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Abstract

We are deriving optimal rank-based tests for the adequacy of a vector autoregressive-
moving average (VARMA) model with elliptically contoured innovation density. These tests
are based on the ranks of pseudo-Mahalanobis distances, and on normed residuals computed
from Tyler (1987)’s scatter matrix; they generalize the univariate signed rank procedures pro-
posed by Hallin and Puri (1991). Two types of optimality properties are considered, both in
the local and asymptotic sense, a la Le Cam : (a) (fixed-score procedures) local asymptotic
minimaxity at selected radial densities, and (b) (estimated-score procedures) local asymp-
totic minimaxity uniform over the set of all such radial densities. In both cases, however,
the proposed tests remain valid under arbitrary elliptically symmetric innovation densities,
including those with infinite variance. We show that the AREs of our fixed-score procedures
with respect to traditional methods based on cross-covariance matrices are the same as for
the tests of randomness proposed in Hallin and Paindaveine (2002b). The multivariate se-
rial extensions of the classical Chernoff-Savage (1958) and Hodges-Lehmann (1956) results
obtained there thus also hold here; in particular, the van der Waerden versions of our tests
are uniformly more powerful than those based on cross-covariances, while remaining valid,
for instance, under infinite variance and heavy-tailed innovations. As for our estimated-score
procedures, they are fully adaptive, hence uniformly optimal in the semiparametric sense.

1 Introduction.

Much attention has been given recently to the development of invariant, distribution-free, and
robust methods in the context of multivariate analysis. Whereas such concepts as medians,
quantiles, ranks, or signs, have been present in the classical toolkit of univariate statistical
inference for about half a century, the emergence of their multivariate counterparts has been
considerably slower.

A fairly complete theory of rank and sign methods for multivariate analysis has been elabo-
rated in the sixties, culminating in the monograph by Puri and Sen (1971). This theory however
suffers the major weakness of being based on componentwise definitions of ranks and signs,
yielding procedures that heavily depend on the choice of a particular coordinate system. It
took about twenty years to see a systematic development of coordinate-free, affine-invariant
competitors to these componentwise sign and rank methods.

This development, initiated in the late eighties, essentially expanded along two distinct
lines of research. The first one, based on the so-called Oja signs and ranks, is due to Oja,
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Hettmansperger, and their collaborators (Méttonen et al. 1995, 1997, and 1998; Hettmansperger
et al., 1994, 1997; see Oja 1999 for a review). The second one is associated with Randles’ concept
of interdirections, and was developed by Randles and his coauthors (Randles 1989; Peters and
Randles 1990; Jan and Randles 1994; Randles and Um 1998). For both groups of methods, only
location problems (one- and two-sample problems, analysis of variance, ... ) were considered, and
optimality issues had not been investigated. This problem of optimality has been addressed in
Hallin and Paindaveine (2002a) who, still for the location problem, are constructing fully affine-
invariant methods based on Randles’ interdirections and the so-called pseudo-Mahalanobis ranks,
that are also fully efficient (in the Le Cam sense) for the multivariate one-sample location model.
Invariance and robustness on one side, efficiency on the other, thus should not be perceived as
inescapably conflicting objectives.

The case of multivariate time series problems, in this respect, is much worse, despite the
recognized need for invariant, distribution-free, and robust methods in the area. The univari-
ate context has been systematically explored, with a series of papers by Hallin et al. (1985),
Hallin and Mélard (1988), and Hallin and Puri (1988, 1991, 1994) on rank and signed rank
methods for autoregressive-moving average (ARMA) models. But, except for a componentwise
rank approach (Hallin et al. 1989) to the problem of testing multivariate white noise against
vector autoregressive-moving average (VARMA) dependence—suffering the same lack of affine-
invariance as its nonserial counterparts—and an affine-invariant approach to the same problem,
based on interdirections and pseudo-Mahalanobis ranks (Hallin and Paindaveine 2002b), the
multivariate situation so far remains virtually unexplored from this point of view.

Our objective in this paper is to derive locally optimal rank-based procedures for testing the
adequacy of a VARMA model with unspecified elliptically symmetric innovation density. These
tests are based on the ranks of pseudo-Mahalanobis distances, and on normed residuals computed
from Tyler (1987)’s scatter matrix. They generalize the univariate signed rank procedures
proposed by Hallin and Puri (1991) (the Tyler-normed residuals playing the role of multivariate
signs). Two types of optimality properties are considered, both in the local and asymptotic
sense, a la Le Cam : (a) (fixed-score procedures) local asymptotic minimaxity at selected radial
densities, and (b) (estimated-score procedures) local asymptotic minimaxity, uniformly over the
set of all radial densities (satisfying adequate regularity assumptions).

Our starting point is a local asymptotic normality (LAN) result by Garel and Hallin (1995).
This LAN result allows for deriving testing procedures that are locally and asymptotically op-
timal under given innovation density f, based on a non-Gaussian form of cross-covariances, the
residual f-cross-covariance matrices.

