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Abstract

Developmental toxicity studies are designed to assess the potential adverse effects of an
exposure on developing foetuses. Safe dose levels can be determined using dose-response
modelling. To this end, it is important to investigate the effect of misspecifying the dose-
response model on the safe dose. Since classical polynomial predictors are often of poor
quality, there is a clear need for alternative specifications of the predictors, such as fractional
polynomials. By means of simulations, we will show how fractional polynomial predictors
may resolve possible model misspecifications and may thus yield more thrustworthy estimates
of the benchmark doses.
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1 Introduction

Lately, society has been increasingly concerned about public health problems. Especially prob-
lems related to fertility and pregnancy, birth defects, and developmental abnormalities are of
major concern. Regulatory agencies, such as the U.S. Environmental Protection Agency (EPA)
and the Food and Drug Administration (FDA) therefore stimulate reproductive and develop-

mental toxicity research. One of the goals is to understand the causes of the problems. Further,



one wants to better protect people from exposures with an increased risk, such as drugs, harmful
chemicals and other environmental hazards. A zero-exposure of all possible toxic agents would

be the ideal case, although this is not realizable in modern society.

There are several strategies to investigate the relationship between possible harmful ex-
posures and developmental toxicity. For example, epidemiology studies on humans can be used.
However, reliable epidemiological information is often limited or unavailable (Budtz-Jgrgensen,
Keiding and Grandjean 2001). As an alternative, controlled experiments in laboratory animals
can be conducted in advance of human exposure. Drugs and other possible toxic agents are
specifically tested on pregnant animals to safeguard against possible teratogenic effects (such as
malformations and low birth weight) on the human foetus. For ethical reasons, animal studies
afford a greater level of control than epidemiological studies. However, methods for extrapo-
lating the results to humans are still being developed and refined. In this work we will focus
on a typical developmental toxicity study with a Segment II design. This involves exposing
pregnant dams (mice, rats and occasionally rabbits) during the period of major organogenesis
and structural development to a compound of interest. Dose levels for this design consist of a
control group and three or four exposed groups, each with 20 to 30 pregnant animals. The dams
are sacrificed just prior to normal delivery, at which time the uterus is removed and the contents
are thoroughly examined for the occurence of defects. The primary outcomes of interest are

thus typically dichotomous.

An important issue in developmental toxicity is the risk assessment. Risk assessment
can be defined as “the use of available information to evaluate and estimate exposure to a
substance and its consequent adverse health effects” (Roberts and Abernathy 1996), and thus
deals with safety issues and regulation of exposures with potential adverse effects. One goal
of interest in the area of risk assessment is the examination of the dose-response relationship,
i.e., the dependence of a particular outcome (e.g. the number of dead foetuses, the risk of
a malformed foetus, ... ) on the dose which is administered to the dam. Statistical analysis

must account for the structure of the data typical for developmental toxicity research. For



instance, rodents have multiple births, so clustering of offsprings within litters will complicate
the analysis. Two different probability models describing such data are briefly introduced in
Section 3.1. Another important goal in the risk assessment process is to determine a safe level of
exposure, i.e., quantitative risk assessment (QRA). Different approaches to estimate a safe dose
exist. Quantitative risk assessment can be performed via the “No Observable Adverse Effect
Level” (NOAEL) approach. The NOAEL, however, has been criticized for its poor statistical
properties (Leisenring and Ryan 1992). The estimation of the NOAEL depends on the design
of the experiment, on the sample size and on the number of dose groups, and it does not allow
calculating a measure of variability of the estimation. Alternatively, QRA can be based on the
fitted dose-response models (Crump 1984). This has a number of important advantages. It
allows adding a measure of variability to the point estimation of a safe dose, it can incorporate
special features of the structure of developmental toxicity studies, ... (Williams and Ryan 1996).
Because of the disadvantages of the NOAEL approach, and because of the benefits of basing
quantitative risk assessment on dose-response modelling, the latter approach will be considered
here. Of course, to get trustworthy results, models should fit the data well in all respects. Since
classical polynomial predictors are often of poor quality, especially when low dose extrapolation
is envisaged, there is a clear need for alternative specification of the predictors describing main
effects and associations. Due to the small number of dose groups in developmental toxicity
studies, penalized splines and other non-parametric methods (Simonoff 1996) are less suitable.
Further, the use of non-linear predictor functions invokes non-trivial statistical problems, such
as the lack of identifiability of the null hypothesis of no dose effect (Davidian and Giltinan
1995). Fractional polynomial predictors (Royston and Altman 1994) provide a more elegant
approach, and still fall within the realm of (generalized) linear models. They are the topic of
interest in Section 3.2. We will investigate the behaviour of fractional polynomials in the context
of quantitative risk assessment through extensive simulations. The fractional polynomials are
much more flexible to attain the correct benchmark dose than conventional polynomials, as will
be seen in Section 4 and 5. In addition they can correct for possible misspecification of the

