T E CH N1 C A L
R E P OR' T

0224
Comparing DNA Sequences using Generalized Estimating

Equations and Pseudo-Likelihood

K. Van Steen, G. Molenberghs, M. De Wit, and M. Peeters

IAP STATISTICS
NETWORK

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



Comparing DNA Sequences using Generalized
Estimating Equations and Pseudo-Likelihood.

Kristel Van Steen,! Geert Molenberghs,!
Mieke De Wit,> and Monika Peeters 2.

! Biostatistics, Center for Statistics, Limburgs Universitair Centrum,
Universitaire Campus, B-3590 Diepenbeek, Belgium

2 Tibotec-Virco, B-2800 Mechelen, Belgium.

SUMMARY

Proficiency testing is a key part of a laboratory’s quality control activities and
often takes the form of comparing a new query DNA sequence with sequences
generated by well-established reference labs. In this paper, we will show how
generalized estimating equations and pseudo-likelihood estimation can be used
to set up an equivalence test that assesses the “closeness” of such biological se-
quences. At the basis lies a marginal model for the probability of observing a
match between a new sequence and a reference consensus sequence at a particular
locus, using a single (intercept) mean parameter. Because of the simplicity of this
model, closed forms of the variance of the intercept parameter are easily derived.
When the association parameter lies on the boundary of the parameter space,
numerical problems with standard statistical software may give rise to unreliable
variance estimates.

Key words: DNA Sequence Comparison, Clustered Binary Data, Generalized
Estimating Equations, Pseudo-Likelihood.

1 Introduction

Nowadays, comparative sequence analysis is one of the cornerstones of modern molecular

biology. Probably the earliest type of these analyses date back to the 1960’s with the work



of Zuckerlandl and Pauling (1965). The title of their work “Molecules as documents of
evolutionary history” suggests the usefulness of biological sequence comparison in studying
gene (family) evolution. Although it is still an important task to understand organismal
diversity and to reconstruct historical events that led to the observed diversity (Maddison
1994), the increasing number of fully sequenced genomes and the Human Genome Project

seems to cause a shift towards large-scale functional annotation.

With the development of dynamic programming theory and with the availability of high-
speed computers, alignment algorithms became a popular and widely used tool in biological
sequence comparisons. The prototype of a global algorithm is the classic Needleman-Wunsch
algorithm (Needleman and Wunsch 1970). The Smith-Waterman algorithm is the best known
local alignment algorithm (Smith and Waterman 1981). Both alignment methods assign
scores to insertions, deletions and replacements, and compute an alignment of two sequences
that corresponds to the least costly set of such mutations, hereby maximizing the similarity
between the two sequences. However, it is not always straightforward how to choose scoring
matrices and gap penalties. Nevertheless, the latter plays an important role in determin-
ing the alignment (Vingron and Waterman 1994). Moreover, it seems to be fairly difficult
to detect and correct for deviations from the i.i.d. assumption in DNA sequences. In ad-
dition, statistical estimates from DNA comparisons are generally less reliable than similar

comparisons with protein sequences (Pearson and Wood 2001).

The management of HIV positive people is becoming increasingly complex. The availability
of a wide number of antiretroviral drugs and diagnostic tools has significantly improved the
survival of people with HIV infection but has also increased the complexity of the manage-
ment for caring physicians. However, if the quality of the laboratory contribution to patient

care (e.g., DNA sequenced samples) is not monitored objectively nor evaluated systemati-



cally, the whole care process breaks down.

Note that many viruses, including that of the human immunodeficiency virus HIV-1, have
genomes made of RNA that encode reverse transcriptase. This is an enzyme that makes
DNA copies of the RNA genome and integrates them into the genome of the host. One of
the first steps in analyzing such an HIV-containing sample is to sequence it. The necessity
emerges to create standards in order to guarantee a satisfactory quality level. Solutions will

have to be sought in the twilight zone of statistics and bioinformatics.

