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ABSTRACT 

Treatment effects are often evaluated by comparing change over time in outcome measures.  

However, valid analyses of longitudinal data can be problematic, particularly if some data are 

missing.   The last observation carried forward (LOCF) approach has for decades been a 

common method of handling missing data   Considerable advances in statistical methodology 

and our ability to implement those methods have been made in recent years.  Thus, it is 

appropriate to reconsider analytic approaches for longitudinal data.  The objectives of this paper 

are to examine from a clinical perspective the characteristics of missing data that influence 

analytic choices; 2) the attributes of common methods of handling missing data; and, 3) the use 

of the data characteristics and the attributes of the various methods, along with empirical 

evidence, to develop a robust approach for the analysis and interpretation of data from 

longitudinal clinical trials.  We propose that in many settings the primary efficacy analysis 

should use a likelihood-based mixed-effects modeling approach, with LOCF used as a 

secondary, composite measure of efficacy, safety, and tolerability.  We illustrate how repeated 

measures analyses can be used to enhance decision-making and what caveats remain in the use 

of LOCF as a composite measure. 
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INTRODUCTION 

Treatment effects are often evaluated by comparing change over time in outcome measures.  

However, valid analyses of longitudinal data can be problematic, particularly if some data are 

missing for reasons related to the outcome measure (Milliken et al 1993; Gibbons et al 1993).  

Missing data is an almost ever-present problem in clinical trials and numerous methods for 

handling missingness have been proposed, examined, and implemented (Verbeke et al 2000).  In 

fact, there are so many methods that choosing a suitable method and interpreting its results can 

be difficult. 

Perhaps the best place to start in determining how to analyze and interpret longitudinal data, 

especially in the presence of missingness, is to realize that no universally best method exists.  

This implies that the analysis must be tailored to the situation at hand.  This, in turn, implies that 

the characteristics of the missing data must be understood.  And thus, the objectives of this paper 

are: 1) to examine the characteristics of missing data that influence analytic choices; 2) to 

examine the attributes of common methods of handling missing data; and, 3) to use the data 

characteristics and the attributes of the various analytic methods, along with empirical evidence 

to develop a robust approach for the analysis and interpretation of data from longitudinal clinical 

trials.  Although certain statistical concepts are inherent to this discussion, we approach it from a 

clinical perspective and provide references to the more detailed statistical literature when 

appropriate.  Our aim is to translate technical aspects of data analysis to an audience that is 

familiar with clinical research and clinical trials, but is not expert in statistics.  Our focus is on 

applications to neuropsychiatric disorders with ideas fixed via a specific application to a clinical 

trial of an antidepressant.  However, the concepts covered herein have a broad range of 

applications.     
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MISSING DATA 

In many areas of clinical research, the impact of missing data can be profound (Gibbons et al 

1993; Laird 1988; Little et al 1987; Lavori 1992).  The potential impact of missing data is best 

understood by considering the process (i.e., mechanisms) leading to the missingness.  The 

following taxonomy of missing data mechanisms is now common in the statistical literature 

(Little et al 1987) 

Data are considered missing completely at random (MCAR) if the missingness does not 

depend on (is not explained by) either the observed or unobserved outcomes of interest.  Data are 

missing at random (MAR) if the missingness depends on (is explained by) the observed 

outcomes, but not the unobserved outcomes.  Data are missing not at random if the missingness 

depends on (is explained by) the unobserved outcomes.   

The missing data mechanism cannot be deduced with certainty from reasons for patient 

disposition.  However, the following examples illustrate how the various types of missing data 

might arise.  For example, MCAR data may arise from a patient who dropped out because he 

relocated and was too far away from the investigative site to participate in the trial.  Dropout was 

not in any way related to the outcome of interest.  An example of MAR data could be a patient 

who was observed to be doing poorly and then the physician and/or the patient decided to 

discontinue participation.  In this case, dropout was related to the outcome of interest, but the 

observed data explained the dropout.  An example of MNAR data could be a patient who had 

been doing well until midway in a trial, was then lost to follow up because after the last observed 

visit the patient relapsed into a worsened condition.  Again, dropout was related to the outcome 

of interest, but in this case the observed data did not explain (predict) the dropout and the 

unobserved data held information not foreseen by the observed data.  Dropouts for adverse 

Mallinckrodt 4



events are difficult to classify as MCAR vs. MAR because the relationship to the observed 

outcome may vary from situation to situation.  However, dropouts due to adverse events are 

probably not MNAR in many cases because all the relevant data probably were observed.    

