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An Approximate Approach to Fit a Linear Mixed Model
with a Finite Normal Mixture as Random-Effects Distribution

and its SAS Implementation
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ABSTRACT. This paper describes an approximate method to compute maximum like-
lihood estimates of the parameters in the linear mixed model with a finite normal
mixture as random-effects distribution. The proposed method uses an EM algorithm
with an approximate M step which can be performed using procedures designed to fit
a common linear mixed model. This approach enables, among others, to include easily
various covariance structures of the residuals and random effects in the model. The
suggested method has been implemented as a SAS macro which is briefly introduced

and illustrated on data on heights of schoolgirls.
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1. INTRODUCTION

A linear mixed model is a frequently used tool for describing longitudinal continuous
data. Its random effects are usually assumed to be normally distributed. Unfortunately,
this basic assumption can very often be violated. This will occur, for example, if an
important categorical covariate is omitted from the fixed part of the model. That is why

Verbeke and Lesaffre (1996) and Verbeke and Molenberghs (2000, chap. 12) proposed to
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assume that random effects are distributed according to a finite normal mixture. The
advantage of this approach is, among others, the fact that many continuous distributions
can be well approximated by a finite normal mixture illustrating that the proposed model
is generally applicable. On the other hand, a big disadvantage is a lack of available
computational tools to fit such models in practice.

In this article, we concentrate on describing an approximate method to compute max-
imum likelihood estimates of the linear mixed model with a finite normal mixture as
random effects distribution which can work up to an arbitrary level of accuracy. More-
over, it can be quite easily implemented using common software for the linear mixed
models. A SAS macro called HetMixed based on the procedure PROC MIXED has been
developed and will be introduced and illustrated in the paper.

After defining the model in Section 2, we show in Section 3 how the estimates can be
computed using the EM algorithm and how the most difficult part of it, the M step, can
be performed approximately using tools designed for the classical linear mixed model.
This SAS macro will be briefly introduced in Section 4 and illustrated in Section 5. Data
introduced by Goldstein (1979) and analyzed in Verbeke and Lesaffre (1996) will be re-

analyzed.

2. MODEL FORMULATION

This section introduces the concept of the linear mixed model with a finite normal
mixture as random-effects distribution that was proposed by Verbeke and Lesaffre (1996)
and also described by Verbeke and Molenberghs (2000, chap. 12). In accordance with
the therminology used by these authors, the linear mixed model with a finite normal
mixture as random effects distribution will be referred to the heterogeneity linear mixed
model. It can be seen as an extension of the classical linear mixed model which will be

called the homogeneity linear mixed model.
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Let the random variable Yj; denote the (possibly transformed) response of interest, for
the ith individual measured at time ¢;, ¢ = 1,...,N, k = 1,...,n;, and let Y; be the
n;-dimensional vector of all repeated measurements for the sth subject, that is, ¥Y; =
(Yit,-- ., Yin,)T. The heterogeneity linear mixed model starts from similar relationship as

the homogeneity model, that is from

ﬁF
(1) Y, = (X¢ Zi) (ﬂR) + Z;b; + €,

where X; and Z; are (n; X p), respectively (n; x ¢) matrices of known covariates, modeling
how the response evolves over time for the ith subject. Further, 8 and B% are p-
dimensional, respectively g-dimensional vectors of unknown regression parameters. Vari-
ables b; are subject-specific g-dimensional random effects, and €; is an n;-dimensional
vector of residual components ¢;,, K = 1,...,n;. All g; are assumed to be independent
and normally distributed with mean vector zero and covariance matrix ¥3;.

We have just described the part of the heterogeneity model that is the same as for the
homogeneity model. The former one differs from the latter in assumptions on subject-
specific effects b;. They are assumed to be independent under both models. The ho-
mogeneity model considers them to be normally distributed with mean vector zero and
covariance matrix ID. The heterogeneity model is obtained by replacing this distributional
assumption by a mixture of a prespecified number g of ¢g-dimensional normal distributions
with mean vectors p; and covariance matrices D, i.e.,

g

(2) b~ Y 7N (p; D),

j=1
with Z?Zl m; = 1. A more general case would assume different covariance matrices
Dy,...,D, for each component of the mixture. However, this leads to the infinite like-

lihood as pointed out by McLachlan and Basford (1988). In order to avoid numerical

problems in the estimating procedure, we will assume Iy = --- =1, = D.
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Vectors W; = (Wi, ..., W;,)" can now be defined as follows. The term W;; = 1 if b;
is sampled from the jth component of the mixture and 0 otherwise, 7 = 1,...,¢9. The

distribution of W, is then described by
P(Wi; =1) = E(Wy) =7,

which is called the prior probability to be sampled from component j. Expected values of

b; can then easily be obtained as

9 9
E(b) = E(E[b)|W.]) = E (Z ujmj) =D K.
7j=1 7j=1
The expectation of the response is then

g
E(Y) = BT + 28" + Zb; + &) = XiB" + Z8" + 2.y mjm,.

