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Abstract

Using standard missing data taxonomy, largely due to Rubin and co-workers, it
is argued some simple but commonly used methods to handle incomplete longitudinal
clinical trial data, such as complete case analyses and methods based on last observation
carried forward, are poorly principled and restrictive. Given the availability of flexible
software for analyzing longitudinal sequences of unequal length, it is argued there
is not even a computational reason for not shifting to a likelihood-based ignorable
analysis. Such analyses are valid under the much weaker assumption of MAR. While the
occurrence of MNAR missingness cannot be ruled out, it is argued that such analyses
are, themselves, surrounded with problems and therefore, rather than either forgetting
about them or blindly shifting to them, their optimal place is within a sensitivity
analyses. The concepts developed here are exemplified using data from three clinical
trials, where it is shown that shifting the analysis method may have an impact on the
conclusions of the study.

Some Key Words: Complete Case Analysis, Ignorability, Last Observation Car-
ried Forward, Missing At Random, Missing Completely At Random, Missing Not At
Random.



1 Introduction

In a longitudinal clinical trial, each unit is measured on several occasions. It is not unusual
in practice for some sequences of measurements to terminate early for reasons outside the
control of the investigator, and any unit so affected is called a dropout. It might therefore

be necessary to accommodate dropout in the modeling process.

Early work on missing values was largely concerned with algorithmic and computational
solutions to the induced lack of balance or deviations from the intended study design (Afifi
and Elashoff 1966, Hartley and Hocking 1971). More recently general algorithms such as
expectation-maximization (EM) (Dempster, Laird, and Rubin 1977), and data imputation
and augmentation procedures (Rubin 1987), combined with powerful computing resources
have largely provided a solution to this aspect of the problem. There remains the very difficult
and important question of assessing the impact of missing data on subsequent statistical

inference.

Certain important concepts are now in common use in the missing value literature. When
referring to the missing-value, or non-response, process we will use terminology of Little
and Rubin (1987, Chapter 6). A non-response process is said to be missing completely at
random (MCAR) if the missingness is independent of both unobserved and observed data
and missing at random (MAR) if, conditional on the observed data, the missingness is in-
dependent of the unobserved measurements. A process that is neither MCAR nor MAR is
termed non-random (MNAR). In the context of likelihood inference, and when the para-
meters describing the measurement process are functionally independent of the parameters
describing the missingness process, MCAR and MAR are ignorable, while a non-random

process is non-ignorable.

Many methods are formulated as selection models (Little and Rubin 1987) as opposed to
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pattern-mixture modeling (PMM; Little 1993, 1994). A selection model factors the joint
distribution of the measurement and response mechanisms into the marginal measurement
distribution and the response distribution, conditional on the measurements. This is intu-
itively appealing since the marginal measurement distribution would be of interest also with
complete data. Little and Rubin’s taxonomy is most easily developed in the selection setting.
Parameterizing and making inference about the effect of treatment and its evolution over

time is straightforward in the selection model context.

In the specific case of a clinical trial setting, standard methodology used to analyze longitudi-
nal data subject to non-response is mostly based on the MCAR assumption and most often
include such methods as last observation carried forward (LOCF), complete case analysis
(CC), or simple forms of imputation. This is often even done without questioning the pos-
sible influence of these assumptions on the final results. As will be discussed in subsequent
sections, this is unfortunate since (1) the assumption of MCAR is very strong and (2) such
methods as LOCF, CC, and imputation make additional, strong, and often very unrealistic
assumptions. On the other hand, under MAR, valid inference can be obtained through a
likelihood-based analysis, without the need for modeling the dropout process. As a conse-
quence, one can simply use, for example, linear or generalized linear mixed models (Verbeke
and Molenberghs 2000), without additional complication or effort. We will argue that such
an analysis not only enjoys much wider validity than the simple methods but in addition is
simple to conduct, without additional data manipulation using such tools as, for example,
the SAS procedures MIXED or NLMIXED. Thus, clinical trial practice should shift away

from the ad hoc methods and focus on likelihood-based ignorable analyses instead.

This is not to forget that the reasons for dropout in realistic settings are varied and it is
therefore difficult to fully justify on a priori grounds the assumption of MAR. For example,

the rate of and the reasons for dropout varied considerably across 11 clinical trials of similar



