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SUMMARY

Part of the recent literature on the validation of biomarkers as surrogate endpoints proposes
to undertake the validation exercise in a multi-trial context which led to a definition of validity in
terms of the quality of both trial level and individual level association between the surrogate and
the true endpoints (Buyse et al., 2000). These authors concentrated on continuous univariate re-
sponses. However, in many randomized clinical studies, repeated measurements are encountered
on either or both endpoints. When both the surrogate and true endpoints are measured repeat-
edly over time, one is confronted with the modeling of bivariate longitudinal data. In this work,
we show how such a joint model can be implemented in the context of surrogate marker valida-
tion. In addition, another challenge in this setting is the formulation of a simple and meaningful
concept of “surrogacy”. We propose the use of a new measure, the so-called variance reduction
factor, to evaluate surrogacy at the trial and individual level. On the other hand, most of the
work published in this area assume that only one potential surrogate is going to be evaluated.We
also show that this concept will let us evaluate surrogacy when more than one surrogate variable
is available for the analysis. The methodology is illustrated on data from a meta-analysis of five
clinical trials comparing antipsychotic agents for the treatment of chronic schizophrenia.
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1. INTRODUCTION

One of the most important factors influencing the duration and complexity of the process of
developing new treatments is the choice of the endpoint, which will be used to assess the efficacy
of a treatment. It often happens, however, that the most sensitive and relevant clinical endpoint,
the so-called “true” endpoint, is difficult to use in a clinical trial. In that case, the use of the true
endpoint might increase the complexity and/or duration of the study. A seemingly attractive
solution for this problem is to replace the true endpoint by another one, which may be measured
earlier, more conveniently, or more frequently than the endpoints of interest. Such “replacement
endpoints” are termed “surrogate” endpoints (Ellenberg and Hamilton 1989).

The dramatic surge of the AIDS epidemic, the pressure for an accelerated evaluation of new
therapies, etc., have all played a major role in focusing attention on the need for a formal
definition of surrogate endpoints, along with practical methods to validate them. The mere
existence of an association between an endpoint and the true endpoint is not sufficient for using
the former as a surrogate. What is required is that the effect of the treatment on the surrogate
endpoint predicts the effect on the true endpoint. Unfortunately, partly due to the lack of
appropriate methodology, this condition was not checked in earlier attempts to use surrogates.
As a consequence the use of surrogates has led to misleading and even harmful conclusions. In
cardiovascular disease, for example, the unsettling discovery that the two major antiarrhytmic
drugs encanaide and flecanaide reduced arrhythmia but caused a more than 3-fold increase in
overall mortality stressed the need for caution in using non-validated surrogate markers in the
evaluation of the possible clinical benefits of new drugs (The Cardiac Arrhytmia Suppression
Trial (CAST) Investigators 1989). This and other examples of unsuccessful replacement of true
endpoints led to the scepticism about usefulness of surrogate endpoints, both among statisticians,
as well as clinicians.

However, the need to develop new drugs and treatments as quickly as possible is still present
in medical research. After all, clinicians and patients want to use effective treatments as soon
as possible and shortening the duration of the experiments limits possible problems with non-
compliance and missing data and therefore increases effectiveness and reliability of the research.
Another reason for shortening the duration of the process of testing new therapies may be related
to new discoveries in medicine and biology, which creates a possibility for development of many
potentially effective treatments for a particular disease. In that case, there may be a need to cope
with a large number of new promising treatments that should be quickly evaluated with respect
to their efficacy. Finally, an important area of potential application of surrogate endpoints is
the assessment of safety of new treatments. Duration and sample size of clinical trials aimed
at development of new drugs are usually insufficient to detect rare or late adverse effects of the
treatment (Jones 2001; Dunn and Mann 1999). The use of surrogate endpoints might allow to
obtain information about such effects even during the clinical testing phase.

