency if multiple sequences are generated by a single lab. Closely linked to the concepts
of similarity of ratings is the idea that the level of disagreement between any two ratings might
be represented by a distance measure. Measuring this disagreement by allowing insertions or

deletions, will be counterintuitive. Using word-based (dis)similarity measures may therefore
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be a better choice. We will focus on the Mahalanobis distance between frequencies of words,
as defined in Wu, Burke and Davison (1997). These word-based methods are also applicable

to amino acid sequences with minor modifications.

A major difference with the distance defined in Wu, Burke and Davison (1997), is that we
use it to find the degree of similarity between sequences, and not to find matching parts in

sequences. Therefore some crucial modifications are necessary.

This paper has the following organization. Section 2 provides a brief description of the data
and introduces the format of the data for further reference. In Section 3, we will shortly
introduce the Mahalanobis distance between frequencies of words. Section 4 focuses on the
derivation of a formal test to assess whether or not a particular level of disagreement is
statistically significant or has occurred by chance. It will be applied immediately to the

data. Conclusions are drawn in Section 5. The latter is followed by a discussion in Section 6.

2 Data Description

Proficiency testing is a key part of a laboratory’s quality control activities. It offers to labo-
ratory customers independent evidence of the laboratory’s performance. The purpose of the
proficiency testing programme, as set up by Tibotec-Virco, is to enable ongoing monitoring
of a laboratory’s competence in the genotypic sequencing of HIV-containing samples. A bat-
tery of seven samples was selected which contained all relevant genotypic resistance profiles.
These samples were first sent to four reference laboratories for replicate (5 times) sequenc-
ing. Participating laboratories sequenced the samples only once. All nucleotide sequences
were summarized using IUPAC-IUB Ambiguity Codes, allowing for mixtures of nucleotides

at certain positions.
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Practically, each genotype sequence exists of (i) nucleotide/amino acid of HIV-1 PR (codons
1 through 99 x 3) and (ii) nucleotide/amino acid of HIV-1 RT (codons 1 through 250 x
3). This results in a total of L=1047 nucleotides. Only one of the samples (sample 002) is
selected for illustrative purposes. Since one reference lab sequenced all samples only once,

the pool of reference sequences comprises 16 DNA sequences.

All information within the reference labs is summarized in one consensus sequence (of length
1047) by selecting the most frequent nucleotide per locus. Ties are broken arbitrarily. More-
over, if all sequences are non-informative with respect to a particular locus, then the derived
consensus sequence shows a missingness code at that locus. In addition, mixtures of nu-

cleotides are treated as missing observations.

To assess the quality of a query (new) DNA sequence, we will calculate the distance between
the query sequence and the consensus sequence, using the technique of word counts as

described in the next section.

3 The Model

Wu, Burke, and Davison (1997) introduced a technique to compare a query sequence with
a library sequence, based on a Mahalanobis distance between frequencies of words. In fact,
their goal was to find parts of sequences that match with the query sequence, to make
inferences about the characteristics of the query sequence based on known characteristics of

the library sequences.

We will adapt this method to assess the quality of a new query sequence, calculating how

well this query sequence maps with the consensus sequence.
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We focus on the independent model of genome composition, while the four bases that make
up a sequence are assumed to occur independently. The independence of bases is an approx-

imation to the actual dependence in DNA sequences.

3.1 Covariance Between Frequencies of Words

Following the development in Wu, Burke and Davison (1997), we define a strand of DNA
of length (¢ + n — 1) (having ¢ n-words, where ¢ > 1) on the alphabet {a,c,t,g}. For
w = (ay,...,a,), an arbitrary but fixed n-word within the strand, N, = Zle X, refers to
the frequency of w. Here X, represents an indicator variable which takes on the value 1 if w
begins at position ¢ and 0 otherwise. If the product of the probabilities of the first & and the

last & letters in w are denoted by respectively Py and P then Gentleman and Mullin (1989)

obtained
E(N,) = (P, (3.1)
and
n—1
var(N,) = (P,(1 —(P,) + P}l —n+1)({ —n) + 2P, > ({ — k) PuQn, (3.2)
k=1

where @ = (Q1, ..., Qy) is the overlap capability of w, defined as

L i (an e a8) = (i an),
@ = { 0, otherwise. (3.3)