design, of the same drug in the same indication. In one study, completion rates were 80%
for drug and placebo. In another study, two thirds of the patients on drug completed the
study, while only one third did so on placebo. In another study, 70% finished on placebo but
only 60% on drug. Reasons for dropout also varied, even within the drug arm. For example,
at low doses, more patients on drug dropped out due to lack of efficacy whereas at higher
doses dropout to adverse events was more common. At first sight, this calls for a further
shift towards MNAR models. However, some careful considerations have to be made. First,
MNAR models raise a number of non-trivial issues: irrespective of the MNAR route taken,
e.g., a parametric model of the type of Diggle and Kenward (1994), or a semiparametric
approach such as in Robins, Rotnitzky, and Zhao (1998), assumptions will be required that
cannot be assessed from the data under analysis. Hence in this setting there cannot be
anything that could be termed a definitive analysis. This limits the use of MNAR methods
in a regulatory framework. Second and often overlooked, ignorable analyses may provide
reasonably stable results, even when the assumption of MAR is violated. This is very
important in settings such as those mentioned above where dropout frequency and patterns
vary across otherwise similar studies. While the rate of dropout and its dependence on
treatment arm does not provide evidence against even MCAR, its variation from trial to trial
indicates that one should not assume all studies are alike. A discussion of this phenomenon in
the survey context has been given in Rubin, Stern, and Vehovar (1995). These authors argue
that, in well conducted experiments (some surveys and many confirmatory clinical trials),
the assumption of MAR is often to be regarded as a realistic one. Third, and very important
for confirmatory trials, an MAR analysis can be specified a priori without additional work
relative to a situation with complete data. Based on these considerations, we recommend,
for primary analysis purposes, the use of ignorable likelihood-based methods. To explore
the impact of deviations from the MAR assumption on the conclusions, one should ideally

conduct a sensitivity analysis, within which MNAR models can play a major role, together



with, for example, pattern-mixture models (Verbeke and Molenberghs 2000, Ch. 18-20).

A three-trial case study is introduced in Section 2. A thorough discussion on the prob-
lems associated with simple method is presented in Section 3. Particular emphasis is given
to available case methods, since they allow easy transition from simple methods (requiring
MCAR) to likelihood-based analyses, ignorable under MAR (Section 4). A detailed treat-
ment of likelihood-based analyses is given in Section 5) and the case study is analyzed in

Section 6. A perspective on sensitivity analysis is sketched in Section 7.

2 Case Study

The ideas developed in this paper are motivated from and applied to three sets of data,
coming from three clinical trials (enrolling 167, 342, and 713 patients, respectively). The
Hamilton Depression Rating Scale (HAM D7) is used to measure the depression status of

the patients. For each patient, a baseline assessment is available. Post-baseline visits differ

by study (Table 1).

For blinding purposes, therapies are recoded as Al for primary dose of experimental drug,
A2 for secondary dose of experimental drug, and B and C for non-experimental drugs. The
treatment arms across the three studies are as follows: Al, B, and C for study 1; A1, A2, B,
and C for study 2; Al and B for study 3. Individual profiles, for each study, are shown in
Figure 1. The primary contrast is between Al and C for studies 1 and 2, whereas in study
3 one is interested in A wversus B. Emphasis is on the difference between arms at the end of

the study.



3 Simple Methods

As suggested in the introduction, missing data nearly always entail problems for the practic-
ing statistician. First, inference will often be invalidated when the observed measurements
do not constitute a simple random subset of the complete set of measurements. Second,
even when correct inference follows, it is not always easy to trick standard software into
operation on a ragged data structure. Even in the simple case of a one-way ANOVA design
and under an MCAR mechanism operating, problems occur since missingness destroys the
balance between the sizes of the subsamples. This implies that a slightly more complicated
least squares analysis has to be invoked. Of course, a regression module for the latter analy-
sis is included in most statistical software packages. The trouble is that the researcher has
to know which tool to choose for particular classes of incomplete data. Little and Rubin
(1987) give an extensive treatment of methods for the analysis incomplete data. Some of
these methods were proposed three quarters of a century ago. Examples are Yates’ (1933)
iterated ANOVA and Bartlett’s (1937) ANCOVA procedures to analyze incomplete ANOVA
designs. The former method is an early example of the Expectation-Maximization (EM)

algorithm.

We will briefly review a number of techniques that are valid when the measurement and
missing data processes are independent (MCAR) and their parameters are separated. One
of our main points is that many of these methods are used in situations where the MCAR
assumption, as well as the additional assumptions behind each of the techniques separately,
are not tenable. This should be seen as bad practice since it will often lead to biased es-
timates, invalid tests and hence erroneous conclusions. Ample detail and illustrations of
several problems are provided in Verbeke and Molenberghs (1997). A complete case analysis
removes incomplete cases whereas imputation methods (such as LOCF) fill in missing values.

In both cases the effect is a “rectangular” data matrix, but at high cost. Regarding impu-



tation, one distinguishes between single and multiple imputation. In the first case, a single
value is substituted for every “hole” in the data set and the resulting data set is analyzed
as if it represented the true complete data. Multiple imputation properly acknowledges the
uncertainty stemming from filling in missing values rather than observing them (Rubin 1987,
Schafer 1997). A third family of methods is based on analyzing the data as they are. A
well-known example is given by a so-called available case analysis. In Section 4, it will be
shown how a transition can be made from MCAR to MAR by replacing a frequentist MCAR

analysis with a likelihood-based one. The latter is the basis for Section 5.

The impact and danger of using simple methods is illustrated, using a relatively simple case
study, in Verbeke and Molenberghs (1997). The more desirable solutions, such as ignorable

likelihood analyses, are taken up at length in Verbeke and Molenberghs (2000).