probability models.



2 Quantitative Risk Assessment

The standard approach to quantitative risk assessment based on dose-response modelling requires
the specification of an adverse event, along with its risk expressed as a function of dose. For
developmental toxicity studies where offsprings are clustered within litters, there are several
ways to define the concept of an adverse effect. From a biological perspective one might argue
that it is important to take into account the health of the entire litter when modelling risk as
a function of dose. Therefore, we will focus on the probability that at least one foetus of the
litter has the adverse effect under consideration. Thus risk assessment will be litter-based, with
the risk function r(d) representing the probability of observing a malformation at dose level d

for at least one foetus within the litter (Declerck, Molenberghs, Aerts and Ryan 2000).

Based on this probability, a common measure for the excess risk over background is given

by
r(d) —r(0)
* d) = - 7
r(d) 1—-r(0)
where greater weights are given to outcomes with larger background risk. Assuming that the
chemical results in more adverse effects at non-zero dose d compared to dose level 0, the excess

risk ranges from 0 to 1. This definition of the excess risk measures the relative increase in risk

above background.

The benchmark dose is then defined as the dose corresponding to a very small increase
in risk over background. More formally, the benchmark dose (BMD,) is defined as the dose
satisfying 7*(d) = ¢, where ¢ corresponds to a pre-specified level of increased response and is
typically specified as 0.01,1,5 or 10% (Crump 1984). Of course, the use of dose-response models
to set a safe limit of exposure is far more complicated than determining a NOAEL, but it offers
a number of important advantages. We can account for special features of the data, we can
incorporate other covariates of interest, we obtain a measure of the degree of variability, etc.

(Williams and Ryan 1996).

Because the dose-response curve is estimated from the data and has inherent variability,



the benchmark dose itself is an estimate of the true dose that would result in the corresponding
level of excess risk. This sampling uncertainty for the model on which the benchmark dose
is based can be acknowledged, by replacing the benchmark dose by a lower confidence limit.
Several approaches exist (Williams and Ryan 1996, Kimmel and Gaylor 1988, Crump and Howe
1983,... ). A well known approach is the use of the lower effective dose, where an upper limit
for the risk function is used to determine a safe dose level. The lower effective dose (LEDy) is

thus defined as the solution of

#*(d) + 1.645¢/ Var (7(d)) = 4,

where ¢ corresponds with the pre-specified level of increased response, and the variance of the

estimated increased risk function 7*(d) is estimated as

(@) = (%) @57 .

with @(B) the estimated covariance matrix of 3.

3 Dose-Response Models

When performing risk assessment based on the fitted dose-response model, the model should fit
the data well. This has implications for both the model family chosen (the probability model),
as well as for the form of the predictors. While the probability model can take special features

of the data into account, the predictor model must take care of the flexibility of the model.