For the above reasons, it is difficult to abandon the idea of using surrogate endpoints altogether.
The failed past attempts make clear, however, that before deciding to use a surrogate, it is of the
utmost importance to investigate its validity. Recent literature on the validation of biomarkers
as surrogate endpoints has focused on different points of view. Prentice (1989) defines surrogacy
in terms of the equivalence of hypothesis tests for treatment effects and proposes operational
criteria for his definition. Freedman, Graubard and Schatzkin (1992) introduced the proportion
explained to quantify how much of the treatment effect on the true endpoint is captured by the
surrogate endpoint. Buyse and Molenberghs (1998) decomposed the proportion explained into
the relative effect and adjusted association and argued in favor of these quantities instead. These
proposals were formulated assuming that the validation of a surrogate is based on data from a
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single randomized clinical trial. This leads to problems with untestable assumptions and too
low statistical power. To overcome these problems, Albert et al. (1998) suggested to combine
information from several groups of patients (multi-center trials or meta-analyses). This was
implemented by Daniels and Hughes (1997), Gail et al. (2000) and Buyse et al. (2000). The
latter suggested a multi-trial approach that led to a new definition of validity in terms of the
quality of both trial level and individual level association between the surrogate and the true
endpoint. In their approach, the quality of a surrogate at the trial level is assessed by means of
a coefficient of determination R2, . At the individual level, the squared correlation B2, between
the surrogate and true endpoint, after adjustment for both the trial effects and the treatment
effects is used. A surrogate will be said to be good when both R2, | and R2, are sufficiently high.

However most of the previous work have been focusing on univariate responses for the surrogate
and true endpoints. Going from an univariate setting to a multivariate framework represents new
challenges. The R? measurements proposed by Buyse et al. to evaluate surrogacy at the trial and
individual level are no longer applicable and new concepts are needed. These authors proposed
their methodology based on the simplest case in which both, the surrogate and the true endpoint,
are continues and normally distributed. Posteriorly, different applications were implemented in
different settings where the true endpoint and/or the surrogate variable were binary, time to
event responses, mixture of binary and continues, etc.

Nevertheless, in all the previous cases, it was always assumed that both endpoints could be
characterized by a single random variable. It was also assumed that only one potential surrogate
was available for the analysis and finally that treatment effect on both responses was constant
over time and could be characterized by an univariate parameter.

The previous assumptions can fail when we have repeated measures per patient like it is the case
in longitudinal studies. The objective of this paper is to study surrogate and true endpoint that
are both longitudinal. To this end, an additional challenge is to summarize “surrogacy” in simple
measures. We propose the use of the so-called variance-reduction factor (VRF). Technically, a
joint model for multivariate repeated measurements is required. Useful references on this topic
include Galecki (1994), Sy, Taylor and Cumberland (1997), Jorgensen et al. (1996, 1999).

The paper is organised as follows: Section 2 introduces a joint model for bivariate longitudinal
data. Section 3 defines the variance reduction factor to evaluate surrogacy when repeatedly
measurements for surrogate and true endpoints are taken. Section 4 illustrates the methodology
on data from a meta-analysis of randomized clinical trials comparing antipsychotic agents for the
treatment of chronic schizophrenia.

2. MODEL FORMULATION

In many practical applications, repeated measurements are encountered on either or both
endpoints. In analogy to the bivariate normal setting considered by Buyse et al. (2000), we will
base the calculation of surrogacy measures on a two-stage approach rather than a full random
effects approach, to reduce numerical complexity. Technically, we need (1) a model for bivariate
longitudinal outcomes, and (2) new measures that let us evaluate surrogacy when longitudinal
data is available. In this section we focus on the former issue and introduce a possible joint
model for bivariate longitudinal outcomes along the ideas of Galecki (1994). An advantage of
this approach is that it can be easily implemented within standardly available software programs.
The extension towards more flexible modelling structures for bivariate longitudinal data is the
topic of future research.
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In the case of univariate longitudinal endpoints one can consider different types of covariance
structures, including compound symmetry, autoregressive, banded, factor-analytic, spatial, un-
structured, etc. Here, however, we have repeated measurements on two outcome variables, the
surrogate and the true endpoint. A possible joint covariance structure can then be based on
the Kronecker product of (1) an unstructured covariance structure for the type of outcome and
(2) a suitable covariance structure for the repeated measurements on an outcome. While, in the
setting of Buyse et al. (2000) the error covariance structure could be assumed constant over all
trials, this assumption is no longer plausible in most practical longitudinal settings. Measures
could be taken at different time points within different trials, the number of measurements could
be different in each trial, etc. Therefore, we will allow for different covariance structures over the
different trials.