i=1

Note that the model is overparametrized and therefore the additional constraint

g
3) S = 0
j=1

is needed. Then the marginal mean of the response equals E(Y;) = X; 8" + Z;8" which
is the same as in the case of the homogeneity model.

Model (1) with assumptions (2) can also be rewritten as a hierarchical Bayes model
Yilb; ~ N(X;8" + Z;8" + Z:b;, %),

e {1yt with P(pu = p;) = 7;.
This expression might be useful when the heterogeneity model is used for classification
of individual profiles into one of g populations. The underlying data generating mechanism
can be viewed as a two step process. First, the population is chosen and second, response

is generated according to the chosen population. In practice, one can wish to reveal the
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first step of this mechanism and try to classify an individual with observed response vector

Y into one of the populations.

3. ESTIMATION OF THE HETEROGENEITY MODEL

3.1 General Concept

Estimation of the unknown parameters in the heterogeneity model is based on the mar-

ginal distribution of the observations Y;. Under (1) and (2), this distribution is

g9
Yi~ ) mNXBT + 2% + Zip;, Vi),  with V; = Z,DZ] +%;.

=1

Let 7 be the vector of component probabilities (i.e., w7 = (my,...,7,)) and let v be
the vector of all other unknown parameters (i.e., 3", 8%, the components of the matrices
D and X;). Further, let 87 = (w7, ~4T) denote the vector of all unknown parameters
that are to be estimated. The method of maximum likelihood can be used to find the
requested estimates. The likelihood function corresponding to the marginal distribution
of the observations Y; is of the form

(5) L*(6]y) = H {Z ijij(’yih)} ,

i=1 \j=1

where y*' = (y{,...,y%) is the vector containing all observed response values and f;; is

the density of an n;-dimensional normal distribution N (X; B +7,8% + Lipj, V).

Note that the likelihood function (5) is invariant under the g! possible permutations
of the mean vectors and corresponding probabilities of the components of the mixture.
However, this lack of identifiability can easily be overcome by imposing some constraint

on the parameters. For example, the constraint

(6) T >Mp > >,

suggested by Aitkin and Rubin (1985) can be used. The likelihood is then maximized

without the restriction, and the component labels are permuted afterward to satisfy (6).
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The log-likelihood function corresponding to the likelihood (5) is given by

(7) "(0ly) = Zlog{Z%fzg (Y:l7) }

It is quite difficult to maximize this function and the EM algorithm introduced by Demp-
ster, Laird and Rubin (1977) can be used to compute the desired estimates. The response
vectors Y'; along with the (unobserved) population indicators W; can be seen as complete
data whereas the vectors Y; alone can be viewed as incomplete data since information
containing population membership is missing. The likelihood function (5) corresponds

then to the incomplete data. The likelihood function that would have been obtained if

values w; = (wy, - .., w;g)" of population indicators W; had been observed equals
N g
(8) L0y, w) = H H {7 fii (yalv)
i=1 j=1
where wl = (w7, ..., w}) is the vector containing all hypothetically observed population

indicators. The log-likelihood function corresponding to (8) then has the more tractable

form
N g

1(Oly, w Zsz]{logﬂ'J + log fi;(y:lv)}-

=1 j=1

Maximizing [(6|y, w) with respect to € yields estimates that depend on the unobserved
(“missing”) indicators w. The EM algorithm offers a solution to this problem by maxi-
mizing the expected value of [(8|y, w), rather than {(0|y, w) with respect to 8, where the
expectation is taken over all unobserved w;;. The conditional expectation of [(0|y, w),
given the observed data vector y, is calculated within the E step (expectation step) of
each iteration of the EM algorithm. The obtained expected log-likelihood function is then
maximized within the M step (maximization step) of the algorithm.

