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SUMMARY

With the new wave of cancer vaccines in clinical trials new endpoints need to be evaluated
to show their efficacy. Immunological parameters become very important to show the activity
of the vaccine and its relationship with the actual clinical benefit. An important tool to this
end is the theory of surrogate marker evaluation. Prentice (1989) and Freedman et al. (1992)
laid the foundations for the evaluation of surrogate endpoints in randomized clinical studies.
Buyse and Molenberghs (1998) supplemented the original proposals with two new measures
of validation and Buyse et al. (2000a) have formulated a meta-analytic approach, based upon
combining the surrogate and true endpoints in a multi-trial setting. Tibaldi et al. (2001) studied
several simplified modeling approaches in case both the surrogate as well as the true endpoint
are continuous. In this paper, we study surrogacy, on survival, of the sera titer achieved by
patients immunized with a cancer vaccine using three surrogate candidates and based on two
different approaches. The impact of a number of simplifying modeling assumptions as well as
the impact of the number of trials, centers and patients used for the validation is studied.

Some Keywords: Immunological Surrogates; Meta-analytic Approach; Plackett-Dale Model;
Simplified Models; Surrogate Endpoint Validation.

1 Introduction

Surrogate endpoints are used to substitute the true endpoints (Ellenberg and Hamilton 1989), in
the evaluation of response in a clinical trial. The benefit of using a surrogate lies, most often, in
achieving either a faster response or a more feasible validation. But a formal validation for shifting
to a surrogate endpoint should be undertaken regarding the relationship of the surrogate and true

endpoints.

In cancer clinical trials, survival time is considered the more objective endpoint to assess response

to treatment, but it requires a long-term trial which then can be influenced by different factors. In



the cancer setting, tumor response (e.g., given by the percentage of tumor shrinkage) has been used
as a surrogate endpoint for cytotoxic drugs although it has been questioned at several occasions
(Anderson, Cain and Gelber 1983; Ellenberg and Hamilton 1989; Buyse and Piedbois 1996). With
the development of biotechnology, new drugs emerge in which no longer a strong cytotoxic effect
is suspected but rather a cytostatic one. In this context, other surrogate endpoints like tumor
markers and immunological parameters need to be validated. In this study, we address the validity
of the immune response to a cancer vaccine as a surrogate for survival time in treated patients with

advanced non small cell lung cancer.

The validation of surrogate endpoints in clinical trials has first been formalized by Prentice (1989),
who proposed a definition as well as a set of operational criteria. Freedman, Graubard, and
Schatzkin (1992) supplemented these criteria with the so-called proportion explained (PE). Buyse
and Molenberghs (1998) proposed to use the relative effect (RE), linking the effect of treatment
on both endpoints and an individual-level measure of agreement between both endpoints, after

adjusting for the effect of treatment (adjusted association), instead of the PE.

Buyse et al. (2000a) suggested a new method for the validation of surrogate endpoints in a hier-
archical data setting, such as a multicentric trial or a meta-analysis. This type of setting allows
for the study of surrogacy at different levels (e.g., trial-level surrogacy and individual-patient level
surrogacy). A meta-analytic approach naturally leads to the prediction of the effect of treatment
upon the true endpoint, given its observed effect upon the surrogate endpoint. The linear mixed
models (Verbeke and Molenberghs 2000) has been used in the case of continuous outcomes, when

it is acceptable to assume a normal distribution.

Proper survival-type models were developed in Burzykowski et al. (2001) and Burzykowski, Molen-
berghs, and Buyse (2001). Molenberghs, Geys, and Buyse (2001) extended the theory to handle
mixed binary-continuous endpoints with two modeling strategies based on a probit-linear model

and the Plackett-Dale model. Longitudinal endpoints are studied by Renard et al. (2001).

Even though linear mixed models are well understood and extensively used, Buyse et al. (2000a)
showed that achieving convergence in this setting is not a trivial task. Tibaldi et al. (2001) studied

different strategies to deal with the computational problems in validation of surrogate markers,



based on hierarchical models. The trial, endpoint and measurement error dimensions were the

three different levels of simplification proposed in their work.

