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Abstract

We are deriving optimal rank-based tests for the adequacy of a vector autoregressive-
moving average (VARMA) model with elliptically contoured innovation density. These tests
are based on the ranks of pseudo-Mahalanobis distances, and on normed residuals computed
from Tyler (1987)’s scatter matrix; they generalize the univariate signed rank procedures pro-
posed by Hallin and Puri (1991). Two types of optimality properties are considered, both in
the local and asymptotic sense, a la Le Cam : (a) (fixed-score procedures) local asymptotic
minimaxity at selected radial densities, and (b) (estimated-score procedures) local asymp-
totic minimaxity uniform over the set of all such radial densities. In both cases, however,
the proposed tests remain valid under arbitrary elliptically symmetric innovation densities,
including those with infinite variance. We show that the AREs of our fixed-score procedures
with respect to traditional methods based on cross-covariance matrices are the same as for
the tests of randomness proposed in Hallin and Paindaveine (2002b). The multivariate se-
rial extensions of the classical Chernoff-Savage (1958) and Hodges-Lehmann (1956) results
obtained there thus also hold here; in particular, the van der Waerden versions of our tests
are uniformly more powerful than those based on cross-covariances, while remaining valid,
for instance, under infinite variance and heavy-tailed innovations. As for our estimated-score
procedures, they are fully adaptive, hence uniformly optimal in the semiparametric sense.

1 Introduction.

Much attention has been given recently to the development of invariant, distribution-free, and
robust methods in the context of multivariate analysis. Whereas such concepts as medians,
quantiles, ranks, or signs, have been present in the classical toolkit of univariate statistical
inference for about half a century, the emergence of their multivariate counterparts has been
considerably slower.

A fairly complete theory of rank and sign methods for multivariate analysis has been elabo-
rated in the sixties, culminating in the monograph by Puri and Sen (1971). This theory however
suffers the major weakness of being based on componentwise definitions of ranks and signs,
yielding procedures that heavily depend on the choice of a particular coordinate system. It
took about twenty years to see a systematic development of coordinate-free, affine-invariant
competitors to these componentwise sign and rank methods.

This development, initiated in the late eighties, essentially expanded along two distinct
lines of research. The first one, based on the so-called Oja signs and ranks, is due to Oja,
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Hettmansperger, and their collaborators (Möttönen et al. 1995, 1997, and 1998; Hettmansperger
et al., 1994, 1997; see Oja 1999 for a review). The second one is associated with Randles’ concept
of interdirections, and was developed by Randles and his coauthors (Randles 1989; Peters and
Randles 1990; Jan and Randles 1994; Randles and Um 1998). For both groups of methods, only
location problems (one- and two-sample problems, analysis of variance, ... ) were considered, and
optimality issues had not been investigated. This problem of optimality has been addressed in
Hallin and Paindaveine (2002a) who, still for the location problem, are constructing fully affine-
invariant methods based on Randles’ interdirections and the so-called pseudo-Mahalanobis ranks,
that are also fully efficient (in the Le Cam sense) for the multivariate one-sample location model.
Invariance and robustness on one side, efficiency on the other, thus should not be perceived as
inescapably conflicting objectives.

The case of multivariate time series problems, in this respect, is much worse, despite the
recognized need for invariant, distribution-free, and robust methods in the area. The univari-
ate context has been systematically explored, with a series of papers by Hallin et al. (1985),
Hallin and Mélard (1988), and Hallin and Puri (1988, 1991, 1994) on rank and signed rank
methods for autoregressive-moving average (ARMA) models. But, except for a componentwise
rank approach (Hallin et al. 1989) to the problem of testing multivariate white noise against
vector autoregressive-moving average (VARMA) dependence—suffering the same lack of affine-
invariance as its nonserial counterparts—and an affine-invariant approach to the same problem,
based on interdirections and pseudo-Mahalanobis ranks (Hallin and Paindaveine 2002b), the
multivariate situation so far remains virtually unexplored from this point of view.

Our objective in this paper is to derive locally optimal rank-based procedures for testing the
adequacy of a VARMA model with unspecified elliptically symmetric innovation density. These
tests are based on the ranks of pseudo-Mahalanobis distances, and on normed residuals computed
from Tyler (1987)’s scatter matrix. They generalize the univariate signed rank procedures
proposed by Hallin and Puri (1991) (the Tyler-normed residuals playing the role of multivariate
signs). Two types of optimality properties are considered, both in the local and asymptotic
sense, a la Le Cam : (a) (fixed-score procedures) local asymptotic minimaxity at selected radial
densities, and (b) (estimated-score procedures) local asymptotic minimaxity, uniformly over the
set of all radial densities (satisfying adequate regularity assumptions).

Our starting point is a local asymptotic normality (LAN) result by Garel and Hallin (1995).
This LAN result allows for deriving testing procedures that are locally and asymptotically op-
timal under given innovation density f , based on a non-Gaussian form of cross-covariances, the
residual f -cross-covariance matrices.

However, due to the possibility of singular local information matrices (such singularities
occur as soon as the VARMA(p1, q1) neighborhood of a null VARMA(p0, q0) model with p0 < p1

and q0 < q1 is considered), the optimal test statistics involve unpleasant generalized inverses,
which darkens their asymptotic behaviour. Therefore, we first restate the LAN property by
rewriting the central sequence in a way that explicitates the ranks of local information matrices,
and allows for “generalized inverse-free” locally and asymptotically optimal procedures. Next,
we show how to replace the “parametric” residual f -cross-covariance matrices appearing in
the central sequences with “nonparametric” versions, based on the ranks of the Mahalanobis
distances and the estimated standardized residuals computed from Tyler’s scatter matrix.

Tyler’s scatter matrix enjoys highly desirable equivariance/invariance properties. These
properties extend to our test statistics; in particular, they are asymptotically invariant under
monotone radial transformations of the residuals, hence asymptotically distribution-free with
respect to the underlying radial density. They also are asymptotically distribution-free with
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respect to the scatter parameter; it should be stressed, however, that this latter property does not
follow from any affine-invariance property. Unlike the null hypotheses of location or randomness
considered in Hallin and Paindaveine (2002a and b), hypotheses of ARMA dependence in general
are not affine-invariant : see Hallin and Paindaveine (2002c) for a precise characterization in the
more general context of linear constraints on the parameters of an ARMA model with linear
trend. Actually, our test statistics are affine-invariant whenever the underlying testing problems
are, which is of course the most sensible affine-invariance property we can hope for.

We conclude the paper by computing the asymptotic relative efficiencies of the proposed
nonparametric procedures with respect to the Gaussian ones, showing that the AREs, as well as
the generalized Chernoff-Savage and Hodges-Lehmann theorems obtained in Hallin and Pain-
daveine (2002b) are still valid here.

The paper is organized as follows. In Section 2, we describe the testing problem under study,
and state the main assumptions to be made. The LAN structure of the model is established
in Section 3, with a central sequence that exploits the assumptions of elliptical symmetry. The
multivariate counterparts of traditional ranks and signs are based on Tyler’s scatter matrix, the
corresponding Tyler residuals, and the so-called pseudo-Mahalanobis ranks. These concepts are
defined in Section 4, where their consistency and invariance properties are also derived. They
are used, in Section 5, in the definition of a concept of nonparametric residual cross-covariance
matrices extending to the multivariate context the notion of rank-based autocorrelations de-
veloped in Hallin and Puri (1988, 1991). These matrices allow for a reconstruction of central
sequences, hence for nonparametric locally asymptotically optimal procedures. Two types of
optimality properties are considered in Section 6, both in the local and asymptotic sense, a la
Le Cam :

(a) (fixed-score procedures) local asymptotic minimaxity at selected radial densities, and

(b) (estimated-score procedures) local asymptotic minimaxity, uniform with respect to radial
densities.

In both cases, the proposed tests remain valid under arbitrary elliptically symmetric innovation
densities, including those with infinite variance. In Section 7, the asymptotic relative efficiencies
of the proposed procedures with respect to their Gaussian counterparts (based on classical
cross-covariances) are derived. The proof of the consistency result for the nonparametric cross-
covariances is given in the Appendix.

2 Notation and main assumptions.

Consider the VARMA(p1, q1) model defined by the stochastic difference equation
(
Ik −

p1∑

i=1

AiL
i

)
Xt =

(
Ik +

q1∑

i=1

BiL
i

)
εεεt, t ∈ Z, (1)

where A1, . . . ,Ap1 ,B1, . . . ,Bq1 are k× k real matrices (Ik stands for the k-dimensional identity
matrix), L denotes the lag operator, and {εεεt | t ∈ Z} is an absolutely continuous k-variate
white noise process. The parameter of interest is θθθ := ((vec A1)

′

, . . . , (vec Ap1)
′

, (vec B1)
′

, . . . ,

(vec Bq1)
′

)
′

, with values in R
k2(p1+q1).

Fixing some

θθθ0 := ((vec A1)
′

, . . . , (vec Ap0)
′

,0
′

k2(p1−p0)×1, (vec B1)
′

, . . . , (vec Bq0)
′

,0
′

k2(q1−q0)×1)
′
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that satisfies Assumption (A) below, we want to test the null hypothesis θθθ = θθθ0 against the
alternative θθθ 6= θθθ0. Choosing p0 < p1 and/or q0 < q1 allows to test the adequacy of the specified
VARMA coefficients in θθθ0, while contemplating the possibility of possibly higher-order VARMA
models. If the order is not an issue, one can just let p0 = p1 and q0 = q1.

The null VARMA model must satisfy the usual causality and invertibility conditions. More
precisely, we assume the following on θθθ0 :

Assumption (A). All solutions of det(Ik−
∑p0

i=1 Aiz
i) = 0, z ∈ C and det(Ik +

∑q0
i=1 Biz

i) = 0,
z ∈ C (|Ap0 | 6= 0 6= |Bq0 |) lie outside the unit ball in C. Moreover, the greatest common left
divisor of Ik −

∑p0
i=1 Aiz

i and Ik +
∑q0

i=1 Biz
i is Ik.

Write A(L) and B(L) for the difference operators Ik −
∑p0

i=1 AiL
i and Ik +

∑q0
i=1 BiL

i, respec-
tively. Letting B0 := Ik, recall that the Green’s matrices Hu, u ∈ N, associated with B(L) are

defined by the linear recursion
∑min(q0,u)

i=0 BiHu−i = δu0 Ik, where δu0 = 1 if u = 0, and δu0 = 0
otherwise. Assumption (A) also allows for defining these Green’s matrices by

+∞∑

u=0

Huzu :=

(
Ik +

q0∑

i=1

Biz
i

)−1

, z ∈ C, |z| < 1; (2)

as a consequence, the same matrices also satisfy
∑min(q0,u)

i=0 B
′

iH
′

u−i = δu0 Ik. Assumption (A)
moreover ensures the existence of some ε > 0 such that the series in (2) be absolutely and
uniformly convergent in the closed ball in C with center 0 and radius 1 + ε. Consequently,
‖Hu‖(1+ε)u goes to 0 as u goes to infinity. This exponential decrease ensures that (‖Hu‖, u ∈ N)
belongs to lp(N) for all p > 0, where lp(N) denotes the set of all sequences (xu, u ∈ N) for which∑∞

u=0 |xu|p < ∞. Of course, the same remarks also hold, with obvious changes, for the Green’s
matrices Gu, u ∈ N, associated with the operator A(L). For simplicity, we do not indicate the
strong dependence on θθθ0 of Gu and Hu, which of course are associated with the null operators
A(L) and B(L).

Under Assumption (A), the white noise {εεεt} is {Xt}’s innovation process. The set of as-
sumptions (B) deals with the density of this innovation. As announced, we restrict ourselves to
a class of elliptically symmetric densities.

