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Abstract

In this paper, we propose a multivariate Dale model for survival out-
comes [1]. A pseudo-likelihood method for the estimation of the parame-
ters is proposed and these ideas are applied to two case studies. The first
study is in AIDS where overall survival time and different opportunistic
infections in HIV-infected patients are studied. The second study is on
adoption data where the association of the survival times within families is
modeled, illustrating the use of the proposed methodology for the context

of population genetics.



1 INTRODUCTION

Survival models have been used intensively during the past two decades, across
a number of application areas. Medical researchers used them extensively, but
in many other fields where the main interest is in time-to-event, they became
an important tool as well (Fleming and Harrington 1991) [2]. The effect of
one or more covariates on the patient’s survival can be modeled via the Cox
model [3], but we should recall that independence of survival times from one
observation to the other is one of the basic assumptions of this model. However,
in the last years there has been an increasing interest in frameworks where two
or more events per patient or per statistical unit are observed. These statistical
units can refer to clusters and hence multivariate survival models should be
used, taking into account within-cluster dependencies. The former phenomenon
is observed in groups of patients that share common characteristics, such as
in family studies where the members share genetic and environmental factors.
There are several issues one should take into account when extending the Cox
model or other univariate survival model, to the situation where the association
needs to be modeled, which is the topic of the current paper.

The paper is organized as follows. Section 2 motivates the problem through
two case studies. Section 3.1 gives a description of the Dale model (Molenberghs
and Lesaffre 1994) [4] for survival data in the bivariate case. Section 3.2 de-
scribes an extension of the model to the case of k correlated survival times and
proposes a pseudo-likelihood approach for the estimation of the parameters of

the model. Section 5 contains the analysis of the case studies.



2 MOTIVATING CASES

In this section, we will introduce two different studies for which our methodology
is of use. The AIDS case study deals with intrasubject correlation, i.e., multiple
events per subjects are recorded. The adoption study is an example of a study

where clustering, within-cluster dependencies are present.

2.1 The AIDS Study

These data arise from a randomized clinical trial. A total of 1530 patients
who participated in two clinical trials sponsored by the AIDS Clinical Trials
Group (ACTG): ACTG 116A (Dolin et al. 1995) [5] and 116B/117 (Kahn et
al. 1992) [6] were randomized to compare zidovudine (ZDV) and two doses of
didanosine (ddI). Participants either had a diagnosis of AIDS or AIDS related
complex (ARC) and/or had CD4 counts of 300 or fewer. The primary outcomes
of interest for this analysis were survival and new or recurrent AIDS-defining
events. Patients were randomly assigned to receive one of the following three
treatments: ddI 750 mg per day, ddI 500 mg per day, or ZDV 600 mg per day.
These studies enrolled patients between October 1989 and April 1991; patients
were followed for a median of 65 weeks and a maximum of 132 weeks. For
illustration, ZDV is compared to any dose of DDI; therefore we use a binary
indicator variable for treatment effect. Measures of CD4 for individual patients
are included in the model. This choice is supported by the work of Saah et
al. (1994) [7], who found that CD4 was a laboratory measure in a Cox pro-

portional hazards model which predicted survival after AIDS. There has been



some debate in the literature as to whether such a dichotomization of CD4 can
be justified or not. We will use a continuous version of this variable but any
other categorization can be considered without substantially having to modify
the methodology. Molenberghs, Williams, and Lipsitz (2002) [8] studied the

joint modeling of survival and CD4 count on these data.

2.2 The Adoption Study

This study presented in Sgrensen et al. (1988)[9] was carried out to analyze
the impact of environmental and genetic factors on survival of adult adoptees.
To this end, dependencies between the survival time of children and biological
parents, and between children and adoptive parents are the focus of interest.
In this study, families with adoptive children, born between 1924 and 1926,
were analyzed. The basic idea is that association between survival times of
biological parents and children can be assigned to some extent to genetic factors,
while associations between children and adoptive parents can be due only to
environmental factors.

These data were studied by Nielsen et al. (1992)[10] who proposed a shared
gamma frailty model and by Parner (2001)[11] who proposed a composite like-
lihood method for the estimation of the frailty parameters and the standard
deviations. We propose to use a Plackett-Dale model (Burzykowski et al. 2001)
[12] for correlated survival time data with Weibull margins, as will be described

next.



