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Abstract

Repeated measures are exploited to study reliability in the context of psy-
chiatric health sciences. It is shown how test-retest reliability can be derived
using linear mixed models when the scale is continuous or quasi-continuous and
using generalized linear mixed models when the scale is dichotomous. The ad-
vantage of this approach is that the full modeling power of mixed models can
be used. Repeated measures with a different mean structure can be used to use-
fully study reliablity, correction for covariate effects is possible, and a complicated
variance-covariance structure between measurements is allowed. In case the vari-
ance structure reduces to a random intercept (compound symmetry), classical
methods are recovered. With more complex variance structures (e.g., including
random slopes of time and/or serial correlation), time-dependent reliability func-
tions are obtained. The methodology is motivated by and applied to data from
five double-blind randomized clinical trials, comparing the effects of risperidone

to conventional antipsychotic agents for the treatment of chronic schizophrenia.

Key words: Reliability; Linear Mixed Model; Repeated Measurements; Psychiatry;

Rating Scale.
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1. Introduction

Measurement in psychiatric health sciences seldomly relies on objective criteria. The
subjective nature of the information to be gathered renders the development of scales in
this area far from easy. One difficulty is that external conditions can influence the response
that is given on such a scale, like for example the person who administers the test or the
time of measurement. Therefore, whenever a mental health measurement scale is developed,
its psychometric properties are typically checked. Two important properties in this respect

are reliability and validity.

Reliability reflects the amount of error inherent in any measurement and hence, in a
general sense, how replication of the administration would give a different result (Streiner
and Norman 1995). The validity of an instrument is defined as the degree to which it
measures what it purports to measure. In this paper we will concentrate on the former and
propose a flexible way to calculate the reliability of psychiatric symptom scales, measured

repeatedly over time.

Two main classical approaches are internal consistency and reproducibility of the
instrument. Internal consistency is the extent to which individual items are consistent with
each other and reflect a single underlying construct. In operational terms, internal consis-
tency represents the average of the correlations among all items in the instrument. Several
measures that are often used to measure internal consistency are: Cronbach’s alpha co-
efficient (Cronbach 1951), Kuder-Richardson (Kuder and Richardson 1953) and factorial
analyses. However, Streiner and Norman (1995) argue that these measures of internal con-
sistency as measures for the reliability should be interpreted with great caution. They are
based on performance observed in a single sitting, but there are many sources of variance

which occur from day to day or between observers which do not enter into the calculation.
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Reproducibility of an instrument is measured as either inter-observer reliability or
intra-observer reliability. The former is only applicable for interviewer-administered ques-
tionnaires and is the degree to which a measurement yields stable scores when administered
by different interviewers, rating the same subjects. The calculation of an intraclass correla-
tion coefficient (Deyo, Dierh and Patrick 1991) is one of the most commonly used methods.
Intra-observer reliability or test-retest reliability, is the degree to which a measure yields
stable scores at different points in time for subjects who are assumed not to have changed
on the domains being assessed. Also here, the calculation of the intraclass correlation co-
efficient is one of the most commonly used methods. A major difficulty in this approach is
to select the appropriate time interval. If it is too long, the assumption of no change is not
realistic. If it is too short, raters might remember the previous answer, thereby influencing

the ratings.

Reliability is not a fixed property of a certain instrument. Measures of reliability
depend on the population that has been evaluated using this instrument, they can as well
depend on the raters and furthermore the measures can change over time. The reliability is
typically higher if the instrument is used in an heterogenous population, and the measure

can be increased by training or practice of the raters.

Wiley and Wiley (1970) presented a method to disentangle the effects of lack of
stability (change over time) from the effects of poor instrument precision in repeated mea-
surements. In their model it is postulated that a subject’s true score at the second testing
is linearly related to, but not necessarily the same as, the true score at the first testing.
Applying these assumptions in the calculations of reliability, they come to a time-function
of reliability. Also Tisak and Tisak (1996) present a method to incorporate the aspect of

time in the calculation of the reliability and validity of an instrument.

Dunn (1989) describes how the reliability of an instrument can be derived using
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analysis of variance techniques. Furthermore, he extends this technique to mixed models
that incorporate random effects such as, for example, a rater effect. Also in generalizability
theory (Chronbach et al. 1963), the emphasis is on multiple sources of measurement error.
An important goal is to recognize different sources of error variance and to measure and

reduce the influence of these sources on the measurement.

Section 2 introduces data from a meta-analysis of five clinical trials comparing an-
tipsychotic agents for the treatment of chronic schizophrenia. Section 3 reviews the concept
of reliability, introduces a new and flexible way to calculate the reliability of continuous
measurement scales, measured repeatedly over time, and extends this approach to the case
of binary rating scales. Section 4 applies the methods, introduced in sections 3.2 and 3.3

on the data described in section 2. Finally, section 5 contains some concluding remarks.

2. Motivating Study

In this section we introduce individual patient data from five double-blind ran-
domized clinical trials, comparing the effects of risperidone to conventional antipsychotic
agents for the treatment of chronic schizophrenia. Schizophrenia has long been recognised
as a heterogeneous disorder with patients suffering from both “negative” and “positive”
symptoms. Negative symptoms are characterized by deficits in social functions such as, for
example, poverty of speech, apathy and emotional withdrawal. Positive symptoms entail
more florid symptoms such as delusions, hallucinations, and disorganized thinking, which

are superimposed on the mental status (Kay, Fiszbein and Opler, 1987).