3.1 Probability Model

A dose-response model describing developmental toxicity data must take the structure of the
data into account. Interest goes to the risk of observing a malformation (skeletal, visceral or
external), binary coded as absent /present. Further, we must account for the litter effect induced

by the clustering of offsprings within litters. Different types of probability models are available,



namely conditional, marginal and cluster-specific models. The answer to the question of which
model family is to be preferred depends principally on the research question(s) to be answered.
In conditionally specified models the probability of a positive response for one member of the
cluster is modeled conditionally on other outcomes for the same cluster, while marginal models
relate the covariates directly to the marginal probabilities. Cluster-specific models differ from
the previous models by the inclusion of parameters that are specific to the cluster. Several
other issues are involved: should analysis be based on a multivariate outcome rather than on a
collapsed version (any malformation), should the litter size be incorporated into the model, etc.
(Chen and Kodell 1989). In this paper, we restrict attention to a selection of likelihood-based
dose-response models for univariate clustered binary data: the beta-binomial model (Williams
1975) and the conditional exponential family model of Molenberghs and Ryan (1999). Due to
the popularity of marginal and random-effects models for correlated binary data, the conditional
models have received little attention, especially in the context of multivariate clustered data.
The conditional approach has been criticized because the interpretation of the dose effect on the
risk of one outcome is conditional on the responses of other outcomes for the same individual,
outcomes of other individuals and the litter size (Diggle, Liang and Zeger 1994). Molenberghs,
Declerck and Aerts (1998) and Aerts, Declerck and Molenberghs (1997) have compared marginal,
conditional and random-effects models. Their results are encouraging for the conditional models,
since they are competitive for the dose effect testing and for benchmark dose estimation, and

because they are computationally fast and stable.

Consider an experiment involving N litters (pregnant dams), the ith of which contains n;
individuals, each of whom are examined for the presence or absence of a malformation. Suppose
Y;; = 1 indicates whether the jth individual in cluster 7 is abnormal, and 0 otherwise. Then,
define Z; = Z?;l Y;;, the total number of malformations in cluster 7. Covariates of interest are
the treatment or dosing d; given to cluster ¢. Further, we assume exchangeability within a litter,
i.e., each foetus in the same litter has an identical malformation probability, and the association

between each pair of foetuses within the same litter is equal.



Rather than modelling marginal functions directly, a popular approach is to assume a
random effects model in which each litter has a random parameter. The beta-binomial model
assumes that, conditional on litter size n; and malformation probability of any foetus in litter 4,
the number of malformations Z; in the ith cluster follows a binomial distribution. To account
for the litter effect, i.e., the cluster effect, the underlying malformation probabilities are assumed
to vary within a litter according to a beta distribution with mean ;. This leads to the beta-

binomial distribution of the number of malformations Z; in cluster 4, and is expressed by

ni>B(7Tz‘(Pi_1 - 1)+Zi;(1—7fz‘)(/)z‘_1 —1)+ni—2¢) (1)

B(milp; = 1), (1 =m)(p; ' = 1) ’

where B(.,.) denotes the beta function (Skellam 1948, Kleinman 1973). The association para-

[ (zi5 ™3, pismi) = <

2§

meter p; in this model indicates the correlation between two binary responses of litter i. Note

that both the parameters 7; and p; of the beta-binomial model have a marginal interpretation.

To model the marginal parameters m; and p; we use a composite link function. Since
we have binary responses, we could use the logistic link function for the mean parameter ;.
However, other link functions, such as the probit link, the log-log link or the complementary
log-log link, could be chosen too. An appropriate transformation for the association parameter
p; is Fisher’s z-transformation. This gives us the following generalized linear regression relations

In (2% ) _

L | = n; = X0,
ln(l_pz>

where X; is a design matrix and ( is a vector of unknown parameters. A frequently used model

in literature is

Bo
1 d;i 0
X; = and 8= | g, (2)
0 0 1 8

with a logit-linear dose trend for the mean parameter, and a constant association parameter
p. Obviously, this model can be extended by adapting the design matrix and the vector of

regression parameters, such that the logit of m; depends on dose via e.g. a quadratic or higher



order polynomial function. Also, the association parameter p; can be modeled as some function

of dose.