Suppose we have data from ¢ = 1,..., N trials in the ith of which j = 1,...,n; subjects are
enrolled and further suppose that ¢;; is the time at which subject j in trial ¢ was measured. Let
T;;: and S;j; denote the associated true and surrogate endpoints, respectively, and let Z;; be a
binary indicator variable for treatment. Following the ideas of Galecki (1994), a possible joint
model for both responses can then be written as:

Tijt = pr, + BiZsj + 91, (i) + €13,

Sijt = ps, + @ Zs; + gs, (tij) + €s

ijt

where us, and pr, are trial-specific intercepts, «;, §; are trial-specific effects of treatment Z;;
on the two endpoints and g7, and gg, are trial-specific time functions in trial ¢ = 1,..., N that
could contain random effects. The vectors ér,; and €5,, are correlated error terms, assumed to
be jointly mean-zero multivariate normally distributed with covariance matrix

~

5, = ( orTi OSTi ) ® R;- 2
0sTi 088Si

In the aforementioned formulation, R; reflects a general correlation matrix for the repeated mea-
surements of the responses. A frequent choice in practice would be the first order autoregressive
structure (in case measures are equally spaced, otherwise a spatial-type structure is better):

1 Pi P
Ri= :
L

It is clear from the previous model that the correlation structure for e7,,, and €s,;, is much
more complicated in this setting that the one obtained in the simpler case in which both endpoints
were measured at only one time point. As it will be shown later the more complex nature of our
data will require a new approach to the problem of evaluating surrogacy at the individual level.

Graphically this correlation may be illustrated as:
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ETye Pi 7 ETu
[N /! 7
pTSi pTsipy’ pTSi (3)
IS N !
6Sijt — p;,n — ssi]'t/
02,
where ¢ and ¢’ are two different time points, m = t' — ¢, and p3.g; = TS
0SSi0TTi

It should be noted that, if we only have one observation per subject, the variable time will
disappear from equation (1) and R; = 1. If it is also assumed that ¥; = ¥ then our model
reduces to the model proposed by Buyse et al. (2000).

Due to replication at the trial level, we can impose a distribution on the trial-specific parame-
ters. At the second stage, we therefore assume

Hs; Hs Ms;

U, — uT + M, 7 (4)
o (e} ag

Bi B b;

where the second term on the right-hand side is assumed to follow a zero-mean normal distribution
with covariance matrix D.

In the special case of a single measurement per response, Buyse et al. (2000) examined the
validity question at each of these two levels. They argue that a key motivation for validating a
surrogate endpoint is to be able to predict the effect of treatment on the true endpoint, based
on the observed effect of treatment on the surrogate endpoint and that it is therefore essential to
explore the quality of the prediction of the treatment effect on the true endpoint by information
obtained in the validation process based on trials ¢ = 1,..., N and by information available on
the surrogate endpoint in a new trial ¢ = 0, say. A measure to assess the quality of a surrogate at
the trial level is then calculated based on some of the elements of D. It is given by the coefficient

of determination T 1
( dsb ) ( dss dsa ) ( dsb )
dab d a daa dab
R2 — S . (5)

trial dbb

This coefficient measures how precisely the effect of treatment on the true endpoint can be
predicted, provided that the treatment effect on the surrogate endpoint has been observed in a new
trial (¢ = 0). It is unitless and ranges in the unit interval if the corresponding variance-covariance
matrix D is positive-definite, two desirable features for its interpretation. The association between
the surrogate and final endpoints after adjustment for the effect of treatment is captured by

2
o
R, = ——, 6
2, — T ()
which is simply the squared correlation between S and T, after accounting for trial and treatment
effects.
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Although the inclusion of fixed trial-specific treatment coefficients in our model enables us to
estimate R2, | at the trial level, at the individual level the R2  proposed by Buyse et al (2000)
is no longer applicable and new proposals are needed. Even at the trial level extensions may be
necessary for more complicated models where treatment effects may vary over time. Hence, there
is a clear need for alternative approaches to summarize “surrogacy” in simple yet meaningful
measures. In the next section, we propose the use of the so-called variance reduction factor

(VRF) to this effect.

3. VARIANCE REDUCTION FACTOR

In this section, we will first define a new measure of validity at the individual level. Later, it
will be shown how this can be easily translated into a validity measure at the trial level.