Throughout this paper, we will focus on the behavior in a real application of the simplifying
procedures proposed by Tibaldi et al. (2001) in terms of trial-level surrogacy. To study the
numerical issues in such a hierarchical modeling strategy, we analyzed two pilot clinical trials in
patients with advanced non small cell lung cancer treated with a cancer vaccine (Section 2). We
address the cases of a continuous-scale and binary surrogate for a continuous variable as true
endpoint. While it would be appropriate, in principle, to use models for time-to-event endpoints,
such a choice is not made here for a number of reasons. First, given the small sample sizes, reaching
convergence of continuous-type models is difficult, but reaching convergence survival-type models
has not been possible. Second, no fully hierarchical model has been developed for the survival case.
Third, since for continuous endpoints a number of simplifying approaches has been proposed, it is
possible to study the impact thereof. Fourth, given the advanced state of the disease, no censoring
is observed. In Section 3, the statistical models used for the surrogate assessment of the normal-
normal and binary-normal cases are reviewed. The different candidate surrogates are evaluated in

Section 4 using the data generated in two pilot clinical trials.

2 Non Small Cell Lung Cancer

Two pilot clinical trials were performed, with the aim of testing safety, immunogenicity, and survival
of a therapeutic vaccine based on the EGF molecule in patients with advanced Non Small Cell Lung

Cancer patients (Gonzélez et al. 1998, 2001).

A first pilot study tested the vaccine in 20 patients, with NSCLC, randomized to the EGF vaccine
with two different adjuvants Alum and ISA-51 Montanide. The vaccine is administered in a 5 doses
scheme for 51 days. Immunogenicity data is collected weekly during treatment period and monthly
during follow-up. The second pilot trial studied the same vaccines of the previous study in 20 more

patients, but with a common 3 days pre-treatment with cyclosfosfamide.

In both trials, the scope of patients is reduced to very advanced cancer patients at stages IIIb or IV



Table 1: CT1: Median Survival according to immune response.

Groups n Events Median (months)
High Responders 12 11 10.43
Low Responders 8 8 4.00
Historical Controls 29 29 5.67

Table 2: Immunological candidate surrogates for survival time.

Approach 1 Approach 2 True Endpoint
lg Max Titer lg End Titer In(Survival)
Greater 1:2000 Greater 1:2000 In(Survival)

Greater 1:2000 and 8x  Greater 1:2000 and 8x In(Survival)

without any other alternative of oncospecific treatment, with a WHO status less than 3. Survival
time was considered from the day of random treatment assignment to the day of death regardless
of the cause of death. There were three hospitals including patients: 2 in the first study and 3 in

the second.

In a previous analysis, a relationship of the immunological response and the survival time was
detected (Torres et al. 2001). For one of the trials, there was a clear advantage on survival for the

high immunological responders (see Table 1).

For the surrogacy, two approaches were considered, each with 3 alternatives, giving a range of 6
possibles candidate surrogates for survival time. In the first approach, we considered the log of
the maximum titer achieved during the immune evaluation for each patient. Considering then as
candidates the continuous outcome given by its actual value, a binary outcome being 1 if the titer
is greater than 1:2000 (3.3 on the log scale) and a second binary outcome being 1 if the titer is

greater than 1:2000 and 8x the original titer (see Table 2).

In the second approach, we considered the log titer achieved by the patient at the end of the

treatment period (at 60 days) and the same three alternatives as in the first approach were used.



3 Statistical Models

As indicated earlier, we opt for continuous and/or binary type response models. This implies the
(log of)) survival time is treated as continuous. This is justified in part by the absence of censoring
on the one hand, and the flexibility of the continuous endpoint models, together with the existence

of a number of simplifying strategies.
3.1 Full Random Effect Model

We will consider normally distributed endpoints. Let T;; and S;; be random variables denoting
the true and the surrogate endpoints for subject j = 1,...n; in trial « = 1,... N. Further, let Z;;

denote a binary treatment indicator.

