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Abstract

To asses the sensitivity of conclusions to model choices in the con-
text of selection models for non-random dropout, several methods have
been developed. None of them are without limitations. In this paper, a
new method called kernel weighted influence is proposed. While global
and local influence approaches look upon the influence of cases, this
new method looks at the influence of types of observations. The basic
idea is to combine the existing influence approaches with a nonpara-
metric weighting scheme. The kernel weighted global influence offers a
possible solution to the problem of masking, while the kernel weighted
local influence can be seen as a tool to better understand the source of
influence.

KEYWORDS: Local Influence, Global Influence, Kernel Weights, Miss-
ing Data, Sensitivity Analysis.

1 Introduction

In a longitudinal study, each unit is measured on several occasions. It is not
unusual for some sequences of measurements to terminate early for reasons
outside the control of the investigator, any unit so affected is often called
a dropout. Little and Rubin (1987) make important distinctions between
different missing values processes. A dropout process is said to be completely
random (MCAR) if the dropout is independent of both unobserved and
observed data and random (MAR) if, conditional on the observed data,
the dropout is independent of the unobserved measurements; otherwise the
dropout process is termed non-random (MNAR) or non-ignorable.

To represent such a model, Diggle and Kenward (1994) proposed a se-
lection model which combines the measurement part with the missingness
process. This model and other models trying to represent a non-random
dropout mechanism, rely on strong and untestable assumptions. Not only
the assumed distributional form can be misspecified but also the presence of
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influential observations can be of great importance. A well known method
to investigate the influence of individual cases is case deletion (Cook and
Weisberg 1982). This results in the global influence approach. A quite dif-
ferent approach is to perturb the model a bit and study the stability of the
model, as is done by Lesaffre and Verbeke (1998) as an application of the
local influence approach introduced by Cook (1986). In Thijs et al (2000),
Molenberghs et al (2001) and Verbeke et al (2001), this method was used to
investigate the influence of non-random missingness as part of a sensitivity
analysis in the selection modelling framework. A thorough discussion can
also be found in Verbeke and Molenberghs (2000).

One of the datasets discussed in the literature is the mastitis dataset.
These data were initially used by Kenward (1998) for an informal sensitivity
analysis. They were analyzed extensively with the local influence approach
by Molenberghs et al (2001).

The influence analyses on the mastitis and other datasets, make it clear
that the allocation of the possibly different sources of influence is still a
burden. The related question on when to call a case influential (i.e., well
defined cut off values) is still an open problem. In view of obtaining new
insight in this matter, we introduce kernel weighted influence measures. We
will illustrate the techniques on the mastitis dataset throughout this paper.

Our proposal is an extension of the two approaches of global and local
influence. Instead of looking at cases, we are interested in looking at the
influence of types of observations. To know why an observation is influen-
tial, one has to consider the characteristics of that observation. So, instead
of wondering why this particular observation is influential, the question be-
comes which characteristics of this observation makes this type of observa-
tion influential. Therefore we will look at observations in the neighborhood
of a case.

In the next section the mastitis dataset is introduced and described. The
selection model of Diggle and Kenward and the global and local influence
will briefly be reviewed in Section 3. The development and motivation of the
kernel weighted influence measures is given in Section 4. This approach will
be extended to a grid analysis in Section 5. In Section 6 a small simulation
study is carried out.

2 The Mastitis Dataset

In this dataset the occurrence of the infectious disease of the udder, called
mastitis, in dairy cows was studied. The milk yields in thousands of liters of
107 cows from a single herd in two consecutive years were available. In the
first year all cows were supposedly free of mastitis and in the second year 27
cows became infected. Mastitis typically leads to a reduction in milk yield.
There is a view among dairy scientists, widely held, that mastitis is more
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likely to occur in high yielding cows. It is however difficult to examine such
a relationship due to the effects of mastitis.

Figure 1 shows a profile plot of the mastitis data.

FIGURE 1 ABOUT HERE

Looking at the different profiles in this figure, cows #4, #5 and #66
have a large increase in milk yield compared with the other cows. Cow #89
appears to have the largest decrement. Next to cow #66, cows #54, #69
and #53 are high yielding cows in both consecutive years.

Because some cows have a large reduction in milk yield and others ex-
hibit a substantial increase, it is useful to look at the increments, i.e., the
difference between the milk yield in the second year and the first year. In
Figure 2, a scatterplot of the original data is given together with a plot of
the increments against the first measurement.