This paper has the following organization. Section 2 provides a brief description of the
data and introduces the format of the data for further reference. In Section 3 we introduce
marginal models that will be applied to the data at hand. Section 4 gives an overview
of the relevant theory underlying generalized estimating equations and pseudo-likelihood
estimation, respectively. In Section 5 it is shown how generalized estimating equations and
pseudo-likelihood theory can be applied to the comparison (agreement) problem of a single
DNA query sequence with a collection of reference sequences (these are: DNA sequences
generated by licensed reference labs that have proven to give consistent results). Results of
the practical implementation are presented in Section 6. The latter is followed by concluding

remarks in Section 7.

2 Data Description

Proficiency testing is a key part of laboratory’s quality control activities. It offers to labora-
tory customers independent evidence of the laboratory’s performance. The purpose of the
proficiency testing programme, as set up by Tibotec-Virco, is to enable ongoing monitoring
of a laboratory’s competence in the genotypic sequencing of HIV-containing samples. A bat-

tery of seven samples was selected which contained all relevant genotypic resistance profiles.



These samples were first sent to four reference laboratories for replicate (5 times) sequenc-
ing. Participating laboratories sequenced the samples only once (M = 1). All nucleotide
sequences were summarized using [UPAC-IUB Ambiguity Codes, allowing for mixtures of

nucleotides at certain positions.

Practically, each genotype sequence exists of (i) nucleotide/amino acid of HIV-1 PR (codons
1 through 99 x 3) and (ii) nucleotide/amino acid of HIV-1 RT (codons 1 through 250 x
3). This results in a total of L=1047 nucleotides. Only one of the samples (sample 002) is
selected for illustrative purposes. Since one reference lab sequenced all samples only once,

the pool of reference sequences comprises 16 DNA sequences.

All information within a reference lab (subject ¢) is summarized in a consensus sequence (of
length 1047) by selecting the most frequent nucleotide per locus. Ties are broken arbitrarily.
Moreover, if every sequence generated within a lab is non-informative with respect to a
particular locus 7, then the derived consensus sequence shows a missingness code at locus j.
In addition, mixtures of nucleotides are treated as missing observation. Note that there are

N = 4 reference labs.

To assess the quality of a query (new) DNA sequence, we construct for each of the 4 query-
reference comparisons a binary string, indicating matching and mismatching loci. If at a
particular locus j consistency is observed in the measured or sequenced nucleotide, the locus
gives rise to a “match” (coded as 1). In addition, also a missing observation at locus j
in both the query sequence and the consensus sequence of a reference lab is regarded as a

match. All other cases are referred to as “mismatches” (coded as 0).



3 Model Formulation

The final strings of zeros and ones obtained in the previous section, can be seen as binary
time series of length 1047. Extending the theory of generalized linear models (McCullagh
and Nelder 1989) to the longitudinal setting, the so-resulting model needs to account for
correlations among the multiple observations for an individual. Let Yj;,7 = 1,...,n;¢ =
1,..., N represent the jth measurement on the ith subject (here: sequence comparison).
Hence, there are n; measurements on subject ¢ and Zi]\il n; total measurements. When
inferences about the population average are the focus, the generalized linear model should
be expressed as a marginal model where the marginal expectation E(y;;) = p;; (¢ =1,---, N
refers to an experimental unit and j = 1, .-, n; refers to a measurement time) is directly
modeled in terms of covariates of interest. The marginal expectation represents the average
response over the subpopulation that shares a common value of the covariate vector (3.
Associations among the repeated observations are modeled seperately. More specifically, the

following assumptions are made (Diggle et al. 1994):

(i) The marginal expectation of the response E(y;;) = p;; depends on explanatory vari-
ables @;; via g(u;) = x3;3, with g a known link function (e.g., logit link for binary

responses).

(ii) The marginal variance depends on the marginal mean according to Var(Y;;) = v(1;) ¢,
where v is a known variance function and ¢ is a scale parameter which may need to

be estimated (e.g., v(g;;) = (1 — pij) and ¢ = 1 for binary responses).

(i) The correlation between Y;; and Yy is a function Corr(Yj;, Yik) = p(pij, pix; 0) of the
marginal means and perhaps of additional parameters &, with p(.) a known function

(e.g., p(.) can indicate an independent, exchangeable, autoregressive AR(1) or unstruc-



tured (working) correlation structure, amongst others).