From Section 2 we know that, in general, the error vector €r,, and €g,, follow a multivariate
normal distribution with variance-covariance matrix:

5. _ [ ZrTi Zrsi
"\ STs Tss
where YX77; and Ygg; are the variance-covariance matrices associated with the residual vectors
T, and €g,; respectively and Y7g; contains the covariances between the elements of £7,, and the
elements of €g,,. Hence, we allow for a different covariance structure in each clinical trial, thus
leaving the possibility to tackle very general problems for which the assumption of homogeneous
covariance structures over trials would be overly restrictive.

To validate a surrogate endpoint at the individual level in an univariate setting, Buyse et
al.(2000) suggested to look at the correlation between the surrogate and the true endpoint af-
ter adjustment for trial and treatment effects. Instead, we propose a new concept, named the
Variance Reduction Factor (VRF). Essentially, we summarize the variability of the repeated
measurements on the true endpoint by the trace of its variance-covariance matrix and sum this
over all trials. In a similar way, we summarize the conditional variability of the true endpoint
measurements, given the surrogate by the trace of the conditional variance-covariance matrix
summed once more over trials. Following these ideas the relative reduction in the true endpoint
variance after adjusting by the surrogate can be quantified as:

> {tr(Srr) — tr(S(ris):)}
VRE, = - : 7
Ztr(ETTi) ( )

where ¥(7|s), denotes the conditional variance-covariance matrix of e7,; given €s,;: X5y =

YT — ETSiEEéiE%ZSi' Intuitively, expression (7) tries to quantify how much of the total vari-
ability around the repeated measurements on the true endpoint is explained by adjusting for the
treatment effects and the repeated measurements on the surrogate endpoints. In that respect, ex-
pression (7) fits into the general definition of the “proportion of variation of a dependent variable,
Y, explained by a vector of covariates X” (PVE) in general regression models:

> AD(Yi) — D(Yi| Xi)}
2. DY) ’

where D(Y;) denotes a measure of distance of Y; from a central location parameter of the estimated
marginal distribution of ¥ and D(Y;|X;) denotes the same measure using distributions of ¥

PVE =
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conditional on a given model and on the covariate vector for the ith observation (Schemper and
Stare 1996).

Further one can show (i) that the VRF,,, ranges between zero and one, (ii) that the VRF,,
equals zero if and only if the error terms of the true and surrogate endpoints are independent
within each trial, (iii) that the V RF,,, equals one if and only if there exists a deterministic
relationship between the error terms of the true and surrogate endpoints within each trial and
finally (iv) that the V RF,,, reduces to the R2  when the endpoints are measured only once. The
proofs of these properties are deferred to the appendix.

Next, suppose that p; denotes the number of designed time points at trial ¢ and consider the
covariance structure (2), then we have:

2
_ oA,

tr(Srsi 58 5rs1) = ——olp;,
05S;

tr(Xr7;) = orTipi

Thus, the VRF,,, can be rewritten in terms of the correlations (prg;) between surrogate and

true endpoints at each time point at the different trials i =1,..., N:
PioTTi 2
VRF,..= = | PTsi
! Z (Zz piUTTi> TS

i

The latter expression yields an appealing interpretation of the VRF. Indeed, the VRF is just a
sum of different trial contributions, in which each contribution is just the product of the squared
correlation between the surrogate and the true endpoint at each time point in that trial with the
proportion of the total true endpoint variance that is accounted for by that trial.

In addition, the VRF can be incorporated into a much more general framework that allows
interpretation in terms of the canonical correlations of the error term vectors. Indeed, if at trial ¢
we have p; time points then we will also have t = 1, ..., p; canonical correlations pf for (€1, €sy;)
such that:

P ph > >k

and pf are the eigenvalues of 2;%22T5i2§§i2%5i25%2. Now, one can show that the VRF
can be written as a linear combination over all trials and over all timepoints within a trial of
the canonical correlations of the error terms. The coefficients in this linear combination need to
be positive and sum to 1. The investigation of advantages and disadvantages of this canonical
correlation framework as well as the potential extension to non-normal data will be a topic of
further research.