The full random-effects model, as introduced by Buyse et al. (2000a) is

Sij = s+ ms, +aZij +aiZij + sy, (1)

Tij = pr+me, + B2+ biZij + ery, @)

where 15 and pr are fixed intercepts, mg, and my, are random intercepts for trial 7, o and 3 are
fixed treatment effects and a; and b; are random treatment effects. The individual-specific error

terms are €5,, and er,..
g 7

The vector of random effects, (mg,, mr,, a;,b;)’, is assumed to be zero-mean normally distributed
with a given covariance matrix D. The individual-level error terms (es,;,&r,;)" are also zero-mean

normally distributed with covariance matrix 3.

A measure to assess the quality of the surrogate at the trial level is the coefficient of determination

, —1
( dsp ) ( dss dsa ) ( dsp
dap dsa  daa dab
Rthial (f) l2)i|m,5'i:ai = dpp ‘ (3)

=R

A good surrogate, at the trial level, would have (3) close to 1. Intuition can be gained by considering

the simplified case where the prediction of by is done independently of the random intercept mgg.



The coefficient (3) then reduces to

2 2 it
. _ [¢]
Rtrial (r)y — Rb2|a7‘ o daadbb ’ (4)

Parameter estimation can be based on, for example, maximum likelihood or restricted maximum

likelihood (Verbeke and Molenberghs 2000).
3.2 Two Stage Model

As Buyse et al. (2000a) showed the fitting of the full random effects model can be a difficult task.
Tibaldi et al. (2001) considered several alternatives for trial simplification according to the trial
dimension, the measurement error dimension and the endpoint dimension. In particular a two
stage modeling approach is considered, as a useful alternative whenever convergence of the full

hierarchical model is beyond reach.

In this case, at the first stage the trial-level parameters are treated as fixed, exactly as Buyse et al.

(2000a), the model can be rewritten as
Sij = sy + il +esyy,
Tij = pr, +BiZij +er,,
where ps,, pir,, o, and [; are trial-specific intercepts and treatment effects.

At the second stage, a regression model is fitted to the treatment effects, estimated at the first
stage:

Bi = Ao + Mifis, + Xod + & (5)

This model can then be used to assess trial-level surrogacy, using the R? associated with this

regression.

Tibaldi et al. (2001) considered the unweighted, weighted and the measurement-error corrected
alternatives to account for the measurement error or heterogeneity in information content between

trial-specific contributions.

To this end, we introduce models for the estimated trial-specific treatment effects (ﬁsi,&i,@)’ ,



given the true trial-specific treatment effects (us,, @i, 3;):

s, s,
B Bi

Here, C; is the variance-covariance matrix of the estimated treatment effects. In case we assume
both treatment-effect estimates to be independent (which would result from a univariate choice on

the endpoint dimension), C; would assumed to be diagonal, even though this may be unrealistic.

Further, we assume a normal model for the true trial-specific treatment effects around the true

overall treatment effects:

HS; HS;
a | ~N a |,2]. (7)
Bi §;
The resulting marginal model, combining (6) and (7), is:
/7’5'2‘ s,
a, | ~N a |[,Z2+C|. (8)
B G

Maximum likelihood estimation for this model can be quite easily carried out by using mixed model
software, provided the values for C; can be input and held fixed, as is the case, for example, in the

SAS procedure MIXED.
3.3 A Plackett-Dale Formulation

In the case of an ordinal surrogate, the following model was proposed by Molenberghs, Geys, and
Buyse (2001). Assume that the cumulative distributions of S; and T; are given by Fs, and Fr;.

The joint cumulative distribution of both these quantities has been studied by Plackett (1965),

L+ (Fr, + Fs,)(i = 1) = C(Fr, Fsio ), £ 1
FT@,SZ' = 2(1/12 - 1) ‘ ,
Fr,Fs, if ;= 1.

Based upon this distribution function, we can derive a bivariate Plackett “density” function G;(t, s)
for mixed continuous-binary outcomes. Suppose the success probability for S; is denoted by m;,

then we can define G;(t, s) by specifying G;(t,0) and G;(t,1) such that they sum to fr,(¢). If we



define G;(t,0) = 0Fr, 5,(t,0)/0t, this leads to specifying G; by:

fr. (t) _ 1+FTi(t)(’l/Ji—1)—F5i(S)(l[)i—i-l) . )
2 (1 C(FTi,l—ﬂ'i,’lbi) > if 1/% 75 1,

Gi(t,O) =
fr,)(1 —m) if ¢; = 1.
and

Gi(t,1) = fr,(t) — Gi(¢,0).