Let 8% be the current estimate for 0, and let 0%+Y gtand for the updated estimate,
obtained from one further iteration of the EM algorithm. The following E and M steps

have to be executed to compute the updated estimate.
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The E step. The conditional expectation of I(0|y, w), given the observed data vector

y is given by

Q(016") = E[1(8]y, w)|y, 0]

9)

Z Zpij(O(t)){log mj +log fij(yilv) }-

i=1 j=1
The terms pij(G(t)) are called the posterior probabilities for the 7th individual to belong to
the jth component of the mixture and can easily be computed using Bayes’ theorem as

pii(0V) = E[Wyly;, 0] = P(Wy; = 1]y;, 0) =
(10)

79 i (yaly®)
i 17Tk)fzk(yz|7 )

The M step. The objective function Q(8|0®) has to be maximized with respect to 8

to get the updated estimate 8. Expression (9) is the sum of two terms:

Q(010Y)) = Q1 (7|67) + Qu(~(60Y),

where
N g
(11) Q1 (7]|0Y) Z pr Nlog;,
i=1 j=1
N g
(12) Q2(7109) =) " pii(69) 1og fij (il ).
=1 j=1

The first term depends only on the parameter 7r, the second one only on the parame-
ter . Hence, it is possible to maximize each of these terms separately to find a maximum

for (). Q1 is maximized for

t+1 _ szg e(t)

These estimates are equal to an average of posterior probabilities for all subjects belonging

to a given population.



Unfortunately, the term (12) cannot be maximized analytically as can the first one.
It will immediately be shown how an approximate optimization of ()5 can be obtained
using the common software for fitting the homogeneity linear mixed models, such as
the SAS procedure PROC MIXED or the R/Splus function lme. Function @y is to be
maximized with respect to «. If posterior probabilities pij(O(t)) are integers, function
(12) would be a log-likelihood for the homogeneity model based on observations from
P >y . pi;(8Y) individuals. Note that maximization of (12) with respect to = is
equivalent to maximization of

N g
A-Qu(v109) =D "> " A pi;(09) log fij(wil)
i=1 j=1
for an arbitrary positive constant A. Further, numbers A- pij(O(t)) can be arbitrarily close

to integers by choosing A sufficiently large. In practice, their rounded values can be used

to approximate the function A - Qa(v|0®). Let a;;(8") denote integers such that

(13) ai; (0%) = A - p;;(67)

and let
N g

(14) Q3 (v16“) =D " ai;(09) log fi5 (wil).
i=1 j=1

The function Q£ (|6") can be interpreted as the log-likelihood function for an appro-
priate homogeneity linear mixed model which corresponds to the observations taken on
Sy > a;;(8") mutually independent individuals. Note that the ith response vector
Y; from the original data set appears »_7_ a;;(0%) times in a data set which corre-
sponds to the desirable homogeneity model. At the same time, the marginal distribution
of a;;(8™) response vectors Y; out of their >0 a;;(8") replications follows the n;-
dimensional normal distribution N (X; Br +7,8% + Zip;, V;), with V; = Z; DZT +3;. At

this moment, common software for homogeneity linear mixed models is able to compute
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updated approximate estimates of 4. The higher the value of A is used, the better the
approximation is obtained. One has to take into account only present computational
possibilities.

When implementing this method, one also has to consider the constraint (3) of the
form Zgzleuj = 0 that was exposed to the population means at the beginning of
this paper. Fortunately, it is not too difficult to ensure that this constraint is satisfied
since the originally restricted g-dimensional parameters 8%, i, ..., ., can be replaced by

unrestricted g-dimensional parameters 41, ..., d, using the relationship

6j:laR+l*l’j: ]:1579

In fact, parameters Jj express real population means, whereas parameters W ; represent
the contrasts between a population mean and the overall mean B¥. Restriction (3) also

gives the way to compute B% from 4, ..., 44, that is
9
,BR = Zﬂ'j&j.
j=1

3.2 Empirical Bayes Inference

The random effects b; in model (1) are assumed to be random variables and that is why
they cannot be estimated in a standard way. So called Empirical Bayes (EB) estimates b;
can be used for random-effects inference. It will be shown immediately that they can quite
easily be obtained using the common software for fitting the homogeneity linear mixed
models. Let us denote the estimate of @ parameters obtained using the EM algorithm

described in the previous section as 0. The EB estimate IA)Z of the random effects is then

given by

b

bi(0) = E[b;|Y; = y;,6 = 8],
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The expected value is based on a posterior distribution derived from the model (4) using
Bayesian techniques. See Gelman et al. (1995).