Frequently, missingness is related to the outcome of interest, and thus the data are not 

MCAR (Verbeke et al 2000, Molenberghs et al 2002).  The MAR assumption is much more 

plausible than the MCAR assumption (Little et al 1987; Verbeke et al 2000; Molenberghs et al 

2002) because the observed data explain much of the missingness in many scenarios.  This may 

be particularly true in well-controlled studies, such as clinical trials where extensive efforts are 

made to observe all the outcomes and the factors that influence them (Rubin et al 1995; 

Molenberghs et al 2002).  Hence, clinical trials by their very design seek to minimize the amount 

of MNAR data (missingness explained by non-observed responses). 

ANALYTIC APPROACHES for MISSING DATA 

Traditional methods 

A common choice in many therapeutic areas is to assess mean change from baseline to 

endpoint via analysis of variance with missing data imputed by carrying the last observation 

forward (LOCF).  The LOCF approach assumes that missing data are MCAR and that subjects’ 

responses would have been constant from the last observed value to the endpoint of the trial.  

These conditions seldom hold (Verbeke et al 2000).  Carrying observations forward may 

therefore bias estimates of treatment effects and the associated standard errors (Gibbons et al 

1993; Verbeke et al 2000, Lavori et al 1995; Siddiqui et al 1998; Heyting et al 1992; 

Mallinckrodt et al 2001a, Mallinckrodt et al 2001b, Molenberghs et al 2002).   
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Despite these shortcomings, LOCF has been the long-standing method of choice for the 

primary analysis in clinical trials because of its simplicity, ease of implementation, and belief 

that the potential bias from carrying observations forward leads to a “conservative” analysis.  

The following example, using the hypothetical data in Table 1, illustrates the handling of 

missing data via LOCF.  For patient 3, the last observed value, 19, is used to compute the mean 

change to endpoint for treatment group 1; and, for patient 6, the last observed value, 20, is used 

to compute the mean change to endpoint for treatment group 2.  The imputed data are considered 

as informative as the actual data because the analysis does not distinguish between the actually 

observed data and the imputed data  

The assertion that LOCF yields conservative results does not appear to have arisen from 

formal proofs or rigorous empirical study.  Recent investigations (detailed in a later section) have 

demonstrated that LOCF can exaggerate the magnitude of treatment effects and inflate Type I 

error (falsely conclude a difference exists when in fact the difference is zero).   

  Furthermore, mean change from baseline to endpoint is only a snapshot view of the 

response profile of a treatment.  Gibbons (Gibbons et al 1993) stated that endpoint analyses are 

insufficient because the evolution of response over time must be assessed to completely 

understand a treatment’s efficacy profile.  By its very design, LOCF change to endpoint cannot 

assess response profiles over time.  Furthermore, advances in statistical theory and in computer 

hardware and software have made many methods simple and easy to implement. 

Alternative approaches 

We previously noted that in many settings the MAR assumption (observed responses 

explain missingness) is more reasonable than the MCAR assumption (missingness not explained 

by observed or unobserved responses).  An MAR method is valid if data are MCAR or MAR, 
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but MCAR methods are valid only if data are MCAR.  Likelihood-based mixed-effects models 

offer a general framework from which to develop longitudinal analyses under the MAR 

assumption (Verbeke et al 2000; Cnaan et al 1997).  These methods are more robust to potential 

bias from missing data than LOCF (Gibbons et al 1993; Verbeke et al 2000; Molenberghs et al 

2002) and other MCAR methods.     

The key general feature of likelihood-based mixed-effects analyses is that they include fixed 

and random effects, whereas traditional analysis of variance (ANOVA) includes only fixed 

effects.  In clinical trial applications the fixed effect of greatest interest is typically treatment 

group.  Additional fixed effects such as baseline severity, investigative site, or demographic 

characteristics are also commonly included.  The random effect commonly included in mixed-

effects analyses that is not included in ANOVA is subject.  That is, mixed-effects models 

consider the unique attributes of each subject and thus account for the fact that responses of 

individual subjects will vary.  In so doing, information from the observed outcomes can be used 

to provide information about the unobserved outcomes, but missing data are not explicitly 

imputed. 