FIGURE 2 ABOUT HERE

If we take a closer look at these two scatterplots, we can see that the
cows mentioned above are located at the border of the data region. Whether
or not these cows have a large influence on a statistical analysis is not clear
without further investigation. This is the purpose of a sensitivity analysis.
Kenward (1998) introduced a statistical model to analyze the mastitis data,
a model that fits in the selection modelling framework, as introduced in the
next section.

3 Influence Measures

This section summarizes parametric approaches to sensitivity analysis within
the framework of selection models.

3.1 A Selection Model for Non-Random Dropout

Let us assume that for subject i = 1, · · · , N , a sequence of responses Yij

is measured at two occasions j = 1, 2. Let Ri be a missingness indicator
and assume that yi1 is always observed. Then, ri = 1 if yi2 is missing and
ri = 0 if yi2 is observed. The measurement part of the model of Diggle and
Kenward (1994), which is in fact a linear mixed model, is characterized by

Yi = (Yi1, Yi2) ∼ N(Xiβ,Σi), i = 1, . . . , N, (1)

where β is a vector of fixed effects, Xi contains covariate values and Σi is
the covariance matrix. The missingness process is described by

logit[Pr(Ri = 1|yi1, yi2)] = ψ0 + ψ1yi1 + ψ2yi2, (2)
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where Pr(Ri = 1|yi1, yi2) is the probability for the ith subject to drop out,
under the posited model. If ψ2 differs from zero, the missingness process is
non-random.

The measurement part used on the mastitis data is given by
(
Yi1

Yi2

)
∼ N

[(
µ

µ+ ∆

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)]
, (3)

where the covariance matrix expresses serial correlation.
The fit of this model on the mastitis data based on the assumption that

the dropout process is MAR on the one hand and MNAR on the other hand
(Diggle and Kenward 1994) is summarized in Table 1.

TABLE 1 ABOUT HERE

Testing H0 : ψ2 = 0 by means of a likelihood ratio test gives the value
G2 = 5.11, indicating some evidence against the MAR assumption. The
high value of the test statistic does not at all mean that there are obser-
vations in the dataset which are missing not at random. It is also possible
that this high value is due to misspecification of the distribution or even
just the missingness process. An important question is then, whether some
particular subjects are responsible for this behavior. Cook and Weisberg
(1982) introduced a case deletion approach to investigate the influence of
subjects. From their approach, several other methods were developed. The
next two sections discuss global and local influence measures as applied on
the mastitis data.

3.2 Global Influence

Let us introduce a weighted loglikelihood

l(γ;w) =
N∑

j=1

wjlj(γ), (4)

where w = (w1, . . . , wN ) is a vector of subject specific weights and `j(γ)
represents the loglikelihood contribution of the j-th subject with γ the pa-
rameter vector containing all unknown parameters (from measurement and
dropout model). The global influence measure CDi compares the original
loglikelihood l(γ̂;1) with the loglikelihood l(γ̂(−i);1), with γ̂ and γ̂(−i) the
maximum likelihood estimators based on l(γ;1) and l(γ;w(−i)) respectively,
where w(−i) = (1, . . . , 1, 0, 1, . . . , 1). The 0 is located at the i-th entry. Thus
CDi is given by

CDi = 2(l(γ̂;1) − l(γ̂(−i);1)). (5)

A global influence analysis on the mastitis data, leads to influential cows
#4, #5, #66 and #89, as shown in Figure 3.
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FIGURE 3 ABOUT HERE

This is not surprising since cows #4, #5 and #66 have the largest in-
creases in milk yield from year 1 to year 2 and cow #89 has the largest
decrease in milk yield. Their behavior is thus different from the other cows.
A full discussion is given by Molenberghs et al (2001).

There are two main disadvantages of the global influence method. The
calculation of the Cook’s distances requiresN+1 model fits and the influence
that can be ascribed to a specific cause is hard to assess, since by deleting
a subject all sources of influence are lumped together, with little hope to
disentangle them.

To overcome these limitations, local influence methods have been sug-
gested.

3.3 Local Influence

The principle is to investigate how the results of an analysis are changed
under infinitesimal perturbations of the model. Based on knowledge about
mastitis, the increments appear to be important. A thorough motivation is
given in Molenberghs et al (2001). Therefore a missingness process of the
following form is considered.

logit[P (Ri = 1|Yi1, Yi2)] = ψ0 + ψ1(Yi1 + Yi2) + ωi(Yi2 − Yi1), (6)

where ωi is a subject-specific weight, allowing the investigator to determine
the local influence of one subject on the dropout model.