3 MODEL DESCRIPTION

3.1 Bivariate Dale Model for Survival Data

In this section, we will introduce the Dale model for two survival outcomes.
Assume that 77 and T3 are correlated survival times, then the joint survival

function of (71,7») can be written as

Sty (t1, t2) = P(Th > t1, Ta > t2) = Cp,, {5, (t1), Sty (t2)}, t1, t2 > 0,
(1)
where S7, and St, denote marginal survival functions and Cy,, is a copula. An
attractive feature of model (1) is that the margins do not depend on the choice
of the copula function.

In principle, in model (1) any copula function can be used. For simplicity,
we consider primarily one-parameter families; hence the use of a single parame-
ter f12 in (1). Some possible options are the Clayton, Hougaard, and Plackett
copulas. Burzykowski et al. (2001) studied them in detail within the framework
of surrogate endpoints. For the Clayton and Hougaard copulas, model (1) re-
duces to a proportional frailty model (Oakes 1989)[13] with frailties generated,
respectively, by the gamma and the positive stable distributions.

To model the effect of specific covariates on the marginal distributions of T}

and 75 in (1) we propose to use the proportional hazard model:
i1
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where hr, and hr, are marginal baseline hazard functions and B, and B, are
vectors of unknown regression parameters corresponding to the covariates Z.
The hazard functions can be specified parametrically or can be left unspecified
as in the classical model proposed by Cox (1972)[3]. When the hazard functions
are specified, estimates of the parameters for joint model (1)—(3) can be obtained
using the method of maximum likelihood [14]. Alternatively, the two-stage
parametric procedure proposed by Shih and Louis (1995)[15] can be used, in
which parameters of the marginal survival functions S7, and St, are estimated
first (assuming independence), and then 612 is estimated conditional on the
estimated values of the marginal parameters.

This one-parameter family is closely related to the Plackett family of bi-
variate distributions (Plackett 1965) [16]. In this case the dependence can be
defined using a global cross-ratio at (t1,t2) given by

F(ty,t2)[1 — Pry (t1) — Py (t2) + F(t1, t2)]

P20 t) = T )~ Fltr, )] P (t2) — Fon )]

(4)
where Fr, and Fp, are the marginal cumulative density functions. Here, 812 =
012(t1,t2) satisfies 0 < 612 < oo when F(t1,t2) satisfies the Fréchet-Hoeffding
(Fréchet 1951)[17] bounds. The components in (4) are the quadrant probabil-
ities in JR? with vertex at (t1,t3). The Plackett distribution is obtained for
constant cross-ratio 012(t1,%2) = 6 (Plackett 1965, Mardia 1970)[16, 18]. The
joint distribution Frp,p, is defined by means of (4), when Fp,, Fr, and 612 are
known.

The values of the Plackett distribution are found as one of the two solutions

of the following second degree polynomial equation if the marginal distribution



functions Frr, and Fr,, and the cross-ratio ;2 are known:

012(F — Fr,)(F — Fr,) = F[F — (Fr, + Fr, —1)] =0. (5)

Dale (1986) and Mardia (1970) gave an explicit solution for (5):

L+ (P, (t2) + Pry(t1))(012 — 1) — H(Fp, (t2), F'ry (11), 012)
2(012 — 1)

if 012 # 1,
Fr, 1,(t1,t2) =

FTz(tQ)FT1 (tl) if 10 =1,
(6)

where

H(Fr,, Fry,012) = /(14 (612 — 1)(Fr,(t1) + Fr,(t2)))% 4 4612(1 — 012) Fr, (t1) Fp, (t2).
(7)

Mardia (1970) showed that Fr, 7,(t1,t2) is always a bivariate copula, with 612

in [0,400]. Although (6)—(7) was obtained based on the defining equation for

the distribution function F, it can be shown that exactly the same copula is

obtained for the survival function S =1— F.

Based upon this distribution function, we can derive a bivariate Plackett
density function frp,(t1,t2) for two survival times using (6)—(7) by calculating
OFr, 1, (t1,t2)/0t10ts in an appropriate way taking into account censoring.

The parameters of this model and their standard deviations can be estimated
by means of the maximum likelihood method. Appendix A details the expression
for the log likelihood function, together with the derivatives of the distribution

function F.



3.2 Multivariate Dale Model for Survival Data and Pseudo-

likelihood Estimation

While the model described in Section 3.1 suffices to analyze bivariate time-to-
event outcomes, an extension is needed for applications with more than two
times. To this end, consider an experiment involving N subjects or clusters of
k time-to-event measurements. Suppose that we also observe a vector of co-
variates Z. A Weibull distribution is assumed for each time T with Az, and
pr; the scale and shape parameters, respectively. While we focus on Weibull
marginals, different researchers may choose to use different univariate marginal
survival distributions, implying only relatively small adaptations of the method-
ology. The information concerning subject i can be expressed in vector format
as (T, .., Tiks Nty oo, Dy Zity - - -, Zimy,) SO that Wi = (T, Asj, Z;) are the
values for a particular subject ¢ and time point j.