The following example, using the hypothetical data in Table 1, illustrates the handling of 

missing data via a mixed-effects model analysis.  Patient 3 had been doing worse than the 

average of patients in treatment group 1.  Means for treatment group 1 at visits 5 and 6 are 

adjusted to reflect the fact that had patient 3 stayed in the trial her observations at visits 5 and 6 

would likely have been worse than the treatment group average.  But the analysis assumes that 

patient 3 would have had some additional improvement because the other patients in group 1 all 

improved after Visit 4.  In contrast, LOCF assumes no further improvement.  Patient 6 had also 

been doing worse than the average of patients in his group (treatment group 2).  Means for 
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treatment group 2 at Visits 3 – 6 are adjusted to reflect the fact that had patient 6 remained in the 

trial his observations would likely have been worse than the treatment group average.  Because 

all patients in group 2 had been getting worse during Visits 3 – 6, a mixed-effects analysis 

assumes the rate of worsening for patient 6 would have been greater than the group 2 average.  In 

contrast, LOCF assumes no further worsening.        

The magnitudes of these “adjustments” in a mixed-effects analysis are determined 

mathematically from the data.  Additional details may be found in Verbeke et al (2000) Littell et 

al (1996), and Cnaan et al (1997).  While these details go beyond the scope of this paper, the 

basic principle is easily appreciated.  A mixed-effects analysis uses all the available data to 

compensate for the data missing on a particular patient, whereas LOCF used only one data point. 

Again using the hypothetical data in Table 1, in dealing with the missing data for patient 3, a 

mixed-effects analysis considers data from Visits 1 – 4 on patient 3 as well as all the data from 

patients 1 and 2.  In contrast, LOCF uses only the Visit 4 value from patient 3, assuming that 

Visits 5 and 6 will be the same as Visit 4, even though that was not the case for any patient 

whose data was observed. 

Likelihood-based mixed-effects analyses are easy to implement because no additional 

data manipulation is required to accommodate the missing data; and, the analyses can be 

implemented using standard software, such as the SAS Procedure Mixed (Littell et al 1996), that 

has been widely available for a number of years.    

Methods that attempt to account for MNAR missingness simultaneously model the 

measurement process (observed data) and the missingness processes.  While important potential 

advantages of MNAR approaches exist, these methods require assumptions that cannot be 

validated from the data at hand (Verbeke et al 2000; Molenberghs et al 2002).  This, in turn, 
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argues that for any specific scenario a definitive MNAR analysis does not exist and such 

analyses are best implemented as sensitivity analyses to assess the robustness of results across 

different analytic approaches (Molenberghs et al 2002). 

Given the implausibility of MCAR, the plausibility of MAR, and the implementation and 

interpretive difficulties of MNAR, methods developed under the MAR framework are well 

suited to longitudinal clinical trials.  This is the theoretical basis for the shift away from ad hoc 

methods like LOCF to likelihood-based methods built on the MAR framework.  However, the 

causes of missingness are varied and therefore it is difficult to rule out the possibility of MNAR 

data in clinical trials – which underscores the benefit from using MNAR analyses in assessing 

robustness of the results from the likelihood-based MAR analysis.  Use of MNAR methods for 

such sensitivity analysis is beyond the scope of this paper and readers are referred to others 

sources for a general discussion (Verbeke et al 2000; Molenberghs et al 2002).  We instead focus 

on likelihood-based MAR methods and their application.   

Mixed-effects Model Repeated Measures Analyses 

 Many analytic techniques fall under the general heading of repeated measures analyses.  