As mentioned before, as soon as the treatment effect cannot be assumed to be constant over
time, the classical multi trial approach becomes inapplicable as well at the trial level and other
approaches are needed. In this case the treatment effect at the ith trial could not be characterized
by the scalars §; and «; but by the p; dimensional vectors 8; and &;, Verbyla (1999).

For reasons explained earlier it would then be unrealistic to assume that the variance-covariance
matrix D is constant over the trials. In that case we define the Variance Reduction Factor at the
trial level, (V RF}.iq1) as follows, suppose that

(2)((2)2)
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D, = Dggi Dgai
Dg;ozi Daai
Here (,@l, @;) is the 2p; dimensional mean treatment effect vector at the ith trial. Then we can

define, similarly to the individual level and with straightforward notations, V RF, ., as:

> {tr(Dsgs) — tr(Dgjayi) }
VRFyiu = i (8)
> tr(Dagi)
i

with

The properties stated above can now be easily extended for the trial level and in case of a
single normally distributed endpoint it can be shown that VRF,,., = R2, .

The scope of this methodology is not limited to the longitudinal framework, there are other
settings in which the used of these tools can be appealing. Most of the work published in this area
assume that only one potential surrogate is going to be evaluated. However in many practical
situations the analyst has to study surrogacy in a multivariate framework, for instance, it is
plausible to think that a treatment can affect a medical condition in a very complex way acting
at the same time on different factors. Therefore it would be sensible to presume that prediction of
the treatment effect on the true endpoint can be substantially improved if we use the information
about the treatment effect not only on a single surrogate but on a whole set of possibly relevant
variables.

Let us consider again the setting used by Buyse et al.(2000) to introduce their R? measurements
but assuming that two potencial surrogates are now available. At the first stage the following
multivariate regression model is assumed:

Tij = pr, + BiZij + e
Stij = WSy, + 1525 + €545 (9)

S2ij = USy; + Q2:Zi5 + €8,;;
where
ET;s
€5, | ~N(0,%)-
€S5;j
At the second stage we will assume that

Bi B
a4 ~ N a1 ,D 5 (10)
Q2; o2
where
20+60 o o
D= o c 0

o 0 o
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If we now applied the methodology proposed by Buyse et al.(2000) using both surrogates
independently then it is not difficult to show that

o
20 + 0

whereas if both of them are jointly used and we also use the VRF concept proposed in the present
work to evaluate surrogacy then we obtain

2 _ P2 _
thrial - R2trial -

20
20 + 6

Finally if we also notice that V' (;|a1s, ae;) = 0 then it is clear that for small values of 6 there
is almost a deterministic relationship between 3; and (aq;, ag;). This will imply that we should
be able to predict the treatment effect on the true endpoint with a high precision if the treatment
effect on both surrogates S; and Ss is known. However, these surrogates would poorly predict
the treatment effect on the true endpoint if they were considered independtly as can be concluded
from the expressions

VRF i =

ehi% R%trial(a) = ehi% Rgtrial(a) =05
On the other hand, the V RF,,,,, clearly reflects that, in this setting, a very accurate prediction
for the true endpoint treatment effect can be obtained if both endpoints are jointly used.

g% VRFtrial (0) = 1

The previous example illustrates that a lot can be gained in some practical situations if more
that one single surrogate is used. The methodology proposed here will let us approach the sur-
rogacy problem from a new point of view. In principle, any number of potential surrogates could
be studied and even severals endpoints and several surrogates could be analized in a multivariate
framework what could considerably improve our prediction’s capabilities.
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4. CASE STUDY: A META-ANALYSIS OF TRIALS IN SCHIZOPHRENIC SUBJECTS

In this section we apply the proposed definition to individual patient data from a meta-analysis
of five double-blind randomized clinical trials, comparing the effects of risperidone to conventional
antipsychotic agents for the treatment of chronic schizophrenia. Only subjects who received doses
of risperidone (4-6 mg/day) or an active control (haloperidol, perphenazine, zuclopenthixol) were
included in the analysis. Depending on the trial, treatment was administered for a duration of 4
to 8 weeks.

Our meta-analysis contains five trials. This is insufficient to apply the meta-analytic methods
described in previous sections. Fortunately, in all the trials information is also available on the
countries where patients were treated. Hence, we can use country within trial as unit of analysis.
A total of 20 units are thus available for analysis, with the number of patients ranging from 9 to
128. The number of patients per country is tabulated in Table 1.

