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Summary

We propose a method for estimating the regression parameters in a linear regression model
for Gaussian data when the outcome variable is missing for some subjects and missingness
is thought to be nonignorable. Throughout, we assume that missingness is restricted to the
outcome variable and that the covariates are fully observed. Although maximum likelihood
estimation of the regression parameters is possible once joint models for the outcome variable
and the nonignorable missing data mechanism have been specified, these models are funda-
mentally non-identifiable unless unverifiable modeling assumptions are imposed. In this paper,
rather than explicitly modeling the nonignorable missingness mechanism, we consider the use
of a “protective” estimator of the regression parameters (Brown, 1990). To implement the pro-
posed method, it is necessary to assume that the outcome variable and one of the covariates
have an approximate bivariate normal distribution, conditional on the remaining covariates. In
addition, it is assumed that the missing data mechanism is conditionally independent of this
covariate, given the outcome variable and the remaining covariates; the latter is referred to as
the “protective” assumption. A method of moments approach is used to obtain the protective
estimator of the regression parameters; the jackknife (Quenouille, 1956) is used to estimate the
variance. The method is illustrated using data on the persistence of maternal smoking from the
Six Cities study of the health effects of air pollution (Ware, et. al., 1984).
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1 Introduction

Linear regression, assuming Gaussian errors, is probably one of the most widely used statistical
models for relating the mean of an outcome variable to covariates. A common problem in the
application of linear regression is that the outcome variable is often missing for a subset of
the subjects in the study. The problem of missing outcome data arises in a wide variety of
fields of applications, from sample surveys to controlled clinical trials. For example, consider a
subsample of data on the persistence of maternal smoking from the Six Cities study of the health
effects of air pollution (Ware, et. al., 1984). In this data set the outcome variable of interest
is a measure of the mother’s smoking (in cigarettes per day) when her child is 10 years old. It
is of interest to determine how changes in the mother’s smoking behavior (from the previous
year) are related to her child’s wheeze status at age 9 (yes or no) and the city of residence
(there are two participating cities here). Preliminary analyses have shown that the square root
transformation of the maternal smoking variable is approximately normal. As a result, it is
of interest to estimate the parameters in the linear regression of the outcome (‘square root of
maternal smoking when child is age 10’) on the prior measure of maternal smoking (‘square root
of maternal smoking when child is age 9’), the child’s wheeze status at age 9, and the city of
residence. Of note, 208 (or 35%) of the 574 subjects have missing outcome data. Furthermore,
with this amount of missing data, a ‘complete case analysis’, based only on the 366 subjects
with no missing outcome data, could potentially yield quite biased estimates of the regression
parameters if missingness is related to the outcome. The data for 30 randomly selected subjects

are shown in Table 1.

When nonresponse in the outcome variable is unrelated to the value of the possibly unob-
served outcome, the nonresponse is said to be ignorable (e.g., see Little 1982, Little and Rubin

1987). Commonly, however, there may be concern that nonresponse is related to the values of



the possibly unobserved outcome variable. For example, in the Six Cities study, mothers who
smoke more may be less likely to report their cigarette consumption. When nonresponse is
related to the value of the possibly unobserved outcome, the nonresponse is said to be ignorable.
When there is nonignorable nonresponse, serious biases in the estimates of the parameters may
result if the missing data mechanism is not modeled. Little and Rubin (1987) and Rubin (1987)

discuss this issue in detail and provide excellent examples illustrating this point.

A standard linear regression analysis, based on the complete cases, discards data on subjects
for whom the outcome is missing. When the missing data mechanism is nonignorable, the
complete case analysis could yield very biased estimates of the regression parameters (e.g., Vach
and Blettner, 1991; Ibrahim and Lipsitz, 1996). To reduce or remove the potential bias a
nonignorable missing data mechanism, relating the probability that the outcome is missing to
both the outcome and covariates, could be incorporated into the model. However, caution must
be exercised with models for nonignorable nonresponse since these models are fundamentally
non-identifiable unless unverifiable modeling assumptions are imposed (e.g., Ibrahim and Lipsitz,
1996;Ibrahim, Lipsitz and Chen, 1999). This is due to the fact that there is a lack of information
in the observed data to estimate specific parameters in the missing data model (e.g., Little and

Rubin, 1987, p.239; and Baker and Laird, 1988).

