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Summary

Measurements of both continuous and categorical outcomes appear in many statistical
problems. One such example is the study of teratology and developmental toxicity,
where both the probability that a live fetus is malformed (ordinal) or of low birth
weight (continuous) are important measures in the context of teratogenicity. While
multivariate methods of the analysis of continuous outcomes are well understood,
methods for jointly continuous and discrete outcomes are less familiar. We propose a
likelihood-based method that is an extension of the Plackett-Dale approach. Specifi-
cation of the full likelihood will be avoided using pseudo-likelihood methodology. The
estimation of safe dose levels as part of quantitative risk assessment will be illustrated
based on a developmental toxicity experiment of diethylene glycol dimethyl ether in
mice.

Keywords: Benchmark Dose; Clustering; Plackett-Dale Model; Pseudo-Likelihood,;
Quantitative Risk Assessment.

1 Introduction

In this paper, a modeling approach for the analysis of ordinal and continuous outcomes in a
clustered data setting has been described. The model is motivated by dose-response modeling

of malformation and fetal weight data from developmental toxicology experiments to be used
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for quantitative risk assessment. In a typical developmental toxicity study, pregnant animals are
exposed during the period of major organogenesis and structural development to a compound of
interest. Dose levels for this design typically consist of a control group and three or four exposed
groups, each with 20 to 30 pregnant animals. The dams are sacrificed just prior to normal delivery,
at which time the uterus is removed and the contents are thoroughly examined for the occurence
of defects. Viable fetusus are measured for birth weight and examined carefully for the presence
of malformations. Primary goal of these studies is the quantitative risk assessment, i.e., setting

a safe dose level of exposure.

The analysis of developmental toxicity data as described above, raises a number of chal-
lenges (Aerts et al. 2002). Indeed, these studies often result in multiple outcomes of interest.
Developmental toxicity may record both malformation outcomes (ordinal) and birth weight (con-
tinuous) on each embryo, as both have been found to be indicative of a toxic effect. In addition,
correlation between these outcomes exists (Ryan et al. 1991). Thus, jointly modelling the out-
comes might be an appropriate statistical analysis. Further, correlation between the fetuses within
litters is very likely to be present because of the genetic similarity and same treatment conditions
for offsprings of the same mother. This extra variation must also be taken into account in sta-
tistical analysis (Kupper et al. 1986, Chen and Kodell 1989). Since laboratory studies involve
considerable amounts of time and money, as well as huge numbers of animals, it is essential that

the most appropriate and efficient statistical models are used (Williams and Ryan 1996).

While multivariate methods for the analysis of continuous outcomes are well known (John-
son and Wichern 1992), methods for joint continuous and discrete outcomes are less familiar,
especially with clustering. Some attempts have been made towards a joint distribution of bi-
nary and continuous responses within a litter. A frequent approach is to apply a conditioning
argument that allows the joint distribution to be factorized in a marginal component and a condi-

tional component, where the conditioning can be done on either the binary or continuous response



(Catalano and Ryan 1992, Cox and Wermuth 1992, Cox and Wermuth 1994, Fitzmaurice and
Laird 1995, Olkin and Tate 1961). Catalano (1997) extended the idea to model simultaneously
ordinal and continuous outcomes. Alternative methods for joint binary and continuous outcomes
were proposed by Regan and Catalano (1999a,b) and Geys et al. (2001). The first ones in-
troduce a probit approach, where an underlying continuous variable is assumed for each binary
outcome, following a normal distribution. The second approach is based on a Plackett-Dale
approach (Plackett 1965), assuming a Plackett latent variable to model bivariate endpoints in
which one component is continuous and the other is binary. The bivariate latent variable models
are fundamentally different in the way the association between both variables is described. The
probit approach uses a correlation coefficient, while the Plackett-Dale approach makes use of an
odds ratio. The correlation coefficient of the bivariate normal induces constant local associa-
tion (Holland and Wang 1987), while the odds ratio is a measure of constant global association
(Dale 1986, Lapp, Molenberghs and Lesaffre 1998). However, extensions to joint ordinal and

continuous outcomes are in demand.