While a full multivariate formulation of the Dale model has been done in the
context of ordinal data (Molenberghs and Lesaffre 1994, 1999)[4, 19], it poses
non-trivial computational complexities. Instead, marginal pseudo-likelihood
ideas will be used to keep the amount of computation under control, while
enabling to answer relevant research questions (Le Cessie and Van Houwelin-
gen 1994, Geys, Molenberghs, and Lipsitz 1998, Geys, Molenberghs, and Ryan
1999)[20, 21, 22].

The idea behind our pseudo-likelihood function is based on considering all
possible pairs (W, W) of outcomes on an individual, producing fr.1, (Wi, W),

rather than the full multivariate density, and then taking the product over them.



The resulting function will be denoted by PL and its log by

N
Inpl(®) = Zp&, (8)

with

pli= Y Infro, (Wi, Wi, ®)
(s,t)eS

where S is the set of indices with all possible pairs of outcomes of interest,
fr.7, is the value of the function defined in Section 3.1 evaluated in the re-
spective outcomes for subject i, and ® is the vector of parameters. Specifically
&' = (0,87, X7, py) with @ the subvector of association parameters, B the
subvector of coeflicients corresponding to the covariates z and, Ar and pp sub-
vector of parameters from the Weibull distribution.

The pseudo-likelihood estimator @ is defined as the maximizer of (8). Con-
sistency has been shown by Arnold and Strauss (1991), Le Cessie and Van
Houwelingen (1994), and Geys, Molenberghs, and Ryan (1999)[23, 20, 22].
Precisely, it converges in probability to ®y, the true parameter value and
\/N(:I\) — &) converges in distribution to N, (0,.J(®o) 'K (®o)J () "!) with

J(®) defined by

0?1n fr.m, (tis, tit)
Jrl = - E@ ( . > (9)
(s;)es 6¢ra¢l
and K(®) by
1 is  tit) O1n fr (fis, &
N CT I R

(s,t)eS

Similar in spirit to generalized estimating equations (Liang and Zeger 1986)[24]

, this asymptotic normality result provides an easy way to estimate consistently



the asymptotic covariance matrix. Indeed, the matrix J is found from evaluating
the second derivate of the log p¢ function at the PL estimate. The expectation
in K can be replaced by the cross-product of the observed scores. We will refer
to J~! as the model based variance estimator, which should not be used as
such because it overestimates precision; to K as the empirical correction; and
J 1K J~! as the empirically corrected variance estimator.

A further advantage of the PL approach is the close connection of pseudo-
likelihood with likelihood, enabling one to construct pseudo-likelihood ratio and
pseudo-score test statistics that have easy-to-compute expressions and intu-
itively appealing distributions (Aerts et al. 2002)[25].

As discussed by Arnold and Strauss (1991), the Cramer-Rao inequality im-
plies that J~!KJ~! is greater than the inverse of I, corresponding to the
Fisher information matrix for the maximum likelihood case, in the sense that
J 'KJ~! — I7! is positive semidefinite. Therefore, a PL estimator is always
less efficient than the corresponding ML estimator. Aerts et al. (2002) show

that in many realistic settings efficiency losses are minor.

4 ASSOCIATION MEASURES

The Plackett-Dale model allows us to estimate and interpret the strength of
the association between a pair of survival times via global cross ratios (the 6
parameters in the model). Therefore, # may be considered a natural candidate

for the measure of association. However, some researchers may feel it is hard
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to get a feel for because it ranges throughout the entire real line. Further,
different copulas (like the Clayton and Hougaard copulas) carry different and
less straightforward association parameters. In such a situation it would be
easier to work with a transformation of § that has the interpretational properties
of a correlation coefficient, such as Kendall’s 7 or Spearman’s p. These will be

discussed in turn.