Let us denote 3]- = ,@R +p;,j=1,...,9 and i)z = DZ?V{I(yi — Xz,éF — ZZ-SJ-), 1=
1,..., N, while obtaining all ‘hat’ expressions by replacing the corresponding quantities
by their estimate. It can be shown that the EB estimates of the random effects for the

heterogeneity linear mixed model equal

9 . 9
(15) b= pi(0)b; + > pii(O)a;.
j=1

=1

It easily follows that the quantities lA)z are standard EB estimates of random effects for
aij(é) individuals with common response vector Y; from the homogeneity linear mixed
model that was used in the last iteration of the EM algorithm when maximizing Q3
function (14). This property can be advantageously used when computing EB estimates
for the heterogeneity linear mixed model.

The EB estimates b; of the random effects are often used for diagnostic purposes, such

as the detection of outliers, etc. More information concerning the use of the EB estimates

can be found in Verbeke and Molenberghs (2000, chap. 7).
3.3 Classification

The heterogeneity model can perfectly serve for classification purposes of longitudinal
profiles or clustering. However, such classification no longer must be based on the random-
effects estimates. One should rather base such procedures on the posterior probabilities
pij(é) evaluated in the estimate 0 of the vector 8. Very common practice in mixture models

~

is to classify the ith individual into the kth component for which max;—; _,p;;(0) =

pzk(é)
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4. A SAS MACRO

As already mentioned, the just described methodology for the computation of the max-
imum likelihood estimates of the heterogeneity linear mixed model can be quite easily
implemented using existing procedures and functions for fitting homogeneity linear mixed
models such as the SAS procedure MIXED or the R/Splus function 1me. The main advan-
tage of this approach is the fact that all covariance structures for matrices ¥; and D that
are offered by these functions and procedures can be used.

A SAS macro called HetMixed, for fitting heterogeneity models can be downloaded
along with its manual from the URL of the Biostatistical Centre, K.U. Leuven:

http://www.kuleuven.ac.be/biostat/research/software.htm

The syntax of the macro is:

%HetMixed (DATA = , SUBJECT = , REPEATED = ,
RESPONSE = , FIXED = , RANDOM = ,
TYPEREP = simple, TYPERAND = un,

G =1, AMIN = 10, AMAX

&AMIN, ABY = 10,

DECISWIT = 1, DECISBET

&DECISWIT, STOPWIT = 0.00001, STOPBET = 0.0001,

MAXITER = 100, MIXEDMI

50,

INITPOST = , ENDPOST = , EB = , PIEPS = 0.1);

The macro was developed using the SAS version 8. A lot of effort was spent in making
its syntax as similar as possible to the SAS procedure MIXED. For example, the RANDOM,
FIXED, SUBJECT, REPEATED statements retain their meaning. All covariance structures
for the matrices 3; and D that are available within the MIXED procedure can be specified
within the TYPEREP and TYPERAND statements of the macro. The meaning of some other
statements will be explained below, for the meaning of the remaining statements, we refer

to the macro manual.
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Let us now discuss some key features of the macro. To start EM, suitable initial esti-
mates for 8 have to be found. Note that the knowledge of posterior probabilities pij(O(O))
defined by (10) is sufficient to compute the value of the objective function Q(8]0®) given
by (9) that is to be maximized in the M step of the EM algorithm. This nice property
is utilized by the macro and initial posterior probabilities p;; (0(0)) for the ith individual
to belong to the jth component of the mixture are used to start the EM algorithm. Such
initial posterior probabilities can be given either by the user if the data set which contains
them is specified by the INITPOST statement or they can be randomly generated.

As discussed before, the E step of the EM algorithm is quite straightforward, as well as
updating the estimates of component probabilities 7v. On the other hand, the computa-
tion of updated estimates of v parameters is much more complicated and multiplication
technique described earlier is used. At each iteration of the EM algorithm, an extended
data set corresponding to the log-likelihood (14) of the homogeneity linear mixed model is
created and subsequently updated estimates of the v parameters are computed using PROC
MIXED. Multiplication factors aij(O(t)), defined by (13), are computed using the user spec-
ified A. Note that the response vector Y;, 7 =1,..., N has to be repeated Zgzl aij(O(t))
times to create the data set that is used to compute updated estimates of 8. This data set
must be physically created since there is no direct introduction of weights in PROC MIXED.
Thus a careful trade-off is needed between adequacy of the approximation (large A) and
computation time (small A). Indeed, since the replicates specified by the weights have to
be physically created, and computation time is related to the length of the dataset, one
should be careful with values that are too large. It is quite desirable to start computation
with lower A value and after the approximation provided by this value is too rough, to
increase it. This idea is, among others, also implemented in the macro.