3.1 Complete Case Analysis

A complete case analysis includes only those cases for analysis, for which all measurements
were recorded. This method has obvious advantages. It is very simple to describe and
since the data structure is as would have resulted from a complete experiment, standard
statistical software can be used. Further, since the entire estimation is done on the same
subset of completers, there is a common basis for inference, unlike for the available case

methods.

Unfortunately, the method suffers from severe drawbacks. First, there is nearly always a
substantial loss of information. For example, suppose there are 20 measurements, with 10%
of missing data on each measurement. Suppose, further, that missingness on the different
measurements is independent; then, the estimated percentage of incomplete observations

is as high as 87%. The impact on precision and power is dramatic. Even though the



reduction of the number of complete cases will be less dramatic in realistic settings where
the missingness indicators are correlated, the effect just sketched will often undermine a
complete case analyses. In addition, severe bias can result when the missingness mechanism
is MAR but not MCAR. Indeed, should an estimator be consistent in the complete data
problem, then the derived complete case analysis is consistent only if the missingness process
is MCAR. As mentioned earlier, the MCAR assumption is much more restrictive than the

MAR assumption.

3.2 Simple Forms of Imputation

An alternative way to obtain a data set on which complete data methods can be used is
based on filling in rather then deletion. The principle of imputation is easy. The observed
values are used to impute values for the missing observations. There are several ways to
use the observed information. First, one can use information on the same subject (e.g.,
last observation carried forward). Second, information can be borrowed from other subjects
(e.g., mean imputation). Finally, both within and between subject information can be used

(e.g., conditional mean imputation, hot deck imputation). A standard reference is Little and

Rubin (1987).

However, great care has to be taken with imputation strategies. Dempster and Rubin (1983)
write: “The idea of imputation is both seductive and dangerous. It is seductive because it can
lull the user into the pleasurable state of believing that the data are complete after all, and
it is dangerous because it lumps together situations where the problem is sufficiently minor
that it can be legitimately handled in this way and situations where standard estimators
applied to the real and imputed data have substantial biases.” For example, Little and
Rubin (1987) show that the method could work for a linear model with one fixed effect and

one error term, but that it generally does not for hierarchical models, split-plot designs, and



repeated measures (with a complicated error structure), random-effects, and mixed-effects

models.

Thus, the user of imputation strategies faces several dangers. First, the imputation model
could be wrong and, hence, the point estimates would be biased. Second, even for a correct
imputation model, the uncertainty resulting from missingness is masked. Indeed, even when
one is reasonably sure about the mean value the unknown observation would have had,
the actual stochastic realization, depending on both the mean and error structures, is still
unknown. In addition, most methods require the MCAR assumption to hold. Methods such
as the last observation carried forward require additional and often unrealistically strong

assumptions.

The main advantage, shared with complete case analysis, is that complete data software
can be used. With the availability of such software like the SAS procedures MIXED and

NLMIXED, it is no longer necessary to restrict oneself to complete data software.

3.3 Last Observation Carried Forward

In the LOCF method, whenever a value is missing, the last observed value is substituted. The
technique can be applied to both monotone and nonmonotone missing data. It is typically
applied to settings where incompleteness is due to attrition. Very strong and often unrealistic
assumptions have to be made to ensure validity of this method. First, one has to believe
that a subjects’ measurement stays at the same level from the moment of dropout onward
(or during the period they are unobserved in the case of intermittent missingness). In a
clinical trial setting, one might believe that the response profile changes as soon as a patient
goes off treatment and even that it would flatten. However, the constant profile assumption

is even stronger. Second, this method shares with other single imputation methods that it



artificially increases the amount of information in the data, by treating imputed and actually

observed values on equal footing.

Verbeke and Molenberghs (1997, Ch. 5) have shown that all features of a linear mixed model
(group difference, evolution over time, variance structure, correlation structure, random
effects structure,...) can be severely affected by application of this technique. A similar

conclusion, based on the case study, is reached in Section 4.

3.4 Imputing Unconditional Means

The idea behind unconditional mean imputation (Little and Rubin 1987) is to replace a
missing value with the average of the observed values on the same variable over the other
subjects. Thus, the term unconditional refers to the fact that one does not use (i.e., condition
on) information on the subject for which an imputation is generated. Since values are
imputed that are unrelated to a subject’s other measurements, all aspects of a model, such
as a linear mixed model, are typically distorted (Verbeke and Molenberghs 1997). In this

sense, unconditional mean imputation can be equally damaging as LOCEF.

3.5 Buck’s Method: Conditional Mean Imputation

This method (Buck 1960, Little and Rubin 1987) is technically hardly more complex than
mean imputation. Let us describe it for a single multivariate normal sample. The first step
is to estimate the mean vector p and the covariance matrix ¥ from the complete cases,
assuming that Y ~ N(u,X). For a subject with missing components, the regression of the

missing components (Y7") on the observed ones (y9) is

Y7ly7 ~ N(p™ +E70(5%) 7 g] — pf), =7 = X70(57) 715, (3.1)
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Superscripts o and m refer to “observed” and “missing” components, respectively. The
second step calculates the conditional mean from this regression and substitutes it for the
missing values. In this way, “vertical” information (estimates for pu and X) is combined with

“horizontal” information (y?).