4.1 Kendall’s 7

Kendall’s 7 can be seen as the difference between the probability of concordance
and the probability of discordance of two realizations of (T, 7%). This coefficient
lies in the [—1,1] interval and a zero value implies independence between T}
and T5. There exists a relationship between Kendall’s 7 and 6 for any copula

C(t1,t2,0) (Genest and MacKay 1986)[26]:

1 1
T(Q) = 4/ / CTlTQ(tl,tQ,e)CTlTQ (dtl,dtg,g) — 1. (11)
0 0

The marginal distributions of T and Ty do not affect (11), and hence it
follows that 7 only depends on the copula function Cry 7, (Schweizer and Wolff
1981)[27]. Kendall’s 7 thus measures the association between both time points
after adjustment for the covariates used in the model. Such a relationship is
very simple for the Clayton and Hougaard copulas (Burzykowski et al. 2001).
Precisely, one obtains 7 = (#—1)/(0+1) for Clayton and 7 = 1—6 for Hougaard.
Estimates and confidence intervals (using the delta method) are accordingly
easily obtained. There is no closed form for Kendall’s 7 in the Plackett-Dale

case and an estimate has to be obtained directly from (11). We have developed

11



a SAS IML 8.02 macro to this effect.

4.2 Spearman’s p

Spearman’s p is also based on concordance and discordance, independent of the
margins, and belongs to the unit interval. It can be shown that Spearman’s
p equals Pearson’s product-moment for grades of a pair of continuous random

variables. The relationship between Spearman’s p and the copula function is

1 1
p(0) = 12/ / OTsz (tl, t2, 9)dt1dt2 - 3. (12)
0 Jo

In contrast with the previous case, there is a closed-form expression in the

Plackett-Dale case:

e (13)

-~

An estimate follows from p = p(6), with delta-method variance

2

Var() = | 20— l()gti(fj Dbl var@).

From (13), the following asymptotic properties are derived: p(#) — 0 when

60— 1, p(#) — —1 when 6 — 0 and p(#) — 1 when 6 — oc.

5 CASE STUDIES

We are now in a position to analyze the data from Sections 2.1 and 2.2. Pseudo-
likelihood estimates were obtained by using Newton-Raphson with analytical
first derivatives and numerical second derivatives, implemented in SAS IML

8.02 and using routine NLPNRR (SAS Institute Inc. 1999-2001). Standard

12



errors of the parameters were calculated using the inverse of the observed matrix
of second derivatives. Although in these two examples a trivariate model is
considered, the methodology is fully generally applicable to longer sequences of
time-to-event endpoints. Indeed, the structure of the SAS programs allows us
to fit any model and any number of outcomes with only minor changes. Using a

flexible design matrix structure, a large class of model specifications is possible.

5.1 Analysis of the Adoption Study

We first consider bivariate analyses, selecting pairs out of the three possible
survival times of interest. The first aim is to describe the biological associations
between mother, father and child, and then to study the environmental effect,
e.g., correlations with the adoptive parents. In each case, a trivariate analysis
is envisaged. We will start with bivariate analyses and compare these results
with those obtained from modeling the trivariate data directly. We will use
the abbreviations BM, BF and ACh for biological mother, biological father in
the biological models, replacing BM with AM and BF with AF in the adoptive
models. The corresponding subscripts are 1, 2, and 3 in each case. All results for
the biological families are presented in Table 2, while Table 3 presents estimates
for the adoptive families. The marginal distributions are all assumed to be
Weibull with parameters A; and p;, j = 1,2, 3, and we consider three different
parameters 31, (2, and (3 to adjust for the sex of the child as it was done by
Parner (2001). All association parameters are assumed to be constant.

It is clear from the way in which PL is defined that ML estimates are ex-

13



actly the same when only two outcomes are considered. Although model-based
standard errors and empirically corrected standard errors are numerically differ-
ent, they are of similar magnitudes and no clear ordering is seen between them.
The tables reveal that the model based standard errors calculated by means of
the information matrix and the empirically corrected ones differ only slightly.
Common parameters estimated using two different bivariate models are similar
since all models are of a marginal type. For example, Bl = —0.085 in model
BM-BF as opposed to 31 = —0.086 in BM—-ACh.

Tables 2 and 3 include all three types of association parameters: not only
the log odds ratios 6 but also Kendall’s 7 and Spearman’s p, as introduced
in Section 4. We observe the association is not very strong but nevertheless
significantly different from zero in some cases. The 7 and p parameters are
relatively similar but, in spite of them ranging on the same scale, they have a
different meaning and they are not directly comparable.