Alternatively, the association between pairs of responses (Y;;,Yi;) can be modeled via log
odds ratios instead of correlations. For example, the multivariate Dale model (Molenberghs
and Lesaffre 1994) is a marginal model that uses marginal means and describes the asso-
ciation structure via (multivariate) marginal odds ratios (of second and higher orders). It
extends the bivariate global cross-ratio model described by Dale (1986) and McCullagh and
Nelder (1989).

Note that the odds ratio

Pr(Y;; = 1, Yy = DPr(Yy = 0, Yy = 0)
Pr(Y;; =1,Y, =0)Pr(Y;; =0,Y;, = 1)

Yijr = (3.1)

is not constrained by the means p;; and g, unlike the correlation Corr(Y;;,Yi;). (Prentice

1988, Lipsitz 1989, Diggle et al. 1094).

In the subsequent section, we will discuss GEE-related features in the context of a marginal
model using the correlation between pairs of responses as association function. Pseudo-
likelihood estimation will be described using a bivariate Plackett distribution (Plackett 1965)
and pairwise odds ratios. Note that it is also possible to apply GEE’s in conjunction with a
marginal model using log odds ratios specifying the association structure instead of correla-

tions (e.g., Lipsitz et al. 1991).

4 Estimation

4.1 Generalized Estimating Equations

The generalized estimating equations approach (Liang and Zeger 1986, Zeger and Liang 1986,

Zeger et al. 1988) is one of the most popular approaches to the analysis of correlated count



or binary data. This multivariate analogue of quasi-likelihood (Wedderburn 1974) is semi-
parametric in that the estimating equations are derived without full specification of the joint
distribution of a subject’s observations. Only the likelihood for the (univariate) marginal
distributions and a working covariance matrix for the vector of repeated measurements from

each subject need to be specified.

For instance, for the marginal model of Section 3 with the association between responses

modeled via correlations, the covariance matrix of Y; = (Yj1,...,Y},,) may be modeled as
1 1
Vi=0¢A;R(6)A;, (4.2)

where A; is an n; x n; diagonal matrix with v(u;;) is the jth diagonal element. In (4.2),
R(6) represents an n; X n; known, hypothesized, or estimated correlation matrix. Although
in principle this working correlation matrix can differ from subject to subject, we commonly
let R(d) approximate the average dependence among repeated observations over subjects
(Diggle et al. 1994). The beauty of the method is the ability to choose a working correlation

structure which differs from the correct one.

In the absence of a convenient likelihood, parameter estimates are obtained by solving the

generalized estimating equations

5(8) =3 Ml v ) (- ()

while iterating between quasi-likelihood methods for estimating 3 and an empirical based

method for estimating &, using the sandwich estimator, as a function of 3. It yields consistent
estimates for 3 and the corresponding variances, even with misspecification of the structure
of the covariance matrix. The efficiency loss relative to maximum likelihood methods is often

minimal (Geys et al. 1998).

For completion, we mention that the alternating logistic regressions method (ALR) of Carey



et al. (1993) also relies on generalized estimating equations, but not exclusively as in the
approach of Lipsitz et al. (1991). The ALR algorithm alternates between a GEE step to
update the model for the mean and a logistic regression step to update the model for the

log odds ratios.

4.2 Pseudo-Likelihood Estimation

As indicated in the previous section, GEE’s differ from likelihood equations in that they only
model the first moments (describing the marginal probabilities) of the joint distribution,
and apply working assumptions to construct the information needed from the higher order
moments. Another approach is to replace the true contribution f(y;1,...,¥m,) of a vector
of correlated binary data to the full likelihood by the product of all pairwise contributions
fyij,vir), 1 < j < k < n; to obtain a so-called pseudo-likelihood function (Le Cessie and

Van Houwelingen 1994).