More precisely, the EM algorithm starts its first iteration with A = A; =AMIN and

computes, using this value, numbers aij(B(O)). Similarly, the same A = A, is used in the
12



following iterations of the EM. Let m; be the number of iterations of the EM algorithm
needed to achieve the convergence which is driven by the DECISWIT and STOPWIT options
whose names come from the term within convergence. In order to find out whether used
A was sufficiently large for function Q3 to approximate @3, the model will be refitted
using increased value of A. Specifically, in the second run, the EM algorithm based on
A = Ay = A;+ABY, computes numbers aij(o(mﬂ) using this A value and subsequently new

mi+1) 1f this estimate is ‘considerably different’ from its previous

parameter estimate 0
value ™) the EM algorithm does not stop and continues using A = A, when computing
the weights. The meaning of the term ‘considerably different’ is driven by the DECISBET
and STOPBET options whose names are derived from the between convergence. The same
principle is used after the convergence of the EM when using A = A, is achieved. So that,
the whole iteration process consists of Zfil my iterations of the EM algorithm while each
segment of m, iterations uses the same A value equal to A; and A; = A;_1 + ABY. The
overall convergence is reported when the between convergence criterion is satisfied for the
first time. If the increased A value crosses AMAX when evaluating the between convergence
the computation stops and no convergence is reported.

Both types of the convergence yield different stopping rules. The user can choose
one of the three offered stopping rules specified by the DECISWIT and DECISBET options,

respectively. The EM algorithm (either one of its sets with a specific value of A or the all

iteration process) stops if

Q(O(Hl) ‘O(t)) — Q(O(t) |0(t71))‘ < ¢ for two consecutive iterations;

e the average absolute difference between estimates of all parameters that are to be
estimated in the two consecutive iterations is smaller than prespecified ¢;

e the mazrimal absolute difference between estimates of all parameters that are to

be estimated in the two consecutive iterations is smaller than prespecified €.
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Physically, two different values of € are given by the STOPWIT and STOPBET options respec-
tively. It should be emphasized that the approximation given by the A value used is taken
into account only when maximizing the () function. Its value used for the evaluation of
the convergence is always computed exactly.

Recall that each increase of the A value provides better approximation to the objective
function (). Hence, after performing the M step of the EM algorithm when evaluating the
overall convergence, the new estimates are closer to the real maximizer of this function
than these obtained using the smaller value of A. Thus, one can expect that after using
the higher value of A and computing one iteration of the EM algorithm, the objective
function () increases more than during several last iterations of the EM algorithm with
the smaller value of A. That is why, one has to find a compromise which is satisfactory
enough when computing an additional iteration of the EM algorithm with increased A
constant and evaluating the overall convergence. Be aware of the fact that the estimates
provided by the macro are always based on an approximation.

The macro provides, besides the estimates of model parameters, several additional
quantities. The posterior probabilities (10) for the ith subject to belong to the jth com-
ponent of the mixture can be saved in a data set prespecified by the ENDPOST statement.
Similarly, empirical Bayes estimates (15) of random effects can be stored in a data set
given by the EB option. The likelhood (5) and the log-likelihood (7) evaluated in the vector
of estimates obtained are reported as well to enable the user for example the comparison

of nested models.

5. EXAMPLE: HEIGHTS OF SCHOOLGIRLS

Growth curves of 20 girls with height measured on a yearly basis from age 6 to 10
were analyzed by Goldstein (1979, table 4.3, p. 101). The girls were classified according

to the height of their mother (group A: < 155 c¢m, group B: 155-164 c¢m, group C: >
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164 cm). A significant (at 5%) group, as well as a significant group by age effect, were
found. Because the group structure was obtained by discretizing the height of the mother
at arbitrary points, which is very artificial, it may be useful to search for growth curve
clusters, neglecting this a priori group structure.