We observe that P, is the probability of occurrence of the n-word w. For later use, we
also need the covariance between the frequency of two n-words within a DNA sequence.
Therefore, let v = (by, ..., b,) represent another n-word that is different from w and define
Y, N,, Ry, R} and R, similar to X;, N, B, P; and P,. As explained in Wu, Burke and

Davison (1997), a key concept is the overlap capability C(wy) = (C1(wy),...,Ch(wy)) of w
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with respect to v:

] . 1, lf (an_iH,...,an) = (bl,...,bi),
Cilwy) = { 0, otherwise. (3-4)

Cyw) = (Ci(yw),...,Ch(yw)) is defined similarly. Note that, in general, C'(w7y) # C(yw)

when w # . Now, using the overlap information,

E(X;Y;) = P,P[Y;=1|X; =1](= R,P[X; = 1|Y; = 1))
By R Crjmiy(w7) = B DjiCrjoip(wy), 1<j—i<n—1,

= 3 RuP!Coop(1w) = PaRiiCop(qw), if1<i—j<n—1,(35)
P.R,, if |j—i| >n—1.

By definition, the probability of having different words w and ~ starting at the same position
is zero, So

cov(N,, Ny) = > cov(X;,Y;) =l —n+1)({ —n)P,R,

3,j=1
n—1 n—1
k=1 k=1

If the four bases occur with equal probability, the equations (3.2), (3.5), and (3.6) can be

simplified by replacing both P, and R, by 47" and all of Py, Ry, P, and R} by 47,

3.2 Similarity Measure Based on Distances Between Word Fre-
quencies

In this section we assume two strands of DNA sequences @) and L (for the query and consensus
sequence). Let Vi, = (N, /¢, ..., Ny,./t) be the vector of relative frequencies of n-words
over a segment W, which is a (sliding) window of length ¢ +n — 1 (thus having ¢ n-words)
from the sequence L, and where wy, ..., wsn refer to all possible n-words. Let Vg, and Wy

be defined similarly for (). Thus, the random vector

Z;z = (an sy Zn4”) = VL,n - VQ,n (37)



mahal3.tex  Version: January 24, 2003 8

is an expression of the dissimilarity of W, and W, with respect to word composition. Note
that Z, depends on (1) the word size n, (2) the common window length £+ n —1 of W}, and

We, and (3) the particular pair of windows (W}, W) under consideration.

The Mahalanobis distance for one particular window pair W = (W, W), denoted here by
D;. v, is then defined as

DZ,W = Zvlzzr_;lZny (38)

with ¥, the common population covariance matrix of Vg ,, and V7 ,,. Remark that, contrary
to Wu, Burke and Davison (1997), both windows W; and Wy have to start at exactly
the same position in the sequence, and need to slide in exactly the same way through the

sequernces.

Under the independence and uniform model of base composition, the diagonal and nondi-
agonal entries of ¥, can be evaluated according to equations (3.2) and (3.6), respectively,

while the probability of each of the four bases a, ¢, t, g is taken to be 1/4.

The Mahalanobis distance is well known in multivariate statistical analysis, but not yet
widely used for measuring DNA sequence dissimilarities. Nevertheless, the Mahalanobis
distance is very attractive, because it takes into account not only the scaling and variance

of a variable, but also the variation of other variables based on the covariances.

Contrary to Wu, Burke, and Davison (1997), we define the distance between L and @ as the
mazimum of all “window” distances, because we are interested in the degree of similarity

between L and (), and not in finding parts in both sequences that match. Thus,

D? max D (3.9)

n —

This measure still depends on (1) the word size and (2) the selected window length /+mn — 1.
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Due to dependencies among frequencies of n-words, the covariance matrix ¥, is a 4" x 4"
singular matrix so that computing the Mahalanobis distance involves finding the pseudo-

inverse of ¥,. In practice, this may be too difficult to compute for large word sizes.