Cook (1986) proposed to measure the distance between γ̂ω, the maximum
likelihood estimator of `(γ|ω) and γ̂, the maximum likelihood estimator of
`(γ), by the so-called likelihood displacement, defined by

LD(ω) = 2(l(γ̂|ω0) − l(γ̂ω|ω0)) (7)

with l(γ|ω) =
∑N

i=1 li(γ|ωi) where `i(γ|ωi) denotes the i-the loglikelihood
contribution associated with (7) and ω0 = (0, . . . , 0) the vector which corre-
sponds to an MAR process. This approach takes into account the vari-
ability of γ̂. The geometric surface formed by the values of the graph
ξ(ω) = (ω,LD(ω)) gives the essential information about the influence of
the perturbation scheme. Because of graphical limitations in dimensions
higher than 2, Cook (1986) proposed to look at the normal curvatures Ch of
ξ(ω) in ω0, in the direction of some N -dimensional vector h of unit length.

Cook (1986) has shown that Ch can easily be calculated by

Ch = 2
∣∣∣ h′ ∆′ L̈−1 ∆ h

∣∣∣ , (8)
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where ∆ is a (s × N) matrix with ∆i as its ith column, ∆i being the s
dimensional vector defined by

∆i =
∂2`i(γ|ωi)

∂ωi∂γ

∣∣∣∣∣
γ=γ̂,ωi=0

. (9)

Further, L̈ denotes the (s× s) matrix of second order derivatives of `(γ|ω0)
with respect to γ, also evaluated at γ = γ̂.

One evident choice is the vector hi containing 1 in the ith position and
0 elsewhere, corresponding to a perturbation from the MAR model for the

ith subject in (7) only. This reflects the influence of allowing the ith sub-
ject to drop out non-randomly, while the others can only drop out at random.

Calculating the local influences of the cows in the mastitis data, cows
#4, #5 and #66 appear to be influential (see Figure 4). This is in agree-
ment with the global influence analysis. Because the local influence looks at
perturbations of the MNAR-parameter, while the global influence is based
on case deletion, this was not to be expected a priori (Molenberghs et al,
2001). Kenward (1998) observed that cows #4 and #5, which show up in
both analyses, are substantially different from the other cows by their large
increment.

FIGURE 4 ABOUT HERE

If the dropout probabilities are considered, then cow #66 seems to have
a large dropout probability compared with the other cows. Therefore, a
perturbation of the MNAR-parameter will reflect this.

From both the global and local influence analyses it is clear that the
location of the data is of great interest. Therefore a method to analyze
sensitivity of types of observations might lead to a better comprehension of
the influence measures and sensitivity analyses.

4 Kernel Weighted Influence Measures

The basic idea is to study the influence of types of observations, which are
defined by neighborhoods centered at the observations (y1i, y2i, ri). Here
techniques from nonparametric smoothing methods can be used. Inspired
by the well-known kernel estimators and density and regression estimators,
kernel weights, as defined in the next section, can be used in the weighted
loglikelihood (4) and the normal curvature (8) in order to derive new influ-
ence measures.
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4.1 Kernel Weights

Influence measures such as the global influence and local influence approach
are essentially based on cases. Our proposal is to extend these two ap-
proaches by looking in the neighborhood of the outcomes (y1i, y2i, ri). There-
fore, we introduce the following weights. If ri = 0,

wi(y1j , y2j , rj) =





K2(0)

nd0

rj = 1

K2(0)−K(
y1j−y1i

g1
)K(

y2j−y2i

g2
)

nd0

rj = 0
(10)

and if ri = 1,

wi(y1j , y2j , rj) =





K2(0)−K(
y1j−y1i

g1
)K(0)

nd1

rj = 1
K2(0)

nd1

rj = 0
(11)

where K is a gaussian kernel function, g1 and g2 are two possibly different
bandwidths and rj is the missingness indicator for subject j. The denomina-
tors nd1 (if ri = 0) and nd2 (if ri = 0) are equal to

∑N
j=1wi(y1j , y2j , rj). In

this way the weights are standardized in the sense that they sum up to one.
The motivation of the weights is as follows. If ri = 0, (y1i, y2i) is a completer
and all completers in the neighborhood get low weight. All other subjects
get high weight, including the dropouts. If ri = 1, y2i is not observed and
all dropouts in the neighborhood are given low weight, while all other sub-
jects, including the completers, get high weight. This is graphically shown
in Figure 5.