Our focus is on a specific type of repeated measures analysis that we call MMRM because it is a 

likelihood-based Mixed-effects Model Repeated Measures analysis.  The term MMRM refers to 

a wide array of likelihood-based analyses in which subject specific effects and serial correlation 

are modeled via the within-subject error correlation structure.  The specific implementation of 

MMRM described herein included an unstructured modeling of time and the within-subject error 

correlation structure.   This version of MMRM was implemented to match the general 

characteristics of acute phase clinical trials, and illustrations of its use in actual practice are 

common (Molenberghs et al 2002; Goldstein et al 2002; Detke et al 2002).  However, modeling 

Mallinckrodt 9



decisions regarding time and correlation structures are situation dependent and the unstructured 

approach is not always optimal, or even possible.  Cnaan (1997) discussed some of the other 

useful approaches to modeling time and correlation structures in longitudinal data.  While these 

modeling considerations are important, they do not affect assumptions regarding missing data.  

Hence, our implementation of MMRM is not a specific solution to the general problem of 

missing data, but rather one example from the family of likelihood-based analyses developed 

under the MAR framework.     

   All details of an MMRM analysis are dictated by the design of the study and can be 

specified succinctly in the protocol.  Molenberghs et al (Molenberghs et al 2002) discussed why 

likelihood-based MAR methods are consistent with the intent-to-treat principle, and in fact are an 

improvement over LOCF in this regard, via appropriate use of all available data on all patients. 

Mallinckrodt et al (Mallinckrodt et al 2001ab) compared the MMRM analysis as described 

above  with the traditional LOCF ANOVA approach in simulated data.  The first study 

(Mallinckrodt et al 2001a) compared the two methods in simulated scenarios in which a true 

difference between treatments in mean change from baseline to endpoint existed.  The second 

study (Mallinckrodt et al 2001b) focused on Type I error rates by simulating scenarios in which 

the difference between treatments in mean change from baseline to endpoint was zero.  In both 

studies, comparisons were made in data before introducing missingness (complete data) and in 

the same data sets after eliminating data in order to introduce MNAR missingness.     

In analyses of complete data, MMRM and LOCF yielded identical results.  Estimates of 

treatment effects were not biased and standard errors accurately reflected the uncertainty in the 

data.   However, important differences in results existed between the methods in analyses of data 

with missingness.    
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In the study where treatment differences at endpoint existed, the MMRM estimates were 

closer to the true value than estimates from LOCF in every scenario simulated.  Standard errors 

from MMRM accurately reflected the uncertainty of the estimates, whereas standard errors from 

LOCF underestimated uncertainty.  Pooled across all scenarios, confidence interval coverage (% 

of confidence intervals containing the true value) was 94.24% and 86.88% for MMRM and 

LOCF respectively, compared with the expected coverage rate of 95%.  Although LOCF is 

generally considered a conservative method, it overestimated the treatment effect in some 

scenarios, typically when there was higher dropout in the inferior (e.g. placebo) group.    Other 

scenarios in which LOCF is likely to overestimate the true treatment effect have been noted 

(Lavori 1992; Little et al 1996). 

In the Type I error rate study, pooled across all scenarios with missingness, the Type I error 

rates for MMRM and LOCF were 5.85% and 10.36%, respectively, compared with the expected 

rate of 5.00%.  Type I error rates in the 32 scenarios ranged from 5.03% to 7.17% for MMRM, 

and from 4.43% to 36.30% for LOCF.   These results provide empirical justification for the shift 

away from LOCF to likelihood-based MAR analyses of longitudinal clinical trial data.       

EXAMPLE 

Methods 

 A reanalysis of data from a clinical trial is presented to illustrate the use of MMRM.  The 

results were originally reported by Wernicke et al (1987).  The study included patients with a 

baseline HAMD17 (Hamilton 1960) total score of 19 or more.  Patients were randomized to 

placebo, fluoxetine 20 mg daily (Flx20, n = 100), fluoxetine 40 mg daily (Flx40, n = 103), 

fluoxetine 60 mg daily (Flx60, n = 105), and Placebo (n=48) in a 2:2:2:1 ratio.  
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 For these retrospective analyses, mean changes from baseline to endpoint (week 6) were 

analyzed using three methods.  1) An observed case (OC) analysis that included only those 

subjects that completed the 6-week acute therapy phase of the trial; 2) an LOCF analysis that 

included all subjects, with missing values imputed by carrying the last observation forward to 

week 6; and 3) an MMRM analysis of postbaseline data from all visits.  The OC and LOCF 

analyses were conducted using ANCOVA models that included terms for baseline value, 

investigator, and treatment.  The MMRM analysis included baseline value, investigator, 

treatment, time, and the treatment-by-time interaction.  An unstructured correlation matrix was 

used to model the within-subject error correlation structure.     