Applied to the multivariate Dale model (Section 3), the joint probabilities fi;6 = f(Yij, Yir)
can be specified in terms of marginal probabilities and pairwise odds ratios using a bivariate

Plackett distribution (Plackett 1965):

(i) The bivariate marginal means fi;; satistfy

2(¢s—1)

L (i b i) (g =1) =S (bt iz oigne) if i # 1 (4.3)
Hijk = ' , |
i ik e =1,

where S(pij, ftik, Vi) = \/[1 + (a5 + b)) Wige — DI 4 A1 (1 — i) i e

using (3.1) as definition for the pairwise odds ratios ;;; (Fitzmaurice et al. 1995).

(ii) The marginal expectation of the response E(y;;) = f;; depends on explanatory vari-

ables x;; via g(u;;) = @;3, with g an appropriate link function (e.g., logit link).



(i) The correlation structure between Y;; and Yj; is captured by a model relating the
bivariate odds ratio );;, with explanatory variables via a known link function (e.g., log

link).

The model specification in items (ii) and (iii) above can be combined into n, = X; 3, with X,
a known design matrix and 3 the parameter vector of interest. By analogy with maximum
likelihood estimation, the maximum pseudo-likelihood estimator of 3 is given by the solution

of the so-called pseudo-score equations

Sreenao(B) = 0 (4.4)

(in which the likelihood in the classical likelihood-score equations is substituted for the
pseudo-likelihood function). Two popular fitting algorithms are the Newton-Raphson and
the Fisher Scoring algorithms. Pseudo-likelihood estimation yields consistent and asymp-
totically normal estimates of the parameters of interest (Arnold and Strauss 1991, Geys et
al. 1997). An account of the comparison of pseudo-likelihood and generalized estimating
equations for marginally specified odds ratio models with exchangeable association structure

is given in Geys et al. (1998).

In the following section, we will show how pseudo-likelihoods and generalized estimating
equations can be used to set up an equivalence test for the closeness of two DNA sequences.
At the basis lies a marginal model for the probability of observing a match between a new
sequence and a reference consensus sequence, using a single (intercept) mean parameter (3.

Apart from an estimate BO of [y, the test statistic requires an estimate of the variance of ﬁo.
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5 Methodology

5.1 Parameter Estimate Covariances

5.1.1 Generalized Estimating Equations

Adopting the notation of Section 3, the empirical (also referred to as robust) estimator of

the covariance matrix of the estimated parameter vector ﬁ is given by

Eemp = Emod Ebetw Emoch (51)
with
N ] i ) oy
oo = }:a“m“'”Mm)Vfwuon)Vflaw““”’MW) (5.2)
o8 Z Z o8 36
i=1 (B= B, 6= 90)
and
N ity s phin) <y Ot s i)\
» _ il s Ming —1 il s Ming ‘
mod (g 8[3 Vz 8,3 ) R R (5 3)
= (B=B. 6= 9).

A

Even when under the assumptions for V;, V; # Var(Y;), the estimator 3., of Var(3)
is consistent. However, if V; = Var(Y;), then X, reduced to the so-called model-based

~

estimator X,,,, for Var(3).

We will show that, in our situation, these formulae reduce to simple expressions. As model

for the marginal expectation of the binary responses Y;; we suggest
9(ij) = ;8 = fo, (5.4)

with g(.) the logit link function. The marginal variance Var(Y;;) naturally equals g1;;(1— f1;5).

The (7, k)th element of a working correlation matrix R(4) is hypothesized to be

1 if j=k,

5 it Ak (5:5)

Corr(Yy, i) = {
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corresponding to exchangeable working conditions. This relies on the plausible assump-
tion that the locationwise comparisons between the query sequence and a reference lab are

interchangeable.

Opij :
P 850 = 1 with
5= (T+exp By)

Note that —Lag(g’ ) = ' (145)

) S _ (L+exp o)
ZJ =280 (1 — py5) _expfy exp o
J " (14exp Bg) J J Hij= (14exp Bg)

subsequently denoted as g'(f). Using (5.3) and letting V;* = (wjk)1<j k<1047, it follows that

N L L -1
Ynod = W, . 5.6
9% (6) 2 Z 7 (56)
Applying (4.2) the (7, s)th element of V; under exchangeability is determined by

0(r#s)+I1(r=s)

Ve = 9'(Bo) ’

with I(.) representing an indicator operator which equals 1 if its argument holds and zero
otherwise. Consequently, if 6 # 1, 2+ such that 1+ (L —2)6 — (L —1)0* # 0,

"(Bo) 1+(L—2)6 o
lf]l—((LO—)é)J—((L—i)t)SQ it j=F,
Wik = (5.7)

1+(L—2’36—0(L—1)62 it j# k.