The Plackett-Dale model has several advantages and additional features compared with
the traditionally used factorization models. The main advantage of the Plackett-Dale model is
that it lends itself in a natural way to quantitative risk assessment, whereas the factorization
models do not provide a clear way to compute a safe dose of exposure. Another advantage of
the Plackett distribution is the flexibility with which the marginal densities can be chosen (in
this case, a multinomial and a normal distribution are used, both being a common choice for
the ordinal and continuous variable, respectively). Furthermore, the odds ratio, being a natural
measure of global association (Plackett 1965), is an attractive alternative to the correlation in
case of an ordinal variable. Also the generality of the design matrix is an important advantage
of this approach, as the assumptions of constant variance and constant association are often not

tenable. Indeed, in real data settings, correlation structures are likely to change with exposure



(Kupper, Portier, Hogan and Yamamoto 1986), and ignoring this can lead to bias in the estimates
or loss of efficiency (Ryan 2000). The Plackett-Dale model allows to directly model the bivariate
intrafetus association, as function of exposure or other covariates of interest, while this is not the
case in a factorization model (such as the model of Catalano (1997)). And further, the Plackett-
Dale model allows separate dose-response models for malformation and weight outcomes, while

taking into account the correlation due to clustering as well as the intrafetus association.

Section 2 introduces a motivating data set. In Section 3 a joint continuous-ordinal model
based on a Plackett distribution is proposed. In a first step, the model is described under an
independence assumption, and is then extended to deal with the clustering of outcomes within
litters. The ultimate goal of developmental toxicity studies is to perform risk assessment, i.e.,
to set safe limits of human exposure, based on the fitted model (Crump 1984). This will be
discussed in Section 4. In Section 5, our method is applied to the developmental toxicity data

introduced in Section 2.

2 Developmental Toxicity of DYME in Mice

The developmental toxicity of diethylene glycol dimethyl ether (DYME) in mice has been de-
scribed by Price et al. (1987). DYME is a component of widely used industrial solvents, used in
the manufacture of protective coatings such as lacquers, metal coatings, baking enamels, etc. Al-
though to date, several attempts have proven inadequate to evaluate the potential of glycol ethers
to produce human reproductive toxicity, structurally related compounds have been identified as
reproductive toxicants in several mammalian species, producing testicular toxicity and embryotox-
icity. In this study, DYME was administered by gavage in distilled water to timed-pregnant mice
during major organogenesis (gestational days 8 through 15). The doses selected for the study
were 0, 62.5, 125, 250, and 500 mg/kg/day with 21, 20, 24, 23 and 23 pregnant dams assigned

to each of these dose groups, respectively. For each live fetus, the fetal weight (continuous)



Table 1: Summary Data from a DYME Experiment in Mice

Dose Dams Live Litter Size Weight

(mg/kg/day) Mean Mean  sd

0.0 21 282 13.4 1.000 0.109

62.5 20 225 11.3 0.967 0.116

125 24 290 12.1 0.910 0.113

250 23 261 11.3 0.793  0.097

500 23 141 6.1 0.562 0.083
Dose Minor Malformation Full Malformation All Malformations
(mg/kg/day) Number % Number % Number %
0.0 7 2.5 1 0.4 8 2.9
62.5 9 4.0 0 0.0 9 4.0
125 31 10.7 7 2.4 38 13.1
250 27 10.3 59 22.6 86 32.9
500 0 0.0 132 93.6 132 93.6

and malformation status (normal, minor malformation, full malformation) is recorded. Table 1

summarizes the outcomes for this experiment.

The data show clear dose-related trends for both outcomes. There is a pronounced dose-
related reduction in fetal weight, with the highest administration of DYME resulting in roughly
half of the mean weight in control animals. The malformation data also exhibit trends with
dose. The rate of a minor malformation increases at the lower doses, while the rate of full
malformations shows strong increase at the highest doses. The rate of all malformations (minor
and full) increases monotonically with dose, ranging from 2.9% in the control group to 93.6% in

the highest dose group.