Results 

   Reasons for discontinuation are summarized in Table 2.  As the dose of fluoxetine 

increased, the percentage of completers decreased, the percentage of patients who discontinued 

for adverse events increased, and the percentage of patients who discontinued for lack of efficacy 

decreased.   The timing of discontinuation also varied across treatments.  The Flx60 group had a 

higher percentage of subjects dropping out at earlier visits.   

 Results from analyses using the three methods are summarized in Table 3.  In the LOCF 

analysis, only Flx20 was significantly different from placebo, and as dose increased the 

advantage of fluoxetine over placebo decreased.  With MMRM, all doses of fluoxetine yielded 

similar mean changes and were significantly different from placebo.   In the OC analyses, Flx60 

had the greatest mean change and was the only dose significantly different from placebo. 

 Logistic regression analysis showed that rate of improvement had a highly significant 

influence on probability of missingness (p<.001).  The dependence of missingness on rate of 

improvement showed that the observed responses influenced missingness, and thus the MCAR 
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assumption for LOCF was not valid.  In addition, the assumption made by LOCF of no change 

from last observation to the trial’s endpoint was also unrealistic because most patients in all 

treatments groups tended to improve over time.  Molenberghs et al (Molenberghs et al 2002) 

used a method commonly referred to as the selection model (Diggle et al 1995) to test for the 

presence of MNAR missingness in these data.  Although the authors found some evidence for 

MNAR data, differences between treatments were not influenced by it and the authors concluded 

that use of MMRM was sensible.    

Interpreting Results 

 The most important difference in results of our reanalysis was that MMRM yielded 

significant differences for all doses whereas LOCF yielded significance for only Flx20 and OC 

yielded significance for only Flx60.  The LOCF results were counter-intuitive in that a 

pronounced inverse dose-response relationship existed, with only the lowest dose being 

significantly different from placebo.  An obvious association existed between the completion rate 

and the advantage of drug over placebo; namely, as dropout increased the rate of improvement 

decreased.  With MMRM, a more plausible dose-response relationship was found. 

  Two concepts are central to the decision-making paradigm we propose.  1) Risk and 

benefit need to be clearly established separately before being combined in order to establish the 

overall risk-benefit of a drug;  2) Likelihood-based MAR methods such as MMRM (typically) 

yield appropriate estimates of efficacy (benefit).  Because an LOCF result is (typically) 

influenced by rate and timing of dropout, it is not an efficacy analysis, but rather a composite 

measure of efficacy and duration on therapy.  Several important caveats regarding use of LOCF 

in this manner are addressed later.  However, the long-standing use of LOCF makes this analysis 

hard to abandon altogether. 
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   In applying this decision-making paradigm in our example, MMRM results suggested 

that all three doses were efficacious; LOCF suggested that the overall benefit of higher doses 

was muted by higher dropout rates.  Disposition results suggested that higher dropout at higher 

doses was driven by adverse events.  Putting all the pieces together, we concluded that 

Fluoxetine 20 mg is probably the optimum starting and therapeutic dose, but some patients may 

benefit from increased dosages.  This is a very different picture from what was seen from LOCF 

or OC alone.  One could likely come to the same conclusion using only MMRM and the 

disposition table, or more preferably MMRM and a formal analysis of missingness.         

 DISCUSSION 

We have noted that no universally best approach to analysis of longitudinal data exists.  In 

general, however, the analyses traditionally used in many longitudinal clinical trials are based on 

the unrealistic assumption that data are MCAR.  The MAR assumption is more plausible than 

MCAR.  Likelihood-based MAR methods can be easily implemented with commercially 

available software, are consistent with the intent-to-treat principle, all details can be pre-

specified, and these methods have been shown to be more robust to biases from missing data 

than MCAR methods such as LOCF.  In fact, likelihood-based repeated measures analyses such 

as the analysis used in our example are valid in every situation in which LOCF is valid, and in 

many situations where LOCF is not valid.          