Assumption (B1). Denote by ΣΣΣ a symmetric positive definite k×k matrix, and by f : R
+ → R

+

a nonnegative function, such that f > 0 a.e. and
∫∞
0 rk−1f(r) dr < ∞. We will assume

throughout that {εεε(n)
1 , . . . , εεε

(n)
n } is a finite realization of an elliptic white noise process with

scatter matrix ΣΣΣ and radial density f , i.e., that its probability density at (z1, . . . , zn) ∈ R
nk is

of the form
∏n

t=1 f(z
(n)
t ;ΣΣΣ, f), where

f(z1;ΣΣΣ, f) := ck,f (detΣΣΣ)−1/2 f(‖z1‖ΣΣΣ), z1 ∈ R
k. (3)

Here, ‖z‖ΣΣΣ := (z′ΣΣΣ−1z)1/2 denotes the norm of x in the metric associated with ΣΣΣ. The constant
ck,f is the normalization factor (ωk µk−1;f )−1, where ωk stands for the (k − 1)-dimensional
Lebesgue measure of the unit sphere Sk−1 ⊂ R

k, and µl;f :=
∫∞
0 rlf(r) dr.

Note that the scatter matrix ΣΣΣ in (3) needs not be (a multiple of) the covariance matrix
of the observations, which may not exist, and that f is not, strictly speaking, a probability
density; see Hallin and Paindaveine (2002a) for a discussion. Moreover, ΣΣΣ and f are identified
up to an arbitrary scale transformation only. More precisely, for any a > 0, letting ΣΣΣa := a2ΣΣΣ
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and fa(r) := f(ar), we have f(x;ΣΣΣ, f) = f(x;ΣΣΣa, fa). This will be harmless in the sequel
since cross-covariances, central sequences, as well as all statistics considered, are insensitive to
a variation of a.

We will denote by ΣΣΣ−1/2 the unique upper-triangular k × k array with positive diagonal

elements that satisfies ΣΣΣ−1 = (ΣΣΣ−1/2)
′

ΣΣΣ−1/2. With this notation, ΣΣΣ−1/2εεε
(n)
1 /‖ΣΣΣ−1/2εεε

(n)
1 ‖, . . . ,

ΣΣΣ−1/2εεε
(n)
n /‖ΣΣΣ−1/2εεε

(n)
n ‖ are i.i.d., and uniformly distributed over Sk−1. Similarly, ‖ΣΣΣ−1/2εεε

(n)
1 ‖, . . . ,

‖ΣΣΣ−1/2εεε
(n)
n ‖ are i.i.d. with probability density function

f̃k(r) := (µk−1;f )−1 rk−1f(r) I[r>0], (4)

where IE denotes the indicator function associated with the Borel set E. The terminology radial
density will be used for f and f̃k indifferently (though only f̃k, of course, is a genuine probability
density). We denote by F̃k the distribution function associated with f̃k.

Write H(n)(θθθ0,ΣΣΣ, f) for the hypothesis under which an observation X(n) := (X
(n)
1 , . . . ,X

(n)
n )′

is generated by the VARMA(p0, q0) model (1) with parameter value θθθ0 satisfying Assumption (A)
and innovation process satisfying Assumption (B1) with “scatter parameter” ΣΣΣ and radial den-
sity f . Our objective is to test H(n)(θθθ0) :=

⋃
ΣΣΣ

⋃
f H(n)(θθθ0,ΣΣΣ, f) against

⋃
θθθ 6=θθθ0

H(n)(θθθ). Conse-
quently, ΣΣΣ and f play the role of nuisance parameters; note that the unions, in the definition of
H(n)(θθθ0), are taken over all possible values of ΣΣΣ and f .

The methodology we will adopt in the derivation of optimality results is based on Le Cam’s
asymptotic theory of experiments. This requires the model (characterized by some fixed value
of ΣΣΣ and f) at which optimality is sought to be locally and asymptotically normal (LAN). LAN
of course does not hold without a few, rather mild, regularity conditions : finite-second order
moments and finite Fisher information for f , and quadratic mean differentiability of f 1/2. Those
technical assumptions are taken into account in Assumptions (B1′) and (B2) below, in a form
that is adapted to the elliptical context. We insist however on the fact that these assumptions
are made on the density at which optimality is desired, not on the actual density.

Assumption (B1′). Same as Assumption (B1), but we further assume that µk+1;f < ∞.

Note that Assumption (B1′) is also required when Gaussian procedures are to be considered,
since these also require the second-order moments of the underlying distribution to be finite.

Assumption (B2) below is strictly equivalent to the assumption that f 1/2 is differentiable in
quadratic mean (see Hallin and Paindaveine (2002a), Proposition 1). However, it has the im-
portant advantage of involving univariate quadratic mean differentiability only. Let L2(R+

0 , µl)
denote the space of all functions that are square-integrable with respect to the Lebesgue mea-
sure with weight rl on R

+
0 , i.e., the space of measurable functions h : R

+
0 → R satisfying∫∞

0 [h(r)]2rl dr < ∞.

Assumption (B2). The square root f 1/2 of the radial density f is in W 1,2(R+
0 , µk−1), where

W 1,2(R+
0 , µk−1) denotes the subspace of L2(R+

0 , µk−1) containing all functions admitting a weak
derivative that also belongs to L2(R+

0 , µk−1).

Denoting by (f 1/2)′ the weak derivative of f 1/2 in L2(R+
0 , µk−1), let ϕf := −2 (f1/2)′

f1/2 : As-

sumption (B2) ensures the finiteness of the radial Fisher information

Ik,f := (µk−1;f )−1
∫ ∞

0
[ϕf (r)]2rk−1f(r) dr.
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In the last set of assumptions, we describe the score functions K1, K2 to be used when
building rank-based statistics in this serial context.

Assumption (C). The score functions K` : ]0, 1[→ R, ` = 1, 2, are continuous differences of two
monotone increasing functions, and satisfy

∫ 1
0 [K`(u)]2 du < ∞ (` = 1, 2).

The score functions yielding locally and asymptotically optimal procedures, as we shall see, are
of the form K1 := ϕf?◦F̃

−1
?k and K2 := F̃−1

?k , for some radial density f?. Assumption (C) then
takes the form of an assumption on f? :

Assumption (C′). The radial density f? is such that ϕf? is the continuous difference of two
monotone increasing functions, µk+1;f? < ∞, and

∫∞
0 [ϕf?(r)]

2rk−1f?(r) dr < ∞.

The assumption of being the difference of two monotone functions, which characterizes the func-
tions with bounded variation, is extremely mild. In most cases (f? normal, double exponential,
. . . ), ϕf? itself is monotone increasing, and, without loss of generality, this will be assumed to
hold for the proofs. The multivariate t-distributions however provide examples of non-monotone
score functions ϕf? satisfying Assumption (C′).

3 Local asymptotic normality.

Let A(L) and B(L) be such that Ai := 0 for i = p0+1, . . . , p1, and Bi := 0 for i = q0+1, . . . , q1,
and consider the sequences of linear difference operators

A(n)(L) := Ik −
p1∑

i=1

(Ai + n−1/2γγγ
(n)
i )Li and B(n)(L) := Ik +

q1∑

i=1

(Bi + n−1/2δδδ
(n)
i )Li,

where the vector τττ (n) := ((vecγγγ
(n)
1 )

′

, . . . , (vecγγγ
(n)
p1 )

′

, (vec δδδ
(n)
1 )

′

, . . . , (vec δδδ(n)
q1

)
′

)
′ ∈ R

k2(p1+q1) is

such that supn(τττ (n))′τττ (n) < ∞. These operators define a sequence of VARMA models

A(n)(L)Xt = B(n)(L)εεεt, t ∈ Z,

hence, in the notation of Section 2, the sequence of local alternatives H(n)(θθθ0 + n−1/2τττ (n),ΣΣΣ, f).

Let (Z
(n)
1 (θθθ0), . . . ,Z

(n)
n (θθθ0)) be the n-tuple of residuals computed from the initial values

εεε−q0+1, . . . , εεε0 and X
(n)
−p0+1, . . . ,X

(n)
0 and the observed series (X

(n)
1 , . . . ,X

(n)
n ) via the relation

Z
(n)
t (θθθ0) =

t−1∑

i=0

p0∑

j=0

HiAjX
(n)
t−i−j + (Ht+q0−1 . . .Ht)




Ik 0 . . . 0

B1 Ik . . . 0
...

...
. . .

...
Bq0−1 Bq0−2 . . . Ik







εεε−q0+1
...

εεε0


 .

Assumption (A) ensures that neither the (generally unobserved) values (εεε−q0+1, . . . , εεε0) of the

innovation, nor the initial values (X
(n)
−p0+1, . . . , X

(n)
0 ), have an influence on asymptotic results,

so that they all safely can be put to zero in the sequel. Decompose Z
(n)
t (θθθ0) in

Z
(n)
t (θθθ0) = d

(n)
t (θθθ0,ΣΣΣ)ΣΣΣ1/2U

(n)
t (θθθ0,ΣΣΣ),

where d
(n)
t (θθθ0,ΣΣΣ) := ‖Z(n)

t (θθθ0)‖ΣΣΣ and U
(n)
t (θθθ0,ΣΣΣ) := ΣΣΣ−1/2Z

(n)
t (θθθ0)/d

(n)
t (θθθ0,ΣΣΣ). Writing

ϕf := −2 (Df 1/2)/f1/2, where Df 1/2 denotes the quadratic mean gradient of f 1/2, define, as
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in Garel and Hallin (1995), the residual f -cross covariance matrix of lag i as

ΓΓΓ
(n)
i;f (θθθ0) := (n− i)−1

n∑

t=i+1

ϕf (Z
(n)
t (θθθ0))Z

(n)′

t−i (θθθ0). (5)

Due to the elliptical structure of f , these cross-covariance matrices take the form

ΓΓΓ
(n)
i;ΣΣΣ,f (θθθ0) =

1

n− i
ΣΣΣ

′−1/2




n∑

t=i+1

ϕf (d
(n)
t (θθθ0,ΣΣΣ)) d

(n)
t−i(θθθ0,ΣΣΣ)U

(n)
t (θθθ0,ΣΣΣ)U

(n)′

t−i (θθθ0,ΣΣΣ)


ΣΣΣ

′1/2. (6)

Hallin and Paindaveine (2002b) are developing optimal procedures based on nonparametric
versions of the cross-covariances (5) or (6), for the problem of testing elliptic white noise against
VARMA dependence.

Garel and Hallin (1995) established the LAN property in this setting (in fact, in a more
general, possibly non elliptical, context). Unfortunately, their formulation of the quadratic
approximation part of LAN does not allow for a precise description of the rank (in the algebraic
sense) of the second-order term of this approximation. The information matrix of the problem
indeed needs not be of full rank, and its actual rank, quite understandably, plays an important
role in the construction of optimal testing procedures. This is why we first restate this LAN
property in Proposition 1 below, in the spirit of Hallin and Puri (1994). As usual, however, the
multivariate case is a bit more intricate than the univariate one, and requires some notational
preparation.

Associated with any k-dimensional linear difference operator of the form C(L) :=
∑∞

i=0 Ci L
i

(letting Ci = 0 for i > s, this includes, of course, operators of finite order s), define, for any
integers m and p, the k2m× k2p matrices

C(l)
m,p :=




C0 ⊗ Ik 0 . . . 0

C1 ⊗ Ik C0 ⊗ Ik . . . 0
...

. . .
...

Cp−1 ⊗ Ik Cp−2 ⊗ Ik . . . C0 ⊗ Ik
...

...
Cm−1 ⊗ Ik Cm−2 ⊗ Ik . . . Cm−p ⊗ Ik




and

C(r)
m,p :=




Ik ⊗C0 0 . . . 0

Ik ⊗C1 Ik ⊗C0 . . . 0
...

. . .
...

Ik ⊗Cp−1 Ik ⊗Cp−2 . . . Ik ⊗C0
...

...
Ik ⊗Cm−1 Ik ⊗Cm−2 . . . Ik ⊗Cm−p




,

respectively; write C
(l)
m for C

(l)
m,m and C

(r)
m for C

(r)
m,m. With this notation, note that G

(l)
m , G

(r)
m ,

H
(l)
m , and H

(r)
m are the inverses of A

(l)
m , A

(r)
m , B

(l)
m , and B

(r)
m , respectively. Denoting by C

′(l)
m,p and

C
′(r)
m,p the matrices associated with the transposed operator C

′

(L) :=
∑∞

i=0 C
′

i L
i, we also have

G
′(l)
m = (A

′(l)
m )−1, H

′(l)
m = (B

′(l)
m )−1, etc.
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Let π := max(p1−p0, q1− q0) and π0 := π +p0 + q0, and define the k2π0×k2(p1 + q1) matrix

Mθθθ0
:=

(
G

′(l)
π0,p1

...H
′(l)
π0,q1

)
: under Assumption (A), Mθθθ0

is of full rank.