A plot of the data is given in Figure 1. The heterogeneity linear mixed models for
these growth curves have already been reported by Verbeke and Lesaffre (1996). They
also have used an EM algorithm to compute the desired estimates thereby maximizing an
exact @, function (12) rather than the approximate Q4 function (14) within each M step
of the algorithm. They have fitted a two and a three-component heterogeneity models
describing linearly the evolution of the height and including random both intercept and
slope. They have written a procedure using the GAUSS software to fit their models. This
procedure was available for us. We will follow the same models to be able to compare exact
ML estimates obtained by the GAUSS procedure and our approximate ML estimates.

Precisely, the following model for the growth curves is assumed.
Yij = B8 + Bt tij + big + bir tij + €4,

with ¥; = 02 I5 and unstructured matrix D, ¢ = 1,...,20, j = 1,...,5. At the same time,
Y;; denotes the height of the ith girl at the age ¢,; and t;; =6, ..., 10.
The homogeneity model (i.e. the model with ¢ = 1) can be fitted in SAS using the

following syntax of PROC MIXED.

PROC MIXED DATA = girls METHOD = ml;
CLASS id ageclss;
MODEL height = age;

RANDOM intercept age / TYPE = un subject = id;

REPEATED ageclss / TYPE = simple subject = id;

RUN;
15



The estimates of a two-component heterogeneity model can be obtained using the macro
HetMixed in the following way. Note that the variable concerning merely ones and corre-
sponding to the intercept has to be created separately using a DATA step.

DATA girls; set girls;

int = 1; RUN;

J#HetMixed (DATA = girls,

SUBJECT = id, REPEATED = ageclss, RESPONSE = height,
FIXED = , RANDOM = int age,
TYPEREP = simple, TYPERAND = un,

G = 2, AMIN = 40, AMAX = 200, ABY = 40,

DECISWIT = 1, DECISBET 1, STOPWIT = 0.000001, STOPBET = 0.0001,

MAXITER = 1000, ENDPOST = twopost);

An absent INITPOST statement indicates that the initial posterior probabilities are to be
generated randomly.

To show the improvement of the results when the A value is being increased, Tables 1
and 2 report the estimates obtained after the approximate EM algorithm which was al-
lowed to use different maximal A values, namely 10, 80, 160 and 200. Such results can
be obtained by the macro by use of different values of the AMAX statement and sufficiently
strict between convergence criterion. The convergence criterion in the last set of the iter-
ations where the maximal A is used was chosen to be ‘Q(O(t“) |0(t)) — Q(O(t)|9(t71))‘ <
1078 in two consecutive iterations. Both tables report also the estimates obtained by use
of the GAUSS procedure of Verbeke and Lesaffre (1996).

As one can see, the A = 10 gives quite poor estimates. This poverty is particularly
highlighted when comparing final log-likelihoods. However, the A = 80 results in estimates

that are already quite close to what should be received. The estimated mean component
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profiles based on the estimates obtained after the computation with maximal A equal to
200 are shown on Figure 2.

The fact that the user is able to indicate a good convergence even without the knowledge
of the estimates computed using the exact EM algorithm which are generally unknown
is illustrated in Table 3. The increase of the objective function @) defined by (9) when
comparing the last iteration of the approximate EM algorithm with smaller A factor and
the first iteration of the algorithm with this factor increased by 40 is reported in this
table. In fact, this corresponds to the evaluation of the between or overall convergence of
the algorithm as described in the previous section.

Reported log-likelihoods of a two and a three-component models might entice to perform
a likelihood ratio test concerning the number g of mixture components. But this is not
as a strightforward as it seems due to boundary problems as discussed by Ghosh and Sen
(1985). Note that a classical likelihood ratio statistic does not follow a x? distribution in

this case.

6. DISCUSSION

Modelling repeated measures by the homogeneity linear mixed model is not always
satisfactory since the assumed normal distribution of random effects might be violated.
The homogeneity linear mixed model is also not useful for classification purposes. The so-
called heterogeneity linear mixed model that allows us both to classify individual profiles
and to create models with many other underlying distributions for random effects than
just only the Gaussian one was therefore introduced. The distribution of random effects is
assumed to be a mixture of normals which can well approximate many other continuous
distributions. Note that the normality assumption for the random effects is violated,

whenever an important categorical covariate has been omitted as a fixed effect in a linear
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mixed model. Random effects then follow a mixture of g, possibly normal distributions,
where g is the number of categories of the missing covariate.