Several measures can be considered to assess a patient’s global condition. The Pos-
itive and Negative Syndrome Scale (PANSS) (Kay, Opler and Lindenmayer 1988) consists
of 30 items that provide an operationalized, drug-sensitive instrument, which is highly use-

ful for both typological and dimensional assessment of schizophrenia (Kay, Fiszbein and
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Opler 1987). The Clinician’s Global Impression (CGI) is generally accepted as a subjective
clinical measure of change. Here, we will consider the CGI overall change versus baseline.
This is a 7-grade scale used by the treating physician to characterize how well a subject

has improved since baseline.

Since the label in most countries recommend that risperidone is most effective in
schizophrenia at doses ranging from 4 to 6 mg/day, we include only patients in our analy-
ses that received either these doses of risperidone or an active control like haloperidol,
levomepromazine, perphenazine and zuclopenthixol. Depending on the trial, treatment was
administered for a duration of 4 to 8 weeks. For example in the international trials (by
Peuskens and the Risperidone Study Group 1995, Chounard, Jones and Remington 1993,
Marder and Meibach 1994, and Hoyberg et al. 1993) patients received treatment for 8
weeks; in the study by Blin, Azorin and Bouhours (1996) patients received treatment for 4
weeks, while in the study by Huttunen et al. (1995) patients were treated over a period of

6 weeks.

3. Methodology

First, we give a general outline of the concept of reliability. Thereafter, we will
introduce two model families that will further be used to approach this quantity in a
longitudinal setting. Which of these two families is used, depends on the type of outcome,

that can be continous or binary.

3.1. Reliability

In the classical test theory, the outcome of a test is modeled as

X =7+¢, (1)
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where X represents an observation or measurement, 7 is the true score and e the cor-
responding measurement error. It is assumed that the measurement errors are mutually

uncorrelated as well as with the true scores. If this assumption is correct, we obtain
Var(X) = Var(r) + Var(e). (2)

The reliability of a measuring instrument is defined as the ratio of the true score variance
to the observed score variance, i.e.,

B Var(T)
= Var(X) )

or

_ Var(r)
Var(7) + Var(e)

(4)

In the case of two parallel measurements, we have X; = 74, and Xy = 7+4¢9, with
Var(X;) = Var(X,) = Var(X) and Var(e;) = Var(es) = Var(e). Further, the covariance of

the two measurements equals
Cov(Xy, Xs) = Cov(T + €1, 7 + €2) = Var(r) (5)
and the correlation between the two measurements can be written as

orr _ Cov(Xy, X3)
Corr(X1, X2) \/Var(Xl)\/Var(Xg)

B Var(7) B
~ Var(r) + Var(e)

(6)

The outcomes X; and X, can, for example, be two subscores of a test, in which case we
are also talking about split-halve reliability. If the scores are two measurements of the same
instrument, measured at different moments in time, then we are dealing with test-retest
reliability. When the scores are obtained by two different raters, at one moment in time,

then the measure is called inter-rater reliability.
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Next, we will see how advantage can be made of linear and generalized linear mixed
models in case repeated or longitudinal measures are taken, rather than a single measure

or a pair of measures.

3.2. Linear Mixed Models

Methods for continuous data form the best developed and most advanced body of
research, while the same is true for software implementation. This is natural, since the
special status and the elegant properties of the multivariate normal distribution simplify
model building and ease software development. It is in this area that the linear mixed
model is situated (Laird and Ware 1982, Verbeke and Molenberghs 2000). Gaussian data
can be modeled entirely in terms of their means, variances and covariances. The parameters
of the mean model are referred to as fized-effects parameters, and the parameters of the
variance-covariance model as covariance parameters. The fixed-effects parameters capture
the influence of explanatory variables on the mean structure, exactly as in the standard
linear model. However, the occurence of random effects and a structured covariance matrix
distinguishes the linear mixed model from the standard linear model. The need for covari-
ance modeling arises quite frequently in applications such as when repeated measurements
are taken on the same experimental unit, with spatially correlated data, or when experi-
mental units can be grouped into clusters and data from a cluster are correlated. One can
distinguish between three components of variability. Part of the covariance structure arises
from so-called random effects, i.e., additional covariate effects with random parameters.
These are effects which arise from the characteristics of individual subjects. The variances
of the random-effects parameters are commonly referred to as variance components (Searle,
Casella, and McCulloch 1992). Another component of the variability is the serial correlation
which captures that measurements taken close together in time are typically more strongly

correlated than those taken further apart in time. On a sufficiently small time-scale, this
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kind of structure is almost inevitable. The last component is the measurement error: when
the measurement process involves fuzzy determinations, the results may show substantial

variation even when two measurements are taken at the same time from the same subject.