  Nevertheless, the possibility of MNAR data, and the bias that can result from it, is 

difficult to rule out.  Blindly using likelihood-based MAR methods without consideration of their 

limitations is dangerous.  With high rates of missingness, especially with appreciable losses to 

follow-up, results may be problematic to interpret regardless of analytic methodology.  Results 

from a likelihood-based MAR method could be misleading.  However, MNAR methods can be 
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complex, do not yield definitive results because assumptions must be made that can not be 

validated from the data at hand, and MNAR methods are therefore best implemented in a 

sensitivity analysis framework to assess the validity of the MAR result. 

The traditional LOCF approach has been used under the assumption that while potentially 

biased by non-MCAR data, the bias led to a “conservative” analysis.  In this context, 

conservative is typically thought of as underestimating the magnitude of the treatment effect.  

However, the simulation studies cited herein (Mallinckrodt et al 2001ab) illustrated, and other 

authors have shown and noted, that conservative behavior of LOCF is not guaranteed (Lavori et 

al 1992; Verbeke et al 2000; Little et al 1996; Molenberghs et al 2002). 

   Even if LOCF is conservative according to the above definition, underestimating the 

superiority of a superior treatment necessarily results in underestimating the inferiority of the 

inferior treatment.  Thus, such a bias would be conservative in the context of superiority testing, 

but would be anti-conservative for non-inferiority testing.  

  Additionally, if a method yielded biased estimates of treatment effects when treatment 

differences existed, when the true treatment difference was zero, bias would necessarily lead to 

nonzero estimates of treatment differences and inflation of Type I error.   For example, consider 

Alzheimer’s disease, where the therapeutic aim is to delay or slow deterioration of mental status, 

as compared to situations such as depression where the goal is to improve the condition.  If a 

treatment is in truth no more effective than placebo, but patients drop out due to adverse events, 

carrying the last observation forward assumes that the patient had no further deterioration in 

condition.  Thus, carrying observations forward could lead to the false conclusion that drug was 

more effective than placebo.  Whether or not the bias from LOCF is conservative may depend on 

the scenario, the type of test, and on the true difference between treatments.  It is these 
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advantages of likelihood-based MAR methods, and shortcomings of LOCF that motivate the 

shift to likelihood-based MAR methods.  

It is tempting to believe LOCF should be the most valuable analysis because it includes 

efficacy, safety, and tolerability into a composite measure of benefit.  But the use of LOCF in 

this context must be approached carefully.  Although LOCF – in some situations – yields smaller 

estimates of treatment differences when patients dropout for say adverse events, the reduction is 

not necessarily proportional to the safety risk.  For example, consider the following two patients 

in an eight-week trial:  Patient A dropped out after week 7 due to a dramatically prolonged QT 

interval; Patient B dropped out during week 1 with nausea.  The impact to estimates of mean 

change resulting from Patient A’s dropout was small because the last observation was close to 

the trial’s endpoint, whereas the impact from Patient B’s dropout was severe because (in many 

disease states) little improvement results from one week of treatment. 

   However, Patient A developed a potentially life-threatening condition, whereas nausea 

experienced early in the trial is typically transitory and often resolves with continued therapy and 

no long term consequences.  This non-proportional penalty to individual patients from LOCF 

may cause misleading inferences regarding the merits of a treatment.  For example, consider the 

following four treatments. 

1) Average efficacy and average rate of dropouts due to adverse events 

2) Below average efficacy and lower than average rate of dropouts due to adverse events 

3) Excellent efficacy and average rate of dropouts due to adverse events, but dropouts 

typically occur very early in treatment. 

4) Average efficacy and average rate of dropouts due to adverse events, but most dropouts 

are for sustained hypertension and prolonged QT interval. 
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The four treatments yield similar estimates of mean change from the LOCF analysis, yet they 

have very different clinical profiles.  That is, the four treatments have equal risk-benefit ratios 

but very different risks and benefits.  This is why risk and benefit should first be established 

individually, and then combined into an overall risk/benefit assessment.    

Another shortcoming of using LOCF as a global or composite measure of total benefit is 

that this assumes the conditions in the clinical trial are reliable indicators of actual practice.  

