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SUMMARY

The force of infection is one of the primary epidemiological parameters of infectious
diseases. For many infectious diseases it is assumed that the force of infection is age
dependent. Although the force of infection can be estimated directly from a follow up
study, it is much more common to have cross-sectional seroprevalence data from which
the prevalence and the force of infection can be estimated. In this paper we propose to
model the force of infection within the framework of fractional polynomials. We discuss
several parametric examples from the literature and show that all of these examples can
be expressed as special cases of fractional polynomial models. We illustrate the method on
five seroprevalence samples, two of Hepatitis A, and one of Rubella, Mumps and Varicella.
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 1

Polynomials; Generalized Linear Models.

1. Introduction

Mathematical models are often used to describe the process of infectious diseases at population
level (Anderson and May, [1]). Such compartmental models consist of a set of differential
equations which aim to describe the flow of individuals from one disease stage to the other. In
this paper, we assume the disease is irreversible, meaning that the immunity is assumed to be
lifelong. We further assume that the mortality caused by the infection is negligible and can be
ignored. Let ¢(a,t) be the fraction of susceptible individuals at age a and time . Under the
assumptions stated above the partial differential equation which describes the change in the

susceptible fraction at age a and time £ is given by :

2 4(0.6) + ora(at) = ~((a. ta(as ). ()

Here £(a, ) is the rate at which susceptible individuals become infected and is called the hazard
or the force of infection. Note that (1) assumes that the natural death rate is zero up to the
life expectancy and thereafter infinity. In a steady state, the time homogeneous form of the
model, 2q(a,t) =0 and (1) reduces to

= 4(a) = ~((a)ala). 2)

Differential equation (2) describes the change in the susceptible fraction with the host age.
This representation of the model is called the static model.

In practice, the force of infection can be estimated from a seroprevalence cross-sectional sample.
Figure 1 shows five datasets that will be discussed in this paper. The Rubella and the Mumps
datasets were used by Farrington [2] to illustrate the use of nonlinear models for estimating
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2 7Z. SHKEDY ET. AL.

the force of infection. Keiding [3] used the Hepatitis A dataset from Bulgaria to illustrate the
use of isotonic regression as an nonparametric approach to estimate the prevalence and the
force of infection. Shkedy et al. [4] used the Hepatitis A dataset from Belgium to illustrate the
use of local polynomials as a nonparametric method to estimate both the prevalence and the
force of infection. This dataset consists of 3161 individuals with age range between 1 and 86
years old, sampled in 1993 in Belgium. For more details about the sample we refer to Beutels
et al. [5]. Lastly, the Varicella dataset consists of 1673 individuals with age range from 1 to 44
years old that was sampled in Belgium between October 1999 to April 2000. For more details

about this study we refer to Thiry et al. [6].

FIGURE 1, ABOUT HERE.

Muench [7] suggested to model the infection process with a catalytic model, in which the
distribution of the time spent in the susceptible class is exponential with rate 8. The force of
infection in this case, 3, is age independent. Under the catalytic model ¢(a) = e~ Jg Bds — o—Pa
and d%q(a) — —Be P Griffiths [8] proposed a model for measles in which the force of infection
increases linearly in the age range 0—10. Grenfell and Anderson [9] extended the model further
and used polynomial functions to model the force of infection. Their model assumes that
q(a) = e ¥Pi9" which implies that the force of infection is £(a) = 3 Biia’ . For the general
case the solution for (2) under the catalytic model is g(a) = ¢~ 7(®), where 7(a) = Jo €(s)ds is
the cumulative hazard.