The standard linear model is one of the most commonly used statistical models and

is represented by:
Y, =XiB+e, (7)

where Y, is the n; dimensional vector of responses for the ith subject, 3 are the fixed-effects
parameters, X; is the design matrix and g; is the unknown random error vector. The linear

mixed-effects model for repeated measurements generalizes the standard linear model as

follows (Laird and Ware 1982):

where X; and Z; are (n; xp) and (n; xq) dimensional matrices of known covariates, 3 is the p
dimensional vector containing the fixed effects, b; is the ¢ dimensional vector containing the
random effects, and e; is an n; dimensional vector of residual components whose elements

are no longer required to be independent and homogeneous. Explicitly, one assumes:
b, ~ N(0,D),
E; ~ N (O, ZZ),

bi,....,by,€e1,...,ey independent,
where D is a general symmetric (¢ X ¢) covariance matrix and %; is an(n; X n;) covariance
matrix which depends on 7 only through its dimension n;, i.e., the set of unknown parame-
ters in 33; will not depend upon . Note that when %; = 021, and Z; = 0, the mixed model

reduces to the standard linear model.

From (8) it follows that, conditional on the random effect b;, Y; is normally distrib-

uted with mean vector X;3+ Z;b; and with covariance matrix ;. Further, b; is assumed to
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be normally distributed with mean vector 0 and covariance matrix D. Let f(y,|b;) and f(b;)
be the corresponding density functions. We then have that the marginal density function

of Y'; is calculated by

Py = [ Fly,lbi) ()b,

which can easily be shown to be the density function of a n; dimensional normal distribution

with mean vector X;3 and with covariance matrix

Hence, V; can be modeled by specifying the structure of Z;, D and ¥;. Z; is set up in a similar
fashion as Xj;, the design matrix for the fixed effects parameters. Typically, parameters

are estimated using maximum likelihood or restricted maximum likelihood (Verbeke and

Molenberghs 2000).

In Section 4, we will show, in different settings, how we can easily derive the reli-
ability of psychiatric symptom scales from such models, thereby generalizing the classical

developments as outlined in Section 3.1.

3.3. Generalized Linear Mized Models

The linear mixed model, described in the previous section, assumes that response
variables are directly equated to a linear combination of fixed and random effects and
that the error terms are normally distributed (Littell et al. 1996). If one (or both) of
these assumptions is violated one can resort to a generalized linear mixed model (GLMM).
Fixed-effects generalized linear models (GLM) have been studied extensively in the liter-
ature (Nelder and Wedderburn 1972, McCullagh and Nelder 1989). Let us assume that

all measures from all subjects are stacked into a vector Y = (YI,..., YV 1)T with similar

conventions for other vectors and matrices. This implies the index ¢ drops from notation.
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The basic form of a generalized linear model is:

n=XB, (9)

where n = g(p), p = E(Y) and g is an appropriate link function. Nelder and Wedderburn
(1972) showed that maximum likelihood estimates for § can be obtained by iteratively

solving
X'WXG = X'Wy', (10)
where W = DX7'D, y* =i+ (y — i) D™, D = (0p/dn), and ¥ = Var(e) = £/2AN)/2.

Generalized linear mixed models are a useful extension of GLMSs, involving the ad-

dition of random effects and correlated errors. The generalized linear mixed model replaces

(9) with
n=XpB+Zb (11)

where 3 is a vector of unknown fixed effects with known model matrix X, b is a vector
of unknown random effects with known model matrix Z and = is the link function g(u)
and p is the conditional mean of the observations y, given the random effects b. As in the
conventional mixed model, the random effects b are in most mainstream papers assumed to
follow a Gaussian distributed. However, this assumption is not crucial and has been relaxed
(Lee and Nelder 1996). Likelihood inference for generalized linear mixed models requires
evaluation of integrals (Breslow and Clayton 1993), where the integral’s dimension is equal
to the number of random effects. Zeger and Karim (1991) avoid the need for numerical inte-
gration by casting the generalized linear random-effects model in a Bayesian framework and
by resorting to the Gibbs sampler. Wolfinger and O’Connell (1993) circumvent numerical
integration by using pseudo-likelihood (and restricted pseudo-likelihood) procedures. The
latter approach is implemented in the SAS macro GLIMMIX and is essentially a random-

effects extension of (10). The GLIMMIX macro is known to have some drawbacks such as,
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for example, downward biases in fixed-effects and covariance parameters. In contrast, the
MLWIN software, the MIXOR software package (Hedeker and Gibbons 1994) and the SAS
procedure NLMIXED use either better approximations or numerical integration and are

known to have better properties.

It might therefore seem sensible to avoid the use of the GLIMMIX macro. However,
this procedure is the only one that allows for random-effects and residual (serial) correlation

in the context of GLMMSs. For this reason, we continue to use the GLIMMIX macro.

4. Data Analyses

Let us now apply the previously developed methodology on the pooled data de-
scribed in Section 2. We will assess the reliability for both the PANSS and CGI scales,
using the SAS procedure MIXED. The SAS codes for fitting the subsequent models and

their respective reliabilities can be found in the Appendix.

4.1. The PANSS Scale

As mentioned earlier, the PANSS scale is a continuous response with 30 items. For
this response we considered in turn three different models and calculated the corresponding

reliability measures.