Because models for nonignorable nonresponse are known to be heavily dependent on unver-
ifiable modeling assumptions, it is desirable to consider alternative approaches. One alternative
to explicitly modeling the missingness mechanism in a nonignorable model is to consider the use
of a “protective” estimator of the regression parameters (Brown, 1990). In this paper we propose
a protective estimator of the linear regression parameters. To implement the proposed method,
it is necessary to assume that the outcome variable and one of the covariates have an approx-

imate bivariate normal distribution, conditional on the remaining covariates. In addition, it is



assumed that the missing data mechanism is conditionally independent of this covariate, given
the outcome variable and the remaining covariates; the latter is referred to as the “protective”
assumption. A method of moments approach is used to obtain the protective estimator of the
regression parameters; the jackknife (Quenouille, 1956) is used to estimate the variance. The
proposed method only requires the application of two separate ordinary least squares regres-
sions. The remainder of this article is organized as follows. In Section 2, we develop notation
and present the complete data model and the observed data likelihood. In Section 3, a pro-
tective estimator for the linear regression parameters is developed. In section 4, the results of
a simulation study, comparing the protective estimator to the maximum likelihood (under a
correctly specified nonignorable model) and the complete case estimator, are presented. Finally,
in Section 5, the proposed method is illustrated using the data on the persistence of maternal

smoking from the Six Cities study.

2 Notation and Maximum Likelihood

Consider a linear regression model with n independent subjects, i = 1,...,n. Let Y; denote the
outcome variable for the ith subject and let x; = (x;1, ..., a:ip)’ denote a px 1 vector of covariates.
The primary interest is in estimation of the vector of regression coefficients 8’ = [y, 3'] for the

linear regression model
pi = E[Y;|x;, 8] = o + %33 (1)

Although the covariates are fully observed, Y; is missing for a subset of the subjects. Further-

more, the missing data mechanism is thought to be nonignorable.

Note that maximum likelihood estimation of 3 (and ¢?) requires specification of the con-



ditional distribution of y; given x;; furthermore, it is assumed that,

1
V2rVo?

where 02 = Var([Y;|x;] and p; = p;(3) is given by (1). However, since Y; can be missing, we also

e—(yi_ﬂi)Q/QUQ, (2)

f(yz | Xi,ﬂ,O'Q) =

define the indicator random variable R;, which equals 1 if Y; is observed and 0 if Y; is missing.
With nonignorable missing data, Ibrahim and Lipsitz (1996) and Ibrahim, Lipsitz and Chen

(1999) propose using the joint distribution (y;, r;|x;) to estimate 3, i.e.,

f(riayilxba?ﬂao-z) = f(yz|x’t7ﬂ70-2)f(rz|x’wyua) ) (3)

where « is the parameter vector of the ‘missing data mechanism’ f(r;|x;,y;, &). For example, a

logistic regression model could be specified for the Bernoulli random variable R; given (x;,y;),
f(Tz'|X¢;yz'704) = F:Z(]- - Wi)(l_ri)7 (4)

where

_ exp(ao + a1 x; + aoy;)
1+ exp(ag + o x; + azy;)

i (5)
Note that in (5), if ag = 0, then f(r;|x;,v;, ) does not depend on y;; this implies that the
missing data are missing at random (Rubin, 1976) and the missing data mechanism is ignorable

(provided B, o, and « are variation independent). If ay # 0, then the missing data mechanism

depends on y; and is nonignorable.