4 Analysis

The analysis of the DNA sequence comparison consists of several parts. First and foremost,
we have to decide which assumptions to make about word and window length, the way of
sliding, etc. Later we need to perform simulations to gather knowledge about the impact of
these assumptions, and to simulate a density function for the Mahalanobis distance between
word frequencies, under several circumstances. The next step is to derive a formal test to
assess whether or not a particular level of disagreement is statistically significant or has
occurred by chance. Afterwards we will evaluate this test by calculating its power and

significance. Finally we will evaluate the new lab with the developed test.

4.1 Assumptions

As in all techniques used for sequence alignment (for example, BLAST or FASTA), a number
of assumptions need to be made when calculating the distance between two sequences. While
in sequence alignment choices have to be made about the costs of insertions, deletions and
replacements, in our setting parameters such as word and window length need to be chosen.
In this paragraph we will discuss the effects of certain choices, and try to find a golden rule

when using this technique in the future.

The first parameter to be fixed is the word length n. The smaller the word size, the easier

differences as arising from single nucleotide polymorphisms can remain undetected. E.g.,
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when n = 1, and we have at a certain position an a instead of a g, and 2 places further a g
instead of an a, the counts for the words a and ¢ are the same in both sequences, such that
the distance in the window covering both positions will be zero, whereas the sequences are
different. Hence, larger word sizes are preferred. We will stick to a word size of n = 3, because
of the interpretation that 3 nucleotides form an amino acid, and because of computational

reasons (n > 3 is computationally too involved).

Second, we need to specify £, the number of n-words per window, or equivalent the window
length ¢ +n — 1. Here we can make similar remarks as for the word size. The longer the
window size, the more n-words there are, so the larger the denominator of the proportions
of occurrence of n-words, and thus the smaller those proportions. Also different nucleotides
at a certain position in both sequences can be ‘corrected’ further on in the sequence, such
that the frequencies of the words do not differ, although the sequences are not the same. So
small distortions can have large consequences. In addition, the magnitude of the distances
changes dramatically when changing window sizes, namely a small window leads to a higher
distance measure than a large window. Bearing in mind all of these considerations, we prefer
to take relatively small windows. In Section 4.4 we will formally assess the sensitivity of the

number of n-words per window on the analysis results.

Third, a note on the set of window pairs over which to maximize DZW as in (3.9). The exact
way of sliding the window over the sequence depends on the user’s objective. In this paper
we move the window one nucleotide at a time, to make sure that every “mismatch” affects
all n-words in which it appears. Another possibility is to move it three nucleotides (one
amino acid) at a time, or to take disjoint windows. In this last case, a different nucleotide at
the border of both windows, will only affect one n-word, and there will be less importance

attached to it, than to different nucleotides in the inner part of a window.
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We already mentioned before that, contrary to Wu, Burke, and Davison (1997), we define
the distance between two sequences as the maximum of all “window” distances instead of
the minimum, because we are interested in the degree of similarity between the sequences,
and not in finding parts in both sequences that match. Another possibility for the distance
measure, is to take the mean of all window distances. When choosing this mean distance
the zeroes will mask high values that may appear, and we observe less difference between
both sequences than when using the maximum of all window distances. That is why the

maximum distance will be a better choice.

Another important issue, is how to treat incompleteness, meaning in this context positions
where a mixture of nucleotides appears, or positions which are not sequenced at all. We will
not take into account a word which contains a missing value, meaning that the frequencies
within this window will not sum to 100%. A more formal treatment of incompleteness in

this context is a topic of ongoing research.