FIGURE 5 ABOUT HERE

4.2 Kernel Weighted Global Influence

To explore the neighborhood of the outcome (y1i, y2i, ri), one can look at a

vector wi where the jth component obtains weight wij = wi(y1j , y2j , rj) as
introduced in Section 4.1. This extension of the well known global influence
approach is able to allocate groups of influential cases with similar outcomes,
thus avoiding the problem of masking.

The choice of the bandwidth is one of the crucial points in this anal-
ysis. If a neighborhood contains a lot of observations, a large bandwidth
would imply that all the observations in that neighborhood would be down-
weighted and the kernel weighted global influence measure would be large.
If an observation is left out in the middle of a dense neighborhood, one
expects that this would not have a large influence on the likelihood. There-
fore, the bandwidth needs to be adjusted to the density of the point under
consideration.
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Consider (y1i, y2i, ri), the datapoint of interest. If ri = 0 the bandwidth
is taken to be

h(y1i, y2i, ri) =
CK2(0)

∑
j,rj=0K(

y1j−y1i

g1
)K(

y2j−y2i

g2
)

(12)

If ri = 1 the bandwidth is taken to be

h(y1i, y2i, ri) =
CK2(0)

∑
j,rj=1K(

y1j−y1i

g1
)K(0)

(13)

where C is a constant and g1 and g2 are two initially chosen bandwidths.
Next to this adjustment, the normalizing denominator nd1 and nd2 assume
that the total sample size remains unchanged.

A kernel weighted global influence analysis with initial bandwidths g1 =
g2 = 0.2 and g1 = g2 = 1.5 on the mastitis data leads to Figures 6 and 7
respectively.

FIGURE 6 ABOUT HERE

FIGURE 7 ABOUT HERE

For both bandwidths the types of cows corresponding to #4, #5, #54, #66,
#69 and #89 seem to have a large influence. From Figure 2 it is clear that
these cows are those lying at the border of the region. Cows #54 and #69
were not found with the global influence. The profiles of these two cows are
practically the same (Figure 1). The global influence did not identify these
cows as influential due to masking. The maximum likelihood estimators
γ̂(−54), γ̂(−69) as defined in Section 3.2 do not differ very much from γ̂. In
the kernel weighted global influence both cows get low weight and therefore,
the shift in likelihood is detected. It is thus the type of observation which
is important here. If we have a closer look to Figure 7, a second group of
types of observations seems to be influential. This group corresponds to
types of observations #7, #47 and #58, which are incomplete observations.
These incomplete observations have the three highest y1-values among the
incompleters (Figure 1) and thus can be seen as outlying observations.

4.3 Kernel Weighted Local Influence

The local influence approach can be extended by looking at the direction

hi where the jth component equals 1 − wi(y1j , y2j , rj) with wi as defined
in Section 4.1. This choice for hi reflects the influence of allowing subjects
in the neighborhood of the i-th subject to drop out non-randomly, while
others, not within this neighborhood, can only dropout at random. This
method provides new insights in the local influence of types of observations.
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The choice of the bandwidths is crucial. Because the vector hi is nor-
malized, there is no need to have a density-adaptive bandwidth as in Section
4.2.

In the weighted local influence approach, applied on the mastitis data,
one is interested in whether the probability of occurrence of mastitis is re-
lated to the yield that would have been observed had mastitis not occurred
for a cow with certain characteristics. In Figure 8, a kernel weighted in-
fluence analysis for 6 different bandwidths is shown for the local influence
analysis.

FIGURE 8 ABOUT HERE

For a larger bandwidth the left upper panel in Figure 8 suggests two
groups of observations. The group with the highest influence is the group
of completers, while the other group is the group of incompleters. If the
bandwidth decreases, #66 shows up, as is shown in the right upper panel
in Figure 8. For further decreasing bandwidths, #66 remains influential,
while two other observations, #4 and #5, show up. The fact that #66 is
dominantly present at several choices for the bandwidth, stresses the high
degree of influence for this type of observations. The profile of #66 (Figure
1) is special in the sense that the milk yield in year 1 and year 2 are very
high and so is the increase in milk yield. Types of observations with such
a profile have a high dropout probability (Table 1), if they do not dropout
they seem to be influential.