For more details we refer to Appendix A. Substituting (5.7) in (5.6) leads to

S rod = glg\ﬁ[‘)) Lo (1L_ L), (5.8)

With Cov(Y;) in (5.2) estimated as (Y; — ;) (Y; — ;)" and using (5.7), it is straightforward

to show that

2

e = i (1 —a-1D)s > (Vi — i ) (5.9)

k=1

(Appendix B).
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Substituting the expressions for 3,4 (5.8) and X, (5.9) in (5.1), we obtain

”2 N /1 L 2
Yemp = g ]\(50) Z (E (Y, — ,Ufzk:)> .

=1 k=1

In particular, as an explicit function of the parameter of interest, (,

2

(14+expB) 1 & 1 L exp f3

B = AL (1 b ) 510
exp?ffy N L= 1 +exp fo

5.1.2 Pseudo-Likelihood

Building on Section 4.2 and assuming exchangeability of cluster elements, we now denote
with 7,11 the bivariate probability of observing two successes and with ;19 the probability
of observing two successes, or a success in the first component and a failure in the second
component. By doing so, and by applying the Fisher scoring fitting algorithm to solve (4.4),
the asymptotic covariance matrix of the parameters 3 is turned into the following simple

form:

(S BB ) W) 65.1)

Here, W(B) = XN, XI(T; )T Ay(T; ') X, A; is the expected value of the matrix of second

o,

order derivatives of the log pseudo-likelihood with respect to m; = (w0, m11), Ti = T

n = (M, M2)", i = In(m0) — In(1 — m0) and 73 = In(vys) = In(m1) + In(1 — 2m500 + mi11) —
21In(m0 — 1), m = X3, with X; a known design matrix and 8 a vector of unknown

regression parameters (Geys et al. 1998).

We propose the constant marginal odds ratio model:

{ lOgit(Tl’ilo) = ﬂo

5.12
ny; = pi. o12)

Note that ; above plays the role of the association parameter ¢ in (5.5).
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5.2 Test Procedure

5.2.1 Generalized Estimating Equations

The (1 — «@)100% confidence interval of the parameter [, is given by

[BO - zl—OL/Q V 2emp? BO + Zl—a/? V 2emp]? (513)

where , is the GEE estimate of f, 3., is given by (5.10) evaluated in fy and in which
Z1_q)2 symbolizes the upper 100 /2 percentile of a standard normal distribution. These
Wald confidence limits are computed by assuming an asymptotic normal distribution for the
parameter estimator BAO. Although alternatives for the classical Wald test for GEE regression
parameters have been proposed (Rotnitzky and Jewell 1990), the proposed confidence inter-
val (5.13) serves our purposes well. Indeed, often one focuses on the independence model
of genome decomposition. As Wu et al. (1997) mention, the independence of nucleotides
is only an approximation to the actual independence in DNA sequences. However, Arratia
et al. (1990) evaluated this approximation and found it to be quite good. Note that if the
independence model for nucleotides in a DNA sequence is regarded as a true model, our

models simplify to a logistic regression model.

However, our main interest lies in finding evidence towards [, parameters that are “large
enough” (corresponding to high overlap probabilities). The decision rule we adopt is listed

in Table 1 and is based on the test statistic
o= ﬁo ﬁiﬁfz
)
\/ 2emp

with X, as in (5.10) and SS°° separating the “equivalence region” from the “inequivalence

equiv

(5.14)

region”. For example, if field workers support an equivalence region of |7, = 0.97,1] (1 is

the maximal success rate and corresponds with a perfect match), obviously 5 = In (M)

equiv 1—Tequiv
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Table 1: ABOUT HERE

5.2.2 Pseudo-likelihood

Also when modeling the association between pairs of responses via log odds ratios instead of
correlations and using a pseudo-likelihood estimation approach, the parameter of interest is
Bo (5.12). However, the interpretation of f here is somewhat different as compared to the
previous section: here, [, is related to the probability of observing at least one succes in a

pair of responses via the logit link function.
Whereas the protocol for the test remains the same (Table 1), the denomenator of the test

statistic z* defined before is replaced by the square root of the robust variance as in (5.11).