Buck (1960) showed that under mild conditions, the method is valid for MCAR mechanisms.
Little and Rubin (1987) added that the method is valid under certain types of MAR mecha-
nism. Even though the distribution of the observed components is allowed to differ between
complete and incomplete observations, it is very important that the regression of the miss-
ing components on the observed ones is constant across missingness patterns. Again, this
method shares with other single imputation strategies that, although point estimation may
be consistent, the precision will be underestimated. There is a connection between the con-
cept of conditional mean imputation and a likelihood-based ignorable analysis, as described

in Section 5.

4 Available Case Methods

Available case methods (Little and Rubin 1987) use as much of the data as possible. Consider
a single multivariate normal sample, based on ¢ = 1,..., N subjects, for which 7 =1,...,n
assessment occasions are planned, producing measurements Y;;. Let us describe estimation
of the mean vector p and the covariance matrix 3. The jth component p; of the mean vector
and the jth diagonal variance element o;; are estimated using all cases that are observed
on the jth variable, disregarding their response status at the other measurement occasions.
The (j, k)th element (j # k) of the covariance matrix is computed using all cases that are
observed on both the jth and the kth variable. This method is more efficient than the
complete case method. The number of components of the outcome vector has no direct

effect on the sample available for a particular mean or covariance component.
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The method is valid only under MCAR. In this respect, it is no fundamental improvement
over a complete case analysis. An additional issue is that, although more information is used
and a consistent estimator is obtained under MCAR, it is not guaranteed that the covariance
matrix is positive (semi-)definite. While this is a small sample problem, for samples with
a large number of variables and/or with fairly high correlations between pairs of outcomes,

this nuisance feature is likely to occur.

Although a complete case analysis is possible for virtually every statistical method and single
imputation is also fairly generally applicable, extending an available case analysis beyond

such simple settings as multivariate means and covariances is tedious.

5 Likelihood-based Ignorable Analysis

Let us assume MAR holds. Below and based on arguments laid out in Rubin (1976) and
Little and Rubin (1986) it will be argued formally that likelihood based inference is valid,
whenever the mechanism is MAR and provided the technical condition holds that the pa-
rameters describing the nonresponse mechanism are distinct from the measurement model
parameters (Little and Rubin 1987). This is called ignorability. The practical implication is
that a software module with likelihood estimation facilities and with the ability to handle
incompletely observed subjects manipulates the correct likelihood, providing valid parame-
ter estimates and likelihood ratio values. We will now further qualify the extent of this

statement; a few cautionary remarks apply.

First, when at least part of the scientific interest is directed towards the nonresponse process,
obviously both processes need to be considered. Still, under MAR, both processes can be
modeled and parameters estimated separately. Second, likelihood inference is often sur-

rounded with references to the sampling distribution (e.g., to construct precision estimators
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and for statistical hypothesis tests; Kenward and Molenberghs 1998). However, the practical
implication is that standard errors and associated tests, when based on the observed rather
than the expected information matrix and given the parametric assumptions are correct,
are valid. Third, it may be hard to fully rule out the operation of an MNAR, mechanism.
This point was brought up in the introduction and will be discussed further in Section 7. In

preparation of the case study analysis, let us formalize these concepts.

Assume that for subject ¢ = 1,..., N in the study a sequence of responses Y;; is designed
to be measured at occasions j = 1,...,n. The outcomes are grouped into a vector Y; =
(Yi1,...,Ys) . In addition, define a dropout indicator D; for the occasion at which dropout

occurs and make the convention that D; = n+1 for a complete sequence. It is often necessary

to split the vector Y’; into observed (Y7

?) and missing (Y]") components respectively. In

principle, one would like to consider the density of the full data f(y,,d;|X;, Zi, W, 0, ),
where X;, Z;, and W; are covariate matrices. We will use the parameter vectors @ and ) to

describe the measurement and missingness processes, respectively.

The taxonomy of Rubin (1976) and Little and Rubin (1987), informally described in the

introduction, is based on the selection model factorization:

where the first factor is the marginal density of the measurement process and the second one
is the density of the missingness process, conditional on the outcomes. The (hypothetical)

full data likelihood contribution for subject ¢ assumes the form

Since inference has to be based on what is observed, the full data likelihood L* has to be

replaced by the observed data likelihood L:
L(O, ¢|X’L> Z’ia VI/’U Y, dz) 08 f('yfa dleza Zia M/ia 07 ¢)7
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with

(yzad |X’u ZZ) M/u 0 I»b) = /f(yz7 d’Llea Z’ia M/ia 0,¢)dy;n

— [ Pty 70, 0) iyl w Wi )y
Under an MAR process, we obtain
Fly? dil0.9) = [ Fly?yr1 X, 2, 0) f(dily? Wi, ) dy”
= f(yﬂXzaZZ70)f(dZ|yfam/zaw)7 (54)

i.e., the likelihood factorizes into two components of the same functional form as the general
factorization (5.2) of the complete data. If further @ and % are disjoint in the sense that the
parameter space of the full vector (6, 4)")" is the product of the individual parameter spaces,
the so-called separability condition, then inference can be based on the marginal observed

data density only.