Let us now turn attention to the trivariate situation. Let us consider a model
with different association parameters for each pair of outcomes 613, 013, and 023
and with different parameters for the covariates corresponding to each outcome
081, P2, and (3. Specific Weibull distributions with different scale and shape
parameters for each outcome were used to model the marginals, i.e., p1, p2, ps,
A1, A2, and A3. Effectively, this is the trivariate version of the previous bivariate
ones. For the trivariate models, only empirically corrected standard errors are
given in Tables 2 and 3, since the model-based ones ignore the fact that in

using all pairs out of three survival times on a cluster, all outcomes are used
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twice, leading to an exaggerated precision. Therefore, model-based standard
errors are useless, even if all marginal and association models are correctly
specified. We like to point out this feature since it is different from the GEE
setting. Other than being a disadvantage, it is merely a “side effect” of the way
marginal pseudo-likelihood works. Let us add that obtaining convergence was
not different and using different sets of starting values showed stability of the
process.

Parameters retain their meaning they had in the bivariate models, with two
advantages. First, using the data in a trivariate model is more efficient than
using them in three separate models. Second, one avoids the occurrence of
double estimates for the marginal parameters (5, A, and p parameters), in spite
of them being not too different between various bivariate models. The same
model was applied to the biological and adoptive families, enabling to contrast
both sets of dependencies.

Comparisons of our association parameters with the ones given by Parner
(2001) cannot be made directly, since they are expressed on different scales. The
association in our case is the global odds ratio, while Parner’s quantity is based
on the mean and variance of the assumed Gamma distribution. Therefore, both
sets of association parameters are transformed to Kendall’s 7 and Spearman’s
p. There is a close agreement between both methods, with of course the added
advantage of our approach that it enables consideration of multivariate models.

According to Parner’s conclusions, the environmental association between

the adoptive child and the mother was significant and negative; the environmen-
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tal association between adoptive father and the adoptive mother was significant.
In our case, we can see from Table 3 that the estimated Kendall’s coefficients are,
713 = —0.036 with a 95% confidence interval (—0.060, —0.012) and 715 = 0.052
with a 95% confidence interval (0.041,0.063) respectively. These results suggest
that the longevity of the mother and the adoptive child were negatively corre-
lated. Thus, we arrived to the same conclusions. The estimates are similar to
the estimates obtained using Parner’s model as we shown in Table 3. We could
also test for equal environmental effects and genetic effects using a Wald type
test, but this is not the main goal of this work; details can be found in Parner

(2001).

5.2 Analysis of the AIDS Study

In this section, we analyze the data described in Section 2.1. In the origi-
nal paper by Finkelstein et al. (1996)[28] the pattern of the development of
opportunistic infections in HIV-infected patients was evaluated, based on a co-
hort of 1530 patients. For the sake of illustration, we will work with a ran-
dom sample of 1000 patients. The more common AIDS-defining opportunistic
infections are Pneumocystis carinii pneumonia (PCP), Mycobacterium avium
complex (MAC), cytomegalovirus (CMV) and systemic mycosis. These authors
performed all the analysis adjusted for CD4 count. Without loss of generality,
we perform the analysis for three time-to-event outcomes: PCP, CMV and the
overall survival time of the AIDS patients (DTH). The main objective is to de-

scribe the association between all three outcomes after adjusting by CD4 count
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and treatment effect.

Parameters are subscripted with 1, 2, and 3 to refer to CMV, DTH, and
PCP, respectively. For the sake of illustration, consider Sr to be the common
treatment effect and (1, f2, and B3 the outcome-specific parameters associated
with the CD4 count. We will assume a Weibull distribution with parameters
P1, P2, P3, A1, A2, and A3. Therefore, the vector of parameters to be estimated

has 13 components:

P = (012, 013’ 0237 ﬁT? Bl’ 627 53,131,172,173, )‘1’ )‘27 >\3)7 (14)

where 6012, 613 and 23 are the global cross ratios. Using straightforward gen-
eralized linear models technology, it is straightforward to construct the overall
design matrix X, consisting of 13 columns (as many as there are parameters),
and 3 X 7 x N rows. The calculation of the number of rows follows because
there are 3 pairs to be formed out of three outcomes, for each pair (i.e., for each
bivariate model), there are 7 “natural” parameters (an association parameter,
and then a 3, A\, and p parameter for each component of the pair). More details
on the design matrix are given in Appendix B. Generalization to more than
three outcomes is straightforward and the SAS macro we developed carries the
general situation. Parameter estimates are summarized in Table 1.

Parameters in common between different bivariate models are generally fairly
close, with the exception of 7, which is even changing signs. While not signif-
icant, this is a clear indication that the trivariate model is the more appealing
one, in spite of a larger standard error. Note that for some, but not all, para-

meters the standard error produced by the trivariate model is smaller. The log
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global cross ratios 6 are quite large, showing a strong association between all
pairs of outcomes. Also here, Kendall’s 7 and Spearman’s p are calculated to
get a better grip on the association. Based on the correlation parameters p, a

consistent picture of a correlation around 0.5 emerges.