Finally, consider the operator D(L) := Ik +
∑p0+q0

i=1 Di L
i (just as Mθθθ0

, D(L) and most
quantities defined below depend on θθθ0; for simplicity, however, we are dropping this reference
to θθθ0), where, putting G−1 = G−2 = ... = G−p0+1 = 0 = H−1 = H−2 = ... = H−q0+1,




D
′

1
...

D
′

p0+q0


 := −




Gq0 Gq0−1 . . . G−p0+1

Gq0+1 Gq0 . . . G−p0+2
...

. . .
...

Gp0+q0−1 Gp0+q0−2 . . . G0

Hp0 Hp0−1 . . . H−q0+1

Hp0+1 Hp0 . . . H−q0+2
...

. . .
...

Hp0+q0−1 Hp0+q0−2 . . . H0




−1




Gq0+1
...

Gp0+q0

Hp0+1
...

Hp0+q0




.

Note that D(L)G
′

t = 0 for t = q0 + 1, . . . , p0 + q0, and D(L)H
′

t = 0 for t = p0 + 1, . . . , p0 + q0.

Let {ΨΨΨ(1)
t , . . . ,ΨΨΨ

(p0+q0)
t } be a set of k×k matrices forming a fundamental system of solutions

of the homogeneous linear difference equation associated with D(L). Such a system can be
obtained, for instance, from the Green’s matrices of the operator D(L) (see, e.g., Hallin 1986).
Define

Ψ̄ΨΨm(θθθ0) :=




ΨΨΨ
(1)
π+1 . . . ΨΨΨ

(p0+q0)
π+1

ΨΨΨ
(1)
π+2 . . . ΨΨΨ

(p0+q0)
π+2

...
...

ΨΨΨ(1)
m . . . ΨΨΨ(p0+q0)

m



⊗ Ik (m > π);

then Ψ̄ΨΨπ0 is the Casorati matrix CΨ. Putting

Pθθθ0
:=

(
Ik2π 0

0 C−1
Ψ

)
and Q

(n)
θθθ0

:= H
(r)
n−1 B

′(l)
n−1

(
Ik2π 0

0 Ψ̄ΨΨn−1

)
,

let

S
(n)
ΣΣΣ,f (θθθ0) :=

(
(n− 1)1/2(vecΓΓΓ

(n)
1;ΣΣΣ,f (θθθ0))

′

, . . . , (n− i)1/2(vecΓΓΓ
(n)
i;ΣΣΣ,f (θθθ0))

′

, . . . , (vecΓΓΓ
(n)
n−1;ΣΣΣ,f (θθθ0))

′
)′

,

n 1/2T
(n)
ΣΣΣ,f (θθθ0) := Q

(n)′

θθθ0
S

(n)
ΣΣΣ,f (θθθ0),

and
Jθθθ0,ΣΣΣ := lim

n→+∞
Q

(n)′

θθθ0
[In−1 ⊗ (ΣΣΣ⊗ΣΣΣ−1)]Q

(n)
θθθ0

(7)

(convergence in (7) follows from the exponential decrease, as u → ∞, of the Green’s matrices
Gu and Hu; see the comment after Assumption (A)). Local asymptotic normality, for fixed ΣΣΣ
and f , of the model described in Section 2 then can be stated in the following way.

Proposition 1 Assume that Assumptions (A), (B1′) and (B2) hold. Then, the logarithm

L
(n)

θθθ0+n−1/2τττ (n)/θθθ0;ΣΣΣ,f
of the likelihood ratio ofH(n)(θθθ0+n−1/2τττ (n),ΣΣΣ, f) with respect to H(n)(θθθ0,ΣΣΣ, f)

is such that

L
(n)

θθθ0+n−1/2τττ (n)/θθθ0;ΣΣΣ,f
(X(n)) = (τττ (n))′∆∆∆

(n)
ΣΣΣ,f (θθθ0)−

1

2
(τττ (n))′ΓΓΓΣΣΣ,f (θθθ0)τττ (n) + oP(1),

8



as n →∞, under H(n)(θθθ0,ΣΣΣ, f), with the central sequence

∆∆∆
(n)
ΣΣΣ,f (θθθ0) := n1/2 M

′

θθθ0
P

′

θθθ0
T

(n)
ΣΣΣ,f (θθθ0), (8)

and with the asymptotic information matrix ΓΓΓΣΣΣ,f (θθθ0) :=
µk+1;f Ik,f

k2 µk−1;f
Nθθθ,ΣΣΣ, where

Nθθθ,ΣΣΣ := M
′

θθθ0
P

′

θθθ0
Jθθθ0,ΣΣΣPθθθ0

Mθθθ0
. (9)

Moreover, ∆∆∆
(n)
ΣΣΣ,f(θθθ0), still under H(n)(θθθ0,ΣΣΣ, f), is asymptotically Nk2(p1+q1)(0,ΓΓΓΣΣΣ,f (θθθ0)).

Proof. Garel and Hallin (1995) showed that the linear part in the quadratic approximation of

L
(n)

θθθ0+n−1/2τττ (n)/θθθ0;ΣΣΣ,f
can be written as

τττ (n)′∆∆∆
(n)
ΣΣΣ,f (θθθ0) =

n−1∑

i=1

(n− i)1/2tr [d
(n)′

i (θθθ0)ΓΓΓ
(n)
i;ΣΣΣ,f (θθθ0)],

where

d
(n)
i (θθθ0) :=

min(p1,i)∑

j=1

i−j∑

k=0

min(q0,i−j−k)∑

l=0

Hk γ
(n)
j Gi−j−k−l Bl +

min(q1,i)∑

j=1

Hi−j δδδ
(n)
j .

Now, using tr (AB) = (vec A
′

)
′

(vec B) and vec (ABC) = (C
′ ⊗A) vec B yields

n−1∑

i=1

(n− i)1/2tr [d
(n)

′

i (θθθ0)ΓΓΓ
(n)
i;ΣΣΣ,f (θθθ0)] =




a
(n)
1 + b

(n)
1

...

a
(n)
n−1 + b

(n)
n−1




′

S
(n)
ΣΣΣ,f (θθθ0), (10)

with

a
(n)
i :=

min(p1,i)∑

j=1

i−j∑

k=0

min(q0,i−j−k)∑

l=0

(Gi−j−k−lBl ⊗H
′

k)
′

vecγγγ
(n)
j

and

b
(n)
i :=

min(q1,i)∑

j=1

(Ik ⊗Hi−j) vec δδδ
(n)
j .

Using the fact that H
′(l)
m B

(r)
m H

(r)
m,q1 = H

′(l)
m,q1 , (10) can be written as

τττ (n)′∆∆∆
(n)
ΣΣΣ,f (θθθ0) =

[(
H

(r)
n−1 B

′(l)
n−1 G

′(l)
n−1,p1

∣∣∣H(r)
n−1,q1

)
τττ (n)

]′
S

(n)
ΣΣΣ,f (θθθ0)

=
[(

G
′(l)
n−1,p1

∣∣∣H
′(l)
n−1,q1

)
τττ (n)

]′
(H

(r)
n−1 B

′(l)
n−1)

′

S
(n)
ΣΣΣ,f (θθθ0)

=




ã
(n)
1 + b̃

(n)
1

...

ã
(n)
n−1 + b̃

(n)
n−1




′

(H
(r)
n−1 B

′(l)
n−1)

′

S
(n)
ΣΣΣ,f (θθθ0), (11)
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where ã
(n)
t :=

∑min(p1,t)
j=1 (G

′

t−j ⊗ Ik)(vecγγγ
(n)
j ) and b̃

(n)
t :=

∑min(q1,t)
j=1 (H

′

t−j ⊗ Ik)(vec δδδ
(n)
j ); the

sequences (ã
(n)
t ) and (b̃

(n)
t ) clearly satisfy

(
ã

(n)′
1 + b̃

(n)′
1 , . . . , ã(n)′

π0
+ b̃(n)′

π0

)′
= Mθθθ0

τττ (n). (12)

Note that, for t ≥ p0 + q0 + 1 , D(L)G
′

t = D(L)(
∑p0

i=1 G
′

t−iA
′

i) =
∑p0

i=1(D(L)G
′

t−i)A
′

i = 0.

Therefore, D(L)G
′

t = 0 for all t ≥ q0 + 1. In the same way, we obtain that D(L)H
′

t = 0 for
t ≥ p0 +1. Now, consider the k2-dimensional operator D(l)(L) := Ik2 +

∑p0+q0
i=1 (Di⊗ Ik)L

i. This

operator is such that, for t−p1 ≥ q0+1, D(l)(L)ã
(n)
t =

∑p1
j=1(D(L)G

′

t−j⊗Ik)(vecγγγ
(n)
j ) = 0. Sim-

ilarly, one can check that for t−q1 ≥ p0 +1, D(l)(L)b̃
(n)
t =

∑q1
j=1(D(L)H

′

t−j⊗ Ik)(vec δδδ
(n)
j ) = 0.

This implies that ã
(n)
t + b̃

(n)
t satisfies D(l)(L)(ã

(n)
t + b̃

(n)
t ) = 0 for all t ≥ max(p1 + q0 + 1, q1 +

p0 + 1) = π + (p0 + q0) + 1. Since {ΨΨΨ(1)
t ⊗ Ik, . . . ,ΨΨΨ

(p0+q0)
t ⊗ Ik} is a fundamental system of

solutions of the homogeneous difference equation associated with D(l)(L), we have




ã
(n)
π+1 + b̃

(n)
π+1

...

ã
(n)
n−1 + b̃

(n)
n−1


 = Ψ̄ΨΨn−1 C−1

Ψ




ã
(n)
π+1 + b̃

(n)
π+1

...

ã
(n)
π0 + b̃

(n)
π0


 (13)

(see, e.g., Hallin 1986). Combining (12) and (13), we obtain

(
ã

(n)′
1 + b̃

(n)′
1 , . . . , ã

(n)′
n−1 + b̃

(n)′
n−1

)′
=

(
Ik2π 0

0 Ψ̄ΨΨn−1C
−1
Ψ

)
Mθθθ0

τττ (n),

which, together with (11), establishes the result. �

4 Multivariate ranks and signs : invariance and equivariance

properties.

4.1 Pseudo-Mahalanobis distances and Tyler residuals.

Likelihoods—hence, the central sequences (8)—are measurable, jointly, with respect to two types
of statistics :

(i) the distances d
(n)
t (θθθ0,ΣΣΣ) between standardized residuals ΣΣΣ−1/2Z

(n)
t (θθθ0) and the origin in

R
k, and

(ii) the normalized standardized residuals U
(n)
t (θθθ0,ΣΣΣ) := ΣΣΣ−1/2Z

(n)
t (θθθ0)/d

(n)
t (θθθ0,ΣΣΣ).

The (univariate) distances d
(n)
t (θθθ0,ΣΣΣ) are i.i.d. over the positive real line, with density (4); their

ranks thus have the same distribution-freeness and maximal invariance properties as those of the
absolute values of any univariate symmetrically distributed n-tuple. The normalized residuals

U
(n)
t (θθθ0,ΣΣΣ) under H(n)(θθθ0,ΣΣΣ, f) are uniformly distributed over the unit sphere, hence can be

viewed as multivariate generalizations of signs.

Unfortunately, both d
(n)
t (θθθ0,ΣΣΣ) and U

(n)
t (θθθ0,ΣΣΣ) involve, in a crucial way, the shape pa-

rameter ΣΣΣ, which in practice is never specified, and has to be estimated from the observa-
tions. If the actual underlying distribution has finite second-order moments (i.e., under As-
sumption (B1′)), a “natural” consistent candidate for estimating ΣΣΣ is the empirical covariance
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matrix n−1∑n
t=1 Z

(n)
t (θθθ0)(Z

(n)
t (θθθ0))

′

. Finite second-order moments however are too strong a
requirement, as we would like to build testing procedures that are optimal under the assump-
tions of Proposition 1 but remain valid under much milder conditions, including the case of
infinite variances. This rules out the empirical covariance as an estimate of ΣΣΣ and, under the
weaker Assumption (B1), which does not require anything about the moments of the underlying
distribution, we propose to use Tyler’s estimator of scatter (see Tyler 1987).