However, due to the possibility of singular local information matrices (such singularities
occur as soon as the VARMA (p1, ¢1) neighborhood of a null VARMA (pg, qp) model with py < p;
and go < ¢ is considered), the optimal test statistics involve unpleasant generalized inverses,
which darkens their asymptotic behaviour. Therefore, we first restate the LAN property by
rewriting the central sequence in a way that explicitates the ranks of local information matrices,
and allows for “generalized inverse-free” locally and asymptotically optimal procedures. Next,
we show how to replace the “parametric” residual f-cross-covariance matrices appearing in
the central sequences with “nonparametric” versions, based on the ranks of the Mahalanobis
distances and the estimated standardized residuals computed from Tyler’s scatter matrix.

Tyler’s scatter matrix enjoys highly desirable equivariance/invariance properties. These
properties extend to our test statistics; in particular, they are asymptotically invariant under
monotone radial transformations of the residuals, hence asymptotically distribution-free with
respect to the underlying radial density. They also are asymptotically distribution-free with



respect to the scatter parameter; it should be stressed, however, that this latter property does not
follow from any affine-invariance property. Unlike the null hypotheses of location or randomness
considered in Hallin and Paindaveine (2002a and b), hypotheses of ARMA dependence in general
are not affine-invariant : see Hallin and Paindaveine (2002c) for a precise characterization in the
more general context of linear constraints on the parameters of an ARMA model with linear
trend. Actually, our test statistics are affine-invariant whenever the underlying testing problems
are, which is of course the most sensible affine-invariance property we can hope for.

We conclude the paper by computing the asymptotic relative efficiencies of the proposed
nonparametric procedures with respect to the Gaussian ones, showing that the AREs, as well as
the generalized Chernoff-Savage and Hodges-Lehmann theorems obtained in Hallin and Pain-
daveine (2002b) are still valid here.

The paper is organized as follows. In Section 2, we describe the testing problem under study,
and state the main assumptions to be made. The LAN structure of the model is established
in Section 3, with a central sequence that exploits the assumptions of elliptical symmetry. The
multivariate counterparts of traditional ranks and signs are based on Tyler’s scatter matrix, the
corresponding Tyler residuals, and the so-called pseudo-Mahalanobis ranks. These concepts are
defined in Section 4, where their consistency and invariance properties are also derived. They
are used, in Section 5, in the definition of a concept of nonparametric residual cross-covariance
matrices extending to the multivariate context the notion of rank-based autocorrelations de-
veloped in Hallin and Puri (1988, 1991). These matrices allow for a reconstruction of central
sequences, hence for nonparametric locally asymptotically optimal procedures. Two types of
optimality properties are considered in Section 6, both in the local and asymptotic sense, a la
Le Cam :

(a) (fixed-score procedures) local asymptotic minimaxity at selected radial densities, and

(b) (estimated-score procedures) local asymptotic minimaxity, uniform with respect to radial
densities.

In both cases, the proposed tests remain valid under arbitrary elliptically symmetric innovation
densities, including those with infinite variance. In Section 7, the asymptotic relative efficiencies
of the proposed procedures with respect to their Gaussian counterparts (based on classical
cross-covariances) are derived. The proof of the consistency result for the nonparametric cross-
covariances is given in the Appendix.

2 Notation and main assumptions.

Consider the VARMA (p1, ¢1) model defined by the stochastic difference equation

p1 q1
<Ik — ZAZLZ> X; = <Ik + ZBZLZ> E¢, tez, (1)

i=1 i=1

where Ay,..., A, ,B1,...,B, are k x k real matrices (I stands for the k-dimensional identity
matrix), L denotes the lag operator, and {€;|t € Z} is an absolutely continuous k-variate
white noise process. The parameter of interest is @ := ((vec A1), ..., (vec Ap,), (vecBy)', ...,
(vecBy,)")’, with values in RF*(Pr+a1)

Fixing some

0y := ((vecAq) ..., (vec APO),7O;€2(p17p0) (vecBy)', ..., (vec qu),,o;gz( ,

x12 q17q0)><1)
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that satisfies Assumption (A) below, we want to test the null hypothesis @ = 6, against the
alternative @ # 6. Choosing py < p; and/or go < ¢1 allows to test the adequacy of the specified
VARMA coefficients in 6y, while contemplating the possibility of possibly higher-order VARMA
models. If the order is not an issue, one can just let py = p1 and qg = ¢1.

The null VARMA model must satisfy the usual causality and invertibility conditions. More
precisely, we assume the following on 6 :

AsSUMPTION (A). All solutions of det(I, — 37, A;z%) =0, z € C and det(Iy + X%, B;z%) =0,
z € C (|Ap| # 0 # |Bg,|) lie outside the unit ball in C. Moreover, the greatest common left
divisor of I, — >°F° A2 and I + 3%, B2 is L.