When Y; is missing (R; = 0), the observed data are simply (r;,x;); if Y; is observed, then
the observed data are (r;,y;,x;). Recall that the main interest lies in making inferences about
the parameter 3 from the density f(y;|x;,3). However, since Y; can be nonignorably missing,
we must also consider the random variable R; when using the observed data to make inferences
about 3 (e.g., Ibrahim, Lipsitz and Chen, 1999). In particular, for likelihood-based inference

about 3, the density of the observed data is (3) if Y; is observed and is
f(T2‘|X,l‘,Oé,,6,O'2) = f(yZ|X’l7ﬁ70'2)f(rZ|X’l:yl7a)dy2
Yi
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if ¥; is missing. As a result, the observed data log-likelihood is

anog (ro, yalxi, o, B, 0%)] + (1 — ) log[f (rilxs, e, B, 0°)],

and the MLE for (a,3,0?) is obtained by directly maximizing the log-likelihood of observed

data by solving

ﬁ (8, a,02) Z{nlog (ri, yilxi, &, B,0°)] + (1 —ri)log[f(ribq,a,ﬁ,g?)]} =0,
’ i=1

for (,CA?, &, 52%) using a Newton-Raphson algorithm. Alternatively, the EM-algorithm (Dempster
et al., 1977; Ibrahim, Chen, and Lipsitz, 1999) can be used to obtain the MLE. Unfortunately, as
discussed in the introduction, caution must be exercised with models for nonignorable missing
data because certain parameters may be inestimable unless unverifiable modeling assumptions
are imposed. As an alternative to explicitly modeling the missingness mechanism in a nonig-

norable model, in Section 3 we propose a protective estimator (Brown, 1990).
3 Protective Estimator

To develop the protective estimator we must assume that one of the covariates, say x;1, has
a normal distribution. In particular, we partition x; into x, = [z;1,X],], and assume that
f(yi,zi1|xs2) has a bivariate normal distribution. Next, consider the distribution of (y;,x;1)

given x;2 when no data are missing. The density f(y;, ;1 |Xs2) is given by,

Y; 0o + 01%;2 ot o1z
0| ~ N , . 6
( X XZQ) K Y0 + Y1 Xi2 o12 03 ©

Then, in terms of the parameters in (6), the regression model of interest in (1) is given by,

ElYi|x;] = 6o+ 01x2+ %[xu - Y — Y1 X2
= (fy — 912 12 . 0, — 912 ) (7)
0 o2, Yo ) + o2, i1 + |01 o2, Y1) Xi2

= Bo+ bizi + BaXia,



where

012

Bo = 0o — =0,
022
B = 012
1= "9
022

and
012
162 =0, — 5 V1 -
022
Further, the conditional variance is

g
Var[Yiixi] = oty — —° . (8)

22

In the presence of nonignorable missing outcome data, if the parameters

2 2
(907 017 057150115012, 022)

in (6) can be consistently estimated, they can be substituted in (7) to consistently estimate the
regression parameters of interest. The protective estimator of 3 uses the conditional distributions
of f(x;]x2) and f(x;1|y;,Xs2) to estimate these parameters. Since x;; and x5 are both fully
observed, it is straightforward to estimate f(x;1|x;2) using all observations. However, since y; is
observed only when r; = 1, it is not straightforward to estimate f(z;1|y;, X;2) unless an additional

assumption about the nonignorable missing data mechanism is made.

JFrom an examination of (6), note that the conditional mean of X;; given x;o is

E(Xillx’i%’)/) =7 + Y1Xi2, (9)

with conditional variance

VaT(XﬂlXZ‘Q) = 0'%2. (10)

Since there are no missing data on X;; or X;2, (70,71,0%) can be consistently estimated using

ordinary least squares, where the outcome variable is X;; and the regression model is given by



(9). Suppose we denote the ordinary least squares estimate of these parameters by (Yo, 1, 05)-
Estimation of the remaining parameters, (6p,01,0%,,012), can be based on the conditional

distribution f(x;1|y;, Xi2)-

However, without additional assumptions, it is possible to estimate relationships between