The kernel weighted influence approach has the additional advantage to
allow for a grid-based influence analysis as explained in the next section.

5 Grid-Based Influence Measures

Instead of considering weights, centered at the datapoints (y1i, y2i, ri), i =
1, . . . , 107 of the mastitis dataset, we now consider weights centered at all
points (y1, y2, r) on a one-(r = 1) or two-dimensional grid (r = 0) enclosing
the full observed data range. These weights, given by the same expressions
as in Section 4.1 but with the subscript i omitted everywhere, are used to
calculate the kernel weighted global and kernel weighted local influence. The
effect here is that we look at the dataset from the viewpoint of a gridpoint,
which represents a possible type of observations which could have been in
the sample. Graphical plots of the influence values as a function of y1 (in-
completers) or y1 and y2 (completers) can be used as exploratory sensitivity
tools.

5.1 Grid-Based Kernel Weighted Global Influence

The two plots in Figure 9 show kernel weighted global influence values over a
(y1, y2)-grid [1, 9]× [2, 12] in steps of 0.2. Again, as in Section 4.2, we used a
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density-adaptive bandwidth. The initial bandwidths g1 and g2 in (13) were
chosen equal to 0.2 and 1.5 respectively.

FIGURE 9 ABOUT HERE

These plots show that, using the available information in the mastitis
sample, certain types of observations are highly influential when modelled
missing not at random in stead of missing at random. The peaks shown in
Figure 9 confirm the results from Section 4.2. Indeed, a closer inspection
of the first plot in Figure 9 reveals that the four highest peaks correspond
to types of observations with characteristics similar to cows #4 and #5, to
#54 and #69, to #66 and to #89.

The main structure of the second plot in Figure 9, based on a larger
initial bandwidth, is essentially the same but the influence of observations
at the border of the ellipsoidal area of datapoints gets more pronounced.
Especially observations on that border, with Y2 large, seem to be highly
influential.

A similar grid analysis for the incompleters didn’t show any highly in-
fluential cases.

The construction of such a grid-based global influence graph is very com-
puter intensive due to the calculation of the numerous maximum likelihood
estimates. This is not the case for a grid analysis based on kernel weighted
local influence, which is computationally much simpler. This is illustrated
in the next section.

Figure 9, thus, confirms what was seen in section 4.2.

5.2 Grid-Based Kernel Weighted Local Influence

Similar to the kernel weighted global influence, the kernel weighted local
influence can be calculated over a grid. Using directions hi, similar to those
in Section 4.3 but now based on weights centered at the grid points, a plot
of the weighted local influence values can be constructed and might lead to
additional insights. Since in this case the computations are rather simple
and fast, we used a wider range and a finer grid. Moreover, it is feasible to
consider a number of bandwidths. Figure 10 shows weighted local influence
graphs for six different bandwidths.

FIGURE 10 ABOUT HERE

The main structure is essentially the same in each graph. If we have a closer
look to the graphs for smaller bandwidths, the non-influential region is con-
centrated at the first principal component axis. The correlation between Y1

and Y2 is strongly positive, as can be seen in Figure 2. The types of obser-
vations which do not follow this main structure of the data, can be seen as
potential outlying types of observations. Especially, types of observations
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with low values for Y1 and high values for Y2 seem to be influential. The high-
est influence for each of the graphs in Figure 10 for decreasing bandwidth is
reached for (y1, y2) equal to (2.93, 9.34);(2.93, 8.49);(3.08, 7.72);(3.62, 7.41);
(3.78, 7.18) and (3.93, 7.10)
respectively. A closer look to these highly influential types of observations
and to the mastitis data shows that they are of the same type as observations
#4 and #5. This confirms our findings in Section 4.3.

A plot (omitted from the text) of the grid-based kernel weighted local in-
fluence for different bandwidths for types of incomplete observations showed
little influence compared with the types of complete observations. The in-
fluential types of incomplete observations, when present, are located in the
center of the first measurement-range (3.5, 7.5).

Figure 10 clarifies that the types of observations which are outlying are
likely to be influential.

A simulation study for the kernel weighted influence measures can give
us a better insight in the source of influence for both complete and incom-
plete types of observations. Computationally, it is not feasible to carry out a
simulation study for the grid-based kernel weighted global influence. There-
fore, we restrict ourselves to a simulation study for the grid-based kernel
weighted local influence.