Molenberghs and Ryan (1999) proposed a likelihood-based model for clustered binary
data, based on a multivariate exponential family model (Cox 1972). The model describes the
probability of an outcome given values for the other outcomes, and therefore is conditional in
nature. Molenberghs and Ryan (MR) considered Y;; = 1 if the jth foetus in cluster 7 exhibits the
adverse event of interest, and -1 otherwise. This coding is preferred above the 1/0 coding, since
it provides a parameterization that more naturally leads to desirable properties when the roles
of success and failure are reversed (Cox and Wermuth 1994). They proposed the distribution of

z;, the number of individuals from cluster i with positive response, as
f(zi3 05,61, m1) = exp {92‘22‘ — 0izi(ni — zi) — A(9i75i)}: 3)

with #; the main parameter, §; the association parameter describing the association between pairs
of individuals within the ith cluster and A(6;, ;) the normalizing constant. The parameters 6;
and ¢; can be modeled as (6;,9;) = X;8 with X; and 3 as in (2). Note that, as with the beta-
binomial model, this model reduces to the logistic regression model in the absence of clustering.
More details about model properties and inference can be found in Molenberghs and Ryan

(1999).

Subsequently we will show how the beta-binomial model and the conditional model of

Molenberghs and Ryan (1999) can easily handle litter-based rates.

For the beta-binomial model, the probability that at least one foetus in a litter of size

n; is abnormal, is

B(milp; ' = 1), (1 =m)(p; ' = 1) +ny)
B(mi(p; ' = 1),(1—m)(p; ' = 1))

It can be shown that this expression equals

q(ngi;d)=1—

n;—1

N1 oy Fme
q(ng;d) =1 kl;[)(l 7TZ+]—+(k_1)pi>'



Now, consider all values of n;, the number of implants, with non-zero probability P(n;). The

litter-based risk, corresponding to some specified dose d, is given by
r(d) = P(n;)q(ngs; d),
n;

which is an average of conditional probabilities q(n;; d) with weights P(n;). The excess risk can

be computed as

5 Plog) T1 (1= mild) + kmi(dyor /(1 + (k — o)
r*(d)=1- i :Z__Ol
; P(n;) kl;lo (1 —m(0) + km;(0)ps /(L + (k — 1)ps))

The exponential model of Molenberghs and Ryan (1999) also allows easy calculation of
quantities such as the probability that at least one littermate is affected. Given the number of

viable foetuses n;, the probability of observing at least one abnormal foetus in a cluster is
q(ng;d)=1— exp(—Am(G)i)).

Integrating over all possible values of n;, we obtain the risk function

e}

r(d) = Z P(ni)[l - exp(—Anz.(@i))],

nz-:0
where P(n;) is the probability of observing n; viable foetuses in a pregnant dam. Using this

equation, calculation of the excess risk r*(d) is straightforward.

3.2 Predictor Model

For risk assessment to be reliable, models should fit the data well in all aspects. Although
classical polynomials are very customary, they are often inadequate, especially when low dose
extrapolation is envisaged. Therefore, we need alternative specifications of the predictors de-
scribing main effects and associations. Apart from penalized spline methods and non-linear
dose-response models (Davidian and Giltinan 1995), a very elegant alternative approach to

classical polynomials, which falls within the realm of (generalized) linear methods, is given by
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fractional polynomials (Royston and Altman 1994). They provide much more flexibly shaped
curves than conventional polynomials, but in cases where the extension is not necessary, this
family essentially reduces to conventional polynomials. Thus, their use is strongly recommended
and considering a conventional and a fractional polynomial approach simultaneously, is certainly
a worthwhile sensitivity analysis in an important public health matter such as the determination
of safe limits for human exposure to potentially hazardous agents. Let us briefly describe the

procedure.