Y; and other variables only when Yj is observed (R; = 1). Consider the density

pr(R; = i, ys, Xi) f (241 |Yis Xi2) . (11)

ZT; '7X’i 7R:1 =
f(@alyi, xi2, Ry = 1) pr(R; = 1y, Xs2)

If, given (y;,X;2), the missing data mechanism does not depend on z;1, i.e.,
pr(B = zir, v Xi2) = pr(R; = 1yi, Xi2), (12)

then (11) reduces to

F(@itlys, Xio, Ry = 1) = f(alyir Xi2)- (13)

Equation (12) is the protective assumption. For appropriate choices of x;1, this assumption
is often quite reasonable, since for many nonignorable missing data mechanisms, missingness
depends primarily on the unobserved value of the outcome Y;. In particular, the protective
assumption asserts that, conditional on Y; (and x;2), missingness is independent of ;. At the
very least, the assumption in (12) can form the basis of a sensitivity analysis, that assesses the
sensitivity of inferences to departures from the assumption that missingness is ignorable. Under
the protective assumption, the result in (13) implies that the complete cases (R; = 1) can be
used to consistently estimate the parameters of the conditional distribution of X;; given (y;, X;2).
In particular,
E(Xi|xi0, yi, i = 1,7, 0) = E(Xi1[%i2,9i,7, 0).
Using (6), the conditional mean of X;; given (x;2,v;), is

E(Xalxi,9i,7,0) = (0 +7v1X2) + Z—%f[yz‘ — 6o — 01x;2] 14)
= ¢+ P X0 + D2y,



where

012
P2 = —,

011

012
%0 =" — —5to =0 — 200,
o1

and

012
¢1:’71——291=’71—¢201-
11

Also, the conditional variance is given by

2
J12

Var(Xa|Xio, 4i) = 055 — —5=.
11

(15)

Then, the parameters [¢o, ¢, ¢2, Var(X;i|xie,y;)] can be estimated, based on the complete

cases, via ordinary least squares regression with outcome variable X;; and covariates (X;2,¥;).

Given the ordinary least squares estimates [qAﬁo, 311, b9, \7a\r(XZ-1 |xi2,y;)] from the latter regression

model, and the estimate (Jp,7;,03,) from the regression model in (9), (6o, 01,0%,,012) can be

estimated as follows,
b0 = (o — ¢0) /b2,
and
a1 = - 67’1)/52
JFrom an examination of the residual variance in (15), note that

— = 0'%2 — Var(Xillxi%yi)?

so that

_ ‘7%2/0%1 ‘7%2/0%1 ‘752 - VW(Xz‘1|X¢27ZJz‘).

o129 = = =
o12/0% ®2 ®2

Then, 012 can be estimated using

03y — Var(Xa %, vi)
0192 = =

?2




and 0%, = 012/¢2, 0%, can be estimated using

o 012 03y — Var(Xu X, y:)
011 = =

= .

®2 o3

Then, the protective estimator of 3 = [By, 81,35] in (7) is given by

-0 012 .
Bo = 6o — =o,
22
5=
~9
022
and
S~ A 012
By =01 — =57 .
022

When the assumptions about the missing data mechanism and the distribution of f(y;, ;1 |x;2)
are correct, results from method of moments can be used to show that ﬁ is consistent and has
an asymptotic multivariate normal distribution, with mean vector 8 and a covariance matrix
which can be consistently estimated using the delta method or the jackknife (Quenouille, 1956).
Because 3 is a complicated function of (6o, 01,%0,71,0%,,012,05), and ordinary least squares
regression is not computationally demanding, it is preferable to use the jackknife variance esti-

mator. The jackknife variance estimate can be obtained as follows,

n

V() = ("2 ) Y B - BB~ B, (16)

i=1

where B_i is the estimate of 3 obtained by deleting the data for the i** subject. Because OLS
regression is computationally simple, the additional CPU time required to obtain the jackknife
variance estimate is minimal. For example, in the illustrative example presented in Section 5,
where n = 574, it took only 11 seconds (real time) on a SPARC Ultra-80 workstation to obtain

the jackknife variance estimate.
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4 Simulation Study