Turning to the measurement model, assume the measurements are continuous and it is

deemed sensible to consider a linear mixed-effects model with serial correlation:
Yi = Xzﬁ —+ ZzbZ + WZ —+ [or (55)

(Verbeke and Molenberghs 2000) where Y, is the n dimensional response vector for subject
i, 1 < i < N, N is the number of subjects, X; and Z; are (n x p) and (n X ¢) known
design matrices, 3 is the p dimensional vector containing the fixed effects, b; ~ N(0, D) is
the ¢ dimensional vector containing the random effects, €; ~ N(0,021,,) is a n dimensional
vector of measurement error components, and by, ..., by, €1, ..., €5 are assumed to
be independent. Serial correlation is captured by the realization of a Gaussian stochastic
process, W, which is assumed to follow a N(0,72H;) law. The serial covariance matrix H;
only depends on ¢ through the number n of observations and through the time points ¢;; at

which measurements are taken. The structure of the matrix H; is determined through the
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autocorrelation function p(t;; —t;). A first simplifying assumption is that it depends only on
the time interval between two measurements Y;; and Y, i.e., p(tij —ti) = p(|ti; —tik|), where
u = |t;; — ti| denotes time lag. This function decreases such that p(0) =1 and p(+o00) = 0.
Finally, D is a general (¢ x ¢) covariance matrix with (7, j) element d;; = dj;. Inference is
based on the marginal distribution of the response Y; which, after integrating over random

effects, can be expressed as

Here, ¥; = azlm +72H; is a (n X n) covariance matrix grouping the measurement error and

serial components.

Assume that incompleteness is due to dropout only, and that the first measurement Yj; is
obtained for everyone. The model for the dropout process is based on, for example, a logistic
regression for the probability of dropout at occasion j, given the subject is still in the study.
We denote this probability by g(h;;,v;;) in which h;; is a vector containing all responses
observed up to but not including occasion j, as well as relevant covariates. We then assume

that g(h;;,v;;) satisfies
logit[g(hij, yi;)] = logit [pr(D; = j|D; > j,y;)] = hijh + wyyj, i=1...,N.  (57)

When w equals zero, the dropout model is MAR, and all parameters can be estimated using
standard software since the measurement model for which we use a linear mixed model and
the dropout model, assumed to follow a logistic regression, can then be fitted separately. If
w # 0, the posited dropout process is MNAR. Model (5.7) provides the building blocks for

the dropout process f(d;|y;, ¥).

Note that, under an ignorable likelihood analysis, the dropout model (5.7) does not need
to be specified and it is sufficient to specify (5.5). Such an ignorable linear mixed model

specification is termed MMRM by Mallinckrodt et al (2001ab). Precisely, MMRM is a
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particular form of a linear mixed model, relevant for acute phase confirmatory clinical trials,

fitting within the ignorable likelihood paradigm.

6 Analysis of Case Study

The primary null hypothesis (difference between the treatment and placebo in mean change
of the HAMD17 total score at endpoint) will be tested using a model of the type (5.5).
The model will include the fixed categorical effects of treatment, investigator, visit, and
treatment-by-visit interaction, as well as the continuous, fixed covariates of baseline score
and baseline score-by-visit interaction. The following covariance structures will be used to
estimate the within-patient errors in preliminary analyses: unstructured, auto-regressive,
compound symmetric, and simple structures, with heterogeneous variances by visit. The
covariance structure leading to the best fit, as determined by Akaike’s information criterion,
will be considered the primary analysis. Satterthwaite’s approximation will be used to esti-
mate denominator degrees of freedom. The significance of differences in least-square means
will be based on Type III tests. Analyses will be implemented using the SAS procedure
MIXED.

Given this description, the effect of simple approaches, such as LOCF and CC, versus MAR,
can be studied in terms of their impact on various linear mixed model aspects (fixed effects,
variance structure, correlation structure). It will be shown that the impact of the simpli-
fications can be noticeable. This is the subject of Section 6.1. In practice, one commonly
combines LOCF and CC with an analysis at the last occasion only. This will be looked at
further in Section 6.2, where it will be shown that even in such a context it is possible and
better to adopt an MAR strategy as well. In addition, the impact of focusing on two versus

all treatment arms will be discussed.
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6.1 Longitudinal Analysis

When comparing the three strategies, there is little or no difference between the three meth-
ods, neither for the treatment main effect, nor for the treatment by time interaction (p values
are reported in Table 2). Nevertheless, some important differences will be established be-
tween the strategies in terms of other model aspects. These will be seen to be in line with

the reports in Verbeke and Molenberghs (1997, 2000).