For a given degree m and an argument d > 0 (e.g., dose), fractional polynomials are

defined as
m
Bo+ > BdP,

j=1

where the (3; are regression parameters and d® = In(d) and the powers p; < ... < py, are positive
or negative integers or fractions. Royston and Altman (1994) argue that polynomials with degree
higher than 2 are rarely required in practice and further restrict the powers of dose to a small
predefined set of possibly non-integer values: II = {-2,—-1,-1/2,0,1/2,1,2,... ,max(3,m)}.
For example, setting m = 2 generates 4 “quadratics” in powers of d (represented by (1/d,1/d?),

(1/vd,1/d), (v/d,d), (d,d?)), a quadratic in In(d) and other curves which have shapes different

from those of conventional low degree polynomials.

The full definition includes possible “repeated powers” which involve powers of In(d).
For example, a fractional polynomial of degree m = 3 with powers (—1,—1,2) is of the form

Bo + Bid~' + Bod~ 1 In(d) 4 B3d? (Royston and Altman 1994, Sauerbrei and Royston 1999).

4 Asymptotic Simulation Study

In this section we perform an asymptotic simulation study to investigate the effect of model mis-
specifications on quantitative risk assessment. In addition, we investigate to which extent the use

of flexible predictor models based on fractional polynomials can correct for such misspecification.
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In order to get asymptotic information on the effect of model misspecification, we fol-
low the particular recommendations of Rotnitzky and Wypij (1994). An artificial sample is
constructed, where each possible realization is weighted according to its true probability under
a given true model. In our case, we need to consider all realizations of the form (ny, z;,d;),
and have to specify: (1) f(d;), the relative frequenties of the dose groups, as prescribed by the
design; (2) f(n;|d;), the probability with which each cluster size can occur, possibly depending
on the dose level (we will assume f(n;|d;) = f(n;)), and (3) f(zi|ni,d;), the actual model prob-
abilities. We assume that there are 4 dose groups, with one control group (d; = 0) and three
exposed groups (d; = 0.25,0.5,1.0), and that each dose group has an equal probability (i.e.,
f(d;) = 1/4). The number n; of viable foetuses per cluster is assumed to follow a local linear
smoothed version of the relative frequency distribution given in Table 1 of Kupper et al. (1996),
which is considered representative of that encountered in actual experimental situations. Least
squares cross-validation has been used to choose the bandwidth. The smoothed frequencies are

presented in Aerts, Declerck and Molenberghs (1997).

Data are generated from the beta-binomial model with a given non-linear predictor for
the mean parameter. Different dose trends on the mean parameter 7 of the true model can
be considered. Here, we look at two different models. The first model (Model A) is defined
as logit(r) = By + Bgsinh?(d), the second model (Model B) as logit(n) = By + B4cos(d). In
both models, the association parameter p is kept constant. We use parameter settings that were
encountered in real data sets (Price et al. 1985,1987). The parameter settings are summarized
in Table 1. In the beta-binomial model the baseline risk is a function of both the intercept
and association parameter. In model A, an intercept of -4 and association of 0.1, 0.3 and 0.5
corresponds to a background rate of respectively 16%, 11% and 9%. The Fisher-transformed
correlation of 0.1, 0.3 and 0.5 corresponds to respectively a correlation of about 0.05, 0.15 and
0.24. The parameters of model B all correspond with the same baseline malformation rate of
about 15%. A Fisher-transformed correlation of 0.1 is used (correlation of about 0.05). Figure 1

shows the dose-response models for the different parameter settings of model B considered here.



12

Table 1: Parameter Settings of the True (beta-binomial) Model.

parameter Model A Model B
sinh?(d) cos(d)
intercept (o -4 2k
dose effect Gy 4,6, 8 —4 -2k
(k=0,1,...,7)
association G, 0.1, 0.3, 0.5 0.1

FIGURE 1 ABoUT HERE

In this research, the technique introduced by Rotnitzky and Wypij (1994) is tailored
to compute “asymptotic” values of the estimated benchmark dose. The benchmark dose is

determined for the artificial sample under three different models:

e the beta-binomial model, with a conventional linear predictor for the mean 7 and a con-

stant association p (Model 1);

e the conditional model of Molenberghs and Ryan, with a conventional linear predictor for

the main parameter  and a constant association parameter p (Model 2);

e the conditional model of Molenberghs and Ryan, with the best fitting fractional polynomial

predictor for the main parameter 6 and a constant association parameter p (Model 3).