6 Results and Discussion

After delineating the equivalence region, we can perform the equivalence test as specified in
Section 5 (Table 1), using o = 0.01 as significance level. For illustrative purposes, we set the

boundary point specifying the equivalence region within a GEE or pseudo-likelihood frame-

work respectively equal to 55F = In (18‘327) = 3.4761 and G0 =In (18‘3%8) = 3.8918.

6.1 Generalized Estimating Equations

Adopting a generalized estimating equations approach and proposing an exchangeable 1047
by 1047 working correlation matrix (Section 5.1.1), the mean parameter of interest (3, is
estimated as 4.6415. According to (5.10) with J estimated as 0.0003, the corresponding

empirical based standard error we need in (5.14) is estimated as 0.2408. However, since §
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appears to be small, it would make sense to continue working with independence working
assumptions (i.e., § = 0) and hence to use the initial parameter estimate of , in the
iterative GEE estimation algorithm under exchangeable working assumptions. In our data
set, this initial parameter estimate of 3, coincides with the earlier obtained estimate of 4.6415.
Therefore, since d only implicitly occurs in (5.10) via fy, the empirical based standard error

for By under § = 0 remains 0.2408.

Consequently, the test statistic z* = % = 4.8397. Since z* > z1_, = 2.3263, we
conclude that the new query sequence is similar enough to the reference consensus sequences,
guaranteeing the proficiency of the new lab (assuming that the new lab has successfully

completed internal consistency checks).

The estimates for Gy and 6 above were obtained using the SAS procedure GENMOD. There
appears to be a discrepancy between standard errors as provided in the SAS output and
those provided by (5.8) and (5.10). Summarizing all available reference sequences into a
single consensus sequence, and constructing a match/mismatch binary sequence as before by
comparing this consensus sequence with the query sequence, the association parameter under
an exchangeable working correlation matrix is estimated as 6 = —0.0010. However, since V;

is a multiple of (1 — )y + 0Jp %1 (the scalar in the product being the eigenvalues

1
g'(Bo)’
of V; can be shown to be 1 — ¢ (multiplicity L — 1) and 1 — (1 — L) (multiplicity 1). In
order for V; to be positive definite, we have to impose that 1 —9 > 0and 1 — (L —1)d > 0.

Equivalently,
1

56]—1_L,

1].

Note that 6 # 1 and § # =7 are also the conditions for the covariance matrix V; to be
invertible (Appendix A). With L = 1047, it is clear that 6 = —0.0010 is near the lower

bound ﬁ = —0.00096 of the parameter space for 9. The latter seems to cause numerical
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problems resulting in large discrepancies between SAS generated empirical based standard

errors under different working assumptions (Table 2).

Table 2: ABOUT HERE

On the other hand, if § is believed to be small, then the estimate of ¢ via Pearson residuals
(which are in turn functions of (3y) will be close to the lower bound of the parameter space,
if (Appendix C)

N(1-1L)

N(1-L)+1

~ exp . (6.1)
Hence, with L as large as 1047, this is true whenever [, is nearly zero. In other words, if the
success rate is nearly 1, the estimate of § will move towards the boundary of the parameter
space. Note that in our situation, the success rate is 0.9876. In general, the success rate will
decrease with an increasing number of binary sequences. In our situation, taking up four
match/mismatch sequences in the analysis leads to a slightly smaller global success rate of
0.9864. As expected from (6.1), numerical problems are still bound to occur (note the devi-
ation of (5.10) from 0.1785), but at least SAS generates a non-zero empirical based standard

error under exchangeable working assumptions (Table 2). The large discrepancy between the

model based standard errors under the exchangeability model is reduced (Table 2, column 2).