3 A Model for Data of a Mixed Nature

In this section we describe a model for simultaneously observed continuous and ordinal endpoints,
based on a Plackett-Dale approach. The Plackett-Dale idea has been used by Molenberghs, Geys
and Buyse (2001) to assess the validation of surrogate endpoints in randomized experiments with
a binary surrogate and a continuous true endpoint or vice versa. Geys et al. (2001) extended

this idea to the context of teratology experiments where rodents are clustered within litters.

Consider an experiment involving N clusters, the 7th of which contains n; individual
fetuses. Each of the individuals are examined for two outcomes, the degree of malformation (e.g.
none, minor, severe) and the fetal weight. Let M;; be the random variable representing the status
of malformation (m = 1,2,... ,¢) of the kth individual in litter ¢, and W, the continuous weight
outcome. Together with this vector of two responses Z;, = (Wi, My;)T, a vector of covariates

X, i1s observed.

First, suppose that all littermates are independent. Let us denote the continuous cumu-
lative distribution of the weight outcome as Fyy,, , and the discrete cumulative distribution of the
malformation outcome as Fj,,. We assume a normal distribution for the continuous outcome
Wi with mean ;. and variance 0%, and a multinomial distribution for the ordinal outcome M,
with 7 ;. the cumulative probability P(M;;, <) of observing a malformation of degree smaller or
equal to [. The dependence between malformation status and fetal weight can be defined using

a global cross-ratio at cutpoint (w, m):

FWik»Mik (w? m){l - FWik (w) — FMzk(m) + FWik:Mik(w? m)}
{FWik (w) - FWikvMik (wv m)}{FMzk (m) - FWikvMik (w7 m)}

djikz (w7 m) =

Using this relationship, the joint cumulative distribution Fyy, a7, can be written as function of
the marginal distributions and the global cross-ratio (Plackett 1965):

L (Fwik W)+ Py, (m)) (wik_l) N (FWM (W), Fary, (m)ﬂl)ik) ‘ 1
FWikvMik (w7 m) = 2(¢ik_1) Yir # 1,
Firy (w) Py (m) Y = 1,




with

S(Fsz FMik? d)zk:) = \/(1 + (wzk - 1)(FW21¢ + FMz’k))2 + 47/’2’]{:(1 - ¢2k)FWszMzk

Note that, for every cutpoint (w,m), a global cross-ratio v is obtained (m=1, ... ,c-1). And
thus, for every cutpoint (w,m) a different underlying Plackett distribution is assumed. Assuming

a constant odds ratio ¥;;(w, m) = 1), there is a single underlying Plackett distribution.

Based upon the cumulative distribution function Fyy,, as, (w,m), a bivariate Plackett den-
sity function g;x(w, m) for joint continuous-ordinal outcomes is derived. Put f,,(w) = OP(Wy, <

w| My, = m)/Ow for every m = 1,...  c. If we define g;x(w, m) = f,(w)P(My = m), or

%(Fwik:Mik(w7 1)) m=1,
gi(w,m) = ¢ 2 (Fwynry (w,m)) — 2 (Fwyony (w,m— 1)) m=2,...,c—1,
fWik(w) - %(sz‘k»Mik (w? c— 1)) m=c,

then this leads to specifying the density function g;.(w, m) by:

(L) :1 — d(w, m)] m=1,
gi(w,m) = fwig(w) -d(w,m -1) - d(w,m)] m=2,...,c—1,
\ fWig(w) :1 + d(w,m — 1)] m = c.
with
d(w, m) _ 1+ FWik (w)(wzk - 1) — FMik (m)(wzk + 1) )

S(FWik (w)7 FMz’k (m), wzk)

One can show that the function g;.(w, m) satisfies the classical density properties:

(i) gi(w,m) > 0 for all possible values of w and m,

() [ > 1 gw(w,m)dw = [ fw, (w)dw = 1.