Profiles for each of the treatment arm by investigator combinations, for a selected set of
baseline values shows very little difference (plots not shown). Two specific features of the
mean structure are the time trends and the treatment effects (over time). Let us discuss
these in turn. The time trends for all studies are displayed in Figure 2. Both LOCF and CC
are different from MAR, with a larger difference for CC. This is due to the selective effect
of CC; this same effect carries over, in part, to the LOCF method. The effect is strongest
in the third study. There is also some deviation of the treatment effect as opposed to MAR
(Figure 3). The most striking feature is the qualitative difference between the three studies.
While there is a relatively small difference between the three methods in Study 2 and a mild
one for Study 1, for Study 3 there is a strong separation between LOCF and CC on the one
hand, and MAR on the other hand. Importantly, the average effect is smaller for MAR than
for LOCF and CC, somewhat in contrast with the often claimed conservatism of LOCEF.
So, one might want to argue that LOCF is only sometimes valid. However, there are two
considerations. First, under the conditions where LOCF would be valid, so is MAR. Further,
due to the aberrant behavior in other key aspects (variance and correlation structures), one

has to be extremely careful and conservative behavior is not guaranteed.

The variance-covariance structure employed is heterogeneous compound symmetry (CSH),

i.e., a common correlation and a variance specific to each measurement occasion. The latter
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feature allows us to plot the fitted variance function over time. This is done in Figure 4. It
is very noticeable that MAR and CC produce a relatively similar variance structure, which
tends to rise only mildly. LOCF on the other hand, deviates from both and points towards a
(linear) increase in variance. If further modeling is done, MAR and CC produce homogenous
or classical compound symmetry (CS) and hence a random-intercept structure. LOCF on
the other hand even suggests a random-slope model. The reason for this discrepancy is
that an incomplete profile is completed by means of a flat profile. Within a pool of linearly
increasing or decreasing profiles, this leads to a progressively wider spread as study time
elapses. Noting that the fitted variance function has implications for the computation of

mean-model standard errors, one should be very careful.

The fitted correlations are given in Table 3. Clearly, CC and MAR produce virtually the
same correlation. However, the correlation coefficient estimated under LOCEF' is much higher.
This is entirely due to the fact that after dropout, a constant value is imputed for the
remainder of the study period, thereby increasing the correlation. Of course, the problem is
even more severe than shows from this analysis since, under LOCF, a constant correlation
structure can be changed into one which progressively strengthens as time elapses. It should
be noted that the correlation structure has an impact on all truly longitudinal aspects of
the mean structure. For example, (standard errors of) time trends and interactions of time
with covariates (such as treatment effect) can be affected. Precisely, if the correlation is too
high, the time trend can be ascribed a precision which is too high, implying the potential

for a liberal error.

In conclusion, all three structures are affected. This is in line with earlier analyses such
as in Verbeke and Molenberghs (1997, 2000). It is important to note that, generally, the
directionality of the errors made (conservative or liberal) is not clear a priori, since different

distortions (in mean, variance, or correlation structure) may counteract each other. We will
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now study a number of additional analyses that are relevant from a clinical trial point of

view.

6.2 Single Time Point and All Versus Two Treatment Arms

In practice, a primary endpoint as, for example, specified in the protocol of a clinical trial,
may focus on one particular measurement occasion. Explicitly, one is often interested in the
treatment difference at the last assessment time. Thus, LOCF, CC, and MAR approaches
can be studied towards this specific goal. The conduct of an LOCF and CC analysis is
straightforward. In the first case, the profiles are extended from dropout until the last
assessment. In the second case, incomplete profiles are simply deleted. In both cases, a
rectangular set of data results and consequently studying the treatment effect at the last
endpoint is very simple. Still, there are a few choices to make. First, one can include all
treatments into the model versus only the two arms of interest. Second, the comparison can
be based on a full linear mixed model versus a simple model for the last time point only

(e.g., based on a two-sample ¢ test or on change from baseline).

For MAR, by its very nature, one still explicitly wants to consider the incomplete profiles, to
use the information contained in these for the correct estimation of effects at later, incomplete
times. Thus, one considers the full linear mixed model, while it can be argued that this
approach is slightly more complicated than CC and LOCEF, it ought to be clear that such an
approach is not excessively complicated and certainly within the realm of standard statistical
modeling technology. The linear mixed model can be parameterized such that the parameter
of interest is displayed as a fixed effect. Alternatively, additional contrast statements can be

added to the program.

In summary, the analyses considered are classified along the following three dimensions.
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Method for handling missingness. As before, we consider complete cases (CC), last

observation carried forward (LOCF), and missing at random (MAR).

Model. Either the full linear mixed model is used, from which then the appropriate test
is derived, or the (preprocessed) data at the final evaluation time are used in a ¢ test,
or change from baseline. Preprocessing refers to either deletion (CC) or imputation
(LOCF). Since, in the case of MAR, no processing is done but the data are used as
observed, effecting a t test does not allow exploiting the power of MAR, and hence no

t test is used in this case.

Treatments included. Either all treatments are included or just the two treatments of
primary interest. This choice has an effect on the p value in the linear mixed model
case. Indeed, take for example the covariance structure. Model-based smoothing of
the covariance takes place either on two arms or on all arms. Hence, due to correla-
tion between model parameters, the estimated treatment effects and also the p values
derived thereof, might change. For the t tests, however, there is no change. Of course,
one might entertain the possibility of correcting for multiple comparisons when more
than two arms are involved, but such is not the purpose of the current report and does

not substantially affect the conclusions thereof.