We develop an equivalence test to decide whether or not a newly generated DNA sequence is
similar or equivalent to a pool of reference DNA sequences. In doing so, we wish to account
for the degree of uncertainty that is incorporated in any sampling procedure and to avoid
a too strong dependence on coincidental sequences. The definition of a suitable equivalence
region starts with pre-specifying the maximum number d of loci that are allowed to differ
between two DNA sequences. The choice of this number may be driven by (molecular)
biological considerations. We will set § = 1%, which is acceptable and supposed to be valid

for the reference sequences too.
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4.2 Simulations

Because deriving analytic distributional properties for this Mahalanobis distance is overly
complex, we will draw conclusions based on simulations. Therefore, we will generate 1000
new sequences, disagreeing with the consensus sequence for at most § = 1% of the loci. For
all of those sequences, the distance is calculated, and a distribution based on kernel density
estimation with Gaussian kernel is built. Also 1000 new sequences are generated which
disagree for at least 6 = 1% of the loci with the consensus sequence, and a distribution is
drawn for their distance to the consensus sequence. In Figures 1 and 2, the result of these
simulations are shown. The solid line is the density under the null hypothesis, for sequences
which differ at most § = 1% with the consensus sequence, the dashed line the density under
the alternative hypothesis, for sequences which differ at least 6 = 1% with the consensus

sequernce.

The following conclusions can be drawn from Figures 1 and 2. For window lengths equal
to 4 and 6, we observe quite some overlap between the density under the null hypothesis
and the alternative hypothesis. For window lengths from 9 to 30 there is a clear distinction
between the smooth densities under the null and alternative hypothesis. Once the window
length becomes larger, the density under the null hypothesis is very peaked, while the density
under the alternative hypothesis is spread out over a wide range of values. We also notice that
the distance measure decreases with increasing window length, which implies that differences

in distance measures will become less clear for larger windows.
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4.3 Test Protocol

The next step is to derive a formal test to assess whether or not a particular level of dis-

agreement is statistically significant or has occurred by chance.

Since we do not have any easily derived distributional properties of the Mahalanobis distance
(3.9) between frequencies of words, we will have to rely on density estimation techniques

and/or simulations.

Setting up the equivalence test, we considered it to be one-sided because our aim is one
of agreement. So once the test value of D? is sufficiently large, evidence is found towards

dissimilar DNA sequences.

We can approach the problem of retrieving a critical point in at least two ways. Either
we can determine the critical point on the border between the acceptance and the rejection
regions, based on the continuous density function, created from the simulation results, or we
can construct a confidence interval for this critical point, based on the exact values obtained

from the simulated distance measures.

The first method uses the quantiles of the density function, which are quite easy to obtain.
The second method uses approximate Monte Carlo 100(1 — )% confidence limits for the

100(1 — )% critical value, which are the observed quantiles in positions ¢ and u with:

(= [5(1 e (1 - %) S(1 —a)a-‘ ,

u= [5(1—a)+q>—1 (1—%) S(l—oz)oz-‘, (4.1)

where S is the number of sequences generated under the null hypothesis (Nettleton and

Doerge, 2000).
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When this interval contains the test value, more simulations need to be done to decrease
the length of the interval, and to refine the test. When using the critical point based on
the created density, this problem of undecidedness will not occur. Table 1 shows the Monte
Carlo confidence limits (1), where S = 1000, « = 0.05 and v = 0.01, and the 95% critical

point from the estimated density function (2), for several window lengths.

Table 1: 95% Critical point.

window 4 6 9 10 12 15 30
(1) | [45.17,45.17] | [10.72,10.72] | [1.98,2.07] | [1.33,1.47] | [0.73,0.82] | [0.38,0.43] | [0.0696,0.073]
2) 4721 10.45 2.08 1.43 0.79 0.41 0.070
window 50 100 500 1000 1047
(1) | [0.023,0.024] | [0.0054,0.0059] | [0.00027,0.00033] | [5.12E-05,6.65E-05] | [4.45E-05,5.965-05]
2) 0.023 0.0059 0.00029 6.60E-05 5.11E-05

As we can see, in most cases the continuously determined critical point (2) lies in the 95%
Monte Carlo confidence interval (1) for the critical point. Both techniques will therefore,

fortunately, lead to similar decision rules.