6.2 Pseudo-Likelihood Estimation

Using pseudo-likelihood estimation and the odds ratio model (5.12), the parameter of interest
(o is estimated as 4.6415. It is not surprising that this number agrees with the estimate for
Bo (5.4) obtained in Section 6.1. Indeed, for “highly similar” sequences the probability of

a succes at some location will be comparable with the probability of having at least one
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succes in a pair of locations. However, using pseudo-likelihood estimation, we observe that
a more accurate estimation is obtained, since 0.1785 is found as associated robust standard
error (5.11), as compared to 0.2408 via the closed form expression (5.10). The association is

quantified via #; and estimated as 0.0214 (standard error: 0.0672).

Demarcating the equivalence region via G0, = In (18‘3%8> = 3.8918, the test statistic z*
takes on the value % = 4.2003. Since z* > 2z, = 2.3263, evidence is found

towards proficiency of the new lab.

For reasons of comparability with Section 6.1, we apply the technique to a single match / mis-
match binary sequence by comparing the query sequence with the consensus sequence de-
rived from all reference labs in the study. In this particular situation, we obtain a parameter
estimate of 30:3.5235 with associated robust standard error of 0.0001. The association pa-
rameter (31 turns out to be negative in a significant way (-0.0348, with estimated standard
error 0.0001). As a side-effect of the high accuracy level in the estimation, the test statistic
2* blows up in absolute value: 2* = W = —2612.9228. Note that by using the

condensed information of a single consensus sequence the null hypothesis of inequivalent

sequences can no longer be rejected!

However, the numerical issues brought up for discussion in Section 6.1 are also relevant in
this setting. Therefore it is not surprising that the summarized results within a pseudo-
likelihood approach (Table 3, obtained via GAUSS code) are in close agreement with the

ones obtained in Table 1 (SAS - e.g., exchangeable working assumptions).

Table 3: ABOUT HERE

As for the reliability of the estimated association parameter, we note that Zhao and Prentice
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(1990) and Liang et al. (1992) extended the GEE method (GEE2) for simultaneous esti-
mation of regression parameters 3 and covariance parameters d. In practice, this requires
modeling the third and fourth moments of y;;, instead of just modeling the mean and variance
as in the previous case (also referred to as GEEL). Lipsitz et al. (1994) extended Liang and
Zeger’s method (1986) to models for the correlation between repeated nominal and ordinal
categorical responses; in particular, when the repeated responses are binary, their methods

reduce to Liang and Zeger’s method.

GEE2 applied to the Dale model for clustered binary data again makes us suspicious about
presented accuracy (robust standard errors) of the parameter estimates for 3y and 3; (Table
3) when a single consensus reference sequence is used. In case N = 4, the estimates for
(o obtained via pseudo-likelihood or GEE2 are comparable. Whatever approach taken, the

association parameter seems to be non-significant.

7 Conclusion

In this paper we proposed a model-based method to assess the agreement between two bi-
ological sequences. Unlike with random-effects models and transition models, the use of
maximum likelihood methods to estimate unknown parameters of a marginal model based
on (4.2) may be infeasible (it may be too laborious or impossible to fully specify the likeli-
hood). In such a situation, where specification of the full likelihood becomes cumbersome,

generalized estimating equations (GEE’s) or pseudo-likelihoods are a useful alternative.

Within the framework of HIV-proficiency testing, we set up an equivalence test to test the
closeness of a query DNA sequence with a set of reference sequences. To this end, we

constructed strings of match/mismatch codes, which can be regarded as time series, time
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points being the loci in the biological sequence. At first sight, all requisites for the developed

test statistic can be estimated via standard statistical software.