Write A(L) and B(L) for the difference operators I — >-F° A, L% and I, + Y% B;L?, respec-
tively. Letting By := I, recall that the Green’s matrices H,, u € N, associated with B(L) are
defined by the linear recursion Zgg(qo’u) B,H,_; = 6y I, where 6,0 =1 if u =0, and d,0 =0
otherwise. Assumption (A) also allows for defining these Green’s matrices by

400 q0 ) -1
Z H, 2" = <Ik + ZBﬂ’) , z€C, |z| <1 (2)
u=0

i=1

as a consequence, the same matrices also satisfy Zzn:lg(qo’u) B;H;ﬂ- = 0y0 Ix. Assumption (A)
moreover ensures the existence of some £ > 0 such that the series in (2) be absolutely and
uniformly convergent in the closed ball in C with center 0 and radius 1 + €. Consequently,
||H, ||(142)" goes to 0 as u goes to infinity. This exponential decrease ensures that (|H,||, u € N)
belongs to [P(N) for all p > 0, where [P(N) denotes the set of all sequences (z,,, u € N) for which
Yoo o lxulP < 0o. Of course, the same remarks also hold, with obvious changes, for the Green’s
matrices G, u € N, associated with the operator A(L). For simplicity, we do not indicate the
strong dependence on 8y of G, and H,,, which of course are associated with the null operators

A(L) and B(L).

Under Assumption (A), the white noise {&;} is {X;}’s innovation process. The set of as-
sumptions (B) deals with the density of this innovation. As announced, we restrict ourselves to
a class of elliptically symmetric densities.

AssumMPTION (B1). Denote by ¥ a symmetric positive definite k x k matrix, and by f : RT — R*
a nonnegative function, such that f > 0 a.e. and [;° Pl f(r)dr < co. We will assume

throughout that {Egn), e ,e%”)} is a finite realization of an elliptic white noise process with
scatter matrix ¥ and radial density f, i.e., that its probability density at (z1,...,2,) € R is

of the form [[;", i(zﬁ”);z:, f), where

f(2i:Z, f) = iy (detB) 72 f(|lzi]ln), 21 € R, (3)

Here, ||z||g := (2' £7'2)'/? denotes the norm of x in the metric associated with 3. The constant
ci,r is the normalization factor (wy ,uk_l;f)_l, where wy, stands for the (k — 1)-dimensional
Lebesgue measure of the unit sphere S¥~1 C R¥, and py.; == [ 7! f(r) dr.

Note that the scatter matrix ¥ in (3) needs not be (a multiple of) the covariance matrix
of the observations, which may not exist, and that f is not, strictly speaking, a probability
density; see Hallin and Paindaveine (2002a) for a discussion. Moreover, ¥ and f are identified
up to an arbitrary scale transformation only. More precisely, for any a > 0, letting ¥, := a’%



and fo(r) := f(ar), we have f(x;X,f) = f(x;Xq, fa). This will be harmless in the sequel
since cross-covariances, central sequences, as well as all statistics considered, are insensitive to
a variation of a.

We will denote by 212 the unique upper-triangular k£ x k array with positive diagonal
clements that satisfies 7% = (£71/2)’'272, With this notation, 2_1/25§n)/||2_1/255n)\|, cee
271/285171)/”271/285?) || arei.i.d., and uniformly distributed over S*~1 Similarly, 112*1/255") ...,
[t 28,@” are i.i.d. with probability density function

Fe(r) = (—r) " 7" f (7)) Iy, (4)

where I denotes the indicator function associated with the Borel set E. The terminology radial
density will be used for f and fj, indifferently (though only fi, of course, is a genuine probability
density). We denote by F}, the distribution function associated with fj.

Write H(™ (89, X, ) for the hypothesis under which an observation X () := (Xgn), e ,Xsln))’
is generated by the VARMA (pg, go) model (1) with parameter value 6 satisfying Assumption (A)
and innovation process satisfying Assumption (B1) With ‘scatter parameter” ¥ and radial den-
sity f. Our objective is to test H(™(8) := Usg U; H ¥ ") (89, %, f) against Ue;ée H™(8). Conse-
quently, ¥ and f play the role of nuisance parameters; note that the unions, in the definition of
H(™)(B), are taken over all possible values of ¥ and f.

The methodology we will adopt in the derivation of optimality results is based on Le Cam’s
asymptotic theory of experiments. This requires the model (characterized by some fixed value
of ¥ and f) at which optimality is sought to be locally and asymptotically normal (LAN). LAN
of course does not hold without a few, rather mild, regularity conditions : finite-second order
moments and finite Fisher information for f, and quadratic mean differentiability of f /2 Those
technical assumptions are taken into account in Assumptions (B1’) and (B2) below, in a form
that is adapted to the elliptical context. We insist however on the fact that these assumptions
are made on the density at which optimality is desired, not on the actual density.

AssuMPTION (B1’). Same as Assumption (B1), but we further assume that fip41,5 < 0o.