Unfortunately, wider use of the heterogeneity linear mixed models was inhibited by
insufficient software support. That is why we have proposed an approximate method
as to compute maximum likelihood estimates of unknown parameters using available
procedures and functions for the homogeneity linear mixed model. The proposed method
has been implemented as a macro in the standard, commercially available software package
SAS. The core procedure MIXED that comes with the software is used to perform the most
involved part of the estimation procedure. We think that a flexible and stable procedure
has resulted. Its main enticement comes from the fact that all covariance structures for
both residual covariance matrices ¥; and random effects covariance matrix D offered by
the SAS PROC MIXED are equally available. The example has shown that when using
sufficiently high value of A, a constant that drives a level of the approximation, estimates

very close to the true ML estimates can be obtained.

REFERENCES

Aitkin, M., and Rubin, D. B. (1985), “Estimation and hypothesis testing in finite mixture

models,” Journal of the Royal Statistical Society, Series B, 47, 67-75.

Dempster, A. P., Laird, N. M., and Rubin, D.B. (1977), “Maximum likelihood from incomplete
data via the EM algorithm (with discussion),” Journal of the Royal Statistical Society, Series
B, 39, 1-38.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995), Bayesian Data Analysis.

London: Chapman & Hall.

Ghosh, J. K., and Sen, P. K. (1985), “On the asymptotic performance of the log likelihood

ratio statistic for the mixture model and related results.” In: Proceedings of the Berekely

18



Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. 2, L.M. Le Cam and R.A.

Olshen (Eds.). Monterey: Wadsworth, Inc., pp. 789-806.

Goldstein, H. (1979), The Design and Analysis of Longitudinal Studies. London: Academic

Press.

McLachlan, G. J., and Basford, K. E. (1988), Mizture Models: Inference and Applications to

Clustering. New York: Marcel Dekker.

Verbeke, G., and Lesaffre, E. (1996), “A linear mixed-effects model with heterogeneity in the

random-effects population,” Journal of the American Statistical Association, 91, 217-221.

Verbeke, G., and Molenberghs, G. (2000), Linear Mized Models for Longitudinal Data. New

York: Springer-Verlag.

19



TABLE 1. Heights of Schoolgirls, a two-component heterogeneity model.

The parameter estimates computed using SAS macro HetMixed with differ-

ent maximal A values and using GAUSS.

Maximal A value

Quantity A=10 A=80 A=160 A=200 GAUSS
5 82.318 82.804 82.803 82.804 82.775
' 5.667 5.389 5.386 5.386 5.386
5 82.802 81.946 81.939 81.931 82.065
2 5.784 6.407 6.421 6.424 6.419
1 .583 .682 .683 .683 .685
7o A17 .318 317 317 .318
&2 AT6 AT6 AT76 AT6 .469
5 6.580 —.082 6.455 .123 6.463 .127 6.463 .129 6.732 .104
—.082 .269 123 .048 127 .040 129 .040 104 .034
Log-likelihood -169.48 -166.80 -166.71 -166.70 -166.27
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TABLE 2. Heights of Schoolgirls, a three-component heterogeneity model.

The parameter estimates computed using SAS macro HetMixed with differ-

ent maximal A values and using GAUSS.

Maximal A value

Quantity A=10 A=80 A=160 A=200 GAUSS
5 81.028 79.342 79.380 79.368 79.457
' 5.755 5.615 5.604 5.604 5.599
5 83.190 84.275 84.372 84.393 84.214
? 5.458 5.330 5.319 5.316 5.322
5 82.239 81.726 81.672 81.659 81.655
’ 6.183 6.438 6.456 6.459 6.470
T .162 .199 .208 .210 .204
D) .560 .505 .495 494 497
73 278 .295 297 297 .299
&2 485 AT8 ATT ATT 455
) 6.000 .072 2.870 .379 2.670 .408 2.603 .416 3.640 .324
072 181 379 .042 408  .030 416 .028 324 .029
Log-likelihood -168.99 -166.06 -165.82 -165.78 -165.82
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TABLE 3. Heights of Schoolgirls. The increase of the objective function @
when comparing the last iteration of the approximate EM algorithm with

smaller A value and the first iteration of the algorithm with higher A value.

A value
Model 80 — 120 — 160 — 200 — 240
A two-component 203 105 .007 .005
A three-component .570 .303 .026 .014
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Height (cm)

Height (cm)

F1GcURE 1. Heights of Schoolgirls. Growth curves of 20 schoolgirls from age

6 to 10.
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Ficure 2. Heights of Schoolgirls. Estimated component means and prob-

abilities, based on the heterogeneity models.
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