Table 1. Number of Patients per Country-unit

Country Id 1 2 3 4 5 6 7 8 9 10
# Patients 31 29 26 44 44 9 37 32 68 49

Country Id 11 12 13 14 15 16 17 18 19 20
# Patients 43 21 25 39 36 17 33 69 30 128

The choice of the unit is an important issue and it is not free of certain controversy. It can
depend on practical reasons, such as the information available in the data set at hand and also
on expert’s considerations about the most suitable unit for a specific problem.

In general, the choice of the unit should be made considering different aspects like physician’s
opinion, statistical ideas, information available in our data and so on. Ideally, both the number
of units and the number of patients per units should be sufficiently large to avoid numerical
problems.

Several measures can be considered to assess a patient’s global condition. The Clinician’s
Global Impression (CGI) is generally accepted by practitioners as a reliable clinical measure of
patient’s status. This is a 7-grade scale used by the treating physician to characterize how well
a subject has improved.

Other useful and sufficiently sensitive assessment scale is the Positive and Negative Syndrome
Scale (PANSS). PANSS consists of 30 items that provide an operationalized, drug-sensitive in-
strument, which is highly useful for both typological and dimensional assessment of schizophrenia.

Even though this is not a standard situation for surrogate validation due to the lack of a
clear “gold” standard, we consider as our primary measure (true endpoint) the Clinician’s Global
Impression scale which is the one that has the clearest clinical interpretation.

It is important to notice that even though in this case a clear “gold” standard is not available,
our analysis will let us address some very important issues. At the trial level it will allow a
flexible assessment of a common question among practitioners, i.e. how a treatment effect on
PANSS can be translated into a treatment effect on CGI which is easier to interpret clinically.
On the other hand, at the individual level a VRF equal to one will imply that the variability of
CGI conditional on PANSS and the treatment effect is equal to zero. In other words, it would
mean that CGI could be estimated without error from PANSS. Other values of the VRF will give
us different levels of evidence about how strong the association between both scales is.
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In our model we use log(CGI) and log(PANSS) instead of the original variables to stabilize the
variances. Figure 1 shows the individual’s profiles for log(CGI) and log(PANSS) by treatment
groups. In all the panels a linear time trend seems plausible.

Z=10meanprofile Z=xmeanprofile

logCgi
1
logCgi

Time Time

Z=1omeanprofile Z=xmeanprofile

logPanss
logPanss

Fig. 1. log(CGI) and log(PANSS): Mean profiles.

We applied the two-stage approach introduced in Section 2 to these data. At the first stage
different choices of g7; and gg; can be considered, each of them leading to different bivariate joint
model. Four different models were fitted, here &k = 1,2 denote the true endpoint (CGI) and the
surrogate scale (PANSS) respectively

1. Linear trend over time within each trial: gg;(t) = Okt

2. Random intercept model: This model assumes a linear trend over time and independent
random intercepts are considered for each scale within each trial, gg;(t) = Okt + by;

3. Random intercept and slope model: A linear trend over time and independent random
intercepts and slopes are considered for each scale within each trial , g; (t) = Okit+broi+bi1:t

4. General trend over time modeled using splines via random effects as proposed by Verbyla
et al(1999), gki(t) = ling; (t) + sply; (¢)

The AIC criteria was then used to select the best model in each trial. Model (1) showed to
have the best performance in all the trials. The comparison of model (1) with the bivariate cubic
smoothing splines model showed that, for the data at hand, a linear trend over time seems to be
a good model for the mean structure of both scales in all the trials which is in total agreement
with the profiles displayed in figure 1.

The estimated log(CIG) variance components (677 ), the estimated log(PANSS) variance com-
ponents (Gss;), the log(CGI) — log(PANSS) correlation as well as p; parameter, separately for
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each unit were obtained. All these variance components are plotted in Figure 2, which clearly
shows that the assumption of a constant covariance structure over all trials is not really plausible,
as already suggested before.

"5
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Fig. 2. Variance Components.