However, we illustrated that if the association parameter (describing the association between
two responses withing the same cluster or string) is near the boundary of the parameter space,
numerical problems may lead to spurious results. Hence, in the current data setting, it may
be better to rely on closed form formulae for standard errors or confidence intervals (such as

those derived within a GEE framework) to implement the equivalence test.
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Appendix A

The inverse of V;

S(r#s)+1(r=s) 1 exp fo

and since — =
g'(

Since (V) s = is independent of r, we

VI ()9 (1) o) (DR
can simplify
16 ... 9
1 6 1 ... ¢
Vi:g’(,w) S forall r, 1 <r < L =1047.
o 6 ... 1
Observing that
16 ... 0\ "
o 1 ... 46 .
S = ((1=0)rxr +0Jrx)
o 6 ... 1

LXL
with I« an L-dimensional identity matrix and J;x; an L-dimensional matrix of ones, it

follows that for all r, 1 <r < L = 1047,

1+ (L—=2)5 =9 cee =0

— 9 (pir) —0 1+(L—2)6 ... =6

LI (L —-2)0— (L —1)8% | : : L ’
-5 —5 oo 1+ (L —-2)

provided § & {1, =7} (Searle 1982).



Appendix B

Explicit form of X .,

With Cov(Y;) in (5.2) estimated as (Y; — p;)(Y; — ;) and using (5.7), we can derive
2betw
N L L 2
= > W //Jzk:))
i=1 j=1k=1
2
N 1 L 1 L L
= w Y; — Mik) + Wy Y; i
; ) kZ:jl ke (Yie — Hik) 7 (o) I{;; i i)
J#k
N 1+ (L—2)6 L (L—1)6 =
> (o Z N e T
N 1-56 L )2
= — i
= (1 (L=2)0 (L~ D& g
N 1 L 2
—= Y ,U’Z )
Z§<1—<1—L>6,§1< g
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Appendix C

Estimation of ¢

With the notations and model of Section 5.1.1, we denote the Pearson residual by e;; =

Yii 1 The GENMOD procedure in SAS uses these residuals to estimate the association
v(hig

parameter ¢ in the following way:

S

1 N <L
= NL(L-1)-1 Dlim1 2ok €€k
= NIL(I-1)=1 2wi=1 2<j#k (Mj - 1)(% -1)

_ __ -NL 1
~ NL(L-L)—1€xXppo"

The latter step is based on the assumption that for a small association parameter (this is: §

€XP Bo

Trexp g, Cal be approximated by Zfi ) L ¥ Hence, § will approach

close to zero), fi;; = -1 NE

the lower bound of its parameter space, if

—NL 11
NL(L—1)—1lexpfy 1-1L

or if
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Table 1: Outline of test protocol, with « as pre-specified significance level.

Alternatives Decision Rule
Hy: B8 < Boquv If 2" <24, conclude Hy
Hy: B> Boque If 27> 214, conclude Hy

Table 2: Empirical and model based standard errors for the intercept model parameter
Bo, via derived closed form formulae (5.10, 5.8 ) and SAS proc genmod output. Software
computational problems appear to be caused by the fact that the association parameter
is near the boundary of the parameter space. Under exchangeable working assumptions,
the association parameter is estimated as 0.0003 when four reference consensus sequences
are used. When the query sequence is compared to a consensus sequence derived from all
available reference sequences (leading to a single “time series” ), the association parameter is

estimated as -0.0010.

Exchangeability Independence
Model based Empir. based Model based Empir. based
s.e. of (3 s.e. of By s.e. of By s.e. of [y

N=14
SAS 0.1785 0.1785 0.1589 0.1785
Closed Form 0.1821 0.2408 0.1589 0.2408
N=1
SAS 0.0057 0.0000 0.1852 0.1785

Closed Form - 0.5834 0.1852 0.5834
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Table 3: Parameter estimates for the constant marginal odds ratio model (5.12) with associ-

ated robust standard errors according to formula (5.11), taking the exchangeability assumtion

into account.

Parameter

Pseudo-likelihood
Estimate (s.e.)

GEE2
Estimate (s.e.)

o
b

fo
G

4.6415 (0.1785)
0.0214 (0.0672)

3.5235 (0.0001)
-0.0348 (0.0001)

4.6415 (0.1785)
0.0027 (0.0675)

3.5234 (3.9e-015)
-0.0349 (1.7¢-012)