Table 4 shows a summary of the results, in terms of p values. As far as study 3 goes, the
relatively large sample size implies that all p values indicate a significant difference, with,
very importantly, the sole exception of the ¢ tests under LOCF. This re-emphasizes the
problems with the LOCF method as discussed in Section 6.1. In studies 1 and 2, more

subtle differences are observed.

For study 1, we have the following conclusions. All mixed models lead to borderline dif-

ferences: LOCF and CC are not significant, MAR is borderline (depending on the number

20



of treatments included). An endpoint analysis leads to a completely different picture, with
clearly non-significant results. For study 2, the mixed models lead to small difference, with
a noticeable shift towards borderline significance for MAR with all treatments. An endpoint
analysis shows, again, results that are strongly different (non-significant) as opposed to the

mixed models.

Once again, the results are borderline. However, if the t tests under LOCF and CC are
compared with the mixed analysis of MAR, studies 1 and 2 show dramatic differences. Such
a comparison is not contrived since the ¢ tests for LOCF and CC are well in line with common
data-analytic practice on the one hand, and under MAR only the mixed analysis makes sense

on the other hand.

These results, in conjunction with those of Section 6.1, underscore the problems with LOCF
and CC. By selecting a subset (CC), a different type of patients might be retained in the
treated versus the untreated arm. This can be explained by, for example, a difference in
therapeutic effect, a difference in side effects, or a combination thereof. Exactly as with
CC, the difference of completers versus incomplete observations can cause distortions within
an LOCF analysis. In addition to differences in sets to which the technique are applied,
there are further distortions which take place, in the mean structure, the variance structure,
and the correlation structure. These effects may counteract and/or strengthen each other,

depending on the situation.

In conclusion, there is very little justification for LOCF and CC analyses. Historically, the
most important justification came from simplicity. Currently, with the availability of com-
mercial software tools, such as the SAS procedures MIXED and NLMIXED, this justification
no longer holds. Arguably, an MAR analysis is the preferred choice. Of course, the correct-

ness of an MAR analysis rests upon the truth of the MAR assumption, which is, in turn,
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never completely verifiable. Purely resorting to MNAR analyses is not satisfactory either
since important sensitivity issues hold. These and related issues are briefly discussed in the

next section (see also Verbeke and Molenberghs 2000).

7 Sensitivity Analysis

Even though the assumption of likelihood ignorability encompasses the MAR and not only
the more stringent and often implausible MCAR mechanisms, it is difficult to exclude the
option of a more general nonrandom dropout mechanism. One solution is to fit an MNAR
model as proposed by Diggle and Kenward (1994). Diggle and Kenward (1994) fitted models
to the full data using the simplex algorithm (Nelder and Mead 1965). A module for the linear
mixed model with dropout is implemented in the OSWALD software, written for S-Plus
(Smith, Robertson, and Diggle 1996). It is based on an extension of the Diggle and Kenward
(1994) model, as described by models (5.5) and (5.7). The result of fitting these models to
studies 1-3, using GAUSS code developed by the authors, is presented in Table 5. Along
with the effect of treatment, time, the interaction between time and treatment, and baseline
value were included into the model. The model for dropout is based on (5.7) and includes
the effect of the previous outcome (MAR), with in addition the effect for current, possibly
unobserved outcome in the MNAR case. Note that the results are not directly comparable
to those reported in Table 4, where inference is based on the last measurement, but rather
to the treatment main effect results reported in Table 2. The model considered here is
somewhat simpler than the model considered in Section 6.1, since fitting such a complicated
model in the MNAR case becomes prohibitive. This should be seen as another advantage
of a likelihood-based ignorable analysis. Note that studies 1-3 show a dramatically different
picture in terms of evidence for MNAR, with apparently no, fairly strong, and very strong

evidence for MNAR. However, as pointed out in the introduction and by several authors
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(discussion to Diggle and Kenward 1994, Verbeke and Molenberghs 2000, Ch. 18), one has
to be extremely careful with interpreting evidence for or against MNAR in a selection model
context. A sensible compromise between blindly shifting to MNAR models or ignoring them
altogether, is to make them a component of a sensitivity analysis. In that sense, it is
important to consider the effect on key parameters such as treatment effect. Here, we see, in
line with several other observations (Molenberghs et al 2001, Verbeke et al 2001) that the
impact on the treatment effect parameter is extremely small, providing additional support
for the use of likelihood-based ignorable models. One such route for sensitivity analysis is
to consider pattern-mixture models as a compliment to selection models (Thijs et al 2001,
Michiels et al 2002). Further routes to explore sensitivity are based on global and local
influence methods (Verbeke et al 2001). A more extensive case study on the advantages and

problems related to several sensitivity analysis is a topic of ongoing research.