We performed a modest simulation study to compare the estimates obtained using the complete
cases (CC), maximum likelihood with a correctly-specified nonignorable missing data model
(ML-NI), and the proposed protective estimate (PR). In the simulation study, there were two
covariates, (z;1,x;2) and the true model for the simulations was formulated by specifying each

term on the right side of

F(risyir win, Tz, 0, B,7) = f(rilys, Tir, Tz, &) f(ysl|zin, Taz, B) f (@i |zaz, ). (17)

For the covariate distributions, x;5 was fixed to be a binary variable with half of the observations
set equal to 0 and the other half set equal to 1. The distribution of Xj;; given x;5 was assumed
to be normal, with mean ;5 and variance 1. The distribution of Y; given (z;1,x;2) was assumed
to be normal, with mean

wi = E(Yi|zin, 2) = 1 4 41 + 40, (18)

and variance 1, so that 5" = (6o, f1,02) = (1,1, 1). The true model for m; = pr(R; = 1|y;, i1, T2)

was
logit (m;) = —y;. (19)

For each of n = 125, n = 250 and n = 500, we performed 1000 simulation replications. The
results of the simulations are summarized in Table 2. We note that for ML-NI (maximum
likelihood), (19) is correctly specified. For the protective estimator, f(y;, x;1|z:2,3,y) is assumed

to be bivariate normal.

The results in Table 2 indicate that the protective estimator is approximately unbiased,
and displays the least bias for all sample sizes considered. Note that the CC estimator is biased

for all parameters and for all sample sizes; the bias does not appear to depend on sample size.
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The bias in the ML-NI estimator is modest and decreases as n gets larger; the magnitude of
the bias is within 10% for all sample sizes considered. Of note, the ML-NI estimator had the
smallest variance (and, although not shown, the smallest mean square error) for all sample sizes.
For example, when n = 500, the efficiency of the protective estimator versus ML-NT is 52% for
Bo, 29% for (31, and 20% for (5. However, the main motivation for the protective estimator is in
its use in sensitivity analysis for assessing the impact of departures from the assumption that

missingness is ignorable; the issue of efficiency is of less concern.

5 Illustrative Example

In this section, we present an illustration of the use of the protective estimator using data on
the persistence of maternal smoking from the Six Cities study. Recall that the outcome variable

is a measure of maternal smoking when her child is 10 years old. Specifically, it is assumed that

Smoke;o = \/maternal cigarettes smoked per day when child is age 10

has an approximate normal distribution and it is of interest to estimate the parameters in the

following linear regression model,
E(Smoke;s|city;, wheeze;, Smoke;1 ) = [y 4+ (1Smoke; + [acity; + Sawheeze; , (20)

where

Smoke;; = /maternal cigarettes smoked per day when child is age 9 ;

1 if child wheezed at age 9

wheeze; = { 0 if child did not wheeze at age 9 ’

and city; equals 0 or 1 (for the two participating cities).
Using maximum likelihood, we considered a nonignorable missing data model, with

log(m-/(l — 7TZ)) = g + a1 Smoke;y + avSmoke;; + agwheeze; 4+ ascity;, (21)

12



where 7; = pr(R; = 1|Smoke;o, Smoke;;, wheeze;, city;, ). Table 3 gives the ML estimate of a
and there is evidence that the outcome variable is nonignorably missing. Specifically, at the
5% level of significance, missingness in the outcome appears to be significantly related to the
outcome Smoke;o (p < .0001), the city of residence (p < .0001), and marginally related to wheeze
(p = 0.096). Conditional on the outcome Smoke;o, missingness does not appear to be related to

maternal smoking at the previous visit (Smoke;;) (p ~ 0.758).