4.1.1. Model 1

First, we assume a linear mixed model with a random intercept. In that case, the

repeated measurements of the PANSS for subject ¢ satisfy:
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with X, the design matrix for the fixed effects which includes an intercept term, time,

treatment and the interaction between time and treatment, Z; a n; dimensional vector

of ones, €; ~ N(0,02I) and b; ~ N(0,d?). The fitted components are d? = 311.00 and

6% = 125.14. To show how the reliability can be derived from these data we first rewrite

the model as:
Yijk =tk + bi + iji

where Yj;;, is the measure at time point j for subject ¢ under treatment k; i , groups the
fixed-effects structure, b; is still the random intercept and €;j;, is the measurement error. As
we have seen in Section 3.1, the reliability reduces to the correlation between two parallel

measurements. For measurements at time points s and ¢t we then have:

R = Corr(Yisk, Yik)

~ Cov(prsk + b; + Eiskey ttr + bi + Estre)
B \/Var(bi + &‘isk)\/Var(bi + €itk)
~ Cov(bs, by)
d? + o2
02
it

(13)

The reliability expresses the ratio of the variance explained by the model to the total
observed variance. The link of (13) with the intuitive definition of reliability as we have
expressed in (4) is obvious. For data containing two measurements per subject, this value
equals the test-retest reliability of the instrument. For any series of repeated measurements,
this value gives a global measure of the correlation between the measurements within
subjects. For the PANSS data this global reliability measure yields a value of R =0.713

(s.e. 0.012). The standard error is calculated using the delta method.
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TABLE 1.

PANSS. Analysis of variance tables (weeks 6 and 8). (k=2 is the number of measurements per patient)

Source of variation Df Sum of Sq. Mean Sum of Sq. FExp. Sum of Sq.
Between patient 485 404812.1 834.664 (BMS) o} + ko,
Within patients (error) 486 22247.5 45.777 (WMS) o?

Total 971 427059.6

4.1.2. Comparison Between Model 1 and the Classical Approach

Here, we will show the analogy of the presented method for estimating reliability to
the classical approach (Bartko 1966, Fleiss 1989, Dunn 1989) through comparing results of
both methods. In the classical approach, typically two measurements are compared (test-
retest reliability), assuming them to be parallel (equal true scores and equal error variances).
First, we apply Model 1 to a reduced set of data with only two measurements in the case
that this assumption is valid. These results will be compared to the classical approach.
Second, we discuss both methods in the case that the assumption of parallel measures is

violated.

We assume parallel measures for the subset of patients who both have week 6 and
week 8 PANSS measurements. This assumption is viable since the means are 69.24 and

68.84, respectively, with standard deviations equal to 17.74+ and 21.5, respectively.

In the classical approach, reliability is estimated by the intraclass correlation co-
efficient wich can be derived from a one way analysis of variance with patient as factor
(Table 1). From the table, we derive that the estimates for the variance components are

07 = 45.78 and G; = 394.44. The estimate for the intraclass correlation coefficient of
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reliability (Bartko 1966) then is:
N 612, BMS — WMS

Ro=— b =
62+062  BMS+ (k— )WMS

= 0.896. (14)

The reliability, estimated using the same set of data but based on linear mixed Model 1 is
based on d? = 394.77 and 52 = 45.72 and therefore

~ 394.77
= 394.77 + 45.72 0.896.

The results of both types of analyses almost coincide.

Let us now consider a different set of time points (baseline, i.e., week 0 versus week
8). The means then are 89.9 and 68.8, respectively, with standard deviations equal to 20.5

and 21.5, respectively. Here, the assumption of equal true scores is violated.

The classical intraclass correlation coeficient as derived via the one-way ANOVA
table is equivalent to a Pearson product-moment correlation coefficient between the pairs
of measurements, in which each pair would enter the calculation twice, i.e., both the pair
(Yisk, Yir) would enter as well as the pair (Y, Yisr) (Dunn 1989). Therefore, the reliability,
calculated in the classical way, will be biased by the change in true score. This bias, however
is removed if the reliability is estimated via Model 1. The proposed model follows a hier-
archical approach where the variance components are determined while fixed effects (time
effect, treatment effect, and the interaction thereof) are taken into account. As a result,
the corresponding reliability is then also fixed-effects corrected. This procedure could be
mimicked within the classical paradigm by replacing the true scores with residual scores,
i.e., where the time by treatment group mean values are subtracted from the true scores.

Hence, we are left with three possible approaches, summarized in Table 2.

Table 2 clearly shows the classical method, without adjustment, would lead to in-
correct results. This is to be expected since the assumptions required for the method to

be valid (no mean change, stable variance between both measurements) are not satisfied.
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TABLE 2.
PANSS. Three methods to calculate reliability (weeks 0 and 8).

Between Within  Reliability

Type of analysis variance variance coefficient

Classical (raw data) 57.0 441.6 0.114
Model 1 (raw data)  169.2 218.1 0.437

Classical (residuals)  169.1 217.2 0.438

However, the modeling approach presented here is still able to make use of these data
since it allows the correction for mean level and for heterogeneous variances. These are
important advantages of the mixed modeling approach. Further, there are three additional
advantages: the mixed model approach can be applied when (1) there are more than two
measurement occasions, (2) not all subjects have the same number of measurements (due to
missingness or irregularly spaced measurement times) and (3) more complicated variance-
covariance structures within subjects exist. To study these advantages further additional,

more elaborate models will be considered in subsequent sections.