Further, note that g;;(w, m) factorizes as a product of the marginal density fiy, (w) and the
conditional density fu,, ;. (m|w). Some interesting special cases are obtained when the two
outcomes are independent (¢, = 1), perfectly negatively associated (¢, = 0) and perfectly

positively associated (¢);, = oc). In case weight and malformation are independent, the function

gik(w, m) reduces to fi,, (w)far,, (M).

Dose-response models that incorporate litter- and fetus-specific covariates can be consid-
ered for each of the parameters by using appropriate link functions. The parameters ji;x, 02, Tk

and 1) for individual k in cluster 7 can be modelled by:

ik
ln(Uz‘Qk)
Iogit(7r1¢k)
Nik = : = X0, (1)
logit(7e—1)
In(ts)

where X, is a design matrix for the kth fetus in the 7th cluster and (3 is a vector of unknown

regression parameters. The generality of the design matrix is an important advantage of this
approach. Estimates are obtained by solving the estimating equations U(3) = 0. Grouping all
parameters ,uik,afk,m;g and 1, for individual k in cluster 7 in a vector #;;, and grouping all
vectors 6;, and 1, for the ith cluster in 6; and 7);, respectively, the estimating equations can than

be written as:

00 - S - 3300 () (e

Expressions for the derivatives are deferred to the Appendix.

Often, littermates are not independent, but clustered within litters. In the case of clus-
tering, we can use a pseudo-likelihood function, rather than considering the full likelihood. The
pseudo-likelihood approach was proposed by Arnold and Strauss (1991), and also found in Con-
nolly and Liang (1988), Liang and Zeger (1986) and Le Cessie and Van Houwelingen (1994).



The principal idea is to replace a numerically challenging joint density by a simpler function
that is a suitable product of ratios of likelihoods of subsets of the variables. As such, we
avoid the computational complexity of the full likelihood distribution of each cluster i, i.e.,
flwir, ... ywWin,, M1, ..., M4p,). In addition, the pseudo-likelihood method provides a way to
deal with nuisance parameters (Liang and Zeger 1989, Arnold and Strauss 1991). Arnold and
Strauss (1991) established consistency and asymptotic normality of the pseudo-likelihood estima-

tor. Thus, valid inference can be obtained from such models.

In a first step, the association between weight and malformation outcomes for an individual
fetus is modeled explicitely, but for outcomes from different littermates independence is taken as
a working assumption.

pl = Zzzlng(wik,mik). (2)

i=1 k=1

This approach acknowledges the fact that, while the association between different outcomes on
the same littermate is often of scientific interest, the association due to clustering within litters is
usually considered a nuisance. Indeed, in quantitative risk assessment primary interest lies in the
probability that a fetus is affected, either by malformation or by low birth weight. This probability
is a function only of the mean parameters and the bivariate intrafetus association. A sandwich
variance estimator is then used to adjust for potential bias in the variance estimator. Arnold
and Strauss (1991) showed that under regularity conditions, the pseudo-likelihood estimator B
obtained by maximizing the log-pseudo likelihood function (1) is consistent and asymptotically

normal with estimated covariance matrix:

i = (2 5) (Sueuer) (S 5) |,

However, if one is interested in the amount of clustering as well, this pseudo-likelihood
function can be extended by including the products of the bivariate probabilities of (i) two weight

outcomes for two different individuals in the same cluster, (ii) two malformation outcomes for
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indiv. j indiv. k

Wij (92) Wi, Weight

M (93) My Malformation

Figure 1: Four different types of contributions for the pseudo-likelihood.

two different individuals in the same cluster and (iii) a weight and malformation outcome for
two different individuals in the same cluster. This leads to the following log-pseudo likelihood

function:

N n; N
plo= D> Ingi(wi,ma) + Y Y Inga(wi, wiy)

i=1 k=1 i=1 k<j
N N ny

+ Z Zlﬂg3(m¢k, mg;) + Z Z In g4 (wir, mij),
=1 k<j =1 j#k

with g1, g2, g3, g4 for example bivariate Plackett distributions, characterized by potentially different
odds ratios. The four different types of contributions captured in the model are depicted in

Figure 1.