Note that Assumption (B1’) is also required when Gaussian procedures are to be considered,
since these also require the second-order moments of the underlying distribution to be finite.

Assumption (B2) below is strictly equivalent to the assumption that f 1/2 is differentiable in

quadratic mean (see Hallin and Paindaveine (2002a), Proposition 1). However, it has the im-
portant advantage of involving univariate quadratic mean differentiability only. Let L2(RJ, 1)
denote the space of all functions that are square-integrable with respect to the Lebesgue mea-
sure with weight 7! on ]Rar, i.e., the space of measurable functions A : Rar — R satisfying

JoCR(r))?rtdr < oo.

AssuMPTION (B2). The square root fl/2 of the radial density f is in WY2(R{, y_1), where
WL2(RY, pk—1) denotes the subspace of L2(R{, yu;—1) containing all functions admitting a weak
derivative that also belongs to L2(R{, ptx_1)-

f1/2)/

A As-

Denoting by (f!/2)" the weak derivative of f1/2 in LE(RY, pig—1), let @p = 2l
sumption (B2) ensures the finiteness of the radial Fisher information

Ti o= (p1,p)"" /Ooo [op(MPrF = f(r) dr.



In the last set of assumptions, we describe the score functions K7, K5 to be used when
building rank-based statistics in this serial context.

AssuMPTION (C). The score functions Ky : ]O 1[— R, £ = 1,2, are continuous differences of two
monotone increasing functions, and satisfy fo [Ko(w)]? du < o (£ =1,2).

The score functions yleldlng locally and asymptotlcally optimal procedures, as we shall see, are
of the form Ki := ¢y, :k and Ky := F*k , for some radial density f,. Assumption (C) then
takes the form of an assumption on f, :

AssumPTION (C’). The radial density f, is such that ¢y, is the continuous difference of two
monotone increasing functions, pgy1,7, < 00, and [5°[¢s, (r)]>r* 1 fi(r) dr < oo.

The assumption of being the difference of two monotone functions, which characterizes the func-
tions with bounded variation, is extremely mild. In most cases (fx normal, double exponential,

..), @y, itself is monotone increasing, and, without loss of generality, this will be assumed to
hold for the proofs. The multivariate ¢-distributions however provide examples of non-monotone
score functions ¢y, satisfying Assumption (C’).

3 Local asymptotic normality.

Let A(L) and B(L) be such that A; :=0fori=py+1,...,p1,and B; :=0fori=¢qo+1,...,q1,
and consider the sequences of linear difference operators

P1
ALY =T, =Y (A + 02" L and BM(L) =T, + Z i+ 2L
=1
where the vector 7(") := ((Vec'ygn))/, cee (vec'ygz))/, (Vecégn))/, ooy (vec 6((1?))/)/ € RF@eita) jg

such that sup,, (7(")/7(") < co. These operators define a sequence of VARMA models
AMDYX, =BM™(L)g, teZ,

hence, in the notation of Section 2, the sequence of local alternatives H<">(00 +n 127 B f ).

Let (Z(n) (09), - z\ (6p)) be the n-tuple of residuals computed from the initial values
€_go+1,---,€0 and X( 1304-1’ . ,Xgn) and the observed series (Xgn), . ,X( )) via the relation
I, 0 ... 0 .
t=1 po B, I, ... 0 ~o+l
Z{"(00) =3 S HAX",_ .+ (Hipgoor ... Hy) :
=0 j=0 : : o -
B, 1 Bgoo ... Iy
Assumption (A) ensures that neither the (generally unobserved) values (€_g4y+1,...,€0) of the
innovation, nor the initial values (X(_nlz0 FRTRR X(()n)), have an influence on asymptotic results,

so that they all safely can be put to zero in the sequel. Decompose Zgn) (0p) in
Z;" (80) = ;" (60, 2) £/ U}" (60, ),

where d\”(80,8) = [|Z"(00)|s and U™ (6,,8) = =22 (9,)/d™ 60,%). Whriting
pf == —2 (Df! 2)/11/2, where Dil/Q denotes the quadratic mean gradient of i1/2, define, as



in Garel and Hallin (1995), the residual f-cross covariance matriz of lag i as

L) @) = (n—i) ™ 3 0r(2"00) 2" (60). (5)

Due to the elliptical structure of f, these cross-covariance matrices take the form

1 ’_ n n n) ’
P&Am:gtﬁlﬂ(zwf em»QAwmmkmmwzﬁxﬂzw.@
t=i+1

Hallin and Paindaveine (2002b) are developing optimal procedures based on nonparametric
versions of the cross-covariances (5) or (6), for the problem of testing elliptic white noise against
VARMA dependence.

Garel and Hallin (1995) established the LAN property in this setting (in fact, in a more
general, possibly non elliptical, context). Unfortunately, their formulation of the quadratic
approximation part of LAN does not allow for a precise description of the rank (in the algebraic
sense) of the second-order term of this approximation. The information matrix of the problem
indeed needs not be of full rank, and its actual rank, quite understandably, plays an important
role in the construction of optimal testing procedures. This is why we first restate this LAN
property in Proposition 1 below, in the spirit of Hallin and Puri (1994). As usual, however, the
multivariate case is a bit more intricate than the univariate one, and requires some notational
preparation.