One problem that arises when a higher order polynomial model is fitted is that the estimate
for the force of infection can get negative. In fact, a force of infection estimate turns negative
whenever the estimated probability to be infected before age a is a nonmonotone function. One
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 3

solution to this problem is to define a nonnegative force of infection, #(a, 3) > 0 for all @, and
to estimate 7(a) under these constrains. Farrington [2], Farrington et al. [10] and Edmunds et
al. [11] applied this method for measles, mumps and rubella, using a nonlinear model for 7(a).
However, Farrington’s method requires prior knowledge about the dependence of the force of
infection on age. Other parametric models, fitted within the framework of generalized linear
models (GLM) with binomial error (McCullagh and Nelder [12]), were discussed by Becker [13],
Diamond and McDonald [14] and Keiding et al. [15] who used models with complementary
log-log link function in order to parameterize the prevalence and the force of infection as a
Weibull model. Becker [13] suggested to model a piecewise constant force of infection by fitting
a model with log link. For the case that other covariates, in addition to age, are included in
the model, Jewell and Van Der Laan [16] proposed, in the context of current status data, a
proportional hazard model with constant force of infection which can be fitted as a GLM with
complementary log-log link. Grummer-Strawn [17] discussed two parametric models, the first
being a Weibull proportional hazard model with complementary log-log link and the second
being a log-logistic model with logit link function. For the latter, the proportionality in the
model is interpreted as proportional odds.

A nonparametric method was discussed by Keiding [3] who used isotonic regression to estimate
the prevalence and applied kernel smoothers to estimate the force of infection. Keiding et al.
[15] proposed to model the force of infection using natural cubic splines. Recently Shkedy et
al. [4] proposed to use local polynomials to estimate both the prevalence, 1 — ¢g(a), and the
force of infection.

Shiboski [18] proposed a semiparametric model, based on generalized additive models (Hastie

and Tibshirani [19]), in which the dependency of the force of infection and age is modeled
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4 7Z. SHKEDY ET. AL.

nonparametrically and the covariate eflect is the parametric component of the model.
Depending on the link function, the model proposed by Shiboski [18] assumes proportionality;
proportional hazard (complementary log-log link) or proportional odds (logit and probit links).
Other semiparametric models, assuming a logit link, were proposed by Rossini and Tsiatis [20].
In this paper we restrict the discussion to parametric models for which the only covariate in
the model is the host age. In Section 2 we describe a general age-dependent model for the
force of infection, based on prevalence data. Section 3 discusses fractional polynomials as a
flexible parametric approach to model the force of infection. The method is applied within the
framework of generalized linear models for binary response. In Section 4 we apply the method
to the datasets mentioned above. The models in Section 4 assume a logistic form of ¢(a) and
were fitted with the logit link function. In Section 5 we modify this assumption and model the

force of infection with fractional polynomial for which ¢(a) = exp(—y(a)).

2. Age-Dependent Force of Infection

Consider an age-specific cross-sectional prevalence sample of size N and let a; be the age of

the ith subject. Instead of observing the age at infection we observe a binary variable Y; such

that
1 if subject ¢ had experienced infection before age a;,
Y; = 3)
0 otherwise.
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 5

With 7(a;) be the probability to be infected before age a;, w(a;) = 1 —g(a;), the log likelihood

is given by

N
L(B) = Yilog {m(a;)} + (1 — Yi)log {1 — 7(a;)} . (4)

i=1
Here, 7(a) = g~ (n(a)), where n(a) is the linear predictor and g is the link function. For binary
responses, ¢ is often taken to be a logit link function, log(w /(1 — 7)), but other link functions
such as the complementary log-log link, log(—log(1 — 7)), and log link, —log(l — ), can be
used as well. The models proposed by Muench [7], Griffiths [8] and Grenfell and Anderson [9]
assume ¢ to be the log link function (for 1 — 7) and n(a) = Z?:o B;at, where k is equal to 1
(Muench), 2 (Griffiths) and K (Grenfell and Anderson). Using a model with log link function
leads to a simple interpretation of the first derivative of the linear predictor. Indeed, n(a) is
the cumulative hazard and therefore the force of infection is simply the first derivative of the
linear predictor. Under the catalytic model 7(a) = 1 — e @) using the definition for the

hazard rate, we get

7'(a (a)e= (@)
fay = 1) M@ T i), (5)

1—7m(a) e~a)

In the general case, when the link function is not restricted to be the log link, the force of
infection can still be derived according to (5). It is easy to see that for the binomial distribution,

the force of infection can be expressed as a product of two functions:

{(a) = 7'(a)b(n(a)), (6)

where the form of 6(-) is determined by the link function g. Table 1 shows three possible link

functions with their corresponding structure for the force of infection.