4.1.3. Model 2

The use of random effects in the assessment of reliability dates back to Bartko (1966)
and has been described by Dunn (1989). Model 1 builds upon this work. In addition, we
will introduce serial correlation and then generalize the calculation of reliability to this
situation. Explicitly, the second model combines a random intercept with serial correlation.
Typical choices for such serial correlation structures are based on exponentially or Gaussian
decaying processes. These are standard available in the SAS procedure MIXED (Littell et

al. 1996). In order to choose the covariance structure that is best fitting the data, an
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panssvg

empirical variogram was created which is shown in Figure 1. For a formal introduction
to the variogram in the context of longitudinal data, we refer to Diggle, Liang and Zeger
(1994) or Verbeke and Molenberghs (2000). The value of the variogram at time lag zero
is an indication for the relative importance of the measurement error, the discrepancy
between the variogram at the largest time lag and the process variance (represented as a
level straight line at the top of the plot) is an indication for the importance of the random
intercept. The shape of the variogram describes the serial correlation process. The strength
of the process is indicated by the amount of increase between zero and maximum time lags,
while the shape of the curve is indicative for the shape of the process of serial decay. In this
case, we opt for a Gaussian serial process. Precisely, we retain Model (12), solely replacing

the variance-covariance matrix > of g; by a matrix with elements

PSYCHOMETRIKA

Lag

FIGURE 1.

Empirical variogram of the PANSS data.

2 2
Yigs =T +0o7,

Sa =7l exp(-ug/p®),  s#t
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where o2 denotes the measurement error variance and the remaining part is the serial
variance component with u, the time-lag between measurents Y;q. and Y for subject ¢
and treatment k. The estimated covariance parameters of this model, applied to the PANSS

data, are d* = 103.21, 72 = 274.97, p = 6.38, and 52 = 65.21.

As with Model 1, to derive a measure of reliability, we rewrite the model as:
Yijk = pgk + bi + wij + €4, (15)

where w;; is now the correlated spatial Gaussian component of the residual variability
structure with w;; ~ N (0, 72) and gij1 merely the measurement error with variance o?. For

time points s and ¢ it follows that
Var(Yigr) = Var(pusy + b + wis + £455) = d° + 77 + 0> = Var(Yiy)
and
Cov(Yisk, Yiee) = Cov(psi + b + wis + sk, pur + b + Wiy + i)
= Cov(b;, b;) + Cov(w;s, wit)
=d*+ 77 exp (%ﬁ)

and therefore the reliability can be calculated as a function of time-lag u between two

measurements

R(u) = Corr(Yisk, Yitr)

. Cov(Yisk, Yier)
\/Var(Y;sk) \/Var(Y;tk)

2 2 —u?2
_ d® 4+ 77 exp (f)
d?2 + 12 + o2

(16)

In spite of the correction for the fixed time effect, the covariance parameter estimates show

a considerable remaining serial component in the PANSS data. As can be seen from formula
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reliability

timelag

FIGURE 2.

PANSS. Reliability as a function of the time-lag u between any two measurements of a subject.

(16), a strong serial effect will lead to a fastly decreasing reliabilty for increasing time lags.

This is shown in Figure 2.

4.1.4. Model 3

After adding serial correlation in Model 2 to the random-intercept Model 1, we now

add random slope in time as well. The random-effects variance then equals

dii dio
D=
dip da
The estimated covariance parameters for the PANSS data are ciu = 295.59, 6712 = —4.3489,
dy = 5.9810, 72 = 87.577, p = 0.8114, and 52 = 0.9443.

The model can now be written as follows:

1
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For time points s and t, we then have
Var(Yige) = z,D2z. + 72 + 07,
Var(Yy,) = 2:Dz, + 7> + 02,
Cov(Yier, Yir) = 25Dz} + T2 exp(—u?,/p?).

Here, z; is the design row in Z corresponding to time s. From this we can derive, similar
to the derivations done earlier, the reliability as a function of time point ¢ and time-lag u:

zsDz, + 7° eXp(_p&;)

R(t,u) = Corr(Yisk, Yir) = (17)

\/stz’s + 72+ 02z Dz, + 12+ o2
Table 3 presents a matrix of all the values of the test-retest reliability, depending on the
point of measurement and the time lag between two measurements. Although the covariance
parameter estimates show a considerably decreased serial effect compared to Model 2, the
decrease in test-retest reliability when time lag increases remains, as can be seen from this
table. It is not straigtforward to interpret this effect. In the introduction we mentioned
two problems when choosing the time interval between two measurements for a test-retest
reliability study. One is the possible change over time of the true score. For this problem,
we introduce a solution by working with mixed models that allows correction for the fixed
time effects. An important issue is the potential memory effect of raters when measurements
are reasonably close in time. This may then explain the presence of a serial correlation,
since the memory effect is likely to decrease with increasing time lags. What remains over
a sufficiently long period of time is the random-effects structure, which may be seen as a

long-term reliability. Figure 3 gives a graphical representation of the same information.

4.2. The CGI Scale

Next, we will consider the same three models for Clinician’s Global Impression (CGI)

overall change versus baseline, a scale going from 1 (‘very much improved’) to 7 (‘very
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between two measurements.