Different misspecifications occur in the above models. In the first model, the form of the predictor
is misspecified. This often occurs in practice, when one uses a linear polynomial predictor. In
the second model, the probability model is misspecified. Because the true dose-response model
is unknown in general, this is a realistic misspecification. And also in the third model, the
predictor model is misspecified, but here we try to correct for it using a fractional polynomial

predictor.
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In choosing the best fractional polynomial, we follow the ideas of Royston and Altman
(1994). Polynomials with degree higher than two are not taken into account, and powers of dose
are further resticted to the set of values II = {—2,—-1,—-1/2,0,1/2,1,2,3}. We consider as the
best fractional polynomial model, the one producing the smallest value of Akaike’s Information
Criterium among the eight models with one regressor and 36 models with two regressors, and

which shows a monotonic behaviour.

Results are summarized in Tables 2 (Model A) and 3 (Model B). The “true” benchmark
dose is found by fitting the correct model (i.e., the model under which the data were generated)
and by calculating the purely model based benchmark dose. The asymptotically estimated

benchmark doses are determined under all three models (Models 1, 2 and 3).

Table 2: Asymptotic Estimation of Benchmark Dose under Model A

(Bo, Ba,p) True Model Model 1 Model 2 Model 3
(-4,4,0.1) 0344 0123 0178  0.310
(-4,6,0.1) 0.283 0.082 0.169 0.257
(-4,8,0.1) 0246  0.062  0.160  0.229
(-4,4,0.3) 0.390 0.160 0.186 0.354
(-4,6,0.3) 0.321 0.107 0.173 0.276
(-4,8,0.3) 0.279 0.080 0.160 0.242
(-4,4,0.5) 0.425 0.192 0.210 0.210
(-4,6,0.5) 0.350 0.128 0.185 0.305
(-4,8,0.5) 0.305 0.096 0.166 0.255

Let us first have a look at the results when data are generated under Model A (Table 2).
None of the estimated benchmark doses are equal to the true benchmark dose. This of course
is due to the misspecification of the model. The conventional polynomial results for both the
beta-binomial and conditional model (respectively model 1 and 2) are very low compared with

the true benchmark dose. There is a small decrease in asymptotic bias when the dose-parameter
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Table 3: Asymptotic Estimation of Benchmark Dose under Model B

Bo, Ba, p) True Model Model 1 Model 2 Model 3

(
(0,-4,0.1) 0.502  -0.014 0261  0.484
(2,-6,0.1) 0408  -0.016 0204  0.401
(4,-8,0.1) 0353  -0.013 0179  0.351
(6,-10,0.1) 0315  -0.011 0165  0.315
(8,-12,0.1) 0288  -0.009  0.155  0.283
(10,-14,0.1) 0266  -0.008  0.147  0.256
(12,-16,0.1) 0249  -0.007  0.143  0.234
(

14,-18,0.1) 0.235 -0.006 0.144 0.219

increases, but the difference with the true benchmark dose stays much too large. While this
seems cautious, Morgan (1992) warns that safe dose determination should be tempered by
common sense. For example, blind use of an overly conservative procedure has been regarded as
scientifically indefensible by the Scientific Committee of the British Food Safety Council (1980),
since it may produce unrealistically low safe doses. The fractional polynomial results (Model
3) are much closer to the true benchmark dose. This seems to indicate that the fractional
polynomials are much more flexible to attain the correct benchmark dose than the conventional
linear polynomial. The only major discrepancy is seen for (—4,4,0.3). Here, the best fitting

fractional polynomial reduced to the conventional linear predictor.

When data are generated under Model B (Table 3), the conclusions are similar and
even more encouraging for the fractional model. The estimated benchmark doses for the beta-
binomial model with a linear predictor (Model 1) are very small, and even negative. This is due
to the misspecification of the polynomial predictor, leading to unrealistically low doses. And
also the estimated benchmark doses for the model of Molenberghs and Ryan with a conventional
linear predictor (Model 2) take very small values. Again, the fractional polynomials seem to

correct for the model misspecification. As can be seen, the estimated benchmark doses attained
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from the model of Molenberghs and Ryan, using the best fitting fractional polynomial, are very

close to the true benchmark dose.