In this formulation, we assume T; ~ N (j1;,02), with p; = pur + 3Z; and logit(r;) = us + aZ; with

similar notation as in the probit case. The global odds ratio is assumed to be constant. If we

denote
i i
2 1 2
;= | * | andm, = n.(a )
e logit (7;)
(0 In(4)

estimates of the regression parameters v = (u, 3, a,Ino?,Inv) are easily obtained by solving the

estimating equations U(v) = 0, using a Newton-Raphson iteration scheme, where U(v) is given

N AN AN
>(5) () (Ggmeiten)

=1

by:

Note that the adjusted association vz is given by % in this case and the relative effect RE = §/«

can be readily determined.

4 Validation of Candidate Surrogates

To evaluate the surrogacy of the continuous variables mazimal titer and end titer, the full and
reduced models proposed by Buyse and Molenberghs (1998) and the simplifications by Tibaldi et
al. (2001) were used. For these models the hospital was considered as the unit of variability, with
5 units in total. For the reduced case, no random intercepts were included. As it can be seen in

Table 3, the R? were calculated for each of the alternatives.

center

Table 3 shows the results of the surrogacy evaluation of the actual mazimal titer and end titer.

With the full model the R2

center

was higher with the weighted approach with R? = 0.334 and

center

0.440 for the mazimal titer and the end titer, respectively. With the reduced model, R? were

center



Table 3: Results of the trial-level surrogacy analysis for the maximal titer and end titer with full
and reduced models. R? are reported.

center

Full Model
Max Titer End Titer
Univariate Bivariate Univariate Bivariate
Unweighted 0.117 0.117 0.370 0.370
Weighted 0.334 0.334 0.440 0.440

Error Corrected - - _ -
Reduced Model

Max Titer End Titer
Univariate Bivariate Univariate Bivariate
Unweighted 0.111 0.111 0.069 0.069
Weighted 0.234 0.234 0.005 0.005
Error Corrected 0.146 0.146 0.02 0.02

higher for the weighted approach in the case of the mazimal titer surrogate, for the end titer all

2

center

the R?

center

were very low. In general, none of the obtained R, are high enough to suggest these

parameters as a good surrogate. In the full model there was no convergency of the models with the

2

center

measurement error correction. Also, there was a clear loss in the R estimates for the reduced

model compared to the full model due to lack of correction for random intercepts.

We certainly conclude that, while many of the R? values are small, some promise of the surrogate
end titer is seen in case a weighted version of the full model is used. Evidently, more elaborate

sample sizes are needed to confirm or contradict this initial finding.

To evaluate the surrogacy of the binary variables based on the maximal titer and end titer, the
probit and Plackett-Dale models were used. The data from both trials when combined for the
surrogacy evaluation. Also in the case of binary data, a very reasonable choice is the use of
a meta-analytic framework (Renard et al., 2001). However, in our case, this approach was not
feasible because, both, the sample size per center as well as the number of centers were too small.
Combined with the limited amount of information coming from binary data, this prohibited the use
of the meta-analytic paradigm. Therefore, we believe the concepts from Buyse and Molenberghs

(1998) still are useful summaries in this case.
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Table 4: Parameter estimates (standard errors) for the probit model.

Parameter Binary;o Binary;s Binaryso Binaryss
wr -1.969(0.358) -1.969(0.319) -2.062(0.339) -2.062(0.328)
s 0.246(0.843) 1.850(1.002) 1.079(0.673) 1.942(0.872)

6] -0.016(0.227) -0.016(0.200) 0.030(0.213) 0.030(0.205)

o -0.758(0.564) -1.387(0.637) -0.732(0.421) -1.095(0.517)
0.673(0.075) 0.673(0.075) 0.666(0.075) 0.666(0.075)
0.593(0.153) 0.741(0.108) 0.220(0.194) 0.545(0.158)

RE 0.0217(-0.553;0.597)  0.011(-0.266;0.290) -0.041(-0.605;0.523) -0.027(-0.386;0.331)

Table 5: Parameter estimates (standard errors) for the Placket-Dale model.