PSYCHOMETRIKA

TABLE 3.
PANSS. Test-retest reliability for Model 3, as a function of the measurement occasion and time lag

time lag
time point 1 2 3 4 ) 6 7 8
0 0.811 0.741 0.710 0.673 0.631 0.588 0.545 0.504
1 0.813 0.748 0.723 0.692 0.659 0.624 0.590
2 0.820 0.762 0.743 0.719 0.693 0.666
3 0.832 0.781 0.767 0.750 0.730
4 0.846 0.802 0.793 0.781
5 0.862 0.824 0.818 0.692 0.631
6 0.877 0.845 0.767 0.719 0.659 0.588
7 0.892 0.824 0.793 0.750 0.693 0.624 0.545
8 0.892 0.845 0.818 0.781 0.730 0.666 0.590 0.504

much worsened’) and used by the treating physician to characterize how well a subject has

improved relative to baseline. We first consider CGI as a continuous response and apply

the same methods that have been used for the PANSS scale. In the next subsection, we

will apply generalized linear mixed methodology to accommodate the discrete nature of

the scale.

The estimates for the variance components resulting from random-intercept Model

1, random-intercept and serial correlation Model 2, and random-intercept, random-slope

and serial correlation Model 3 are presented in Table 4.
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FIGURE 3.

PANSS. Model 3. Reliability as a function of the measurement time t and the time lag between two mea-
surements u.

The reliability, derived under Model 1, calculated according to (13), equals R =0.570
(s.e. 0.018). Let us consider the variogram for CGI, as presented in Figure 4. The variogram
does not show an obvious structure, the spatial correlation appears to be rather weak. Let
us confirm this using Model 2 (see Table 4). A comparison of the loglikelihood at maximum
apparently does not underscore this message. However, no random effects have been added
yvet and therefore, the serial process may just capture omitted random-effects structure.
For this model and as given by (16), reliability is again a function of time lag between

measurements. Figure 5 gives a graphical display. The figure shows a gradual decrease in

the reliability measurement when the time lag increases.

For Model 3 we add a random slope for time. The resulting covariance parameter

etimates are represented as 3(a) in Table 4. The loglikelihood shows a further significant
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TABLE 4.

CGI. Variance component estimates for Models 1-3.

Estimates for Various Models

Component Par. 1 2 3 (a) 3 (b) 3 (c)
Var. rand. int. dyy 0.7213  0.3501  0.0000  0.7001  0.6838
Cov. (rand. int., rand. slope)  djy 0.0541  -0.0261  -0.0230
Var. rand. slope dao 0.0008 0.0216 0.0209
Serial process variance 72 0.5701  0.5278  -1.6005

Serial process corr. par. p 5.3405  4.9901 0.4758
Measurement error var. o? 0.5449  0.3664  0.3591 1.9997 0.4061
—2 loglikelihood 8758.5 8578.4 8510.7  8546.2  8546.9

improvement. The default option with the MIXED procedure in SAS is to restrict all
variance parameters to be nonnegative. However, a zero variance can be indicative for a
negative variance component. Given the presence of measurement error and a serial corre-
lation process, a negative variance component in the random-effects structure can still be
compatible with an overal positive-definite variance-covariance structure. Therefore, we can
relax the assumptions and allow for a general D matrix. For more details on negative vari-
ance components we refer to Verbeke and Molenberghs (2000). Practically, this is effected
by including the ‘lowerb’ option in the PROC MIXED code. The corresponding estimates

are labelled 3 (b) in Table 4. Now, a negative serial-correlation variance is obtained.

As was done for the PANSS data, the test-retest reliability can be derived as a

function of measurement time and time lag (Table 5). A graphical representation is given
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FIGURE 4.

Empirical variogram of the CGI dataset.
in Figure 6.

The variogram indicated the serial correlation process is likely not very important.
Therefore, it is of interest to simplify Model 3 (b) by deleting the serial correlation process,
retaining random intercepts and random slopes (Model 3 (c) in Tabel 4). Effectively, we
then have €; ~ N (0, 021). This can be derived from comparing the likelihoods as well. First,
comparing the likelihoods of Models 1 and 2, there is some evidence the serial process would
be needed, apparently contradicting this statement. However, secondly comparing Models
3 (b) and (c) there clearly is no need for the serial process. The disparity between both
comparisons is because the first comparison is done in the absence of a random slope while
the second one is conditional on the presence of a random slope. Given the latter, there
is no further need for serial correlation. When the choice is between either a serial process

(Model 2) or a random slope (Model 3 (c)), the likelihoods favor the random slope.

Comparing the likelihood of Model 3 (c¢) with Model 3 (b), also in the light of the
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timelag

FIGURE 5.

CGI. Reliability as a function of the time-lag u between any two measurements of a subject.

sample size, is consistent with our conclusion that the serial process is not very important.

The model can now be written as

1
Yijk = tje + ( bio b; ) (]) + Eijk

Var (Vi) = 2Dz, + 02,

and

Var(Yy,) = Dz + o2,
Cov(Yisk, Yitw) = 2:D 7.