This estimator is defined as follows. For any n-tuple Z(n) := (Z
(n)
1 ,Z

(n)
2 , . . . ,Z

(n)
n ), of k-

dimensional vectors, denote by C
(n)
Tyl(Z

(n)) the (unique for n > k(k − 1)) upper triangular k× k
matrix with positive diagonal elements and a “1” in the upper left corner that satisfies

1

n

n∑

t=1

(
C

(n)
TylZ

(n)
t

‖C(n)
TylZ

(n)
t ‖

)(
C

(n)
TylZ

(n)
t

‖C(n)
TylZ

(n)
t ‖

)′

=
1

k
Ik ; (14)

Tyler’s estimator of scatter is defined as Σ̂ΣΣ
(n)

:= (C
(n)′

Tyl C
(n)
Tyl)

−1.

When computed from the n-tuple of residuals Z
(n)
t (θθθ0), t = 1, . . . , n, Tyler’s estimator is

root-n consistent, up to a multiplicative factor, for the shape matrix ΣΣΣ. More precisely, there

exists a positive real a such that
√

n(Σ̂ΣΣ
(n)− aΣΣΣ) is OP(1) as n → ∞ under

⋃
f H(n)(θθθ0,ΣΣΣ, f).

Tyler’s estimator is clearly invariant under permutations of the residuals Z
(n)
t (θθθ0). Moreover,

C
(n)
Tyl is strictly affine-equivariant, since C

(n)
Tyl(MZ(n)) = dOC

(n)
TylM

−1 for some orthogonal ma-

trix O and some scalar d that depends on Z(n). See Randles (2000) for a proof.

The corresponding distances from the origin d
(n)
t (θθθ0, Σ̂ΣΣ

(n)
) will be called pseudo-Mahalanobis

distances, in order to stress the fact that Tyler’s estimator of scatter is used instead of the usual

sample covariance matrix. The normalized residuals W
(n)
t (θθθ0) := U

(n)
t (θθθ0, Σ̂ΣΣ

(n)
)—call them

Tyler residuals—will be used as a multivariate concept of signs.

4.2 The pseudo-Mahalanobis ranks.

As usual in rank-based nonparametric inference, the pseudo-Mahalanobis distances d
(n)
t (θθθ0, Σ̂ΣΣ

(n)
)

will be replaced by their ranks. This idea actually goes back to Peters and Randles (1990), who
(in a one-sample location context) proved a consistency result, which in the present situation

can be stated as follows. Denote by R̂
(n)
t (θθθ0) the rank of d

(n)
t (θθθ0, Σ̂ΣΣ

(n)
) among d

(n)
1 (θθθ0, Σ̂ΣΣ

(n)
), . . . ,

d
(n)
n (θθθ0, Σ̂ΣΣ

(n)
), by R

(n)
t (θθθ0,ΣΣΣ) the rank of d

(n)
t (θθθ0,ΣΣΣ) among d

(n)
1 (θθθ0,ΣΣΣ), . . . , d

(n)
n (θθθ0,ΣΣΣ).

Lemma 1 (Peters and Randles 1990) For all t,
(
R̂

(n)
t (θθθ0)−R

(n)
t (θθθ0,ΣΣΣ)

)
is oP(n+1) as n goes

to ∞, under
⋃

f H(n)(θθθ0,ΣΣΣ, f).

For each ΣΣΣ and n, consider the group of continuous monotone radial transformations

G(n)
ΣΣΣ = {G(n)

g }, acting on (Rk)n, characterized by

G
(n)
g

(
Z

(n)
1 (θθθ0), . . . ,Z

(n)
n (θθθ0)

)

:=
(
g(d

(n)
1 (θθθ0,ΣΣΣ))ΣΣΣ1/2U

(n)
1 (θθθ0,ΣΣΣ), . . . , g(d(n)

n (θθθ0,ΣΣΣ))ΣΣΣ1/2U(n)
n (θθθ0,ΣΣΣ)

)
,

where g : R
+→ R

+ is continuous, monotone increasing, and such that g(0) = 0 and limr→∞ g(r)=

∞. The group G(n)
ΣΣΣ is a generating group for the submodel

⋃
f H(n)(θθθ0,ΣΣΣ, f), where the union is
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taken with respect to the set of all possible nonvanishing radial densities. The ranks R
(n)
t (θθθ,ΣΣΣ),

t = 1, . . . , n are a maximal invariant for G(n)
ΣΣΣ . Lemma 1 thus is an indication that statistics

based on the pseudo-Mahalanobis ranks R̂
(n)
t (θθθ0) may be asymptotically invariant, in the sense

of being asymptotically equivalent to their counterparts based on the unobservable, strictly

invariant ranks R
(n)
t (θθθ,ΣΣΣ). This will indeed be the case with the test statistics we are proposing

(see Proposition 4).

Note also that the equivariance property of C
(n)
Tyl under affine transformations is sufficient to

make the pseudo-Mahalanobis ranks R̂
(n)
t (θθθ0) strictly affine-invariant.

4.3 Tyler residuals.

The transformation C
(n)
Tyl characterized in (14) actually sphericizes the problem, in the sense

that it transforms elliptically distributed residuals into spherically distributed ones, estimating

U
(n)
t (θθθ0,ΣΣΣ) by means of the Tyler residuals W

(n)
t := C

(n)
TylZ

(n)
t (θθθ0)/‖C(n)

TylZ
(n)
t (θθθ0)‖, with the

following consistency property.

Lemma 2 For all t, W
(n)
t (θθθ0)=U

(n)
t (θθθ0,ΣΣΣ)+OP(n−1/2) as n goes to ∞, under

⋃
f H(n)(θθθ0,ΣΣΣ, f).

Proof. Under
⋃

f H(n)(θθθ0,ΣΣΣ, f), the residuals Z1(θθθ0), . . . ,Zn(θθθ0), from which C
(n)
Tyl is com-

puted, are i.i.d. and elliptically symmetric with mean 0 and scatter matrix ΣΣΣ. Tyler (1987)

showed that C
(n)
Tyl then is root-n consistent for C0 := c−1ΣΣΣ−1/2, where c denotes the upper left

element in ΣΣΣ−1/2. The result follows, since for any random vector X,
∥∥∥∥∥∥

C
(n)
TylX

‖C(n)
TylX‖

− ΣΣΣ−1/2X

‖ΣΣΣ−1/2X‖

∥∥∥∥∥∥
≤

∣∣∣∣∣∣
1

‖C(n)
TylX‖

− 1

‖C0X‖

∣∣∣∣∣∣
‖C(n)

TylX‖+
1

‖C0X‖
‖C(n)

TylX−C0X‖

≤ 2
‖C(n)

TylX−C0X‖
‖C0X‖

≤ 2
‖C(n)

Tyl −C0‖L‖X‖
‖C0X‖

≤ 2 ‖C(n)
Tyl −C0‖L ‖C−1

0 ‖L,

where ‖T‖L := sup{‖Tx‖ | ‖x‖ = 1} denotes the operator norm of the square matrix T. �

It is clear from (14) that C
(n)
Tyl(a1 Z

(n)
1 , . . . , an Z

(n)
n ) = C

(n)
Tyl(Z

(n)
1 , . . . ,Z

(n)
n ) for any real num-

bers a1, . . . , an, so that C
(n)
Tyl, and therefore the Tyler residuals W

(n)
t themselves, are strictly

invariant under radial monotone transformations. Incidently, the Tyler residuals enjoy the fol-
lowing strict equivariance property :

Lemma 3 Denote by W
(n)
t (M) the Tyler residual computed from the transformed residuals

M(Z
(n)
1 , . . . ,Z

(n)
n ). Then, W

(n)
t (M) = OW

(n)
t , where O is the orthogonal matrix that is involved

in the equivariance relation C
(n)
Tyl(MZ(n)) = dOC

(n)
Tyl(Z

(n))M−1.

Note that Lemma 3 implies that any orthogonally invariant function of the Tyler residuals
is strictly affine-invariant. In particular, statistics that are measurable with respect to the

cosines of the Euclidean angles between the W
(n)
t ’s — i.e., measurable with respect to the scalar

products (W
(n)′

t W
(n)

t̃
)—turn out to be affine-invariant. This shows that the Tyler residuals could

be used with the same success (consistency, invariance properties) as Randles’ interdirections
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in the construction of the locally asymptotically optimal affine-invariant tests for randomness
proposed in Hallin and Paindaveine (2002b). This “angle-based” approach (as opposed to the
“interdirection”-based one adopted there) is discussed, for the one-sample location problem, in
Hallin and Paindaveine (2002d).

For k = 1, the Tyler residuals and pseudo-Mahalanobis ranks reduce to the signs and the
ranks of absolute values of the residuals, respectively. The statistics we are considering in Sec-
tions 5 and 6 thus are multivariate generalizations of the serial signed-rank statistics considered
in Hallin and Puri (1991).

5 Rank-based cross-covariance matrices.

The rank-based versions of the cross-covariance matrices (6) we are proposing are of the form

Γ̃ΓΓ
(n)

i;K(θθθ0) :=C
(n)′

Tyl


 1

n− i

n∑

t=i+1

K1

(R̂
(n)
t (θθθ0)

n + 1

)
K2

(R̂
(n)
t−i(θθθ0)

n + 1

)
W

(n)
t (θθθ0)W

(n)′

t−i (θθθ0)


(C

(n)′

Tyl )
−1,(15)

where K1,K2 :]0, 1[→ R are two score functions as in Assumption (C); call (15) a K-cross-
covariance matrix. Let us shortly review some examples of score functions extending those
which are classically considered in univariate rank-based inference. The simplest scores are the
constant ones (K1(u) = K2(u) = 1), and yield multivariate sign cross-covariance matrices

C
(n)′

Tyl


 1

n− i

n∑

t=i+1

W
(n)
t (θθθ0)W

(n)′

t−i (θθθ0)


 (C

(n)′

Tyl )
−1,

leading to serial versions of Randles’ multivariate sign test statistic (Randles 2000). Linear
scores (K1(u) = K2(u) = u) yield cross-covariance matrices of the Spearman (or Wilcoxon, as
only the ranks themselves are involved) type

C
(n)′

Tyl


 1

(n− i) (n + 1)2

n∑

t=i+1

R̂
(n)
t (θθθ0) R̂

(n)
t−i(θθθ0) W

(n)
t (θθθ0)W

(n)′

t−i (θθθ0)


 (C

(n)′

Tyl )
−1. (16)

The score functions allowing for local asymptotic optimality under radial density f? are
K1 := ϕf?◦F̃

−1
?k and K2 = F̃−1

?k (see Proposition 4). The most familiar example is that of the
van der Waerden scores, associated with normal radial densities (f?(r) := φ(r) = exp(−r2/2)),
yielding the van der Waerden cross-covariance matrices

C
(n)′

Tyl




1

n− i

n∑

t=i+1

√

Ψ−1
k

(R̂
(n)
t (θθθ0)

n + 1

)
√√√√

Ψ−1
k

(R̂
(n)
t−i(θθθ0)

n + 1

)
W

(n)
t (θθθ0)W

(n)′

t−i (θθθ0)


 (C

(n)′

Tyl )
−1, (17)

where Ψk stands for the chi-square distribution function with k degrees of freedom. The Laplace
scores, associated with double-exponential radial densities (f?(r) := exp(−r)), are another clas-
sical example.

In order to study the asymptotic behaviour of the K-cross covariance matrices (15) associated
with general score functions, under the sequence of null hypotheses as well as under sequences of
local alternatives, we first establish the following asymptotic representation and joint normality
results; see Section 8 for the proofs.
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Proposition 2 Assume that Assumptions (B1) and (C) hold. Then, letting

ΓΓΓ
(n)
i;K;ΣΣΣ,f (θθθ0) := ΣΣΣ

′−1/2

(
1

n− i

n∑

t=i+1

K1(F̃k(d
(n)
t (θθθ0,ΣΣΣ)))

K2(F̃k(d
(n)
t−i(θθθ0,ΣΣΣ))) U

(n)
t (θθθ0,ΣΣΣ)U

(n)′

t−i (θθθ0,ΣΣΣ)

)
ΣΣΣ

′1/2,

vec (Γ̃ΓΓ
(n)

i;K(θθθ0)−ΓΓΓ
(n)
i;K;ΣΣΣ,f (θθθ0)) is oP(n−1/2) under H(n)(θθθ0,ΣΣΣ, f), as n →∞.