TABLE 1, ABoUT HERE.
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6 7Z. SHKEDY ET. AL.

3. Fractional Polynomial Models for Binomial Data
3.1. Motivating Fxample

Viral hepatitis is a serious problem throughout the world. In Belgium, the most common form
of viral hepatitis infection is caused by the hepatitis A virus. We consider a cross-sectional
prevalence sample (N = 3161), taken in 1993 and at the beginning of 1994 from 11 hospitals
in Belgium. We consider two generalized linear models with logit and complementary log-
log link functions. For the logit model the linear predictor is n(a) = By + Bra + Bza®. This
model has a deviance of 82.74 on 83 degrees of freedom. For the complementary log-log model
n(a) = log(By) + PFra? + Bea®. The deviance of this model is 81.41 on 83 degrees of freedom.
The force of infection of these models can be derived from Table 1. Although both models
fit the data well, Figure 2 shows that both models predict negative forces of infection at the

higher age groups.

FIGURE 2, ABOUT HERE.

3.2. Fractional Polynomaials

The motivation to model the force of infection with fractional polynomials is to allow for
flexible changes in the force of infection over the age of the host. Indeed, high order conventional
polynomials offer a wide range of curve shapes but often fit the data badly at the extremes of
the observed age. Moreover, conventional polynomials do not have asymptotes and fit the data
poorly whenever asymptotic behavior of the infection process is expected. Royston and Altman
[21] introduced the family of fractional polynomials as a generalization of the conventional
polynomials class of functions. In the context of binary responses, a fractional polynomial of
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 7

degree m for the linear predictor is defined as

m

nm(a’v /67 p17p2pm):26sz(a)v (7)
i=0
where m is an integer, p; < p2 < --- < p,, is a sequence of powers and H;(a) is a transformation
function given by
ab if pi # pia
Hi(a) = (8)

H; 1(a) xlog(a) if p; =p;1

with pg = 0 and Hy = 1. Royston and Altman [21] argued that, in practice, fractional
polynomials of order higher than 2 are rarely needed and suggested to choose the value of
the powers from the set {—2,—1,—-0.5,0,0.5, 1,2 max(3,m)}. We note that for models with
log link function 71 (a, 8,p = 1) is Muench’s model, n2(a, 3, p1 = 1, p2 = 2) corresponds to the
model proposed by Griffiths [8] and the models considered by Grenfell and Anderson [9] have

the general form of 1., (a, 8,p1,P2 ..., Pm) With p; =i for i =1,2,... ,m.

TABLE 2, ABOUT HERE.

Table 2 shows a selection of parametric models discussed in the literature and their
representation as fractional polynomials. For example, the model proposed by Keiding [15]
is a first order fractional ploynomial with p = 0. The model with linear force of infection
can be parameterized as first order fractional polynomial with complementary log-log link for
which p = 0 with the constrained that ; = 2. In this case £(a) = 2fpa which implies that the
force of infection is zero at birth and increases linearly thereafter.
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8 7Z. SHKEDY ET. AL.
3.3. Model Selection

Within the fractional polynomials framework the deviance of the model with 7;(a, 3,1) is

taken to be the baseline deviance and improvement by other models is measured by

where D(m,p) is the deviance of the model with fractional polynomial of order m and a
sequence of powers, p = (p1, P2, - - - Pm)- Note that a large value of G indicates a better fit.