6 CONCLUDING REMARKS

In this paper, we have extended the Plackett-Dale model for survival data to
the multivariate case and we have shown that pseudo-likelihood estimation, in
the sense of Arnold and Strauss (1991), is a viable and attractive alternative
to maximum likelihood in case of multivariate survival data. Maximum like-
lihood becomes prohibitive for large sequences of times, due to computational
requirements. In contrast, the pseudo-likelihood procedure gives quite satisfac-
tory results. In addition, we proposed other association measures and we have
shown the link of Spearman’s p and Kendall’s 7 to the association parameter
of the Plackett-Dale model 0. The method yields consistent and asymptotically
normal estimates of the parameters of interest and the computational complex-
ity is manageable.

The choice of the Plackett-Dale model was motivated by the fact that the
association parameter 0, has a natural interpretation for this copula. However,
other copulas can be considered (Oakes 1989; Shih and Louis 1995; Joe 1997;
Nelsen 1999)[13, 15, 29, 30]. To this end, checking the goodness of fit of copulas

to bivariate survival data can be done by using the method proposed by Wang
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and Wells (2000)[31] and an adaptation of this method to our framework is a
topic for future research. It is also worth noting that, while in this work we con-
sidered Weibull marginal distributions, it is possible to use other distributional
assumptions, or even use a semi-parametric approach with unspecifed baseline
hazard functions (Shih and Louis 1995) [15]

The approach we presented gives a flexible tool for modeling any kind of
time-to-event data accounting for the association between two or more outcomes.
To illustrate our findings we have applied the proposed method in two different
situations. Also, we have shown how the standard errors of the parameters need
to be corrected in order to account for the lack of independence introduced by

the fact that the information of a single subject is used more than once.
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APPENDIX A

Log likelihood function for the bivariate Dale model

Let (T1,T%) denote paired failures times and (S, S2), (f1, f2) the corresponding
marginal survival and density functions. Then, the joint survival and density

functions of (11, 7%) are given by

S(t1,t2) = Fryr, (St (t1), Stz (t2)), (15)
2
i) = 2B (1) 1), (16)

with t1, t2 > 0.

Let us denote by (Cy,C2) the paired censoring times. For i = 1,...,n,
assume that (731, 7T;2) and (C;1,Ci2) are independent. For each ¢ we observe
Tij = min(X;;,Cy5) j = 1,2 then Ay; = I{X;; = Tj;}, ie., indicates whether
the lifetime is observed (A;; = 1) or not (A;; = 0).

We can write now the log likelihood function by combining the following

different situations in one expression as follows

Case Ail AiQ

I 1 1
II 1 0
11 0 1
v 0 0
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Therefore,
n 05 (t;1,t;
log ¢ = ZAuAﬁ log(f(ti1, tiz)) + Ain (1 — Asz) log <_ (8; 2)>
i=1 '

0S(ti1,t;
+(1 — Ail)AiQ lOg (—#) + (1 — Azl)(l — Azg) lOg(S(tjl,th))

(17)
where S(t1,t2) and f(t1,t2) were defined in (15) and (16), respectively.
Distribution function and its derivatives for 6 # 1

1 ut+v  H(u,v,0)

Flovd)=sa—5" =2 ~36-1)

H(u,v,0) = /(14 (0 — 1)(u+v))2 — 40( — 1)uw.

T = gl 0= Dt 0) - 260
OH  (0—1)

B = a0+ 0~ Dt v) 20

0H (1+(0—-1)(u+v))(u+v)—2uv(20—1)

0 H(u,v,0)
o |0-07- 7]
o H(u,v,0)

o |07 (5]

ov? H(u,v,0)
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2H (u—v)*— (W)2
902 H(u,v,0)
PH oH[ 1 1 oH +(0—1)(u—v)
oudd  Ou |[0—-1 H(u,v,0) 00 | H(u,v,0)
82H_6_H_ o 1 8_H_+(0—1)(v—u)
owdd  Ov |6—1 H(u,v,0) 90 | H(u,v,0)
0’H 1 0H 0H
dudv — H(u,v,0) 8_u%+(9_1)(9+1)