6 A Simulation Study

A small simulation study is carried out in order to obtain new insights in
the different sources of influence. For this simulation study 100 similar
datasets were generated. Each dataset consists of 107 subjects, each with
two measurements generated from a bivariate normal distribution. Consider
the following bivariate normal distribution, based on a compound symmetry
covariance matrix:

(
Yi1

Yi2

)
∼ N

[(
6.426
7.095

)
,

(
2.865 2.324
2.324 2.865

)]
. (14)

The dropout process was generated according to the following model

logit[P (Ri = 1|Yi1, Yi2)] = −3.379 + 0.387Yi1 + ψ2Yi2 (15)

where ψ2 is the MNAR-parameter. The choice for the parameters in both
the measurement model and dropout process was based on a fit of this model
with ψ2 = 0 (MAR) on the mastitis data.

6.1 A First Setting

In a first simulation setting, 104 of the 107 subjects in each dataset were gen-
erated according to the process described above with ψ2 equal to 0 (MAR).
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Three subjects however were generated with ψ2 = −0.5, so three observa-
tions were allowed to be missing not at random. To compare the additional
influence of generating 3 subjects which are allowed to be missing not at
random versus the situation where all subjects are allowed to be missing
at random, an average influence measure was plotted in Figure 11 for the
completers and in Figure 12 for the incompleters. This average influence
measure is the difference between the average grid-based influence of 100
datasets with 3 subjects allowed to be missing not at random and the av-
erage grid-based influence of 100 datasets, where none of the subjects were
allowed to be missing not at random.

FIGURE 11 ABOUT HERE

FIGURE 12 ABOUT HERE

If we consider the dropout structure in Figure 13 for both MAR (ψ2 = 0)
and MNAR (ψ2 = −0.5) and relate this two the results shown in Figure 11,
it becomes clear that completers which tend to have a large probability of
dropping out, but do not, appear to be influential.

For the types of observations with a missing second measurement the
largest influence is located at higher y1 values as can be seen in Figure 12.
Incomplete observations with a high dropout probability are influential.

FIGURE 13 ABOUT HERE

6.2 A Second Setting

In a second simulation setting, the presence of subjects missing not at ran-
dom is invoked by taking 100 datasets generated under MAR (ψ2 = 0) as
above, but now all data, with a second measurement higher than 8.5, are
set to be missing.

In Figure 14, the average influence measure of the completers of 100
datasets is shown. We will refer to these datasets generated under MAR as
the reference datasets.

FIGURE 14 ABOUT HERE

The plot of the average influence of the completers of the reference
datasets versus the grid has a particular shape. There is very low or no
influence for data along the first principal component axis due to the high
correlation (ρY1,Y2

= 0.80) between Y1 and Y2. When we move away from
this axis the average influence increases. This indicates that outlying types
of observations, not following the main pattern in the data, are influential.
To see what the effect of invoking MNAR-dropout is on the completers, we
leave out all observations in these datasets with a Y2-measurement higher
than 8.5 and calculate the average kernel weighted local influence again.
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FIGURE 15 ABOUT HERE

The average influence of the completers under such a MNAR dropout
process is shown in Figure 15, which indicates that dropout due to this
MNAR mechanism has a large change in influence for types of completers
with a high Y1-measurement and a low Y2-measurement. This is confirmed
by the contour plots, shown in Figure 16.

FIGURE 16 ABOUT HERE

The larger influence of observations with a high Y1-measurement and
a low Y2-measurement is not surprising. In Figure 17 a scatterplot of the
completers is given.

FIGURE 17 ABOUT HERE

If we consider the structure of the data, we know that observations with
a high value for Y1 are more likely to be missing due to the underlying
MAR-mechanism (Figure 13). Combined with the MNAR-mechanism we
invoked in this setting, we especially obtain complete observations with a
low Y2-measurement. The correlation indicates that, among these types of
observations, the ones with a low Y1-measurement follow the correlation
structure of the data. The ones with a high Y1-measurement do not follow
this structure and therefore they can be seen as outlying types of obser-
vations. Their influence is rather high compared with the other types of
observations.