For any square-integrable score function K defined over ]0, 1[, let E[K 2(U)] :=
∫ 1
0 K2(u) du,

Dk(K; f) :=
∫ 1
0 K(u) F̃−1

k (u) du, and Ck(K; f) :=
∫ 1
0 K(u)ϕf ◦F̃

−1
k (u) du. Then we have the

following :

Proposition 3 Assume that Assumptions (A), (B1′), (B2) and (C) hold. For any integer m,
the vector

S
(n)
m;K;ΣΣΣ,f (θθθ0) := ((n− 1)1/2 (vecΓΓΓ

(n)
1;K;ΣΣΣ,f (θθθ0))

′

, . . . , (n−m)1/2 (vecΓΓΓ
(n)
m;K;ΣΣΣ,f (θθθ0))

′

)
′

(18)

is asymptotically normal under H(n)(θθθ0,ΣΣΣ, f) and under H(n)(θθθ0 + n−1/2τττ ,ΣΣΣ, f), with mean 0

under H(n)(θθθ0,ΣΣΣ, f) and mean

1

k2
Dk(K2; f)Ck(K1; f) [Im ⊗ (ΣΣΣ⊗ΣΣΣ−1)]Q

(m+1)
θθθ0

Pθθθ0
Mθθθ0

τττ ,

under H(n)(θθθ0 + n−1/2τττ ,ΣΣΣ, f), and with covariance matrix

1

k2
E[K2

1 (U)]E[K2
2 (U)] [Im ⊗ (ΣΣΣ⊗ΣΣΣ−1)]

under both.

In order to compare Proposition 3 and the corresponding univariate results in Hallin and
Puri (1991, 1994), note that, in the notation of Section 3,

Q
(m+1)
θθθ0

Pθθθ0
Mθθθ0

τττ (n) =




a
(n)
1 + b

(n)
1

...

a
(n)
m + b

(n)
m


 .

Propositions 2 and 3 show that K-autocovariance matrices, while based on multivariate gen-
eralizations of signs and ranks, enjoy the same intuitive interpretation and inferential properties

as their (traditional) parametric Gaussian counterparts ΓΓΓ
(n)
i;ΣΣΣ,φ(θθθ0). Proposition 3 for instance

immediately allows for constructing non-Gaussian portmanteau test statistics and deriving their

local powers. Just as their classical versions (based on the classical ΓΓΓ
(n)
i;ΣΣΣ,φ’s), such portman-

teau tests however fail to exploit the information available on the serial dependence structure
of the observations, and are not optimal. Section 6 is devoted to the construction of locally
asymptotically optimal tests based on K-cross-covariances.
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6 Optimal tests.

We are now ready to state the main results of this paper : the optimal testing procedures for the
problem under study, their invariance and distribution-freeness features, as well as their local
power and optimality properties. Optimality here means local asymptotic minimaxity, either,
based on fixed-score test statistics, at some selected radial density f?, or, based on estimated
scores, uniformly in f?.

6.1 Fixed-score test statistics.

Letting

S̃
(n)
K (θθθ0) :=

(
(n− 1)1/2 (vec Γ̃ΓΓ

(n)

1;K(θθθ0))
′

, . . . , (n− i)1/2 (vec Γ̃ΓΓ
(n)

i;K(θθθ0))
′

, . . . , (vec Γ̃ΓΓ
(n)

n−1;K(θθθ0))
′

)′

,

define

n 1/2T̃
(n)
K (θθθ0) := Q

(n)′

θθθ0
S̃

(n)
K (θθθ0) and J

(n)

θθθ0,Σ̂ΣΣ
:= Q

(n)′

θθθ0

[
In−1 ⊗ (Σ̂ΣΣ

(n) ⊗ Σ̂ΣΣ
(n)−1

)

]
Q

(n)
θθθ0

, (19)

where Σ̂ΣΣ
(n)

denotes Tyler’s estimator of scatter (see Section 4.1). Finally, let

Q
(n)
K (θθθ0) :=

k2n

E[K2
1 (U)]E[K2

2 (U)]
T̃

(n)′

K (θθθ0) (J
(n)

θθθ0,Σ̂ΣΣ
)−1 T̃

(n)
K (θθθ0).

The test statistics Q
(n)
f?

(θθθ0) allowing for local asymptotic optimality under radial density f? are

obtained with the score functions K1 := ϕf?◦F̃
−1
?k and K2 = F̃−1

?k . We then have the following
proposition.

Proposition 4 Assume that Assumptions (A), (B1), (B2), and (C) hold. Consider the se-

quence of rank tests φ
(n)
K (resp. φ

(n)
f?

) that reject the null hypothesis H(n)(θθθ0) whenever Q
(n)
K (θθθ0)

(resp. Q
(n)
f?

(θθθ0)) exceeds the α-upper quantile χ2
k2π0,1−α of a chi-square distribution with k2π0

degrees of freedom, where π0 is defined in Section 3. Then,

(i) the test statistics Q
(n)
K (θθθ0) do not depend on the particular choice of the fundamental system

{ΨΨΨ(1)
t , . . . ,ΨΨΨ

(p0+q0)
t } (see Section 3); for given values of p0 and q0, it depends on p1 and q1

only through π = max(p1 − p0, q1 − q0);

(ii) Q
(n)
K (θθθ0) is asymptotically invariant with respect to the group of continuous monotone

radial transformations;

(iii) Q
(n)
K (θθθ0) is asymptotically chi-square with k2π0 degrees of freedom under H(n)(θθθ0) (so that

φ
(n)
K has asymptotic level α), and

(iv) asymptotically noncentral chi-square, still with k2π0 degrees of freedom but with noncen-
trality parameter

1

k2

D2
k(K2; f)

E[K2
1 (U)]

C2
k(K1; f)

E[K2
2 (U)]

τττ ′Nθθθ0,ΣΣΣτττ ,

under H(n)(θθθ0 + n−1/2τττ ,ΣΣΣ, f), provided however that (B1) is reinforced into (B1′), where
Nθθθ0,ΣΣΣ is defined in (9);
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(v) if we assume that f? satifies Assumptions (B1′), (B2), and (C′), the sequence of tests φ
(n)
f?

is locally asymptotically maximin for H(n)(θθθ0) against
⋃

ΣΣΣH(n)(θθθ0,ΣΣΣ, f?), at probability
level α.

Proof. (i) Let {ΨΨΨ(1)
t , . . . ,ΨΨΨ

(p0+q0)
t } and {ΦΦΦ(1)

t , . . . ,ΦΦΦ
(p0+q0)
t } be two fundamental systems of

solutions associated with D(L). The vector structure of the space of solutions of D(L)xt = 0,
xt ∈ R

k, implies that, for all j = 1, . . . , p0 + q0, there exists a k(p0 + q0)× k matrix ΛΛΛj such that

ΦΦΦ
(j)
t = (ΨΨΨ

(1)
t , . . . ,ΨΨΨ

(p0+q0)
t )ΛΛΛj . Letting ΛΛΛ := (ΛΛΛ1, . . . ,ΛΛΛp0+q0), this implies that



ΦΦΦ
(1)
π+1 . . . ΦΦΦ

(p0+q0)
π+1

ΦΦΦ
(1)
π+2 . . . ΦΦΦ

(p0+q0)
π+2

...
...

ΦΦΦ(1)
m . . . ΦΦΦ(p0+q0)

m




=







ΨΨΨ
(1)
π+1 . . . ΨΨΨ

(p0+q0)
π+1

ΨΨΨ
(1)
π+2 . . . ΨΨΨ

(p0+q0)
π+2

...
...

ΨΨΨ(1)
m . . . ΨΨΨ(p0+q0)

m







ΛΛΛ,

so that Φ̄ΦΦm = Ψ̄ΨΨm (ΛΛΛ ⊗ Ik), where Φ̄ΦΦm is the equivalent of Ψ̄ΨΨm, but computed from the ΦΦΦ
(j)
t ’s.

Thus, with obvious notation, Q
(m)
θθθ0;ΦΦΦ = Q

(m)
θθθ0;ΨΨΨ Λ̄ΛΛ for all m, where Λ̄ΛΛ :=

(
Ik2π 0

0 ΛΛΛ⊗ Ik

)
, yielding

(note that ΛΛΛ, hence Λ̄ΛΛ, are non-singular, since the ΨΨΨ
(j)
t ’s and ΦΦΦ

(j)
t ’s form fundamental systems)

T̃
(n)′

K;ΦΦΦ(θθθ0) (J
(n)

θθθ0,Σ̂ΣΣ;ΦΦΦ
)−1 T̃

(n)
K;ΦΦΦ(θθθ0) =

[
T̃

(n)′

K;ΨΨΨ(θθθ0) Λ̄ΛΛ
] [

Λ̄ΛΛ
′

J
(n)

θθθ0,Σ̂ΣΣ;ΨΨΨ
Λ̄ΛΛ

]−1 [
Λ̄ΛΛ

′

T̃
(n)
K;ΨΨΨ(θθθ0)

]

= T̃
(n)′

K;ΨΨΨ(θθθ0) (J
(n)

θθθ0,Σ̂ΣΣ;ΨΨΨ
)−1 T̃

(n)
K;ΨΨΨ(θθθ0),

as was to be proved. The statement about the dependence on p1 and q1 is trivial since T̃
(n)
K (θθθ0),

J
(n)

θθθ0,Σ̂ΣΣ
, as well as π0, depend on p1 and q1 only through π.

(ii) Letting n1/2T̃
(n)
K;ΣΣΣ(θθθ0) :=Q

(n)′

θθθ0

(
(n− 1)1/2(vec Γ̃ΓΓ

(n)

1;K;ΣΣΣ(θθθ0))
′

, . . . , (vec Γ̃ΓΓ
(n)

n−1;K;ΣΣΣ(θθθ0))
′

)′
, with

Γ̃ΓΓ
(n)

i;K;ΣΣΣ(θθθ0) :=C
(n)′

Tyl

(
1

n− i

n∑

t=i+1

K1

(R
(n)
t (θθθ0,ΣΣΣ)

n + 1

)
K2

(R
(n)
t−i(θθθ0,ΣΣΣ)

n + 1

)
W

(n)
t (θθθ0)W

(n)′

t−i (θθθ0)

)
(C

(n)′

Tyl )
−1,

one can verify (proceeding as for the first term in the decomposition argument in the proof of

Proposition 2) that n1/2(T̃
(n)
K (θθθ0)− T̃

(n)
K;ΣΣΣ(θθθ0)) tends to zero in quadratic mean as n →∞ under

⋃
f H(n)(θθθ0,ΣΣΣ, f). This entails that

Q
(n)
K (θθθ0) =

k2

E[K2
1 (U)]E[K2

2 (U)]
(n1/2T̃

(n)
K;ΣΣΣ(θθθ0))

′

(J
(n)

θθθ0,Σ̂ΣΣ
)−1 (n1/2T̃

(n)
K;ΣΣΣ(θθθ0)) + oP(1)

is asymptotically invariant with respect to G (n)
ΣΣΣ under

⋃
f H(n)(θθθ0,ΣΣΣ, f), since n1/2T̃

(n)
K;ΣΣΣ(θθθ0) and

J
(n)

θθθ0,Σ̂ΣΣ
are strictly invariant with respect to the same group.

(iii), (iv) Proposition 2 and multivariate Slutsky theorem show that Q
(n)
K (θθθ0) has the same

asymptotic behaviour (under H(n)(θθθ0,ΣΣΣ, f) as well as under the sequence of local alternatives
H(n)(θθθ0 + n−1/2τττ ,ΣΣΣ, f)) as

k2

E[K2
1 (U)]E[K2

2 (U)]

(
n1/2T

(n)
K;ΣΣΣ,f (θθθ0)

)′
J−1

θθθ0,ΣΣΣ

(
n1/2T

(n)
K;ΣΣΣ,f (θθθ0)

)
,
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where n1/2T
(n)
K;ΣΣΣ,f (θθθ0) := Q

(n)′

θθθ0
S

(n)
n−1;K;ΣΣΣ,f (θθθ0) (see (18)). Now, Proposition 3 and a classical result

on triangular arrays (Brockwell and Davis (1987), Proposition 6.3.9) imply that n1/2T
(n)
K;ΣΣΣ,f (θθθ0)

is asymptotically k2π0-variate normal, with mean 0 under H(n)(θθθ0,ΣΣΣ, f), and mean

1

k2
Dk(K2; f)Ck(K1; f)Jθθθ0,ΣΣΣ Pθθθ0

Mθθθ0
τττ

under H(n)(θθθ0 + n−1/2τττ ,ΣΣΣ, f), and with covariance matrix (E[K2
1 (U)]E[K2

2 (U)]/k2)Jθθθ0,ΣΣΣ under
both. The result follows.