OF 1, 1 o]
ou 2| 6-10u|
R
ov 2 #—1 0v
OF _ H(u,v,0) 1 n oH
a0 ~  0-1 20-1 """ oe
*F 1 OH\?
ouz 20 -1)\ ou
’F 1 OH\?
o2 20—-1)\ ov
82_F—__1 28_F_|_1_82H
92— 0—1|"90 2062
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0’F 1 OH 0H

dudv ~ 2(0—1) | du v

+@-1)O+1)

o [Py )]
9udl  2H(u,v,0)(0 — 1) | 9u 00 “mY
82F 1 [OH OH ]
9000~ 2H (w0 0)@—1) |90 98 D)
PF 1 9H[ &*F _ 1 0°H]
oud3  H(u,v,0) Ou | Ou2 = 6 —1 0u? |
°F _ 1 9H[ 9°F 1 0]
ovd  H(u,v,0) Ov | 0v2  6—1 dv?

OPF B 1 _82F8_H+ 1 62H8_H
ou2ov  H(u,v,0) ou? v 0 —10vou du

BF 1 [82F OH 1 0°H 6H]

dudv? H(u,v,0) | 0v2 0u 6 —10udv dv

°F _ 1 O°F, 1 [ ®FOH , 1 0H®H
ou200 0 —10u2  H(u,v,0) | 0u2 90 06— 1 Ou dudl

F 1 ®F 1 PFOH 1 OUHOH OHPH
dudf? 0§ 10udl H(u,v,0) Oudd 00  2H(u,v,0)(0 — 1) -

9000 90 ' u 002

O3F 1 62F_ 1 _32F3_H+ 1 62H6_H+8_H@2H+20
oudvdd 0 —10udv H(u,v,0) Oudv 80 2H(u,v,0)(0 —1) | 0udd dv = Ou Hvdl
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APPENDIX B

Let us exemplify the construction of a design matrix for the AIDS case study.
The contribution of a single individual can be seen in our case as the contribution

of three pseudo-likelihood individuals. Thus, X can be written as N blocks,

X

X,

XN

where the block corresponding to subject ¢ is expressed as:

Xi12
Xi=1| Xas |-
Xi23
where

100 0 0 0 0O00O0GO0O0O
00 0 trt; cdd, 0 0 0 0 0 0 0 0
00 0 trt; O cdd 0 0 0 0 0 0 0
Xi2=[000 0 0 0 0100000 |-

600 0O O O 0O0O1O0O0O0O©O0
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and

X3 =

X3 =

t’l‘ti

trt;

0

0

trt;

t’l‘ti

0

Cd4z‘ 0

0

0

Cd4i
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Table 1: AIDS study: Mazimum likelihood estimates (model based standard
errors; empirically corrected standard errors) of bivariate survival times and
pseudo-likelihood estimates (standard errors) for trivariate model. For Kendall’s
7 and Spearman’s p, estimates and 95% confidence intervals are given.

Par.

CMV-DTH

CMV-PCP

DTH-PCP

CMV-DTH-PCP

012
013
023
Br
51
B2
B3
P1
D2
p3
A1
A2
A3

5.165(2.570;2.401)

-0.054(0.020;0.020)
1.708(1.816;1.681)
2.160(0.706;0.752)

-0.240(0.137;0.142)
0.341(0.033;0.038)
1.606(0.033;0.030)
1.941(0.015;0.017)

4.434(1.850;2.182)

0.183(0.032;0.033)
1.504(1.892;1.547)

2.037(1.570;1.845)
-0.657(0.193;0.184)

-1.147(0.257;0.331)
1.406(0.023;0.022)

1.117(0.012;0.014)

3.943(1.023;0.959)
-0.014(0.019;0.019)
2.010(0.696;0.703)
2.168(1.487;1.838)
0.353(0.032;0.035)
-0.807(0.203;0.270)
1.933(0.015;0.016)
1.215(0.014;0.018)

4.369(1.165)
4.466(1.446)
3.691(0.865)
0.016(0.111)
1.579(1.095)
2.069(0.732)
2.109(1.169)
-0.451(0.350)
0.338(0.164)
-0.958(0.469)
1.487(0.136)
1.940(0.111)
1.161(0.108)

T12
T13
T23

0.352(0.307,0.397)

0.321(0.272,0.370)

0.297(0.273,0.322)

0.318(0.292,0.345)
0.323(0.291,0.355)
0.284(0.260,0.308)

P12
P13
P23

0.503(0.269,0.736)

0.462(0.204,0.721)

0.430(0.298,0.563)

0.459(0.318,0.599)
0.464(0.295,0.634)
0.412(0.283,0.541)
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Table 2: Adoption study: Model for the biological families. Maximum likelihood
estimates (model based standard errors; empirically corrected standard errors)
of bwariate survival times and pseudo-likelihood estimates (standard errors) for
trivariate model. For Kendall’s 7 and Spearman’s p, estimates and 95% confi-
dence intervals are given.