Fitting models within the framework of fractional polynomials requires to start the modeling
procedure from first order fractional polynomials. To decide whether a model of first degree is
adequate or a second degree model is needed, Royston and Altman [21] recommend to use the
criterion D(1,p) — D(2,p) > X3 0.9 Where P is the power sequence for the model that has the
best goodness-to-fit (hence, the model with the highest likelihood or, equivalently, the smallest

deviance).

3.4. Constrained Fractional Polynomials

Although fractional polynomials provide a wide range of curve shapes, there is no guarantee
that 7(a) will be a monotone function of age and therefore fractional polynomials can still
result in a negative estimate for the force of infection. It is clear from Table 1 that the estimate
for the force of infection is negative whenever 7., (a, 3, p) < 0 (since 8(7,,(a, 3, p)) is strictly
positive). Therefore, one should fit model (7) subject to the constraint that 7., (a, 8, p) > 0,
for all ages a in the predefined range. In the framework of fractional polynomials this cannot
be done analytically. But in practice, one can fit a large number of fractional polynomials, over
a grid of powers, and check for each fitted model if 7/, (a, 3, p) > 0, for all ages a. In case that
a given sequence of powers leads to a negative derivative of the linear predictor, the model
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 9

is not considered an appropriate model. This means that we choose the model with the best

goodness-to-fit among all fractional polynomials for which 7/, (a, 8, p) > 0.

4. Application to the Data

In this section, we apply our method to the datasets mentioned above. For each dataset, first
and second order fractional polynomials were fitted and the criterion proposed by Royston
and Altman [21] was used to deicide whether the second order model is needed or not. Table 3
presents the deviance and gain values for the best first order fractional polynomials. Clearly, for
all datasets except the Bulgarian dataset, first order fractional polynomials are not adequate
and second order fractional polynomials are required. For the first order models, the gain
values in Table 3 also indicate that, for all datasets except the Bulgarian dataset, the first

order fractional polynomials with p = 1 are not adequate and other powers are needed.

TABLE 3, ABoOUT HERE.

4.1. Hepatitis A

The upper two panels in Figure 3 show the estimated models for the prevalence and the force
of infection for Hepatitis A in Belgium. The model with the best goodness-of-fit has a gain
value of 51.94 and p = (1, 1.3). For this model the deviance is 97.61 on 81 degrees of freedom.
The estimated force of infection reaches a peak at age 40 (£(40) = 0.04159) and drops down
thereafter. Figure 4 shows the unrestricted profile likelihood surface, L(Bo, B, Ba, p1, p2), for
this dataset. The point a represents the likelihood’s value of the best unrestricted fractional
polynomial for which p = (1.9,1.9) and the deviance is 79.60 on 81 degrees of freedom.
However, this model cannot be retained since it predicts a negative force of infection at older
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10 7Z. SHKEDY ET. AL.

age groups. Point b represents the likelihood’s value of the conventional polynomial (p = (1, 3),
deviance equal to 82.74 on 83 degrees of freedom) which was discussed in Section 3 and will
not be considered either. The point ¢ represents the likelihood’s value of the best constrained
fractional polynomial. Hence, the fractional polynomial presented in Figure 3 can be seen
as the model that has the best goodness-of-fit among all fractional polynomials satisfying
7'(a, B,p) > 0.

For the Bulgarian dataset, the second order fractional polynomial with p = (1.9,1.9) has a
deviance of 77.77 on 78 degrees of freedom. This model suggests that the force of infection is
maximal at age 41.5 (£(41.5) = 0.0815). However, the first order fractional polynomial is to
be preferred since D(1, p) — D(2,p) = 1.74. Interestingly, the first order fractional polynomial
with p = 1 and logit link is just a simple linear logistic regression model. For this model

£(a) = pym(a) such that it predicts an upward trend for the force of infection.