Associated with any k-dimensional linear difference operator of the form C(L) := >-2°, C; L
(letting C; = 0 for ¢ > s, this includes, of course, operators of finite order s), define, for any
integers m and p, the k?m x k%p matrices

Cox1 0 o 0
CixI; Co I o 0
c®) .— : - :
mop Cp,1 ® I CP,Q I ... Coe I
Chn1®I, Cpr ol ... Cm_p ® I
and
I, ®Cy 0 ... 0
I, ®Cy I, ® Cy e 0
C(r) — . t. .
m.p I, ® Cp—l I, ® Cp_g ce I, ® Cq ’
I,Ch1 I;®C,, o ... I ® Cm—p

respectively; write C(l) for C(l)m and C( ") for C,(n)m With this notation, note that G,(n) , G,(n),
H%’, and Hgn) are the inverses of A(l) A,(fb), B,(n) , and Bgn), respectively. Denoting by CVSL}, and
Cn(ﬂ; the matrices associated with the transposed operator C/(L) =i C; L, we also have
G =@ 1 mY = BY)71, ete.



Let m := max(p1 — po, ¢1 — qo) and g := 7+ po + qo, and define the k2my x k%(p1 + ¢1) matrix
My, = <G;T((l)?p1 EH;T((I)?(h) : under Assumption (A), My, is of full rank.

0

Finally, consider the operator D(L) := Iy + Zf:l_qo D; L¢ (just as Myp,, D(L) and most
quantities defined below depend on 6; for simplicity, however, we are dropping this reference

to 0p), where, putting G_; =G _o=...=G_p,11=0=H_ 1 =H o =.. =H_, 41,
-1
Gy, Ggo—1 o Gopott
Gyt Gy s Gopoy2 Got1
D) :

. _ _ Gpota—1 Gpotap—2 -+ Go Gpotao
D Hy, Hyo-1 0 Hogea Hpo+1

Po+qo Hp0+1 HPO e H_q0+2 :
: Hpo+Q0

Hpo+¢10—1 Hp0+q0—2 s H,

Note that D(L)G; = 0 for t = qo+1,...,po + qo, and D(L)H; = 0 for t = pg + 1,...,po + qo.
Let {\Ilgl), . ,‘IfngJrqo)} be a set of k x k matrices forming a fundamental system of solutions
of the homogeneous linear difference equation associated with D(L). Such a system can be

obtained, for instance, from the Green’s matrices of the operator D(L) (see, e.g., Hallin 1986).
Define

1
\11%1 w%”%%;
_ o oS
¥, (60) := T+2 7r+.2 ® I, (m > m);
) gl

then \ifwo is the Casorati matrix Cg. Putting

I T O n r / I T 0
Py, = < k(; c,! ) and Qéo) =H,BY, < k(; ¥ >,

n—1

let

/

Si(60) = ((n — 1) (vecT{’y, ;(80))...., (n — i)/ (vec V5 (60))',... (vecr;"jmf(oo))’) :

n12TL 80) = Qg SE} (B0),

and (n 141 ()
Jooz = lim Q) [L1® (E2T)Qq (7)

(convergence in (7) follows from the exponential decrease, as u — oo, of the Green’s matrices
G, and H,; see the comment after Assumption (A)). Local asymptotic normality, for fixed ¥
and f, of the model described in Section 2 then can be stated in the following way.

Proposition 1 Assume that Assumptions (A), (B1') and (B2) hold. Then, the logarithm
Léﬂn—uwm/oo;z,f of the likelihood ratio of H"™ (8g+n=27() S, f) with respect to H™ (89, Z, f)
is such that

1

L t/370 0y, X)) = (T A 680) = 5 () T 4(80) 7 + 0 (1),



as n — oo, under H™ (0, %, f), with the central sequence

AL (60) == n'/2 My, Py TS (60), (8)
and with the asymptotic information matrix I's, (f9) := %ﬁ Ny x, where
N5 := My, Py, Jo, sPo, My, . (9)

Moreover, Agf}(eo), still under H"™ (00, %, f), is asymptotically Ni2p144)(0, Tz £(00)).