The pseudo-likelihood methodology is very general and flexible. It can be found in many
applications and fields of interest. It has been most advantageously used in the spatial data con-
text, where the full likelihood distribution is typically cumbersome (Hjort, 1993, Guyon, 1995).
But also in this context, maximum likelihood methods are not feasible, due to excessive compu-

tational requirements. As a consequence, alternative methods have been in demand and one has
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to rely on non-likelihood methods such as generalized estimating equations or pseudo-likelihood
methods. An important advantage of the pseudo-likelihood approach is the close connection with
likelihood, which enabled Geys, Molenberghs and Ryan (1999) to construct pseudo-likelihood ratio
test statistics that have easy-to-compute expressions and intuitively appealing limiting distribu-
tions. Geys, Molenberghs and Lipsitz (1998) compared pairwise likelihood with other estimating
equations approaches (GEE1 and GEE2) in marginally specified odds ratio models with exchange-
able association structure. The efficiency of the pseudo-likelihood estimators for the main effects
is comparable to the efficiency of GEE estimators. Yet, pseudo-likelihood allows the estimation
of both main effect parameters and association parameters, whereas GEEL1 is restricted to main
effect parameters. While GEE2 includes second order association parameters as well and is slightly
more efficient than both GEE1 and PL, it is computationally much more complex and becomes
cumbersome for large cluster sizes. In contrast, pseudo-likelihood can be used with very large

clusters.

4 Risk Assessment

In the area of developmental toxicity, an important goal is the quantitative risk assessment, i.e.,
deriving a safe dose of exposure. Recent techniques for risk assessment are based on fitting dose-
response models and estimating the dose corresponding to a certain increase in risk of an adverse
effect over background, i.e., benchmark dose. In case of multiple outcomes, the outcomes are
often examined individually, using appropriate methods to account for correlation, and regulation
of exposure is then based on the most sensitive outcome. This approach assumes that protecting
against the most sensitive outcomes protects against all adverse outcomes. It has been found,
however, that a clear pattern of correlation exists between weight and malformation outcomes
(Ryan et al. 1991), so that risk assessment based on a joint model may be more appropriate.

For risk assessment purposes, the joint probability that an individual fetus is malformed and/or
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of low fetal weight must be characterized.

The standard approach to quantitative risk assessment based on dose-response modelling
requires the specification of an adverse event, along with its risk expressed as a function of dose.
The risk function r(d) can be defined as the probability that a fetus has a high malformation

level or a low birth weight at dose level d. In other words, for the kth fetus in the ith cluster:
r(d) = P(Wy, < W, or My, > M,|d),

where W, and M., respectively, denote some cutoff values that determines fetal weight low
enough and malformation severe enough to be considered adverse. Based on this probability, a
common measure for the excess risk over background is given by

. r(d) —r(0)
ri(d) = 1_77,(0),

where greater weights are given to outcomes with larger background risk. The benchmark dose is
then defined as the dose corresponding to a small increase in risk over background. More formally,
the benchmark dose (BMD,)) is defined as the dose satisfying r*(d) = g, where g corresponds to

a pre-specified level of increased response and is typically specified as 0.01, 1,5 or 10% (Crump

1984).

Because the dose-response curve is estimated from the data and has inherent variability,
the benchmark dose itself is an estimate of the true dose that would result in the corresponding
level of excess risk. This sampling uncertainty for the model on which the benchmark dose is
based can be acknowledged, by replacing the benchmark dose by a lower confidence limit. Several
approaches exist (Williams and Ryan 1996, Kimmel and Gaylor 1988, Crump and Howe 1983).
A well known approach is the use of the lower effective dose, where an upper limit for the risk

function is used to determine a safe dose level. The lower effective dose (LED,) is defined as

7 (d) + 1.6451/Var (#(d)) = q,

the solution of
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where ¢ corresponds to the pre-specified level of increased response, and the variance of the

estimated increased risk function 7*(d) is estimated as

Var(i* () = (“547) Govd) (P

with Cov(3) the estimated covariance matrix of 3.