(v) It follows from Le Cam (1986, Chapter 11) and the LAN property in Proposition 1 that

the test φ
(n)
ΣΣΣ,f?

that rejects the null hypothesis whenever

∆∆∆
(n)′

ΣΣΣ,f?
(θθθ0)

(
ΓΓΓΣΣΣ,f?(θθθ0)

)−
∆∆∆

(n)
ΣΣΣ,f?

(θθθ0) > χ2
s,1−α,

where A
−

denotes any arbitrary generalized inverse of A and s := rank(ΓΓΓΣΣΣ,f?(θθθ0)), is lo-
cally and asymptotically maximin, at probability level α, for H(n)(θθθ0,ΣΣΣ, f?) against

⋃
θθθ 6=θθθ0

H(n)(θθθ,ΣΣΣ, f?). Note that rank(ΓΓΓΣΣΣ,f?(θθθ0)) = rank(M
′

θθθ0
P

′

θθθ0
Jθθθ0,ΣΣΣPθθθ0

Mθθθ0
) = min(k2(p1 + q1),

k2π0) = k2π0, since Mθθθ0
, Pθθθ0

and Jθθθ0,ΣΣΣ have maximal rank. Of course, the same optimal-
ity property holds for the asymptotically equivalent (under H(n)(θθθ0,ΣΣΣ, f?), as well as under

contiguous alternatives) test φ
(n)
f?

that rejects the null hypothesis whenever

∆∆∆
(n)′

Kf?
(θθθ0) (Γ̂ΓΓ

(n)

f?
(θθθ0))

−

∆∆∆
(n)
Kf?

(θθθ0) > χ2
k2π0,1−α,

where ∆∆∆
(n)
Kf?

(θθθ0) := n1/2 M
′

θθθ0
P

′

θθθ0
T̃

(n)
K (θθθ0), with K1 := ϕf?◦F̃

−1
?k and K2 = F̃−1

?k , and

Γ̂ΓΓ
(n)

f?
(θθθ0) :=

µk+1;f? Ik,f?
k2 µk−1;f?

M
′

θθθ0
P

′

θθθ0
J

(n)

θθθ0,Σ̂ΣΣ
Pθθθ0

Mθθθ0
= ΓΓΓΣΣΣ,f?(θθθ0) + oP(1) under H(n)(θθθ0,ΣΣΣ, f?). But,

in view of Lemma 2.2.5 (c) of Rao and Mitra (1971),

∆∆∆
(n)′

Kf?
(θθθ0) (Γ̂ΓΓ

(n)

f?
(θθθ0))

−

∆∆∆
(n)
Kf?

(θθθ0)

=
k2nµk−1;f?

µk+1;f? Ik,f?

T̃
(n)′

K (θθθ0)Pθθθ0
Mθθθ0

(M
′

θθθ0
P

′

θθθ0
J

(n)

θθθ0,Σ̂ΣΣ
Pθθθ0

Mθθθ0
)
−

M
′

θθθ0
P

′

θθθ0
T̃

(n)
K (θθθ0)

=
k2n

E[(ϕf?(F̃
−1
?k (U)))2]E[(F̃−1

?k (U))2]
T̃

(n)′

K (θθθ0) (J
(n)

θθθ0,Σ̂ΣΣ
)−1 T̃

(n)
K (θθθ0);

φ
(n)
f?

and φ
(n)
f?

thus are the same test. The result follows. �

Again, there is no reason for expecting the test statistic to be affine-invariant, since the testing
problem itself in general is not; see Hallin and Paindaveine (2002c). Nevertheless, the following
proposition establishes that, whenever the testing problem under study is affine-invariant (for
instance, the problem of testing randomness against ARMA dependence), then the test statistics

Q
(n)
K (θθθ0) also are affine-invariant.

Proposition 5 (i) The null hypothesis H(n)(θθθ0) is invariant under affine transformations, if
and only if θθθ0 is such that Ai = aiIk for all i = 1, . . . , p0 and Bj = bjIk for all j = 1, . . . , q0.

(ii) When the null hypothesis H(n)(θθθ0) is affine-invariant, then Q
(n)
K (θθθ0) also is.
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Proof. (i) Model (1) under H(n)(θθθ0) can be written under the form

MA(L)M−1MXt = MB(L)M−1Mεεεt

where M is an arbitrary full-rank k× k matrix. This null hypothesis is thus invariant under the
group of affine transformations εεεt 7→ Mεεεt if and only if MAiM

−1 = Ai for all i = 1, . . . , p0 and
MBjM

−1 = Bj for all j = 1, . . . , q0, i.e., iff each Ai and each Bj commutes with any invertible
matrix M, which holds true iff they are proportional to the k × k identity matrix.

(ii) Let M be some nonsingular k × k matrix. For any statistic T = T (X
(n)
−p0+1, . . . ,X

(n)
n ),

write T (M) := T (MX
(n)
−p0+1, . . . ,MX

(n)
n ). It follows from Lemma 3 and from the equivariance

properties of C
(n)
Tyl that Γ̃ΓΓ

(n)

i;K(M) = M
′−1Γ̃ΓΓ

(n)

i;KM
′

. Hence, S̃
(n)
K (M) = [In−1 ⊗ (M⊗M

′−1)] S̃
(n)
K .

In the same way,

[
In−1 ⊗

(
Σ̂ΣΣ

(n)
(M)⊗ (Σ̂ΣΣ

(n)
(M))−1

)]
=

[In−1 ⊗ (M⊗M
′−1)] [In−1 ⊗ (Σ̂ΣΣ

(n) ⊗ (Σ̂ΣΣ
(n)

)−1)] [In−1 ⊗ (M⊗M
′−1)]

′

.

Now, Ai = aiIk clearly implies that the Green matrices of the operator A(L) all are proportional
to the identity matrix. The same property holds for B(L). It is then easy to verify that the
operator D(L) also is scalar (meaning that Di is proportional to the identity matrix for all
i = 1, . . . , p0 + q0). This implies that the fundamental system of solutions provided by the
Green’s matrices of D(L) contains only matrices that are proportional to the identity. Hence,

Q
(n)
θθθ0

= W(n) ⊗ Ik2 , for some (n− 1)× π0 matrix W(n). It follows that

[In−1 ⊗ (M⊗M
′−1)]

′

Q
(n)
θθθ0

= Q
(n)
θθθ0

[Iπ0 ⊗ (M⊗M
′−1)]

′

,

which entails T̃
(n)
K (M) = [Iπ0 ⊗ (M⊗M

′−1)] T̃
(n)
K and

J
(n)

θθθ0,Σ̂ΣΣ
(M) = [Iπ0 ⊗ (M⊗M

′−1)]J
(n)

θθθ0,Σ̂ΣΣ
[Iπ0 ⊗ (M⊗M

′−1)]
′

.

Consequently, Q
(n)
K (M) = Q

(n)
K . �

6.2 Estimated-score test statistics.

The tests φ
(n)
f?

considered in Proposition 4 achieve parametric efficiency at radial density f?.
ARMA models, though, under adequate assumptions, are adaptive; this has been shown formally
in the univariate case only (without even requiring symmetric innovation densities; see, e.g.,
Drost et al., 1997), but is very likely to hold also in higher dimension. Adaptive optimality
property—that is, parametric optimality at all f?—thus can be expected, provided that estimated
scores are considered. The proposition below shows that this indeed is the case.

An adaptive procedure could be based on the score function ϕf̂ associated with an adequate

estimator f̂ of the radial density. While being uniformly locally asymptotically maximin, such
a procedure however would miss the very desirable properties of rank-based procedures. This
is why we rather propose, in the spirit of Hallin and Werker (2002), an adaptive version of the
rank-based procedures described in Proposition 4.

Let us first assume that ΣΣΣ is known, so that the genuine distances d
(n)
t := d

(n)
t (θθθ0,ΣΣΣ) can

be computed from the observations. Denote by R
(n)
t := R

(n)
t (θθθ0,ΣΣΣ) the rank of d

(n)
t among
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d
(n)
1 , . . . , d

(n)
n : under H(n)(θθθ0,ΣΣΣ, f), the R

(n)
t ’s are the ranks of i.i.d. random variables with

probability density function f̃k. Next consider any continuous kernel density estimator f̌
(n)
k of

f̃k that is measurable with respect to the order statistic of the d
(n)
t ’s, and satisfies

E

[[
ϕ

f̌
(n)
k

(
(F̌

(n)
k )−1

( R
(n)
t

n + 1

))
(F̌

(n)
k )−1

( R
(n)
t−i

n + 1

)
−ϕf̃k

(
F̃−1

k

( R
(n)
t

n + 1

))
F̃−1

k

( R
(n)
t−i

n + 1

)]2 ∣∣∣∣∣ f̌
(n)
k

]
= oP(1),

(20)

under H(n)(θθθ0,ΣΣΣ, f) as n →∞, where F̌
(n)
k denotes the cumulative distribution function associ-

ated with f̌
(n)
k .

A possible choice for f̌
(n)
k satisfying (20) is given in Hájek and Šidák (1967), (1.5.7) of

Chapter VII. The adaptive (still, under specified ΣΣΣ) version of (15) is then

Γ̌ΓΓ
(n)
i;ΣΣΣ(θθθ0) := ΣΣΣ

′−1/2

(
1

n− i

n∑

t=i+1

ϕ̌
(n)
f

(
(F̌

(n)
k )−1

( R
(n)
t

n + 1

))
(21)

(F̌
(n)
k )−1

( R
(n)
t−i

n + 1

)
U

(n)
t (θθθ0,ΣΣΣ)U

(n)′

t−i (θθθ0,ΣΣΣ)

)
ΣΣΣ

′1/2,

where we let ϕ̌
(n)
f (r) := ϕ

f̌
(n)
k

(r) + (k − 1)/r (since ϕf (r) = ϕf̃k
(r) + (k − 1)/r).

Of course, in practice, ΣΣΣ is not known, and only the estimated distances d̂
(n)
t := d

(n)
t (θθθ0, Σ̂ΣΣ

(n)
)

can be computed : instead of Γ̌ΓΓ
(n)
i;ΣΣΣ(θθθ0) given in (21), we therefore rather use (with the notation

of Section 4)

Γ̂ΓΓ
(n)

i (θθθ0) := C
(n)′

Tyl

(
1

n− i

n∑

t=i+1

ϕ̂
(n)
f

(
(F̂

(n)
k )−1

( R̂
(n)
t

n + 1

))
(22)

(F̂
(n)
k )−1

( R̂
(n)
t−i

n + 1

)
W

(n)
t (θθθ0)W

(n)′

t−i (θθθ0)

)
(C

(n)′

Tyl )
−1,

where f̌
(n)
k , F̌

(n)
k and ϕ̌

(n)
f have been replaced with their counterparts f̂

(n)
k , F̂

(n)
k and ϕ̂

(n)
f com-

puted from the order statistic of the d̂
(n)
t ’s. Using the multivariate Slutsky theorem and working

as in the proof of Proposition 2, we obtain that the difference between (21) and (22) is oP(n−1/2)
under

⋃
f H(n)(θθθ0,ΣΣΣ, f), as n →∞. A direct adaptation of the proof of Proposition 3.4 in Hallin

and Werker (2002) then yields a multivariate generalization of the (symmetric version of) Propo-
sition 6.4 in Hallin and Werker (1999). This adaptation however requires the Fisher information
for location associated with f̃k to be finite. Denote by F the set of all radial densities f for
which this condition is satisfied : clearly, {f | Ik,f < ∞ and

∫∞
0 rk−3 f(r) dr < ∞} ⊂ F and, in

the univariate case (k = 1), F = {f | I1,f < ∞}.