Proof. Garel and Hallin (1995) showed that the linear part in the quadratic approximation of

(n)

L00+n*1/27(")/00;2,f can be written as

TV AL B0) = - (n — i)t [ (00) T4 (60)];
i=1
where
) min(p1,i) i—j min(qo,i—j—k) n) min(qi,) n)
d;"(0) = > > > Hy, an Gioj_rBi+ Y. Hij 5jn
j=1 k=0 1=0 J=1

Now, using tr (AB) = (vec A')' (vec B) and vec (ABC) = (C' ® A) vec B yields

- (n) +b( n)
> (n—i)ur(df” (80)T%(60)] = : & (60), (10)
= 31(171)1 + bgi)l
with
- min(p1,i) i—j min(qgo,i—j—k) . )
ain = (Gi—j—r—Br® Hy) VeC’an
j=1 k=0 1=0
and
min(qi,t)
bz(n) =y (Ik®Hi,j)ve(:5§»n).
j=1

Using the fact that H;(Il) Bs,? H%?ql = H;(Il,)ql, (10) can be written as

n) A (n r (1 (1 r n ' n
A 060) = (LB G0, [’ )T™] Sg60)

n—1,p1

I 1 "1 P /(1) A w(n
_ (G CRD n<_>17q1)7< )} H, BY)) SE80)
a™ + bl
. l / n
= : @, BY) sE80). (11)

a4 p)



where égn) = Z?:iri(pl’t)((};,j ® Ik)(vec'yg»n)) and Bgn) = Z;-n:iri(ql’t)(H;fj ® Ij)(vec 5§»n)); the
(n)

sequences (éﬁ")) and (b;") clearly satisfy

( (n)r n b(n)/ L ~§r7(l)) 4 b(n)/) MGOT(n)- (12)

/

Note that, for t > pg+qo + 1, D(L)G; = D(L)(XP, G, ,A;) = X7 (D(L)G;_;)A; = 0.
Therefore, D(L)G; = 0 for all t > gy + 1. In the same way, we obtain that D(L)H; = 0 for
t > po+ 1. Now, consider the k*-dimensional operator DU (L) := T2 + 3719 (D; ® I) L*. This
operator is such that, for t—p; > go+1, DO(L)a; () — LD )Gt_j®Ik)(vec'y§»n)) = 0. Sim-
ilarly, one can check that for t —gq; > po+1, DO(L )bﬁ”) = ?lzl(D(L)H;j ®@1Ix)(vec 5§n)) = 0.
This implies that égn) + Bgn) satisfies D(l)(L)(égn) + Bgn)) =0 for all t > max(p1 +qo+ 1,q1 +
po+1) =7+ (po+ qo) + 1. Since {\111(51) ® I, ... ,\D§p°+qo) ® I} is a fundamental system of
solutions of the homogeneous difference equation associated with D(® (L), we have

Nﬁ"ﬁl + bﬁf@l ) NE:% + b§r721
=¥, 1C, : (13)
5@1 + 62@1 a7(T0) + b(n)

(see, e.g., Hallin 1986). Combining (12) and (13), we obtain

~(n ~(n ~(n r(n / I 27 0 n
(ag )/+b§ )/,...,an_ll +b51_)/1) = ( % \i’n—1c\f,1 )MGOT( )a

which, together with (11), establishes the result. O

4 Multivariate ranks and signs : invariance and equivariance
properties.

4.1 Pseudo-Mahalanobis distances and Tyler residuals.

Likelihoods—hence, the central sequences (8)—are measurable, jointly, with respect to two types
of statistics :

(i) the distances dﬁ”) (80,%) between standardized residuals £~ 2Z§n) (6p) and the origin in
RF, and

(ii) the normalized standardized residuals U§") (09,%) := 271/2Z£n) (00)/d§n) (09, %).

The (univariate) distances d (00, ) are i.i.d. over the positive real line, with density (4); their
ranks thus have the same dlstrlbutlon freeness and maximal invariance properties as those of the
absolute values of any univariate symmetrically distributed n-tuple. The normalized residuals
Utn) (89,%) under H(™ (8, %, f) are uniformly distributed over the unit sphere, hence can be
viewed as multivariate generahzatlons of signs.

Unfortunately, both d (00, ) and Ugn) (0p,%) involve, in a crucial way, the shape pa-
rameter ¥, which in practice is never specified, and has to be estimated from the observa-
tions. If the actual underlying distribution has finite second-order moments (i.e., under As-
sumption (B1")), a “natural” consistent candidate for estimating ¥ is the empirical covariance
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matrix n=! Y7, Z(n (00)( (00)) . Finite second-order moments however are too strong a
requirement, as we would hke to build testing procedures that are optimal under the assump-
tions of Proposition 1 but remain valid under much milder conditions, including the case of
infinite variances. This rules out the empirical covariance as an estimate of ¥ and, under the
weaker Assumption (B1), which does not require anything about the moments of the underlying
distribution, we propose to use Tyler’s estimator of scatter (see Tyler 1987).