4.4 Significance and Power of the Test

Before using this test, it is of interest to investigate whether the test is powerful enough to
detect departures from equivalence. In Table 2 the power is displayed for several window
lengths, using the upper boundary of the Monte Carlo interval for the critical point (1), and

the critical point from the estimated density function (2).

Table 2: Power of the test.

window 4 6 9 10 12 15 30 50 100 500 | 1000 | 1047
(1) 0.917 | 0.930 | 0.982 | 0.977 | 0.983 | 0.985 | 0.987 | 0.986 | 0.985 | 0.984 | 0.988 | 0.976
(2) 0.733 1 0.943 | 0.978 | 0.981 | 0.985 | 0.984 | 0.985 | 0.985 | 0.982 | 0.982 | 0.986 | 0.982
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We can conclude that the power of the test is sufficiently high for all window lengths. Only

for window length 4, the continuously calculated power is quite low.

Also, the actual significance level can be computed, based on 1000 newly generated sequences
under the null hypothesis. When using the continuous critical point (see Table 3 (2)), the
actual significance level slightly under- or overestimates the significance level set in the
beginning of the test (¢« = 5%), depending on the window length. Using the lower and
upper confidence limits for the critical point (see Table 3 (1) £ and (1) uf), they respectively

overestimate and underestimate the used significance level in most cases, as it should be.

Table 3: Significance of the test.

window 4 6 9 10 12 15 30 50 100 500 | 1000 | 1047

(1) £¢ | 0.000 | 0.093 | 0.121 | 0.054 | 0.068 | 0.066 | 0.077 | 0.059 | 0.069 | 0.039 | 0.051 | 0.052

(1) w¢ | 0.000 | 0.093 | 0.032 | 0.026 | 0.028 | 0.033 | 0.046 | 0.039 | 0.023 | 0.016 | 0.023 | 0.016

(2) 0.000 | 0.093 | 0.032 | 0.035 | 0.040 | 0.041 | 0.069 | 0.059 | 0.023 | 0.023 | 0.032 | 0.016

A different tool to evaluate this test, is to calculate the distance between the separate se-
quences of the reference labs and the consensus sequence, and to check if this distance can

be accepted under the null hypothesis of equivalence. Table 4 shows these distances.

There are several remarks to be made based on this table. First, the results for window
length 12 are questionable. Eight out of sixteen reference sequences have a distance to the
consensus sequence of more than 1%. This would mean that the consensus sequence is not
a good summary sequence for the reference sequences. Therefore we will treat the results
for window length 12 with caution. Second, the distance measures for the single sequence of
reference lab 4 are quite large. Taking a closer look at both sequences (consensus sequence
and reference sequence from lab 4), it can be seen that they differ at 21 out of 1047 places,

which is 2%. We would have to reject the null hypothesis of equivalence (maximum difference
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Table 4: Maximum distance between consensus sequence and reference sequences.