In order to investigate whether these conclusions also hold for classical random samples,

a small sample simulation study was performed.

5 Small Sample Simulations

The same models and parameter combinations as in the asymptotic study are investigated (Table
1). For each parameter setting, 1000 datasets of 30 observations per dose group were generated.
The estimated benchmark doses were averaged at the end of the run, and mean squared errors

(MSE) were calculated. Results are displayed in Tables 4 and 5.

Table 4: Small Sample Estimation of BMD (MSE) under Model A

(Bos Ba,p) True Model Model 1 Model 2 Model 3
(-4,4,0.1) 0.344 0.126 (0.048) 0.186 (0.026) 0.295 (0.005)
(-4,6,0.1) 0.283 0.084 (0.040) 0.179 (0.012) 0.259 (0.002)
(-4,8,0.1) 0.246 0.064 (0.033) 0.167 (0.007) 0.235 (0.001)
(-4,4,0.3) 0.390 0.163 (0.052) 0.194 (0.040) 0.288 (0.019)
(-4,6,0.3) 0.321 0.052 (0.075) 0.170 (0.024) 0.230 (0.012)
(-4,8,0.3) 0.279 0.082 (0.039) 0.170 (0.013) 0.241 (0.003)
(-4,4,0.5) 0.425 0.196 (0.054) 0.214 (0.046) 0.288 (0.033)
(-4,6,0.5) 0.350 0.130 (0.049) 0.204 (0.023) 0.270 (0.012)
(-4,8,0.5) 0.305 0.099 (0.043) 0.180 (0.017) 0.250 (0.005)

The results of the asymptotic study and the small sample study are remarkably well
in agreement. While the conventional polynomial results with both the beta-binomial and

conditional model (respectively Model 1 and 2) are smaller than the true benchmark dose,
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Table 5: Small Sample Estimation of BMD (MSE) under Model B

(Bo, Bas p) True Model Model 1 Model 2 Model 3
(0,-4,0.1) 0.502 -0.016 (0.269) 0.274 (0.054) 0.400 (0.029)
(2,6,0.1) 0.408 -0.016 (0.180) 0.209 (0.040) 0.337 (0.014)
(4,-8,0.1) 0.353 -0.013 (0.134) 0.185 (0.029) 0.308 (0.008)
(6,-10,0.1) 0.315 -0.011 (0.106) 0.170 (0.022) 0.269 (0.007)
(8,-12,0.1) 0.288 -0.009 (0.088) 0.161 (0.017) 0.245 (0.006)
(10,-14,0.1) 0.266 -0.007 (0.075) 0.153 (0.013) 0.222 (0.005)
(12,-16,0.1) 0.249 -0.007 (0.065) 0.151 (0.010) 0.210 (0.004)
(14,-18,0.1) 0.235 -0.006 (0.058) 0.150 (0.008) 0.201 (0.003)

the fractional polynomial results (Model 3) are much closer to the true benchmark dose. For
instance, for the parameter setting (—4,6,0.5), the estimated benchmark doses for models 1, 2
and 3 correspond with an increased risk of respectively 1%, 3% and 5%, while the true benchmark
dose corresponds with an increase of 10%. In Figure 2, we present the 1000 benchmark doses for
the different datasets generated from Model A with parameters (-4,6,0.5) in a scatterplot matrix.
Benchmark doses of the three different models are compared, and also the true benchmark dose is
marked (by a “T”) on the figures. It is clear that Model 3 is the most flexible model in attaining
the correct benchmark dose. Although use of a more flexible model yields higher standard errors,
the increase in variability is small compared to the increase in bias, as summarized by the mean

squared error.