This estimator is defined as follows. For any n-tuple Z(™ := (Zgn),Z;n),... ,S)), of k-

dimensional vectors, denote by Cg?y)l(z(”)) the (unique for n > k(k — 1)) upper triangular k x k
matrix with positive diagonal elements and a “1” in the upper left corner that satisfies

1fj Cry2” \( OryZ” \ 1, . (14)
n oI my) TR

(e VAN oA
s esti ' 5™ _ (o™ o1
Tyler’s estimator of scatter is defined as " := (Cp,; Cr)
When computed from the n-tuple of residuals Zgn) (0p), t = 1,...,n, Tyler’s estimator is

root-n consistent, up to a multiplicative factor, for the shape matrix ¥. More precisely, there
exists a positive real a such that \/ﬁ(f)(n) —aX) is Op(1l) as n — oo under |y H™ (00, %, ).
Tyler’s estimator is clearly invariant under permutations of the residuals zgn)(oo). Moreover,
Cg?y)l is strictly affine-equivariant, since Cg?y)l(MZ(”)) = dOC%fLy)lM_1 for some orthogonal ma-
trix O and some scalar d that depends on Z(™. See Randles (2000) for a proof.

The corresponding distances from the origin dﬁ”) (0o, f)(n)) will be called pseudo-Mahalanobis

distances, in order to stress the fact that Tyler’s estimator of scatter is used instead of the usual

sample covariance matrix. The normalized residuals Wﬁ”) 0p) = U,ﬁ”) (Oo,ﬁ(n))—call them

Tyler residuals—will be used as a multivariate concept of signs.

4.2 The pseudo-Mahalanobis ranks.

As usual in rank-based nonparametric inference, the pseudo-Mahalanobis distances dﬁ”) (09, f(n))
will be replaced by their ranks. This idea actually goes back to Peters and Randles (1990), who
(in a one-sample location context) proved a consistency result, which in the present situation

can be stated as follows. Denote by JA%(n) (00) the rank of dﬁ”) (6o, f)(n)) among dgn) (0o, f)(n)), ce
™ 09, £™), by R™ (85, %) the rank of d™ (80, ) among d™ 00, %), ..., d" (6o, ).

Lemma 1 (Peters and Randles 1990) For all t, (]:Ztn) (6p) — Rtn) (00,2)) is op(n+1) as n goes
to oo, under U H™ 0y, 8, f).

For each ¥ and n, consider the group of continuous monotone radial transformations
n) = {g_ﬁ,”)}, acting on (R¥)", characterized by

o (21" (60)..... 2" (8))
= (9(d"” 80, 2) =20 (60,%), .. g(d (8, %)) B/2U (60, 3))

where g: RT™— R™ is continuous, monotone increasing, and such that g(0) = 0 and lim, .., g(r) =

00. The group le) is a generating group for the submodel {J; H™) (09, %, f), where the union is

11



taken with respect to the set of all possible nonvanlshmg radial densities. The ranks Rt (0 3,
t =1,...,n are a maximal invariant for Qz . Lemma 1 thus is an indication that statistics

based on the pseudo-Mahalanobis ranks Rt (00) may be asymptotically invariant, in the sense
of being asymptotically equivalent to their counterparts based on the unobservable, strictly
invariant ranks Rén) (0,%). This will indeed be the case with the test statistics we are proposing
(see Proposition 4).

Note also that the equivariance property of C( ") under affine transformations is sufficient to

Tyl
make the pseudo-Mahalanobis ranks Rﬁ")(oo) strictly affine-invariant.

4.3 Tyler residuals.
(n)

The transformation CTyl characterized in (14) actually sphericizes the problem, in the sense
that it transforms elliptically distributed residuals into spherically distributed ones, estimating
U,ﬁ”) (09,X) by means of the Tyler residuals W§") = Cg?y)lz§") (00)/HC¥ZIZ§”) (Bp)||, with the
following consistency property.

Lemma 2 Forallt, W (00) §")(00,2)+Op(n—1/2) asn goes to 0o, under J; H™ (0,2, f).

Proof. Under J; H™) (0,8, f), the residuals Z1(8y),. .., Z,(8p), from which Cg?y)l is com-

puted, are i.i.d. and elliptically symmetric with mean 0 and scatter matrix . Tyler (1987)

—-1/2

showed that Cg,f;)l then is root-n consistent for Cg := ¢ 'Z , where ¢ denotes the upper left

element in £1/2

. The result follows, since for any random vector X,

1 1
- 1Cry X+
IcEX| IICoXII‘ o ICo X||

IC) X — CoX|

Cg?y)lx »-12X
Ichx| =X

_ X - CoX|| __ [[CFy — Collc|X]
- [CoX]| - [CoX||
< 2|C%) — Collc IC ..
where || T||z := sup{||Tx||| ||x]| = 1} denotes the operator norm of the square matrix T. O
It is clear from (14) that Cg?y)l(al Zﬁ”), coesap Z%n)) = C%(Zﬁ"), e Z%n)) for any real num-
bers ay,...,a,, so that Cg?y)l, and therefore the Tyler residuals W§") themselves, are strictly

invariant under radial monotone transformations. Incidently, the Tyler residuals enjoy the fol-
lowing strict equivariance property :

Lemma 3 Denote by Wgn)(M) the Tyler residual computed from the transformed residuals
M(Zgn), ey Z%n)). Then, Wgn) (M) = OWgn), where O is the orthogonal matrix that is involved
in the equivariance relation Cg,?yl(MZ(")) =dO Cg?y)l(Z("))Mfl.