16

reference window length
lab 4 6 9 10 12 15 30 50 100 500 1000 1047
1750 | 5.54 | 1.47 | 1.15 | 1.01 | 0.40 | 0.097 | 0.033 | 0.0093 | 0.00066 | 0.00016 | 0.00015
1750 | 5.54 | 1.23 | 0.85 | 1.01 | 0.37 | 0.097 | 0.033 | 0.0093 | 0.00047 | 0.00011 | 0.00010
1 1750 | 3.23 | 0.76 | 0.52 | 1.01 | 0.29 | 0.050 | 0.024 | 0.0059 | 0.00027 | 6.55E-05 | 5.97E-05
1750 | 3.256 | 147 | 1.15 | 0.74 | 0.40 | 0.073 | 0.024 | 0.0056 | 0.00046 | 9.79E-05 | 8.93E-05
1750 | 5.54 | 1.23 | 0.85 | 1.01 | 0.37 | 0.097 | 0.033 | 0.0093 | 0.00047 | 0.00011 | 0.00010
31.83 | 6.80 | 1.55 | 1.10 | 0.97 | 0.47 | 0.063 | 0.019 | 0.0032 | 0.00027 | 5.04E-05 | 4.59E-05
31.83 | 6.80 | 1.55 | 1.10 | 0.97 | 0.47 | 0.063 | 0.019 | 0.0032 | 0.00027 | 5.04E-05 | 4.59E-05
2 1750 | 3.20 | 0.73 | 0.52 | 0.30 | 0.16 | 0.048 | 0.016 | 0.0036 | 0.00013 | 3.24E-05 | 2.95E-05
1750 | 3.20 | 0.73 | 0.52 | 1.01 | 0.29 | 0.048 | 0.018 | 0.0059 | 0.00014 | 3.31E-05 | 3.01E-05
1750 | 3.20 | 0.73 | 0.52 | 0.30 | 0.16 | 0.048 | 0.016 | 0.0055 | 0.00020 | 4.86E-05 | 4.44E-05
45.17 | 10.72 | 1.98 | 1.33 | 0.68 | 0.39 | 0.046 | 0.015 | 0.0030 | 7.46E-05 | 1.7T9E-05 | 1.68E-05
45.17 | 10.72 | 1.98 | 1.33 | 0.68 | 0.39 | 0.046 | 0.015 | 0.0030 | 7.46E-05 | 1.79E-05 | 1.68E-05
3 45.17 | 10.72 | 1.98 | 1.33 | 0.68 | 0.39 | 0.046 | 0.015 | 0.0030 | 7.46E-05 | 1.7T9E-05 | 1.68E-05
45.17 | 10.72 | 1.98 | 1.33 | 0.68 | 0.39 | 0.046 | 0.015 | 0.0030 | 7.46E-05 | 1.79E-05 | 1.68E-05
45.17 | 10.72 | 1.98 | 1.33 | 0.68 | 0.39 | 0.046 | 0.015 | 0.0030 | 7.46E-05 | 1.7T9E-05 | 1.68E-05
4 45.17 | 6.72 | 2.42 | 1.65 | 0.90 | 0.43 | 0.110 | 0.040 | 0.0092 | 0.00059 | 0.00018 | 0.00015

of 6 = 1%). Third, large window lengths (> 15) perform worse than the smaller window
lengths. This is probably due to them capturing more differences in one window, than do
smaller windows, and therefore the maximum distance measure will be larger. Finally, we
observe that the results for the 5 sequences of reference lab 3 are identical. This is not

surprising since the 5 sequences for lab 3 are identical.

4.5 Evaluating the New Laboratory

We only have one sequence of the new lab, and we will calculate the Mahalanobis distance
between this sequence and the consensus sequence of the reference labs. The results are

shown in Table 5.

Either we can compare these maximum distances with the critical points in Table 1 (1), or

we can calculate a p-value based on the simulation results in the same Table 1 (2). When
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Table 5: Maximum distance between consensus sequence and new sequence.

window

4

6

9

10

12

15

30

50

100

500

1000

1047

max

30.5

5.54

1.23

0.85

0.98

0.38

0.10

0.033

0.0096

0.00047

0.00016

0.00013

comparing the distances in Table 5 with the critical points, we have to reject the hypothesis

of equivalence for window length 12 and all window lengths larger than 30. The p-values are

given in Table 6. Note that, also here, large window lengths give a highly significant result.