Looking at the incompleters in Figure 18 one can see that there is a
large change in influence on the incompleters. The highest average influence
for the incompleters of the reference datasets was reached for Y1 = 8.5,
considering the MNAR-mechanism there is a shift towards Y1 = 9.75. Not
only this shift can be seen, but also the overall average influence increases.
This indicates that the presence of types of observations which are left out
non-randomly seem to have a large influence.

FIGURE 18 ABOUT HERE

Other simulation settings (such as larger sample sizes) confirm these
results, the main idea is illustrated here and therefore these other simulations
are omitted from this paper.

7 Conclusion and Final Remarks

The presence of influential observations in a dataset can disturb model fit-
ting and model building thoroughly. Therefore it is essential to perform a
sensitivity analysis when doing a data analysis. In this paper we introduced
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some new exploratory and graphical tools for sensitivity analysis, combining
parametric global and local influence measures with nonparametric smooth-
ing weights. These methods provide new insights in the influence of certain
types of observations and offer a nice solution to the problem of masking.
The presentation here has been focusing on the setting of two (repeated)
measurements but, using more dimensional kernels or other higher dimen-
sional distance measures, the method can be extended to three or more
measurements. This is a topic of future research.
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Figure 1: Profile plot of the mastitis dataset.
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Figure 2: Scatter plot of the mastitis dataset. In the left panel the milk
yield for year 2 was plotted versus the milk yield at year 1. In the right
panel the increase in milk yield from year 1 to year 2 was plotted versus the
milk yield at year 1.
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Figure 3: Influential subjects of the mastitis data based on the global influ-
ence measure.
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Figure 4: Influential subjects of the mastitis dataset using the local influence
measure.
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Figure 5: Shape of the weights. On the left hand side the weights are shown
for the situation ri = 0 and rj = 0 (completers), while on the right hand
side the weights are shown for the situation ri = rj = 1 (incompleters).
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Figure 6: Influential subjects of the mastitis data for the kernel weighted
global influence with initial bandwidths g1 = g2 = 0.2.

Figure 7: Influential subjects of the mastitis data for the kernel weighted
global influence with initial bandwidths g1 = g2 = 1.5.
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Figure 8: Influential subjects of the mastitis data for the kernel weighted
local influence (increments) with different bandwidths g1 = g2 = h.
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Figure 9: Kernel weighted global influence graph over a grid of completers
with density-adaptive bandwidths initially equal to 0.2 (upper panel) and
1.5 (lower panel).
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Figure 10: Kernel weighted local influence graphs over a grid of completers
for several bandwidths g1 = g2.
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Figure 11: A figure of the relative average gain in influence of the com-
pleters when generating 3 subjects under MNAR. The bandwidths used are
respectively equal to 1 and 0.5.

Figure 12: A figure of the relative average gain in influence of the incom-
pleters when generating 3 subjects under MNAR. The bandwidths used are
respectively equal to 1 and 0.5. µ and σ denote the mean and standard
deviation of Y1.
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Figure 13: Plot of the probability of dropout. On the left hand side the
dropout probability under MAR is shown, while on the right hand side the
dropout probability under MNAR is shown.
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Figure 14: The average kernel weighted local influence for the completers of
the 100 reference datasets

Figure 15: Kernel weighted local influence for the completers of the 100
complete datasets with MNAR dropouts for Y2 > 8.527



Figure 16: The contour plots of the kernel weighted local influence for the
completers of 100 complete datasets and the completeres of the 100 datasets
with MNAR dropouts for Y2 > 8.5
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Figure 17: A scatterplot for all simulated datasets with MNAR dropouts
for Y2 > 8.5
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Figure 18: The figures of kernel weighted local influence for the incompleters
of the complete dataset and the incompleters of the datasets with MNAR
dropouts for Y2 > 8.5

Effect Parameter Random Dropout Non-Random Dropout

Measurement Model
Intercept µ 5.77(0.09) 5.77(0.09)
Time effect ∆ 0.72(0.11) 0.33(0.14)
First variance σ2

1 0.87(0.12) 0.87(0.12)
Second variance σ2

2 1.30(0.20) 1.61(0.29)
Correlation ρ 0.58(0.07) 0.48(0.09)
Dropout Model
Intercept ψ0 -2.65(1.45) 0.37(2.33)
First measurement ψ1 0.27(0.25) 2.25(0.77)
Second measurement ψ2 0 -2.54(0.83)

-2 loglikelihood 280.02 274.91

Table 1: Parameter estimates of the selection model fitted on the mastitis
dataset.
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