Lemma 4 Assume that Assumptions (B1), (B2) hold, and that f ∈ F satisfies Assump-

tion (C′). Then, both vec (Γ̌ΓΓ
(n)
i (θθθ0) − ΓΓΓ

(n)
i;ΣΣΣ,f (θθθ0)) and vec (Γ̂ΓΓ

(n)

i (θθθ0) − ΓΓΓ
(n)
i;ΣΣΣ,f (θθθ0)) are oP(n−1/2)

under H(n)(θθθ0,ΣΣΣ, f), as n →∞.

In order to construct adaptive procedures, we still need to estimate the asymptotic variance-
covariance matrices of either (21) or (22). More precisely, we need consistent estimates of Ik,f
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and vk,f := µk+1;f/µk−1;f = E[(F̃−1
k (U))2]. Such estimates are provided by

Ǐ(n) :=
1

n

n∑

t=1

(
ϕ̌

(n)
f ◦ (F̌

(n)
k )−1

( R
(n)
t

n + 1

))2

and v̌(n) :=
1

n

n∑

t=1

(
(F̌

(n)
k )−1

( R
(n)
t

n + 1

))2

,

Î(n) :=
1

n

n∑

t=1

(
ϕ̂

(n)
f ◦ (F̂

(n)
k )−1

( R̂
(n)
t

n + 1

))2

and v̂(n) :=
1

n

n∑

t=1

(
(F̂

(n)
k )−1

( R̂
(n)
t

n + 1

))2

,

respectively. Note that Ǐ(n)v̌(n) (resp., Î(n)v̂(n)) depends on the estimated radial density f̌
(n)
k

(resp., f̂
(n)
k ) only through its density type—namely, the scale family {af̌

(n)
k (ar), a > 0} (resp.,

{af̂
(n)
k (ar), a > 0}). By the way, the same property holds true for the adaptive rank-based

cross-covariances (21) and (22); consequently, without any loss of generality, we may assume

that f̌
(n)
k and f̂

(n)
k are such that v̌(n) = v̂(n) = 1.

Defining

Š(n)(θθθ0) :=

(
(n− 1)1/2(vec Γ̌ΓΓ

(n)
1;ΣΣΣ(θθθ0))

′

, . . . , (vec Γ̌ΓΓ
(n)
n−1;ΣΣΣ(θθθ0))

′

)′

and n1/2Ť(n)(θθθ0) := Q
(n)′

θθθ0
Š(n)(θθθ0),

let
Q̌(n)(θθθ0) :=

k2n

Ǐ(n)v̌(n)
Ť(n)′(θθθ0)(J

(n)
θθθ0,ΣΣΣ)−1Ť(n)(θθθ0), (23)

where J
(n)
θθθ0,ΣΣΣ is defined in (19). The same quantities, when computed from the Γ̂ΓΓ

(n)

i (θθθ0)’s, are

denoted by Ŝ(n)(θθθ0) and T̂(n)(θθθ0), respectively, yielding the test statistic

Q̂(n)(θθθ0) :=
k2n

Î(n)v̂(n)
T̂(n)′(θθθ0) (J

(n)

θθθ0,Σ̂ΣΣ
)−1 T̂(n)(θθθ0).

The test statistic (23) has the very desirable property of being conditionally distribution-free.

Conditional upon the σ-algebra D(n) generated by the order statistic d
(n)
( . ) of the exact distances

d(n) := (d
(n)
1 , . . . , d

(n)
n ), indeed,

(a) the vector of ranks R(n) := (R
(n)
1 , . . . , R

(n)
n ) is uniformly distributed over the n! permuta-

tions of (1, . . . , n),

(b) the normalized residuals U
(n)
t are i.i.d. and uniformly distributed over the unit hyper-

sphere, and

(c) the ranks R(n) and the residuals U
(n)
t are mutually independent.

The situation is thus entirely parallel to the classical case of univariate signed ranks : conditional

on D(n), Q̌(n)(θθθ0) is distribution-free. Denote by q̌α(d
(n)
( . )) its upper α-quantile, and by φ̌(n)

the test rejecting H(n)(θθθ0) whenever Q̌(n)(θθθ0) > q̌α(d
(n)
( . )). This test actually has Neyman α-

structure with respect to d
(n)
( . ) and, consequently is a permutation test. Proposition 6 and

Lemma 4 moreover imply that the sequence φ̌(n) is asymptotically optimal, uniformly in f ,
hence adaptive.

Unfortunately, unlike univariate adaptive signed rank tests, this permutation test cannot be
implemented, since ΣΣΣ in practice is unspecified. Instead of φ̌(n), based on Q̌(n)(θθθ0), we therefore
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recommend φ̂(n), based on the test statistic Q̂(n)(θθθ0), which rejects the null hypothesis H(n)(θθθ0)
whenever Q̂(n)(θθθ0) exceeds the α-upper quantile χ2

k2π0,1−α of a chi-square distribution with k2π0

degrees of freedom. In view of Lemma 4, Q̌(n)(θθθ0) and Q̂(n)(θθθ0) are asymptotically equivalent
under the null hypothesis and contiguous alternatives : φ̂(n) and φ̌(n) thus share the same
asymptotic optimality properties. On the other hand, φ̂(n) loses the attractive finite-sample
Neyman α-structure of φ̌(n).

Proposition 6 Assume that Assumptions (A), (B1′) and (B2) hold, and that f ∈ F satisfies
Assumption (C′). Then,

(i) statements (i), (ii), (iii) of Proposition 4 hold for φ̂(n); statement (iv) also holds, with
asymptotic noncentrality parameter

1

k2
E[(F̃−1

k (U))2] E[(ϕf (F̃−1
k (U)))2]τττ ′Nθθθ0,ΣΣΣ τττ ,

under H(n)(θθθ0 + n−1/2τττ ,ΣΣΣ, f);

(ii) the sequence of tests φ̂(n) is locally asymptotically maximin for H(n)(θθθ0) against
⋃

ΣΣΣ

⋃
f

H(n)(θθθ0,ΣΣΣ, f), at probability level α, where the second union is taken over all radial den-
sities f ∈ F satisfying Assumptions (B1′), (B2), and (C′).

Proposition 5 readily extends to this adaptive procedure.

6.3 The Gaussian procedure.

We now briefly describe the parametric Gaussian procedure for the problem treated in Propo-
sitions 4 and 6. This Gaussian test will serve as a benchmark in Section 7 for the computation
of asymptotic relative efficiencies.

Under Gaussian assumptions, the empirical covariance S(n) := n−1∑n
t=1 Z

(n)
t (θθθ0)Z

(n)′

t (θθθ0) is
a consistent estimator, under H(n)(θθθ0,ΣΣΣ, f), of the innovation covariance (E[(F̃−1

k (U))2]/k)ΣΣΣ.
Let

J
(n)
N ;θθθ0

:= Q
(n)′

θθθ0

[
In−1 ⊗ Γ̂ΓΓ

(n)

θθθ0

]
Q

(n)
θθθ0

,

where Γ̂ΓΓ
(n)

θθθ0
:= (n− 1)−1∑n

t=2 vec
(
Z

(n)
t (θθθ0)Z

(n)′

t−1(θθθ0)
) (

vec
(
Z

(n)
t (θθθ0)Z

(n)′

t−1(θθθ0)
))′

. In view of the

ergodic theorem (see Hannan (1970), Theorem 2, p. 203), Γ̂ΓΓ
(n)

θθθ0
is consistent, underH(n)(θθθ0,ΣΣΣ, f),

for (E[(F̃−1
k (U))2]/k)2 ΣΣΣ⊗ΣΣΣ−1. The following proposition then follows along the same lines as

Proposition 4.

Proposition 7 Assume that Assumptions (A), (B1′) and (B2) hold. Let

Q
(n)
N (θθθ0) := nT

(n)′

S,φ (θθθ0) (J
(n)
N ;θθθ0

)−1 T
(n)
S,φ(θθθ0). (24)

Consider the sequence of parametric Gaussian tests φ
(n)
N rejecting the null hypothesis H(n)(θθθ0)

whenever Q
(n)
N (θθθ0) exceeds the α-upper quantile χ2

k2π0,1−α of a chi-square distribution with k2π0

degrees of freedom. Then,
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(i) statements (i) and (iii) in Proposition 4 hold for φ
(n)
N ; statement (iv) also holds, with

asymptotic noncentrality parameter (E2[F̃−1
k (U)ϕf (F̃−1

k (U))]/k2)τττ ′Nθθθ0,ΣΣΣ τττ under
H(n)(θθθ0 + n−1/2τττ ,ΣΣΣ, f);

(ii) the sequence of tests φ
(n)
N is locally asymptotically maximin for H(n)(θθθ0) against the Gaus-

sian alternative
⋃

ΣΣΣH(n)(θθθ0,ΣΣΣ, φ), at probability level α.

The test statistic Q
(n)
N (θθθ0) is not (not even asymptotically) invariant under continuous mono-

tone radial transformations. However, it is asymptotically distribution-free. On the other hand,

Q
(n)
N (θθθ0), just like Q

(n)
K (θθθ0) and Q̂(n)(θθθ0), is affine-invariant whenever the null hypothesis is.

7 Asymptotic performance.

7.1 Asymptotic relative efficiencies.

Computing the ratios of the noncentrality parameters in the asymptotic distributions of φ
(n)
K ,

φ
(n)
f?

, and φ̂(n) with respect to φ
(n)
N (see Propositions 4, 6 and 7) yields the asymptotic relative

efficiencies of these tests with respect to their parametric Gaussian counterparts.

Proposition 8 Assume that Assumptions (A), (B1′), (B2) and (C) hold. Then,

(i) the asymptotic relative efficiency, under radial density f , of φ
(n)
K with respect to φ

(n)
N is

AREk,f(φ
(n)
K /φ

(n)
N ) =

1

k2

D2
k(K2; f)

E[K2
2 (U)]

C2
k(K1; f)

E[K2
1 (U)]

;

(ii) assuming that (C′) holds instead of (C),

AREk,f (φ
(n)
f?

/φ
(n)
N ) =

1

k2

D2
k(f?, f)

Dk(f?)

C2
k(f?, f)

Ck(f?)
,

where we write Dk(f1, f2) and Ck(f1, f2) for Dk(F̃
−1
1k ; f2) and Ck(ϕf1◦F̃

−1
1k ; f2) respectively,

and let Ck(f?) := Ck(f?, f?) and Dk(f?) := Dk(f?, f?);

(iii) assuming moreover that f ∈ F satisfies Assumption (C′), the asymptotic relative efficiency

of the adaptive test φ̂(n) with respect to φ
(n)
N under radial density f is

AREk,f (φ̂(n)/φ
(n)
N ) =

1

k2
Dk(f)Ck(f).

The AREs for the fixed-score procedures obtained in Proposition 8 coincide with those ob-
tained in Hallin and Paindaveine (2002b) for the related problem of testing randomness against
VARMA dependence. The numerical values of AREs of several versions of the proposed pro-
cedures (van der Waerden and Laplace score tests, sign test, Spearman-type test) with respect
to the Gaussian procedure, under a class of multivariate t-distributions, are reported there. As
usual in rank-based inference, the gain of efficiency over parametric L2 procedures increases with
the tail weight (see Hallin and Paindaveine 2002b).
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In this subsection, we thus concentrate on the adaptive procedure described in Proposition 6.
As in Randles (1989), consider the family of exponential distributions with density

fν(x) = Kk,ν
1

(detΣΣΣ)1/2
exp

[− ((x− θθθ)
′

ΣΣΣ−1(x− θθθ)/c0)
ν], ν > 0, (25)

with

c0 :=
k Γ(k/2ν)

Γ((k + 2)/2ν)
and Kk,ν :=

ν Γ(k/2)

Γ(k/2ν) (πc0)k/2
.

This family corresponds to radial densities of the form fν(r) := exp[−(r2/c0)
ν ], and allows for

considering a variety of tail weights indexed by ν. The k-variate normal case corresponds to
ν = 1, while, for 0 < ν < 1 (resp. ν > 1), the tails are heavier (resp. lighter) than in the normal
case.

Provided that 4ν + k − 2 > 0, Proposition 8 yields

AREk,fν(φ̂
(n)/φ

(n)
N ) =

4ν2

k2

Γ((k + 2)/2ν) Γ((4ν + k − 2)/2ν)

Γ2(k/2ν)
. (26)

Table 1 below provides some numerical values of (26).