5 Analysis of DYME Data

In this section we illustrate the methods described through the analysis of developmental toxicity
data from a study of diethylene glycol dimethyl ether (DYME) in mice. Scientific interest lies
in the effects of dose on the overall risk due to malformation and low birth weight, i.e. the

probability that an individual fetus is malformed or of low birth weight.

For risk assessment to be reliable, models should fit the data well. In order to select the
most parsimonious model for the DYME data, we rely on the adjusted pseudo-likelihood ratio test
statistic, defined by Geys, Molenberghs and Ryan (1999). We start from a complex model with a
linear dose trend on the mean weight outcome (1) and on the logit of the cumulative malformation
probabilities (logit(7;),logit(m2)). The observed table (Table 1) suggests a decreasing litter size
with increasing dose level. In addition, fetal weight and malformation are often affected by litter
size. Therefore, to adjust for the litter size, a covariate for the deviation of the overall average

litter size (n; — 7) is incorporated into the model:

ni = 040+oz1d¢+042(ni —77&),
logit(m) = o+ Bid; + Ba(n; — 1),
logit(m2) = o+ 71di + y2(n; — n).

Note that this model is more flexible than the standard proportional odds model. However, a

careful modelling approach has to be considered with constraints on the parameters in order to



Table 2: Model Selection for DYME Study in Mice.
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Model Description # pars. pl

1. Different weight variances across doses; 17 -553.48
Common d trend on t; Different ¢/ depending on cutpoint m

2. Linear d trend on o?; 14 -551.09
Common d trend on t; Different ¢/ depending on cutpoint m

3. Constant o?; 13 -540.73
Common d trend on 1; Different 1) depending on cutpoint m

4. Linear d trend on ¢?; Different v/ depending on cutpoint m 13 -549.99

5. Linear d trend on o?; Constant v 12 -546.53

Comparison df X G* (p-value)
1-2 4 646 0.74  (0.946)
2-3 1 664 312 (0.077)
2-4 1 074 0.73 (0.393)
45 1 297 916 (0.002)

ensure that m; < m,. Different models on the fetal weight variance (In(c?)) and on the log odds

ratio (In(¢))) between weight and malformation are considered. Table 2 shows the different fitted

models, and a summary of model selection.

The weight variances were initially fit separately, but a more parsimonious model with

a linear dose trend on the variances (with In link function) is accepted (Model 2). The dose

effect parameter on the variances is only borderline significant, but will be kept in the model.

The linear dose trend on the log odds ratio can be deleted without substantial decrease in fit.

However, use of different log odds ratios, depending on the malformation cutpoint are significant

(In(ep) = ¢o + G1I(m = 2)). Hence, the model can be reduced to Model 4. Other parameters
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cannot be removed without a substantial decrease in fit. Therefore, we accept Model 4 as final

model on fetal weight variance and odds ratio.

The results of fitting the clustered bivariate model to the DYME data, using the final
Model 4, are displayed in Table 3, in the column labeled Plackett-Dale. The table tabulates the
parameter estimates, standard errors and Z scores for the average weight (1) and cumulative
malformation probabilities (7) and the weight variance (c2) and odds ratio (¢/). For fetal weight,
the dose coefficient is significantly negative, but there appears to be little effect of litter size on
weight. The fetal weight variance decreases with dose. Because of the working independence
assumption, there is no estimated intralitter correlation for fetal weight. The dose coefficient for
the cumulative malformation probabilities is significantly negative, and the significantly positive
coefficient of litter size suggests that larger litters have a smaller malformation risk. Again,
because of the working independence assumption, there is no estimated intralitter correlation for
malformation. The estimated odds ratios are less than 1 because of the negative association

between weight and malformation; the small value indicates the strength of the association.