It is then straightforward to derive the reliability for measurements at times s and ¢:

25Dz

\/2sD2l 4+ 02\ 2 Dz + oZ

R(s,t) = (18)
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CGI. Test-retest reliability for Model 3 (b), as a function of the measurement occasion and time lag

between two measurements.

time lag
time point 1 2 3 4 ) 6 7
0 0.604 0.594 0.556 0.511 0.463 0.414 0.369
1 0.601 0.599 0.571 0.537 0.500 0.464
2 0.613 0.620 0.601 0.577 0.551
3 0.639 0.651 0.640 0.625
4 0.673 0.689 0.684 0.511
5 0.727 0.601 0.637 0.463
5 0.689 0.640 0.577 0.500 0.414
7 0.746 0.727 0.684 0.625 0.551 0.464 0.369

For the CGI dataset this leads to the values for reliability as presented in Table 6.

The table shows an increase of reliability over succesive measurements for a constant lag

between two measurements. In general, the values appear to decrease when the time lag

between two measurements increase, however there are some exceptions for higher values

for both time points.

4.83. Binary Responses on the CGI Scale

In this section we will indicate how the techniques developed in the previous sections

for continuous data, can be applied when the outcome is binary, using the model proposed

by Wolfinger and O’Connell (1993) as implemented in the SAS macro GLIMMIX and
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TABLE 6.
CGI. Test-retest reliability for Model 3 (c), as a function of the measurement occasion and time lag

between two measurements.

time point 2

time point 1 1 2 3 4 ) 6 7 8
1 0.612 0.594 0.568 0.536 0.502 0.468 0.435
2 0.625 0.616 0.599 0.577 0.553 0.528
3 0.651 0.648 0.638 0.625 0.608
4 0.683 0.685 0.681 0.674
5 0.719 0.724 0.723
6 0.754 0.760
7 0.785
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FIGURE 6.

CGI. Reliability as a function of measurement time t and time lag u.

described in Section 3.3. The binary version of CGI is defined as much or very much

improved versus baseline (CGI equal to 1 or 2) versus the other categories.

In analogy with the continuous case of CGI (Table 4), we fit Models 1-3 (for the

latter versions (a) and (c)) to the binary outcome. The corresponding variance components

are given in Table 7.

Under Model 1, reliability is calculated as R = 0.953. We note that the value is
much higher than the continuous outcome counterpart. While Streiner and Norman (1995)
have found a reverse effect, we do believe our result is plausible since dichotomization can

(but does not have to) lead to an increased concordance between measurements.

Under Model 2, the reliability is only a slowly varying function of time lag (Figure 7).

Under Model 3 (a), a zero serial process variance is obtained, and therefore we revert
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TABLE 7.

CGI (binary version). Variance component estimates for Models 1-3.

Estimates for Various Models

Component Par. 1 2 3 (a) 3 (c)
Var. rand. int. diy 8.2270  3.8484  45.9539  46.6942
Cov. (rand. int., rand. slope)  dj -7.9661  -8.0956
Var. rand. slope das 2.7531 2.7778
Serial process variance 72 0.2170 0.0000

Serial process corr. par. p 4.0560 1.9218
Measurement error var. o? 0.4008  0.4101 0.1296 0.1294

immediately to version (¢) where the serial structure is removed from the model, leaving in
random intercepts and random slopes. The reliability can be calculated according to (18).

Results are shown in Table 8.

The results are rather peculiar. As was observed in the previous cases we see that
for a constant time lag, the reliability increases over the weeks. And on the other hand the
reliability decreases with increasing time lag. The rate at which this occurs is dramatic: for

far apart time lags there is no residual reliability any more.

5. Discussion

A body of research exists on reliability, especially in psychology and educational
sciences. In the past decades the topic is also entering the field of health sciences and espe-

cially the psychiatric health sciences because of the inherent subjectivity of the measures
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CGI (binary version). Test-retest reliability for Model 3 (c), as a function of the measurement occasion

and time lag between two measurements.

time point 2

time point 1 1 2 3 4 ) 6 7 8
1 0.957 0.812 0.582 0.350 0.164 0.003 -0.070
2 0.939 0.782 0.593 0.428 0.302 0.207
3 0.941 0.824 0.701 0.598 0.517
4 0.961 0.893 0.825 0.766
5 0.978 0.943 0.907
6 0.988 0.970
7 0.994
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FIGURE 7.

CGI (binary version). Reliability as a function of the time-lag u between any two measurements of a subject.

employed in this field. Test-retest reliability as one of the classical approaches typically deals
with the problem of time: how to disentangle the measurement error from real fluctuations

in what you are measuring 7

Wiley and Wiley (1970) were among the first authors to deal with this problem
by assuming a linear relationship between two adjacant measurements. In this way also
reliability will have different values at both moments of measurement. Tisak and Tisak
(1996) also stressed the fact that reliability is not a fixed property of an instrument but
changes with time. They proposed a method to calculate a time-function of reliability. Dunn
(1989) describes a method that uses components of variance in the calculation of reliability.
He further extends this method to a mixed model to deal with rater effects by taking the
rater into the model as a random effect. The mixed model methodology indeed allows
to study variance components and fixed effects simultaneously. While, for this reliability

study, we are primarily interested in the variance components, mixed-model methodology
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provides an interesting opportunity to model the fixed effects as well. We do not have to
make the unrealistic assumption that there is no change in a patients situation over time

or with treatment. Instead, such changes can be incorporated into the model.