FIGURES 3 AND 4, ABOUT HERE.

4.2. Varicella

The upper two panels in Figure 5 show the estimated model for both prevalence and force of
infection for the Varicella dataset. The deviance of the model is 43.90 on 39 degrees of freedom
and p = (—0.6,—0.7). For varicella, the force of infection reaches a maximum at age 3 with
value #(3) = 0.324 and drops down thereafter. At age 44 the force of infection is estimated to
be 0.0214.

Copyright (¢) 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0000:0-0
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 11
4.3. Rubella and Mumps

For Rubella, the fractional polynomial model with p = (—0.9, —0.4,) has the best goodness-
of-fit with a deviance of 42.34 on 39 degrees of freedom. For Mumps, the model with the best
goodness-to-fit uses power p =(-1.2,-0.9,). For this model, the deviance is 47.94 on 39 degrees
of freedom. Figure 5 (middle panels) show that for Rubella the force of infection rises to a
peak at age 6.5 (£(6.5) = 0.1415). For Mumps, the force of infection reaches a maximum value

at age 4.5, £(4.5) = 0.317.

FIGURE 5, ABOUT HERE.

5. Influence of the Link Function

In the previous section, all models were fitted with the logit link function. In this section, we
consider models of the general form 7(a) = 1 — exp(—~(a)). More precisely, for the first order

fractional polynomials we specify

1 — exp (—Boe™ H@)  p£0,

1—exp (—ﬁoaﬁl) p=0.

For the second order fractional polynomials, we consider the following specification

@) = 1 — exp (_ﬁoeﬁlHl(aHﬁsz(a)) 7 (11)
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12 7Z. SHKEDY ET. AL.

with corresponding linear predictor

nz(a, B, p1, p2) = log(fo) + BraP* + BaaP? if p1 # p2,
(12)

na(a, B, p1, p2) = log(Bo) + BraP* + BaaP log(a) if py = po.

We note that the models specified in (10) and (11) are GLM with a complementary log-log link
function. The first order model specified in (10) with p = 0 implies a Weibull distribution for the
time spent in the susceptible class. Such a Weibull model was used by Keiding [15] to model the
force of infection for Rubella from an Austrian seroprevalence sample. A model with a constant
force of infection is a special case of a first order fractional polynomial with complementary
log-log link function with ; fixed at value 1; in that case n(a, 8) = log(Bo) + log(a). Such
a model was used recently by Farrington [10] to model the force of infection for Hepatitis
A in Bulgaria. Furthermore, a model with linear force of infection is a first order fractional
polynomial with p =0 and 3 = 2.

Figure 6 shows the estimated forces of infection for all datasets when the optimal fractional
polynomials were fitted with logit (solid lines) and complementary log-log link functions
(dashed lines). We note that although the power sequence had changed, the change of the
link function has only little influence on the estimated forces of infection. For example, the
deviance of the model for Varicella is 44.04 on 39 degrees of freedom and p = (—1.3,—0.9) but

the estimated force of infection is the same for the logit and complementary log-log models.

FIGURE 6, ABOUT HERE.

Figure 7 shows the estimated prevalence and force of infection for Hepatitis A in Bulgaria. For
the first order models, the best fractional polynomial has a deviance of 82.75 on 80 degrees of
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 13

freedom and p = 0.5. The force of infection for this model steeply increases with age. Similar
to the models with logit link, a second order fractional polynomial is not needed. Since models
with different link function are not nested, we use the Akaike’s information criterion (AIC) for
model selection (Akaike [22]. The smallest value of AIC, 382.83, is obtained for the first order
logit model (see Table 4). We note that the upward trend of the force of infection estimated
by the first order logit model was already observed by Groeneboom [23] in his discussion of

Keiding’s paper.

TABLE 4 AND FIGURE 7, ABOUT HERE.