If we now want to study the relationship between the log(CGI) and the log(PANSS), then
it is clear that the R2 measure proposed by Buyse et al. (2000) is no longer useful in such a
general situation with a complex variance-covariance structure for the bivariate longitudinal data
which cannot be assumed to be constant over trial. In contrast, the V RF,,, that we proposed in
Section 3 does provide an adequate summary measure for the validation at the individual level.
By applying the two-stage approach based on model 1 we obtained an estimate for VRF of 0-39
(95% confidence interval: [0-36;0-41]).

This shows that after adjusting by the surrogate log(PANSS) there is a relative reduction in
the marginal variance of log(CGI) of 39 percent. Of course, this should be interpreted as an
“average” reduction due to the fact that we are summing over trials. Hence, log(PANSS) seems
to be a rather poor surrogate for log(CGI) at the individual level.

Our procedure also allows to estimate the contribution of each trial to the meta-analytic VRF.
Within each unit we can define

tr(Srri) — tr(B7)s))

VRF! =
ind tr(ETT@)

)

The first panel of figure 3 shows the different trial contributions as well as the VRF meta-
analytic value. From the graph it is clear that in most of the trials there was a relative weak
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association between the surrogate and the true endpoint, which values of the VRF smaller than
0-6 in almost all the cases.

. MetaanalyticVRF

Trial
EffectoftreatmentonlogCGl

2 "4 "6 8 il | 5 ) 5 N 715 2
VRFperTrial EffectoftreatmentonlogPANSS

Fig. 3. First panel: VRF trials contributions (V RFY,,) and Meta-analytic VRF. Second panel: Treatment
effect for BPRS vs treatment effect for PANSS

At the trial level the results are much more encouraging. Since treatment is assumed not to
vary with time, in this case the B2 as introduced by Buyse et al. (2000) can still be calculated.
We thus find a value of R2, of 0-85. The resulting correlation between treatment effects on
log(CGI) and log(PANSS) equals 92% suggesting that a reliable prediction can be made of the
treatment effect on log(C'GI) having observed the treatment effects on log(PANSS). Graphically
this is represented in the second panel of figure 3 which plots the treatment effects on log(CGI)
by the treatment effects on log(PANSS). The size of each point is proportional to the number of
patients within a unit.

A 95% confidence interval for R2. | was obtained using bootstrap. The so-obtained confidence
limits for R?

2 . are [0-68;0-95], which shows that the trial-level association is estimated rather
precisely.

5. CONCLUDING REMARKS

In the past decade, research on the use of surrogate endpoints concentrated mainly on the
development of criteria and methods of validation for surrogate endpoints. The use of a meta-
analysis approach, as introduced by Daniels and Hughes (1997), Gail et al. (2000) and Buyse
et al. (2000) was a promising way forward compared to the single-trial approaches that were
proposed previously and that coped with serious conceptual problems (Choi et al. 1993; Lin,
Fleming and De Gruttola 1997; Flandre and Saidi 1998; Buyse et al. 2000; Molenberghs et al.
2001).
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However most of the previous work have been focusing on univariate responses for the surrogate
and true endpoints. Going from an univariate setting to a multivariate framework represents
new challenges. In this paper, we proposed a new concept to validate surrogate endpoints within
the meta-analytic framework but in more complicated contexts. Up to now most of the research
developed in this area assume that only one potential surrogate is going to be evaluated. However
in many practical situations the analyst has to study surrogacy in a multivariate framework. The
example constructed in Section 3 clearly showed that a lot can be lost if we limited ourself to
analyze surrogacy univariately.

The VRF concept introduced here to evaluate surrogacy when repeated measurements are
present in both endpoints gives us the possibility of approaching the surrogacy problem from a
new point of view. In principle, any number of potential surrogates could be studied and even
severals endpoints and several surrogates could be canalized in a multivariate framework what
could considerably improved our prediction’s capabilities.

In some cases there is not totally clear idea about which variable or variables could be the best
possible surrogate for certain endpoint of interest. The VRF could let us explore which subset of
our potential surrogates would be the most suitable one. Another important limitation found in
the currently literature about this topic is that most of the technics are designed for the special
case in which only two treatments are considered. However, in some medical field the use of three
or more treatments in clinical trials is a common practice. The tools introduced here will let us
study surrogacy also in this setting.