ν

k 0.1 0.2 0.3 0.5 1 2 5 10

1 - - 28.40 2.00 1.00 1.37 3.18 6.43
3 261.24 8.08 2.77 1.33 1.00 1.22 2.30 4.26
4 59.63 4.77 2.16 1.25 1.00 1.18 2.08 3.71
6 14.81 2.84 1.69 1.17 1.00 1.13 1.81 3.03
8 7.51 2.19 1.48 1.13 1.00 1.10 1.65 2.63
10 5.02 1.88 1.37 1.10 1.00 1.09 1.54 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 1 Asymptotic relative efficiencies of the adaptive test φ̂(n) w.r.t.

the Gaussian test φ
(n)
N in the elliptically symmetric power family (25),

for various values of the tail index ν and the space dimension k.

7.2 A multivariate version of two classical univariate results.

Since the AREs obtained in Proposition 8 for the fixed-score procedures φ
(n)
K and φ

(n)
f?

coincide
with those in Hallin and Paindaveine (2002b), the generalizations obtained there of the famous
Chernoff-Savage and Hodges-Lehmann results still hold here. In view of their importance, we
adapt these results to the present context, referring to Hallin and Paindaveine (2002b) for proofs
and details.

A multivariate serial Chernoff-Savage result.

Like in the univariate case, the van der Waerden version of the proposed rank-based procedure is
uniformly more efficient than the corresponding parametric Gaussian procedure. More precisely,
the following generalization of the results of Chernoff and Savage (1958) and Hallin (1994) holds.
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Proposition 9 Assume that Assumption (A) holds. Denote by φ
(n)
vdW and φ

(n)
N the van der

Waerden test, based on the cross-covariance matrices (17), and the Gaussian test based on the
test statistic (24), respectively. For any f satisfying Assumptions (B1′) and (B2),

AREk,f(φ
(n)
vdW /φ

(n)
N ) ≥ 1,

where equality holds if and only if f is normal.

A multivariate serial Hodges-Lehmann result.

Denote by Q
(n)
SP (θθθ0) the Spearman-type version of the test statistics Q

(n)
K (θθθ0), based on the

cross-covariances (16) associated with linear scores. This statistic can be considered as the
angle-based serial version of Peters and Randles’ Wilcoxon-type test statistic (see Hallin and
Paindaveine 2002d, Peters and Randles 1990).

Although the resulting test φ
(n)
SP is never optimal (there is no f? such that Q

(n)
f?

(θθθ0) coincides

with Q
(n)
SP (θθθ0)), the resulting Spearman-type procedure exhibits excellent asymptotic efficiency

properties, especially for relatively small dimensions k. To show this, we extend Hodges and
Lehmann (1956)’s celebrated “.864 result” by computing, for any dimension k, the lower bound

for the asymptotic relative efficiency of φ
(n)
SP with respect to the Gaussian procedure φ

(n)
N . More

precisely, we have the following proposition (see Hallin and Paindaveine (2002b) for the proof).

Proposition 10 Assume that Assumption (A) holds. Then, denoting by Jr the first-kind Bessel
function of order r,

c(r) := inf

{
x > 0

∣∣∣∣ (
√

xJr(x))′ = 0

}
= inf

{
x > 0

∣∣∣∣ x
Jr+1(x)

Jr(x)
= r +

1

2

}
,

the lower bound for the asymptotic relative efficiency of φ
(n)
SP with respect to φ

(n)
N is

inf
f

AREk,f (φ
(n)
SP /φ

(n)
N ) =

9
(
2 c2(

√
2k − 1/2) + k − 1

)4

210 k2 c4(
√

2k − 1/2)
, (27)

where the infimum is taken over all radial densities f satisfying Assumptions (B1 ′) and (B2).

Some numerical values are presented in Table 2. Note that the sequence of lower bounds (27)
is monotonically decreasing for k ≥ 2, and tends to 9/16 = 0.5625 as k →∞.

k inff AREk,f (φ
(n)
SP /φ

(n)
N ) k inff AREk,f (φ

(n)
SP /φ

(n)
N )

1 0.856 5 0.818
2 0.913 6 0.797
3 0.878 10 0.742
4 0.845 +∞ 0.563

Table 2 Some numerical values, for various values k of the space di-

mension, of the lower bound for the asymptotic relative efficiency of the

Spearman test φ
(n)
SP with respect to the Gaussian one φ

(n)
N

.
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8 Appendix : proofs of Propositions 2 and 3.

The following lemma, which follows along the same lines as Lemma 4 in Hallin and Paindav-
eine (2002b), will be used in the proof of Proposition 2.

Lemma 5 Let i ∈ {1, . . . , n − 1} and t, t̃ ∈ {i + 1, . . . , n} be such that t 6= t̃. Assume that
g : R

nk = R
k × . . . × R

k → R is even in all its arguments, and such that the expectation below
exists. Then, under

⋃
f H(n)(θθθ0,ΣΣΣ, f),

E
[
g(Z

(n)
1 (θθθ0), . . . ,Z

(n)
n (θθθ0)) (P

′

tQt̃) (R
′

t−iSt̃−i)
]

= 0,

where Pj ,Qj,Rj and Sj are any four statistics among W
(n)
j (θθθ0) and W

(n)
j (θθθ0)−U

(n)
j (θθθ0,ΣΣΣ).

Proof of Proposition 2. Throughout, we write d
(n)
t , R

(n)
t , R̂

(n)
t , W

(n)
t and U

(n)
t for d

(n)
t (θθθ0,ΣΣΣ),

R
(n)
t (θθθ0,ΣΣΣ), R̂

(n)
t (θθθ0), W

(n)
t (θθθ0) and U

(n)
t (θθθ0,ΣΣΣ), respectively; all convergences and mathemat-

ical expectations are taken for n → ∞, under H(n)(θθθ0,ΣΣΣ, f). Decompose (n − i)1/2[(C
(n)
Tyl ⊗

(C
(n)′

Tyl )
−1) vec Γ̃ΓΓ

(n)

i;K(θθθ0)− (ΣΣΣ−1/2 ⊗ΣΣΣ
′1/2) vecΓΓΓ

(n)
i;K;ΣΣΣ,f (θθθ0)] into vec (T

(n)
1 + T

(n)
2 + T

(n)
3 ), where

T
(n)
1 := (n− i)−1/2

n∑

t=i+1

(
K1

( R̂
(n)
t

n + 1

)
K2

( R̂
(n)
t−i

n + 1

)
−K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

))
W

(n)
t W

(n)′

t−i ,

T
(n)
2 := (n− i)−1/2

n∑

t=i+1

K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

) (
W

(n)
t W

(n)′

t−i −U
(n)
t U

(n)′

t−i

)
,

and

T
(n)
3 := (n− i)−1/2

n∑

t=i+1

(
K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

)
−K1(F̃k(d

(n)
t ))K2(F̃k(d

(n)
t−i))

)
U

(n)
t U

(n)′

t−i .

We proceed by proving that vecT
(n)
1 , vecT

(n)
2 , vec T

(n)
3 → 0 in quadratic mean as n → ∞.

Slutsky’s classical argument then concludes the proof.

Let us start with T
(n)
3 . Using the fact that (vec A)

′

(vec B) = tr (A
′

B) and the independence
between the dt’s and the Ut’s, one obtains

∥∥∥vecT
(n)
3

∥∥∥
2

L2
=

n∑

t=i+1

(c
(n)
t;i )2 E





K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

)
−K1(F̃k(d

(n)
t ))K2(F̃k(d

(n)
t−i))




2

 ,

where c
(n)
t;i = (n − i)−1/2 for all t = i + 1, . . . , n. Hájek’s projection result thus implies that

∥∥∥vec T
(n)
3

∥∥∥
2

L2
= o(1) as n →∞. The same result also implies that for all t = i + 1, . . . , n,

E





K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

)
−K1(F̃k(d

(n)
t ))K2(F̃k(d

(n)
t−i))




2

 = o(1). (28)
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For T
(n)
2 , decomposing W

(n)
t W

(n)′

t−i − U
(n)
t U

(n)′

t−i into (W
(n)
t − U

(n)
t )W

(n)′

t−i + U
(n)
t (W

(n)
t−i −

U
(n)
t−i)

′

, then using the identity (vec A)
′

(vecB) = tr (A
′

B) again and Lemma 5, one obtains

∥∥∥vecT
(n)
2

∥∥∥
2

L2
≤ 2(n− i)−1

n∑

t=i+1

E





K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

)



2

‖W(n)
t −U

(n)
t ‖2




+2(n− i)−1
n∑

t=i+1

E





K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

)



2

‖W(n)
t−i −U

(n)
t−i‖2


 . (29)

Consider the first term in the right-hand side of (29) (the second term can be dealt with in the

same way). Let A
(n)
t;i := K1(R

(n)
t /(n+1))K2(R

(n)
t−i/(n+1)) and B

(n)
t;i := K1(F̃k(d

(n)
t ))K2(F̃k(d

(n)
t−i)).

Using (28) and the independence between the d
(n)
t ’s and the U

(n)
t ’s, we obtain

E
[
(A

(n)
t;i )2 ‖W(n)

t −U
(n)
t ‖2

]
= E

[
(B

(n)
t;i )2 ‖W(n)

t −U
(n)
t ‖2

]
+ o(1)

= ‖K1(U)‖2
L2 ‖K2(U)‖2

L2‖W(n)
t −U

(n)
t ‖2L2 + o(1),

where U is uniformly distributed over ]0, 1[. Lemma 2 thus implies that vec T
(n)
2 = oqm(1).

Finally, using Lemma 5 again,

∥∥∥vecT
(n)
1

∥∥∥
2

L2
= (n− i)−1

n∑

t=i+1

(
K1

( R̂
(n)
t

n + 1

)
K2

( R̂
(n)
t−i

n + 1

)
−K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

))2

.

This entails that vecT
(n)
1 also is oqm(1), provided that

K1

( R̂
(n)
t

n + 1

)
K2

( R̂
(n)
t−i

n + 1

)
−K1

( R
(n)
t

n + 1

)
K2

( R
(n)
t−i

n + 1

)
L2

→ 0 as n →∞. (30)

Now, Lemma 1 establishes the same convergence as in (30), but in probability. On the other
hand, it follows from (28) that [K1(Rt/(n+1))K2(Rt−i/(n+1))]2 is uniformly integrable, which
(in view of the invariance of Tyler’s estimator of scatter under permutations of the residuals)
implies that [K1(R̂t/(n + 1))K2(R̂t−i/(n + 1))]2 also is. The L2 convergence in (30) follows.

Summing up, we have shown that (n− i)1/2[(C
(n)
Tyl⊗ (C

(n)′

Tyl )
−1) vec Γ̃ΓΓ

(n)

i;K(θθθ0)−(ΣΣΣ−1/2⊗ ΣΣΣ
′1/2)

vecΓΓΓ
(n)
i;K;ΣΣΣ,f (θθθ0)] is oqm(1) as n → ∞. This concludes the proof, since, from a multivariate

application of Slutsky’s Theorem,

(n− i)1/2[(C
(n)
Tyl ⊗ (C

(n)′

Tyl ))
−1 vec Γ̃ΓΓ

(n)

i;K(θθθ0)− (ΣΣΣ−1/2 ⊗ ΣΣΣ
′1/2) vec Γ̃ΓΓ

(n)

i;K(θθθ0)] = oP(1),

under H(n)(θθθ0,ΣΣΣ, f). �

Proof of Proposition 3. UnderH(n)(θθθ0,ΣΣΣ, f), one can use the same argument as in Lemma 4.12
in Garel and Hallin (1995). The result under the sequence of alternatives is obtained as usual,

first establishing the joint normality of S
(n)
m;K,ΣΣΣ,f (θθθ0) and L

(n)

θθθ0+n−1/2τττ/θθθ0;ΣΣΣ,f
under H(n)(θθθ0,ΣΣΣ, f),

then applying Le Cam’s third Lemma; the required joint normality easily follows from a routine
application of the classical Cramér-Wold device. �
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[27] Möttönen, J., H. Oja, and J. Tienari (1997). On the efficiency of multivariate spatial sign
and rank methods, Ann. Statist. 25, 542-552.
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