When using repeated measurements a third source of variation can be taken into
account when calculating reliability, the so-called serial correlation. In this work, a method
has been proposed that allows for serial correlation in the calculation of test-retest reliabil-

ity, as well as random effects and measurement error.

The method was applied to two psychiatric rating scales for schizophrenia: PANSS
and CGI. For both scales, we observed a gradual decrease of reliability with increasing time
lag between measurements. As mentioned earlier, there are different possible scenarios to
explain such effects, such as memory effect of the raters or other covariates that are not
taken into account in the model. For the PANSS scale we obtain reliability estimates from
almost 0.90 to 0.50. Up to a time interval of five weeks, the reliability does not go below 0.60,
which is considerable. The CGI scale shows less good results: up to a time lag of three weeks,
the estimate of reliability remains above 0.55. Another result that occurs quite consistently
is a slight increase in the reliability measure as time goes by, but for a fixed time lag.
The reason for this is most likely a learning effect in the raters. In a different setting,
one might also encounter learning effects in the study subjects. Of course, other perhaps
complementary explanations cannot be excluded. We saw that dichotomising the CGI data
to a binary outcome has the effect of increasing the reliability considerably. In order to
calculate reliabilities in the context of repeated binary data, the generalized linear mixed
model of Wolfinger and O’Connell (1993), as implemented in the SAS macro GLIMMIX, has
been used. This methodology has the advantage of allowing for serial correlation together
with random effects. The method does have some drawbacks, as mentioned earlier, and

further research in this area is warranted.
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The present method stresses once again the fact that reliability should not be per-
ceived as a fixed quantity, but changes with circumstances. The quantity does not only
change over time or with population, but also with the covariates incorporated into the
model. The consequence is a more complicated picture, but arguably one that is also closer
to the true nature of things. It also means that better and more specific conclusions can be
drawn from a reliability study when an appropriate model is constructed, when it is known
which sources of variability are under consideration. Modelling other sources of variation,
like for example country or rater, is therefore an interesting topic for further research on

the present data.

A further important advantage of the present method is that it becomes possible
to estimate trial-specific or population-specific reliability in clinical studies. This is espe-
cially true because even in studies, designed to assess reliability, it is difficult to exclude
fluctuations in the true scores and furthermore these studies are often conducted with dif-
ferent populations and in different circumstances. Finally, when measurement sequences on
a subset of respondents are incomplete, these data can still be used for analysis, unlike in

the classical approaches.
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Appendix

MODEL 1

proc mixed data=panss2 method=reml noclprint;

class treat id xtime_c;

model panss= Xtime_c treat xtime_c*treat / outp=out;
random intercept/ type=un subject=id;

ods output covparms=cp;

run;

proc iml;

use cp;

read all into covpars;
close cp;
d=covpars[1];
sigma2=covpars[2];
relvec=d/(d+sigma2) ;
quit;

MODEL 2

proc mixed data=panss2 method=reml noclprint;

class treat id xtime_c;

model panss= Xtime_c treat xtime_c*treat / outp=out;
random intercept / type=un subject=id;

repeated xtime_c / type=sp(gau) (xtime) local subject=id;
ods output covparms=cp;

run;

proc iml;

use cp;

read all into covpars;
close cp;

d=covpars[1];
tau2=covpars[2];
rho=covpars[3];
sigma2=covpars[4] ;
u=t(1:8);
relvec=(d+tau2*exp (- (u##2/rho##2)))/(d+tau2+sigma?2) ;
create rel var{u relvec};
append;

close rel;

quit;

MODEL 3

proc mixed data=panss2 method=reml noclprint;

class treat id xtime_c;

model panss= xtime_c treat xtime_c*treat / outp=out;
random intercept xtime / type=un subject=id;

repeated xtime_c / type=sp(gau) (xtime) local subject=id;
ods output covparms=cp;

run;

proc iml;

35
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use cp;
read all into covpars;

close cp;

dll=covpars[1];

d12=covpars[2];

d22=covpars[3];
dvec=d11||d12]|d12]| |d22;

dmat=shape (dvec,2,2);
tau2=covpars[4];

rho=covpars[5] ;

sigma2=covpars[6];
tvar=0;
uvar=0;

relvar=0;
time=t(0:8);

relvec=j(9,8,0);
t=1;

do while (t<=nrow(time));
tvec=1||time[t];

vart=tvec*dmat*t (tvec)+tau2+sigma?2;
u=1;

do while (u<=(8-time[t])|u<=time[t]);
if time[t]+u<=8 then tuvec=1]|| (time[t]+u);
if time[t]+u>8 then tuvec=1]||(time[t]-u);
vartu=tuvec*dmat*t (tuvec)+tau2+sigma2;
covar=tvec*dmatx*t (tuvec)+tau2xexp (- (u##2/rho##2)) ;
relvec[t,ul=covar/sqrt(vart*vartu) ;
tvar=tvar//time[t];

uvar=uvar//u;
relvar=relvar//relvec[t,ul;

u=u+i;

end;
t=t+1;

end;
tvar=tvar[2:nrow(tvar)];
uvar=uvar [2:nrow(uvar)];
relvar=relvar[2:nrow(relvar)];

create rel var{tvar uvar relvar};
append;

close rel;

quit;
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