Par. BM-BF BM-ACh BF-ACh BM-BF-ACh
012 1.076(0.128;0.128) - - 1.076(0.127)
013 ~ 1.164(0.193;0.187) - 1.164(0.187)
023 - ~ 1.176(0.194:0.202) 1.175(0.201)
B -0.085(0.086;0.077)  -0.086(0.086;0.077) - -0.084(0.069)
B -0.009(0.078;0.072) ~.0.010(0.078;0.072) -0.004(0.036)
Bs - -1.066(0.164;0.159)  -1.060(0.164;0.159) -1.063(0.137)
P 0.220(0.017,0.015)  0.219(0.017;0.015) - 0.220(0.013)
P2 0.279(0.011;0.010) ~0.279(0.011;0.010) 0.279(0.006)
D3 — 0.086(0.054;0.063)  0.085(0.054;0.063) 0.086(0.054)
A 3.818(0.146;0.178)  3.817(0.146;0.179) - 3.818(0.155)
A2 5.568(0.179;0.201) - 5.568(0.179;0.200) 5.568(0.174)
A3 - 2.312(0.175;0.290) 2.313(0.176;0.291) 2.313(0.252)
12 0.016(0.003,0.029) 0.016(0.003,0.029)
T13 0.034(0.016,0.051) 0.034(0.016,0.051)
T23 0.036(0.018,0.054) 0.036(0.017,0.054)
(Parner) 712 0.035(0.024,0.045)

(Parner) 713 0.050(0.036,0.064)

(Parner) 723

0.037(0.023,0.050)

P12
P13
P23

0.024(-0.053,0.102)

0.051(-0.054,0.155)

0.054(-0.054,0.162)

0.024(-0.053,0.102)
0.051(-0.054,0.155)
0.054(-0.058,0.165)

(Parner) p12
(Parner) p13
(Parner) pa3

0.052(-0.010,0.113)

0.075(-0.010,0.165)

0.055(-0.027,0.137)
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Table 3: Adoption study: Model for the biological and adoptive families. Max-
imum likelihood estimates (model based standard errors; empirically corrected
standard errors) of bivariate survival times and pseudo-likelihood estimates
(standard errors) for trivariate model. For Kendall’s 7 and Spearman’s p, esti-
mates and 95% confidence intervals are given.

Par. AM-AF AM-ACh AF-ACh AM-AF-ACh

012 1.265(0.132;0.127) - 1.265(0.127)
013 ~0.844(0.138;0.133) - 0.849(0.133)
023 - —  1.237(0.200;0.198) 1.240(0.197)
5 -0.015(0.077;0.072)  -0.012(0.077;0.072) - -0.029(0.064)
Ba 0.078(0.075;0.074) ~0.077(0.075;0.074) 0.025(0.034)
Bs —  -1.066(0.164;0.159)  -1.064(0.164;0.158) -1.068(0.137)
p1 0.210(0.009;0.009)  0.210 (0.009;0.009) - 0.211(0.008)
P 0.235(0.008;0.008) ~0.235(0.008;0.008) 0.241(0.005)
Ps — 0.085(0.054;0.063)  0.085(0.054;0.063) 0.086(0.055)
A 6.402(0.203;0.218)  6.406(0.203;0.219) - 6.405(0.189)
Ao 7.223(0.210;0.220) ~ 7.228(0.210;0.022) 7.222(0.191)
As ~  2.312(0.176;0.290)  2.311(0.176;0.291) 2.312(0.252)

T12
T13
T23

0.052(-0.045,0.150)

-0.038(-0.184,0.108)

0.047(0.030,0.065)

0.052(0.041,0.063)
-0.036(-0.060,-0.012)
0.048(0.030,0.065)

(Parner) 712
(Parner) 713
(Parner) 723

0.051(0.040,0.061)

-0.069(-0.085,-0.052)

0.041(0.027,0.054)

P12
P13
P23

0.078(-0.501,0.657)

-0.057(-0.931,0.818)

0.071(-0.033,0.175)

0.078(0.013,0.143)
-0.055(-0.198,0.089)
0.072(-0.034,0.177)

(Parner) p12
(Parner) p13
(Parner) pa3

0.076(0.013,0.140)

-0.103(-0.202,-0.004)

0.061(-0.021,0.143)
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