The implementation of this methodology implies that bivariate longitudinal models should
be fitted, within each unit, at the first stage of our analysis. Statistical methods and estima-
tion techniques are well developed for repeated measures on a univariate normal variable, and
lately much research has been dedicated to repeated observations on a binary variable and more
generally on variables with distributions in the exponential family.

However, for multivariate longitudinal responses less has been done. General models for this
situation are necessarily complex as two types of correlations must be taken into account: cor-
relations between measurements on different variables at each occasion and correlations between
measurements at different occasions. Matsuyama and Ohashi (1997) and Heitjan and Sharma
(1997) considered models for normally distributed responses. Rochon (1996) demonstrates how
generalized estimating equations can be used to fit extended marginal models for bivariate re-
peated measures of discrete or continues outcomes. Rochon’s approach is very general and allows
for a large class of response distributions. However not that many diagnostics tools are avail-
able yet in this setting. In the present work some univariate plots of the residuals did not show
problems of lack of fit for our final model.

Finally it is important to notice that in our specific example PANSS can be considered contin-
ues given the large number of items. However more debate surrounds the CGI scale. Although
many researches might argue that a 7-itemed scale can be considered continues, others might
find this an unrealistic assumption. In the present work we have followed historical papers in
which CGI has been treated as a continues scale and the results obtained seem to be biologically
plausible.

On the other hand fitting a joint model to analyze mixtures of discrete and continues responses
in a longitudinal framework is a challenging task. Difficulties in joint modeling of responses
of different types arise because of the need of a specify multivariate joint distribution for the
outcome variables. Most research so far have concentrated on simultaneous analyzes of binary
and continues responses. Further extensions of our methodology using models for different types
of responses are necessary and will be the objective of future work.
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APPENDIX
Properties of VRFEipa
0<VREF,, <1
Proof
(a.1) VRF,. >0

Z{tr(ETTi) — (S8} Ztr(E(Tw)i)

VRE,, = - =1- (11)
Ztr(ETTi) Ztr(ETTi)
i i
and after some transformation it is possible to obtain
Z tr(Srsi 55, rsi)
VRE,, = - (12)
Z tI’(ETTi)
i
so VRF,,s >0 if and only if
D tr(SrsiTss,Srsi) = 0 (13)
i
It is easy to see that diag(ETSiEgéi Tsi) = (filEgéi z’llv”'vfimi Egélfl’m) where f;_ is

the s row of ¥rg; and diag(A) is the diagonal of A. The previous statements imply
Do t(CrsiTssSrsi) = O Y fiTs8. 01 (14)
% 7 s

and (13) follows from the fact that f; Sge;fi. >0 V(i,s)
(a.2) VRF,4 <1 follows from (11) and the inequalities tr(X(rs):), tr(X771:) > 0.

VRF,..=0&Vi &1, and ¢&g,, are independent.
Proof

Let’s first notice that (¢r,;,€s,,) are independent if and only if ¥75; = 0. Combining (12)
and (14) we get

SN hSsE L

VREF,, = -
Ztr(ETTi)

soVRE,.=0 & Y Y fiNhfl =0 & fi=0 ¥(i,s)e Yrsi=0
[ s
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(c) VRF,qs =1 Vi thereis a deterministic relationship between £7,, and €g,;.

Proof

VRE,. =16 tr(Sqsyu) =0 Vi (16)

< V(er,les,;) = 0< (er,les,;) = 15y <& €1y = ETSizgéigsij Vi (17)

(d) In the single endpoint case ~VRE,,, = R2,.
Proof

In the single endpoint case we have:

ET.. = ET.. e .
g:” _ 6:” = ( 5:1 ) ~ N(0, %) (18)
where
5, — oTT: OTSi (19)
orsi 0SSi
There we also assumed
S, =% = orr ors (20)
ors 0ss
ETy; ™ N(OaaTT)
7 = (er,les;,;) ~ N , 2 21
s, ~ N(0,0ss) (eT;les,;) (1(r)18): 2(1719)) (21)
where
wrsy = UTsdgslé‘s,-j (22)
o(risy = OTT — 075058
Z tr(3 (7))
- tr(2 _ 42 -1
VRFw =1 e =1 S8y OTTOhsOSS g g g2 = R2,
Ztr(ETTi) I’( TT) orT
i

(23)
completing the proof
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