Table 6: P-value of the new sequence.

window 6 9 10 12 15 30 50 100 500 | 1000 | 1047
discrete 0.896 | 0.516 | 0.442 | 0.439 | 0.010 | 0.076 | 0.000 | 0.001 | 0.001 | 0.003 | 0.001 | 0.001
continuous | 0.695 | 0.583 | 0.386 | 0.386 | 0.011 | 0.088 | 0.001 | 0.002 | 0.001 | 0.006 | 0.001 | 0.001

4.6 Conclusions

Taking into account all the performed analysis, we can conclude that there is no single best

window length to perform the test for accrediting a new labo. Therefore, a good advice

seems to be to choose more than one window length, but not too large, and evaluate all

results simultaneously. When doing so for our new lab, and only testing for window lengths

less than 15 (as was suggested when comparing the sequences of the reference labs with the

consensus sequence), we can conclude that the new lab performs well.

5 Discussion

In this paper we have developed a one-sided equivalence test, based on the comparison of

frequency distributions of nucleotide n-words and a Mahalanobis-type distance measure.

More intuitive as a means for measuring disagreement between DNA sequences (e.g., as com-




mahal3.tex  Version: January 24, 2003 18

pared to automated alignment engines heavily relying on the cost of insertions or deletions),

the test seems to perform adequately in terms of power.

However, the number and feasibility of underlying assumptions also determine the quality
and usefulness of the test. To this end, we note that a consensus sequence was constructed,
based on the sequences of the reference labs. We acknowledge that the use of a consensus
sequence as a representative sequence is comparable to the use of summary measures in
statistical analyses, and may therefore fail to make use of possibly valuable information.
However, it appears to be a useful means to simulate the distribution of the Mahalanobis

distance under the null hypothesis.

The distance measure selected in comparing a new sequence with a pool of reference se-
quences, is important as well. We have chosen for the Mahalanobis distance measure, intro-
duced in Wu, Burke and Davison (1997). This distance measure accounts for the covariance
between n-words, such that not all “mismatches” have the same impact. It takes into account

the overlap capability between n-words.

When using this Mahalanobis distance, several parameters need to be chosen a priori, namely
n, the word length, ¢, the number of n-words per window, ¢, the acceptable difference
between consensus sequence and new sequence under equivalence, etc. There is no perfect
choice. However, the size of the words mostly depends on computational possibilities, because
matrices of dimension 4™ x 4™ need to be inverted. The more powerful computers available,
the larger n can be taken. Based on our arguments in paragraph 4.1 we recommend n = 3.
Ideally, several window lengths are selected and all results are evaluated simultaneously. Too
large window lengths should be avoided (say, smaller than 10n), such that mistakes do not

balance out in a window. With regard to the allowed disagreement, we can only say that
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this is subject to requirements of the authorities deciding when a new lab may be accredited

or not.

Future work will involve a sensitivity analysis of different percentages of missingness in the
pool of reference sequences or the new sequence. Several ways of treating this missingness
will be examined. Also the effect of random missingness or region specific missingness on

the test results will be subject to further investigation.
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Figure 1: Densities under the null and alternative hypothesis for small window lengths.

Version: January 24, 2003

Window length = 4, HO and H1

Window length = 6, HO and H1

22

5 :
b B
i
i 94
i °
8 o
I
' 8
- ‘:
& \ & 2
Z : :°
i 2 |
!
)
g i g |
T T T T T T T T T T T T
0 0 P x w s s 0 s 0 1 2
Mahalanobis distance Mahalanobis distance
Window length = 9, HO and H1 Window length = 10, HO and H1
& z o4
g \ g
® 5 y 3
“ ’I \'
T | Y i 5
° : 8 B A
\ , \
) 0 5
o Y i %
\ .
. S v 2 i ————im
T T T T T T T T T T T T
o 2 . s B 0 : 2 B . s s
Mahalanabis distanos Mahalanabis istanoe
Window length = 12, HO and H1 Window length = 15, HO and H1
: "7 P
g g
T T T T T T T T T T T
o 1 2 3 4

Mahalanobis distance

Mahalanobis distance



mahal3.tex

dersity

dersity

dercity

Version: January 24, 2003

23

Figure 2: Densities under the null and alternative hypothesis for large window lengths.
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