Parameter Binary 1 Binary 2 Binary 3 Binary 4

wr -2.042(0.35) -1.988(0.29) -2.122(0.347) -2.141(0.335)

s 0.342(1.175) 2.143(0.993) 1.741(1.065) 2.737(1.153)

15} 0.026(0.216) -0.003(0.181) 0.068(0.218) 0.091(0.213)

@ -0.994(0.794) -1.581(0.640) -1.179(0.668) -1.566(0.694)

o 0.679(0.075) 0.679(0.075) 0.670(0.075) 0.671(0.075)
In(y) 1.591(0.611) 2.663(0.745) 0.581(0.623) 1.874(0.670)
RE -0.026(-0.440;0.387)  0.00216(-0.221;0.225) -0.0585(-0.417;0.300) -0.0581(-0.307;0.191)

The results of the probit and Plackett-Dale model are shown in Tables 4 and 5. It is clear from
these results that all RE’s are estimated very imprecisely. In particular, all 95% confidence intervals
contain zero. This confirms that even the overall sample size is too small for useful surrogate marker
validation. The conclusion from this is two-fold. First, one should aim for the largest possible
sample sizes. Second, there is a clear need for alternative frameworks. One such framework is

provided by the Bayesian paradigm; this is a topic of ongoing research.

Practically, we cannot make any definitive statement about the surrogacy quality of the postulated
candidates. As it was said earlier, future investigations, based on more available data, will be

needed.
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5 Concluding Remarks

The assessment of surrogate biological markers has been addressed in the work of Choi et al. (1993)
and Lin et al. (1997), evaluating CD4 count in AIDS patients. With the new wave of cancer vaccines
and biological response modifiers, the search for surrogate endpoints has become an important issue

in cancer research as well.

In this paper, we have contributed towards assessment of immunogenicity as a surrogate of survival,
given by the titer achieved by patients after vaccination, either at the end of treatment or through
the maximal level achieved. Our evidences of a possible relationship of the immune response to the
EGF vaccine with survival came from two pilot trials in NSCLC (Torres et al., 2001). The results
obtained in the present work do not support the anti-EGF immune response as a good surrogate of
survival time. In this work, two trials comprising 40 patients in total, were analyzed for surrogate
validation but this size was not sufficient to obtain precise results. Although some convergence
problems were encountered, these could be solved with the simplified methods proposed by Tibaldi
et al. (2001). To this end, we had to result to continuous-outcome methods rather than survival-
type ones. This was justified due to the advanced state of the disease, for which reason there were

no problems of censoring.

Also the small size had an influence in the wide confidence intervals obtained. The minimum size
for the evaluation of surrogate variables has not been deeply studied. A logical reasoning would
require as much evidence as possible, but it might be the case of the existence of a very strong
surrogate variable for which it is not necessary a bigger size. We believe this particular issue should

be address in further studies.

In this work, several candidate surrogates were proposed for the assessment of surrogacy, as sug-
gested by Molenberghs et al. (2000), to get a stronger and less subjective analysis. The discretiza-
tion of the variables did not have an impact on the final results; the results were consistent either

considering the actual titer value or its dichotomized version.

Although there were not really enough trials nor patients, the evaluation of surrogacy is helpful to

assess how strong the immune relationship was with survival, based on the evidence accumulated
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so far. Other trials with the vaccines are ongoing, and more evidence regarding the relationship of
the immune response and survival time will be gathered. Extrapolation of results to other cancer
vaccines can be difficult since each vaccine has its own mechanism of action or activation site.
Probably, vaccines with a similar receptor family as the one approached by the EGF vaccine will

have a similar behavior.

Molenberghs et al. (2000) identified practical difficulties of surrogate evaluation and the need for
several trials and larger sizes. One possible way to overcome this is by the implementation of full

Bayesian models. The latter is a topic of further research.
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