FIGURE 2 ABoUuT HERE

To acknowledge the sampling uncertainty for the model on which the benchmark dose is
based, we replace the BMD by the LED. Table 6 summarizes the LED estimations for model B.
Results for Model A are similar. For both conventional and fractional polynomial predictors in

the conditional model of Molenberghs and Ryan (Model 2 and 3), we show the (mean) estimated
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LED, the percentage of the LED’s smaller than the true BMD, the mean difference of the LED’s

smaller than the true BMD and the mean distance of the LED’s larger than the true BMD.

Table 6: Lower Effective Dose when True Model has cos(d) Trend(Model B)

True Model Model 2 Model 3

parameters LED perc < dist < LED perc < dist < dist >
(0,-4,0.1) 0.229 100 0.273 0.357 974 0.150  0.018
(2,-6,0.1) 0.174 100 0.235 0.302 964 0.111  0.013
(4,-8,0.1) 0.153 100 0.200 0.275  94.2 0.084  0.013

(6,-10,0.1) 0.140 100 0.175 0.238 94.6 0.082 0.013
(8,-12,0.1) 0.134 100 0.154 0.215 948 0.078  0.016
(10,-14,0.1) 0.153 100 0.139 0.195  98.2 0.073  0.010
(12,-16,0.1) 0.127 100 0.122 0.184  98.7 0.066  0.009
(14,-18,0.1) 0.126 100 0.109 0.176  99.2 0.059  0.005

The estimated LED’s using fractional polynomial predictors, seem to behave quite well
for realistic datasets. Around 95% of the lower effective doses of the 1000 generated samples
are smaller than the true BMD, while the difference with the true benchmark dose stays small.
Also the small percentage of the estimated doses which are larger than the true benchmark dose
are very close to the true BMD. When using Model 2, all estimated doses are smaller than the
true benchmark dose, moreover the distance with the true safe dose is large. This confirms the
conclusion that the estimated dose is too small when using the conventional linear predictor. In

contrast, the fractional polynomials provide satisfactory results.

This indeed shows that, in order to determine a safe limit of exposure, models should fit
the data well. This has implications for both the model family chosen as well as for the form of
the predictors. Even when the probability model is known, unreliable and unrealistically safe

doses can be found. This demonstrates the importance of the shape of the predictors. In practice
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however, the true dose-response model is not known. Moreover, the choice between different
dose-response models is often subjective and can affect the quantitative risk assessment. Using
a flexible polynomial predictor, such as a fractional polynomial, can partly solve the effects of

model misspecification on QRA.

6 Concluding Remarks

Developmental toxicity studies are complicated by the hierarchical, clustered and multivariate
nature of the data. As a consequence, a multitude of modelling strategies have been proposed
in literature. Such choices are often subjective and can affect the quantitative risk assessment
based on the fitted models. A study of the possible effects of misspecifying the dose-response

model on QRA is therefore an important issue.

Blind use of conventional linear predictors in the dose-response model can yield unreal-
istically low or unreliable safe doses, even when the probability model is well specified. Flexible
parametric models cannot only correct for a misspecification of the predictor model, they can
even correct for possible misspecification of the probability model. Therefore, the fractional poly-
nomial approach is important when searching for safe limits for human exposure to hazardous

agents.

One concern, often raised for developmental toxicity studies is the danger of potential
overfitting. Indeed, a standard teratology study typically involves no more than 4 or 5 different
dose levels. Therefore, we have restricted ourselves to a (small) discrete set of fractional polyno-
mials, with degree one or two. In general however, more design points would be desirable, but,
from a practical point of view, such experiments are hard to manage in the developmental toxic-
ity context. Other flexible parametric models could be considered too, such as models based on
non-linear predictors, penalized splines, ... . In contrast with the fractional polynomials, which

are easy to handle with, these methods pose non-trivial methodological challenges.

When defining the LED as a lower confidence limit for the BMD, we considered a two-
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sided confidence interval. Future research will focus on one-sided confidence intervals, not nec-
essarily based on asymptotic normality. Another topic of current research is the determination

of the BMD based on several adverse effects including continuous outcomes like weight.
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