However, clinical trials are (typically) designed to delineate causal differences between drug and 

placebo (or between drugs) – not to mimic actual clinical practice.  It is unreasonable to assume 

doctors and patients make the same decisions regarding continuation of therapy in a double-blind 

trial where they are unsure if the patient is taking drug or placebo as they would make in actual 

practice when the drug and its properties are well known.         

  It is also important to re-emphasize that endpoint analyses of any type provide only a 

small part of the picture and that the entire longitudinal profile should be considered.  The 

endpoint of a trial has specific, special meaning within the context of the trial; and, well-

designed trials choose an endpoint time that is clinically relevant.  However, such a time point is 

not necessarily more meaningful than other time points when extrapolating results from the 

specific trial to the general patient population.  For example, patients may ask how soon until I 

feel better, or, how soon until I feel well?  Endpoint analyses cannot address such questions.  

However, longitudinal methods such as the likelihood-based MAR analyses are ideally suited to 

provide such information from the same analysis as that which produces the endpoint contrast.   

  Change in primary analytic methodology has its drawbacks and warrants careful 

consideration.  Nevertheless, the refinement in statistical theory and in our ability to implement 

the theory is too compelling to overlook.    
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CONCLUSION 

No universally best approach to analysis of longitudinal data exists.  However, likelihood-

based mixed-effects analyses developed under the MAR framework are more robust to the bias 

from missing data than LOCF and are valid in every scenario where LOCF is valid, and in many 

other scenarios as well.  Therefore, likelihood-based repeated measures analyses are a sensible 

analytic choice in may clinical trial scenarios.  Because the possibility of MNAR data cannot be 

ruled out, MNAR methods can be used in a sensitivity analysis framework to assess the 

robustness of results from an MAR method.  Efficacy results from an MAR method can be 

combined with results from appropriate safety analyses to assess the overall benefit of a drug.  

These separate assessments of risk and benefit are more useful than composite assessments of 

global benefit, such as obtained from an LOCF analysis. 
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Table 1.  Hypothetical data used to illustrate how various methods handle missing data 

Hamilton Depression Rating Scale Total Scores 1 

________________________________________________________ 

     Week 

Patient  Treatment Baseline 1 2 3 4 5 6 

1  1  22  20 18 16 14 12 10 
2  1  22  21 18 15 12 9 6 
3  1  22  22 21 20 19 * * 
4  2  20  20 20 20 21 21 22  
5  2  21  22 22 23 24 25 26 
6  2  18  19 20 * * * * 

 

Missing values due to patient dropout are marked ‘*’. 

________________________________________________________ 
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Table 2.  Percentages of subjects by reasons for study discontinuation 

________________________________________________________ 

     Reason for discontinuation 

 Treatment  Study  Adverse Lack of  Other 
   Complete Event  Efficacy  
 

 Placebo       62%     11%     17%   12% 
 Fluoxetine 20 mg    64%       8%     14%   14% 
 Fluoxetine 40 mg       60%     16%     13%   11% 
 Fluoxetine 60 mg       48%     26%     10%   16% 

_______________________________________________________ 
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Table 3.  Mean changes from baseline to endpoint (week 6) using Mixed Model Repeated 

Measures (MMRM), Last Observation Carried Forward (LOCF), and Observed Case 

(OC) analyses 

____________________________________________________________________ 

LOCF 

          Treatment   Mean         Standard P value 
        Change         Error      | contrast with placebo 

 

Placebo            -5.4        0.95      
Fluoxetine 20 mg   -7.9        0.71       .035 
Fluoxetine 40 mg   -7.4        0.71       .087 
Fluoxetine 60 mg   -5.9        0.69       .654 

 

MMRM 

          Treatment     Mean         Standard P value 
        Change         Error      | contrast with placebo 

 

Placebo            -6.4        1.09 
Fluoxetine 20 mg  -9.8        0.77   .011 
Fluoxetine 40 mg  -9.5        0.81   .023 
Fluoxetine 60 mg  -9.6        0.85   .024 

 

Observed Case 

           Treatment        Mean         Standard P value 
        Change         Error      | contrast with placebo 

 

Placebo           -8.8     1.10    
Fluoxetine 20 mg  -11.1     0.76     .085       
Fluoxetine 40 mg  -10.3     0.80     .284       
Fluoxetine 60 mg  -11.7     0.88     .043       
________________________________________________________________________ 
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