8 Discussion

In this paper, we have shown that there is little justification for analyzing incomplete data
from longitudinal clinical trials by means of such simple methods as LOCF and CC. This is
true, even if a single point in time (e.g., the last measurement occasion) is of primary interest.
It is much more sensible to refer to linear mixed models, in combination with the assumption
of MAR. Such an analysis is stable, providing sensible assessments of important aspects such
as treatment effect and time evolution, even if the assumption of MAR is violated in favor of
MNAR. This is in line with analyses conducted by Diggle and Kenward (1994), Molenberghs,
Kenward, and Lesaffre (1997), Verbeke et al 2001, Molenberghs et al 2001). Moreover, such
analyses can be conducted without any problem using standard statistical software such as

the SAS procedures MIXED and NLMIXED.

A related and, for the regulatory clinical trial context, very important set of assertions is
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that such an analysis (1) can be specified a priori in a protocol without any difficulty, (2)
is consistent with the intention to treat (ITT) principle, even when only the measurement
at the last occasion is of interest, and (3) the difference between an LOCF and an ignorable
likelihood analysis can be both liberal and conservative. The first is easy to see, since, given
ignorability, formulating a linear mixed model for either complete or incomplete data involves
exactly the same steps. Let us expand on the second issue. It is often believed that, when the
last measurement is of interest, the test for the treatment effect at the last occasion neglects
sequences with dropout. However, as Little and Rubin (1987, Ch. 6) showed, likelihood based
estimation of means in an incomplete multivariate (normal) setting involves adjustment in
terms of the conditional expectation of the unobserved measurements given the observed
ones. Such an adjustment is similar in spirit to Buck’s method of conditional imputation,
but without the problems associated to explicit single imputation. An illustration of this is
provided in Verbeke and Molenberghs (1997, p. 229) where it is shown that for a saturated
normal model fit to an incomplete sample, observed and expected means do not coincide,
precisely as a result of the aforementioned adjustment. Thus, a likelihood based ignorable
analysis (such as MMRM) should be seen as a major improvement over LOCF, appropriately
using all information on all patients (consistent with ITT), without the risk of distorting key
model features such as mean profile, relative importance of the components of variability, etc.
Regarding the third issue, the case study produced smaller p values under MAR than under
LOCEF (Table 4). Reversely, consider a situation where the treatment difference increases over
time, reaches a maximum around the middle of the study period, with a decline thereafter
until complete disappearance at the end of the study. Suppose further that the bulk of
dropout occurs around the middle of the study. Then, an endpoint analysis based on MAR
will produce the correct nominal level, whereas LOCF might reject the null hypothesis way

too often.
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When there is residual doubt about the plausibility of MAR, one can conduct a sensitivity
analysis. While many proposals have been made, this is still a very active area of research.
Obviously, a number of MNAR models can be fitted, provided one is prepared to approach
formal aspects of model comparison with due caution. Such analyses can be complemented
with appropriate (global and/or local) influence analyses. Another route is to construct
pattern-mixture models and to compare the conclusions with those obtained from the selec-
tion model framework. Alternative sensitivity analyses frameworks are provided by Robins,
Rotnitzky, and Scharfstein (1998), Forster and Smith (1997) who present a Bayesian sensi-

tivity analysis, and Raab and Donnelly (1999).
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Table 1: Overview of number of patients and post baseline visits per study.

number of patients Post-baseline visits

Study 1 167 4-11
Study 2 342 4-8
Study 3 713 3-8

Table 2: Analysis of case study. Initial models. p values for (treatment main effect, treatment
by time interaction).

Method Study 1 Study 2 Study 3

LOCF (0.421, 0.565) (0.406, 0.231) (0.964,<0.001)
cC (0.322, 0.684) (0.254, 0.399) (0.918,<0.001)
MAR (0.288, 0.510) (0.191, 0.138) (0.476,<0.001)

Table 3: Fitted within-patient correlation coefficients.

Method Study 1 Study 2 Study 3

LOCF 0.65 0.54 0.74
cC 0.57 0.37 0.57
MAR 0.53 0.39 0.60

Table 4: Additional analyses of case study. p values are reported. (‘mized’ refers to the
assessment of treatment at the last visit based on a linear mized model).

Method Model Data Used Study 1 Study 2 Study 3
CcC mixed All treatments 0.076 0.055 0.001

Two treatments 0.070 0.088 0.001
CC t test  All treatments 0.092 0.156 0.017

Two treatments 0.092 0.156 0.017

LOCF  mixed All treatments 0.053 0.052 0.001
Two treatments 0.056 0.082 0.001

t test  All treatments 0.246 0.172 0.120

Two treatments 0.246 0.172 0.120

MAR mixed All treatments 0.052 0.048 0.001
Two treatments 0.047 0.077 0.001
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Table 5: Fitting MAR and MNAR models to the case study data. Columns MAR and
MNAR report twice the negative likelihood. The resulting likelihood ratio is given in the
column labeled 2.

MAR MNAR
Study —2 likelihood X2 P
1 2005.89 2004.99  0.90 0.32
2 2330.06 2320.41  9.65 0.0019
3 10234.53 10199.05 35.48 < 0.0001

Treat. effect (s.e.)
158(1.14)  1.55(L.10)
1.84(1.07)  1.64(1.07)
—1.98(0.65) —2.04(0.64)
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