6. Discussion

We have shown that modeling the prevalence and the force of infection with fractional
polynomials is a very flexible method, allowing a variety of different types of relationships
between the force of infection and age. The method can compete with nonparametric smoothers
while keeping the attractive features of parametric models. Furthermore, we have shown
that well known parametric models for the distribution of the age at infection, such as
exponential, Weibull and log-logistic distributions, can be expressed as a special case of
fractional polynomials. For models with complementary log-log link function, the curve shape
of the force of infection depends on the slope of the first order fractional polynomial with p = 0.
Therefore, we need to fit the model 7, (a, 3,p = 0) and to check the parameter estimate for
1. The force of infection is constant if §; = 1, linear if 3; = 2 and monotone if 5, #£ 1. Thus,
by fitting a large number of fractional polynomials with logit and complementary log-log link
function we account for the possibility of constant, linear, monotone or flexible curve shapes

Copyright (¢) 200 John Wiley & Sons, Ltd. Statist. Med. 200; 0000:0-0

Prepared using simauth.cls



14 7Z. SHKEDY ET. AL.

for force of infection. However, we do not require the force of infection to have a specific curve
shape in advance, the choice is data-driven.
In case that other covariates, in addition to age, are included, the following semiparametric

additive model parameterizes the prevalence as

link(7(a)) = ¢(a) + Za, (13)

where Z is the additional categorical covariate(s). The nonparametric component of the model,
@(a), is used to model the dependency of w(a) on age while Za, the parametric component of
the model, is used to model the covariate effects. In order to ensure a nonnegative estimate
for the force of infection, one needs to estimate w(a) with a nondecreasing function. This can
be done by applying the pool adjacent violators algorithm (Barlow et al.[24] and Robertson
[25]) to the data. This approach has been followed by Grummer-Strawn [17] and Shiboski [18].
Within the framework of fractional polynomial we can replace the nonparametric component

of the model with a fractional polynomial

link(r(a)) = nm(a, P, ) + Za,

where n,,(a,p,3) is the fractional polynomial modeling the dependence on age. Similar
to the semiparametric model in (13), depending on the link function, this model implies
proportionality. For example, suppose that Z is binary variable, then for models with
complementary log-log link we get £(a|Z = 1) = exp(a)f(a|Z = 0) and for models with
logit link we obtain £(a|Z = 1)/(a]Z = 0) = aq(a|Z = 0)/q(a|Z = 1).

All models discussed above are generalized linear models which imply that standard software,
such as PROC GENMOD in SAS or the function glm() in Splus, can be used. Although our
method requires to fit a large number of fractional polynomials and to choose the one with
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MODELING THE FORCE OF INFECTION WITH FRACTIONAL POLYNOMIALS 15

the best goodness-of-fit, the modeling procedure is not time consuming. In fact, the optimal
fractional polynomial for each dataset was found in less than 3 minutes.

The models reported in this paper were fitted with a sequence of powers from -2 to 3 with
an increment of 0.1. Of course, when a more sensitive grid is used the final powers of the
best model will be slightly different. For example, for Hepatitis A (Belgium) the best second
order fractional polynomial, fitted using a grid with increment of 0.02, has powers 1.132653
and 1.153061 with deviance 97.44. However, the force of infection is the same as for the
model with p = (1,1.3) (maximal of absolute difference between the forces of infection is
5.68 x 107°). The problem of estimating a negative force of infection was addressed by fitting
constrained fractional polynomials by excluding models that lead to negative force of infection
as appropriate models. In our opinion, blind use of conventional linear predictors to model
the force of infection can yield misleading results. Flexible models should be consider and
the family of fractional polynomials offers an interesting choice. They can also be used as an
exploratory tool or to perform a sensitivity analysis of a particular parametric model that, for

instance, reflects prior information about the force of infection.
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Table I. General forms for the force of infection.