Observed and predicted values in Figure 2 (a)-(b) show how the model fits the dose-specific
averages for both univariate outcomes. The predicted weight outcome fits the data quite well. The
lower points and curve in the malformation portion of the figure denote, respectively, the observed
and predicted probability of malformation and the upper points and curve correspond to the
probability of minor or full malformation. Notice that in the malformation status plot the highest
dose has only one observed value since all events were classified as full malformations. Estimates

for both malformation outcomes are in strong agreement with the observed probabilities.

Results can be compared with these of Catalano (1997), which are displayed in Table 3,
in the column labeled Cond-C. Catalano (1997) used a factorization model that conditions

on the continuous outcome. Three main differences are noted. First, in this model, different
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Figure 2: DYME Study: Estimated and Observed Outcomes. From Top to Bottom, (a) Fetal
Weight Model, (b) Malformation Status Model, (c¢) Joint Weight-Malformation Risk Model

intercepts and common slope parameters for the malformation model are assumed. Different
slopes on the probit scale would complicate the model. Secondly, the regression parameters of the
malformation model do not have a direct marginal interpretation because of the non-linearity of the
link function relating the conditional mean of the ordinal response to the covariates. The Plackett-
Dale model allows separate dose-response models for malformation and weight outcomes, while
taking into account the correlation due to clustering as well as the intrafetus association. Finally,
the model induces association by adding the residuals from the marginal model as covariates in
the conditional model, however these association parameters are not directly interpretable. Thus,
while taking into account the dependence between weight and malformation, the conditional

models do not directly specify a measure of association. To overcome this problem, one needs
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a joint model that incorporates the correlation between outcomes directly, such as the proposed
Plackett-Dale model. The Plackett-Dale model uses the odds ratio as intrafetus measure of

association, which is readily interpretable.

In order to calculate a benchmark dose based on the joint model, we first need to specify
the risk of an adverse effect, i.e. the probability that an individual fetus is malformed or of low
birth weight. Therefore, we need to define a weight below which a fetus can be considered as
being of “low fetal weight”. However, there is no standard definition. For simplicity, we specify
the cutoff point W, as two standard deviations below the control average fetal weight. As such,
the cutoff level for determining low fetal weight is equal to W, = 0.7816, corresponding to a
1,77% low birth weight rate in control animals. Further, we consider two definitions of risk,
depending on the cutpoint M, for what is considered as a “malformed” fetus. Either we define it
as the probability that a fetus has a minor or full malformation (M. = 2), or a low fetal weight.
Alternatively, we define it as the probability that a fetus has a full malformation (M, = 3), or has
a low fetal weight. These two risk functions are displayed in Figure 2 (c) together with the data.
The risks are evaluated at the average litter size (n; = n). The lower points and curve in this
graph correspond to the risk of a fetus with low fetal weight and/or minor or full malformation.
The higher points and curve correspond to the second definition of a risk. In case of the first
definition, the estimated risk function is higher and steeper compared with risk when defined
under the second definition. But, for both definitions of “risk”, the risk functions seem to fit the

data very well.

Table 4 shows the benchmark doses corresponding to the 1% and 10% excess risk for
Model 4, as well as the 1% and 10% lower limit LED. We also added the corresponding quan-
tities, calculated from univariate versions of the model. We can compare the joint modelling
approach with the traditional approach for multiple outcomes in which the lower of the individual

malformation and fetal weight LEDs is used as an overall LED. The miminum of the two LEDs



18

is more than 20% higher than those obtained using the bivariate methods that incorporate the
relationship between the two outcomes. Since both univariate outcomes suffer from a substantial
risk, focusing attention to a single response or a collapsed outcome would overestimate the safe
dose. The joint model yields higher risks, since it accounts for the correlation between both
outcomes. Thus, ignoring the correlation between the two outcomes leads to too high and hence
inappropriate safe doses. Note that joint outcome models based on factorization, such as the
model of Catalano (1997), do not provide a clear way to compute joint benchmark doses (Geys
et al. 2001, Regan and Catalano 1999). This is the major drawback of the conditional models,

since the joint benchmark doses are of primary interest.