For the protective estimator it is assumed that f(Smoke;o, Smoke;;|wheeze;, city;, ) is bivari-
ate normal. Since the probability of missingness in (21) does not appear to be related to Smoke;,
and the marginal distributions of Smoke;o and Smoke;; each appear to be approximately nor-
mal in preliminary analyses, the two assumptions required for the protective estimator to be
consistent appear to hold. We note, however, that because of the inherent difficulties in fitting
nonignorable models, ordinarily it will not be possible to determine whether the nonresponse
probabilities are conditionally independent of x;1; in general, the assumption must often be made

on subject-matter grounds.

Table 4 provides the estimates of 3 obtained from the three different approaches; ML-NI
(nonignorable), PR (protective), and CC (complete case). In Table 4, all three approaches yield
very similar estimates of the intercept, and the effects of Smoke;; and wheeze (although, for the
latter, the CC estimate is negative, whereas the other two estimates are positive). However, we
note that the estimate of the city effect is similar for ML-NI and the protective estimate, but
discernibly different from the CC estimate. Also, complementing the results from the simula-
tions, the ML estimator appears to be the most efficient, and most notably so for estimation of
the city effect, in which the protective estimate is estimated to be only 16% as efficient as the
ML-NI estimate. Thus, even though the ML-NI and the PR estimates of the city effect are quite

similar, the larger sampling variability of the PR estimate yields a non-significant p—value.

13



Finally, we note that the ML-NI estimate was obtained by programming a Newton-Raphson
algorithm in SAS, using numerical integration with a trapezoid rule. The convergence criterion
used for the Newton-Raphson algorithm was that the distance between the t** iteration and the
(t + 1) iteration in each parameter was less than 10~7. The number of iterations required for
convergence was 6, and it took 82 seconds (real time) to obtain the estimates using a SPARC-80
Workstation. This does not compare favorably to the 11 seconds required for the protective

estimate and jackknife variance estimate.

6 Conclusion

In this paper we have proposed a protective estimator of the parameters in a linear regression
model with nonignorably missing Gaussian outcomes. We note that maximum likelihood with
a nonignorable missing data model has been proposed previously to estimate the regression
parameters, but, as discussed in Ibrahim and Lipsitz (1996), caution must be exercised since
these models are fundamentally non-identifiable unless unverifiable modeling assumptions are
imposed. The use of a protective estimator avoids the need to jointly specify and estimate the
parameters of a nonignorable missing data model. However, the protective estimator is not
free of assumptions. In particular, the protective estimator assumes that the outcome variable
and one of the covariates have an approximate bivariate normal distribution, conditional on the
remaining covariates. In addition, it is assumed that the missing data mechanism is condition-
ally independent of this covariate, given the outcome variable and the remaining covariates; the
latter is referred to as the “protective” assumption. The property of the bivariate normal dis-
tribution that is crucial to the protective estimator is that the conditional mean of the covariate
can be expressed as a linear function of the outcome variable (and the remaining covariates).

In cases where the bivariate normal assumption may not hold, but the conditional mean is

14



nonetheless approximately linear in the outcome variable, the protective estimator should yield
valid estimates of the regression parameters (provided the additional conditional independence
assumption holds). In general, we view the protective estimator as providing a simple means
for conducting sensitivity analysis, for assessing the sensitivity of inferences to departures from

the assumption that missingness is ignorable.

Because of the broad range of possible missing data configurations and underlying proba-
bility distributions generating the data, it is very difficult to draw definitive conclusions from
the modest simulation study that was conducted; we can only make some general suggestions.
The results of the simulation study suggest that the bias in estimating B can be reduced when
using the protective estimator as compared to the CC estimator. However, there is a tradeoff
between using the protective estimator and the ML-NI estimator. For the protective estimator
to be consistent, it is necessary to correctly specify f(y;, xi1]|Xi2), but the missing data mech-
anism does not need to be specified; the only requirement is that missingness is conditionally
independent of x;;. For the ML-NI estimator to be consistent, it is necessary to correctly spec-
ify f(yi,7i|%;). The results of the simulation study indicate that the ML-NI estimator can be
more efficient than the protective estimator. However, as noted earlier, a basic problem with
nonignorable missing data models is that they are fundamentally non-identifiable unless unver-
ifiable modeling assumptions are made. Moreover, it is well-known that the resulting estimates
are quite sensitive to modeling assumptions. For example, from the data at hand, it is simply
not possible to distinguish between nonignorably missing outcome data arising from a normal
distribution and ignorably missing outcome data arising from a distribution with positive or

negative skewness.
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Table 1. Data on 30 randomly selected subjects from the Six Cities Study.