Link function 7(a) £(a) 6(n(a))

log 1 —e ) n'(a) 1

Complementary log-log | 1 — e n'(a)en® en(a)

. en(a) ’ en(a) en(a)
logit Tren(@ () 1em T
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Table II. Parametric models presented in the literature. The models presented by Grummenr-Strawn
(1993) and Jewell and Van Der Laan (1995) included other covariate in addition to age. For these
models n(m, p, B) is the fractional polynomial that use to model the dependency of the force of infection
on age. For the models discussed in Grummer-Strawn, we do not include the adjusted parameter in

our analysis since it is assumed that susceptibility is 100% at birth.

Publication Force of infection  Fractional polynomial Link function

Munch (1959),Farrington (2001), | constant nim=1,p=0,8=0) cloglog

Jewell and Van der laan (1995)

Griffiths(1974) linear nim=1,p=0,8=2) cloglog
Grenfell and Anderson (1985) polynomial nim=k,p; =1) log
Keiding (1996),Becker (1989), monotote nim=1,p=0,0) cloglog

Diamond and McDonald (1992),

Grummer-Strawn (1993)

Grummer-Strawn (1993) flexible nim=1,p=0,0) logit
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Table III. Deviance and Gain values for first and second order fractional polynomials with logit link

Junction.
First order (m=1) Second order (m=2)
Dataset df Deviance p G(1,p) | df Deviance P1, P2
Hepatitis A (Be) 83 115.34  0.32 34.21 | 81 97.61 1.0,1.3
Hepatitis A (Bul) 80 79.51 1 0] 78 77T 1.9,1.9
Varicella 41 50.94 0.07 69.59 | 39 43.90 -0.7,-0.6
Rubella 41 56.28 0.03 165.13 | 39 42.34  -0.9,-04
Mumps 41 82.31 -0.2 516.88 | 39 4794  -1.2,-0.9
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Table IV. Deviance summaries of the fitted models for the Bulgarian Hepatitis A dataset. The Weibull

model has 81 degrees of freedom since in this case p = 0, the exponential model with constant force of

infection has 82 degrees of freedom since we fixed both p and 3.

Model (link) df Deviance p Likelihood — AIC

Second order(logit) TN 1.9,1.9 375.967 385.96

First order (logit) 80 79.51 1 376.83 382.83

Second order(cloglog) | 78 79.21 1.3,1.3 376.68 386.68

First order (cloglog) 80 82.75 0.5 378.45 384.44

First order (cloglog) 81 94.40 0(61#£1) 384.27 388.27  Weibull

First order (cloglog) 82 94.67 0(/1=1) 38441 386.41 Constant force of infection
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Figure 1. Five cross sectional seroprevalence datasets.
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Figure 2. Hepatitis A in Belgium. Left panel: data and estimated models for the prevalence. Right
panel: estimated forces of infection. Solid line: model with logit link function. Dashed line: model with

complementary log-log link function.
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Figure 3. Hepatitis A in Belgium (upper panels) and in Bulgaria (lower panels).
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Figure 4. Non restricted likelihood surface for Hepatitis A in Belgium. The points on the surface: (a)
the best second order fractional polynomial p = (1.9,1.9), (b) the conventional polynomial p = (1,3)

and (c) the best restricted fractional polynomial p = (1,1.3).
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Figure 5. Varicella, Rubella and Mumps.
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Figure 6. Force of infection for second order fractional polynomial with logit (solid line) and
complementary log-log link functions (dashed line). The power sequence are p=(0.5,0.9), p=(-1.3,-

0.9), p=(-1.6,-1.5) and p=(-1.2,-0.9) for Hepatitis, Varicella, Mumps and Rubella respectively.
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Figure 7. Hepatitis A in Bulgaria, models with complementary log-log link function. First order

fractional polynomials with logit and complementary log-log link function (FP(m=1I)-logit and

FP(m=1)-cloglog respectively). The models with constant and monotone force of infection were both

fitted with complementary log-log link function and p = 0.
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