6 Discussion

In this paper, a modelling approach for the analysis of clustered data with both continuous and
ordinal outcomes has been considered. The model was applied to a developmental toxicity study
(DYME in mice), and used for quantitative risk assessment. The Plackett-Dale method uses a
global odds ratio as intrafetus measure of association. The association between fetal weight and
malformation are directly modelled, and can be modelled in a general way, including covariate

information.

A problem in the quantitative risk assessment, that has received only minor attention, is
the choice of suitable cutpoints. For binary outcomes, the definition of an adverse health effect
is intuitively clear. This is less the case for continuous and/or ordinal responses. We considered
a dichotomized version of the continuous outcomes to determine a benchmark dose, after fitting
the dose-response model based on the continuous outcome. The risk of low fetal weight was
based on a cutoff level for determining a low weight extreme enough to be considered an adverse
event. Because of arbitrariness of the cutpoint, estimating a BMD from a continuous response

has led to much discussion (Bosch et al. 1996, Crump 1984, 1995, Gaylor and Slikker 1990,
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Kavlock et al. 1995, Kodell and West 1993). Several efforts have been made to develop risk
assessment for continuous outcomes (West and Kodell 1993). However, the used definition of

risk, defined in terms of the tail of the background (control) distribution, seems quite plausible.

In this paper, the response rates are allowed to depend on litter size and a safe dose is
then calculated at an “average” litter size. As observed with the DYME data, the number of
viable fetuses in a dam, i.e., the litter size, decreases with increasing dose levels. Thus, a method
that in addition acknowledges the stochastic nature of the litter size would be appropriate. This

is the subject of further research.

Although the method is presented in the specialized field of developmental toxicity, the
methodology is applicable in a general clustered or even correlated data setting with a contin-
uous and ordinal outcome. Thus, use of the proposed modelling approach is far beyond the

developmental toxicity context.
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Appendix

For simplicity, we have omitted the cluster-level index 7 and the fetus-level index k:

Some first derivatives
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Table 3: Model Fits for DYME Study in Mice.

Plackett-Dale Cond-C

Coefficient Estimate (s.e.; Z-score) Estimate (s.e.; Z-score)

Weight Model:

Intercept 1.014  (0.014; 72.4) 1.024  (0.019;55.3)
Dose -0.444  (0.028;-15.9) -0.472  (0.035;-13.6)
Litter Size 0.0002 (0.003; 0.1) -0.002  (0.004;-0.6)
Malformation Status Model:
m:  Intercept 3.462 (0.357; 9.7) 2.30 (0.207;11.12)
Dose -5.677 (0.987;-5.8) -4.05  (0.452;-4.47)
Litter Size 0.106 (0.060; 1.8) 0.076 (0.039;1.91)
mo:  Intercept 5.021 (0.323; 15.5) 2.78 (0.215;12.90)
Dose -7.236  (0.623;-11.6) 405 (0.452;-4.47)
Litter Size 0.106 (0.100; 1.1) 0.076 (0.039;1.91)
Average weight residual - - 3.93 (1.200;3.27)
Weight residual - - 2.12 (1.091;1.94)
Average weight residual x litter size - - 0.068 (0.390;0.17)
Fetal Weight Variance:
Dose 0.000 0.014 (0.002; 6.1) - -
0.125 0.013 (0.002; 7.6) - -
0.250 0.012  (0.001; 9.4) ; ;
0.500 0.010 (0.001; 9.4) - -
1.000 0.007 (0.002; 4.1) - -

Fetal Weight / Malformation Association:



Table 4: Risk Assessment for DYME Study in Mice.

Me=2 M =3

q Model BMD, LED, BMD, LED,

1% Joint 13.91  12.66 20.06  17.72
Continu  23.70  23.37 23.70  23.37
Ordinal  26.26  25.52 66.90  60.26

10%  Joint 88.64  83.88 108.13 101.85
Continu  118.99 118.26 118.99 118.26
Ordinal  136.00 133.71 199.59  193.29