Child wheeze Maternal Smoking: Maternal Smoking:

Subject City at age 9 cigarettes at age 9 cigarettes at age 10
1 1 NO 0.0000
2 1 NO 1.0000
3 1 YES 10.0000
4 0 NO 13.0000
) 0 YES 15.0000
6 0 NO 20.0000
7 1 YES 20.0000
8 0 NO 30.0000
9 0 YES 35.0000
10 0 YES 39.9999
11 1 NO 39.9999 .
12 0 NO 0.0000 0.0000
13 0 YES 0.0000 0.0000
14 1 NO 0.0000 0.0000
15 1 YES 0.0000 0.0000
16 0 NO 12.0000 0.0000
17 0 NO 4.0000 3.0000
18 0 NO 10.0000 6.0000
19 0 NO 1.0000 7.0000
20 1 NO 10.0000 10.0000
21 0 YES 20.0000 10.0000
22 1 NO 20.0000 10.0000
23 0 NO 20.0000 20.0000
24 0 YES 20.0000 20.0000
25 0 NO 30.0000 20.0000
26 1 NO 20.0000 21.0000
27 1 NO 35.0000 25.0000
28 0 YES 39.9999 30.0000
29 1 YES 39.9999 30.0000
30 1 YES 2.0000 39.9999

19



Table 2. Summary of results from the simulation study.

n Method ﬂo =1 ﬁl =1 ﬂg =1

Estimate 125 CC 0.426 0.868 0.848
ML 0.918 1.035 0971

PR 1.036 1.030 1.027

250 CC 0.419 0.862 0.845

ML 0.923 1.005  0.969

PR 1.021 1.004 1.019

500 CC 0.421 0.857  0.846

ML 0.953 0.985 0.974

PR 1.011 1.002 1.010

Simulation 125 CC 0.0585 0.2719 0.0487
Variance ML 0.0798 0.1887 0.0320
PR 0.3723 0.8775 0.3023

250 CC 0.0298 0.1227 0.0214

ML 0.0061 0.0992 0.0038

PR 0.1125 0.3258 0.0863

500 CC 0.0132 0.0546 0.0101

ML 0.0189 0.0397 0.0065

PR 0.0364 0.1391 0.0318
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Table 3. Maximum likelihood estimates for logistic regression for the missing data model,
pr(Ri = 1lyi, %)

PARAMETER ESTIMATE SE Z p—value

Intercept 2.359 0.260 9.08 < .0001
Smoke;o -0.405 0.075 -5.38 < .0001
Smoke;; -0.016 0.051 -0.31 0.758
Wheeze -0.382  0.229 -1.67 0.096
City -1.521 0.210 -7.26 < .0001
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Table 4. Estimates for linear regression model for E(Y;|x;).

Effect Method B SE Z  p—value
Intercept CC 0.892 0.162 5.51 < .0001
PR 1.045 0.286 3.65 < .0001
ML 1.169 0.156 7.50 < .0001
Smoke;; CC 0.294 0.047 6.30 < .0001
PR 0.416 0.086 4.83 < .0001
ML 0.301 0.042 7.12 < .0001
Wheeze  CC -0.045 0.245 -0.19 0.853
PR 0.083 0.556  0.15 0.881
ML 0.075 0.222 0.34 0.736
City CcC -0.025 0.221 -0.11 0.910
PR 0.424 0.495 0.86 0.392
ML 0.460 0.199 2.31 0.021
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