Note that Lemma 3 implies that any orthogonally invariant function of the Tyler residuals
is strictly affine-invariant. In particular, statistics that are measurable with respect to the

cosines of the Euclidean angles between the Wgn)’s — i.e., measurable with respect to the scalar
products (Wgn) Wén) )—turn out to be affine-invariant. This shows that the Tyler residuals could
be used with the same success (consistency, invariance properties) as Randles’ interdirections

12



in the construction of the locally asymptotically optimal affine-invariant tests for randomness
proposed in Hallin and Paindaveine (2002b). This “angle-based” approach (as opposed to the
“interdirection”-based one adopted there) is discussed, for the one-sample location problem, in
Hallin and Paindaveine (2002d).

For k£ = 1, the Tyler residuals and pseudo-Mahalanobis ranks reduce to the signs and the
ranks of absolute values of the residuals, respectively. The statistics we are considering in Sec-
tions 5 and 6 thus are multivariate generalizations of the serial signed-rank statistics considered
in Hallin and Puri (1991).

5 Rank-based cross-covariance matrices.

The rank-based versions of the cross-covariance matrices (6) we are proposing are of the form

, n H(n) A(n) , ,
(00) Ty)l ( 1 . Z K1<Rt (00))K2(Rt—z(00)) Wgn)(oo)wgﬁ)z (00)) (Cgﬁy)l)fl,(l{—))

n—i, 5 n+1 n+1
where K7, Ky :]0,1[— R are two score functions as in Assumption (C); call (15) a K-cross-
covariance matrix. Let us shortly review some examples of score functions extending those
which are classically considered in univariate rank-based inference. The simplest scores are the
constant ones (K7(u) = Ks(u) = 1), and yield multivariate sign cross-covariance matrices

Cly (n Loy wle) W (00)) (G
t=i+1

leading to serial versions of Randles’ multivariate sign test statistic (Randles 2000). Linear

scores (K (u) = Ka(u) = u) yield cross-covariance matrices of the Spearman (or Wilcoxon, as

only the ranks themselves are involved) type

Cr ((n_iﬁnH)Q X R0 R 60) ()(90)W()(90))( . as)

The score functions allowing for local asymptotic optimality under radial density f, are
Ky = ¢y, 2 *_kl and Ko = F*_kl (see Proposition 4). The most familiar example is that of the
van der Waerden scores, associated with normal radial densities (f.(r) := ¢(r) = exp(—12/2)),
yielding the van der Waerden cross-covariance matrices

n) H(n)
LR (80) 1 RZi(00)N () (n)’ (n)'\—1
Z \/ nt1 )J\I”“ ( nt 1 ) Wi (80) Wi (60) | (Cy) " (17)

t=i+1

c\
Tyl n—i

where U, stands for the chi-square distribution function with k degrees of freedom. The Laplace
scores, associated with double-exponential radial densities (f«(r) := exp(—r)), are another clas-
sical example.

In order to study the asymptotic behaviour of the K-cross covariance matrices (15) associated
with general score functions, under the sequence of null hypotheses as well as under sequences of
local alternatives, we first establish the following asymptotic representation and joint normality
results; see Section 8 for the proofs.
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Proposition 2 Assume that Assumptions (B1) and (C) hold. Then, letting

I 1 n _ n
I (00) = /<,r > Ki(Fi(d” (60,5)))
t=14+1

Ks(Fr(d™, (60, %)) U™ (6, 2)U") <oo,2>> =2

()(

vec (T (6p) — PEKE 1(00)) is op(n=2) under H™ (80, %, f), as n — oc.

For any square integrable score function K defined over ]0,1[, let E[K fO K?(u) du,
Di(K; f) == [y K(u) F Y (u) du, and Cl(K;f) = [y K(u )(pfoﬁk_l(u) du. Then we have the

follovvlng

Proposition 3 Assume that Assumptions (A), (B1'), (B2) and (C) hold. For any integer m,
the vector

Sz, (00) = (0 = D' (vee T 1 (00))' ., (n = m)'2 (vee D (80)) (18)
is asymptotically normal under H™ (00,%, f) and under H™ (0 + n='/21, %, ), with mean 0
under H™ (80,%, f) and mean

1

72 DulEo: ) C(Ko: f) [ @ (S0 7] Qg™ Py, Moy,

under H™ (0 +n=121. %, f), and with covariance matriz

e 5 BKAU)ERZW)] L@ (S

under both.

In order to compare Proposition 3 and the corresponding univariate results in Hallin and
Puri (1991, 1994), note that, in the notation of Section 3,

Q" Py, My, 7™ = ;
a%) + b%)

Propositions 2 and 3 show that K-autocovariance matrices, while based on multivariate gen-
eralizations of signs and ranks, enjoy the same intuitive interpretation and inferential properties
as their (traditional) parametric Gaussian counterparts I“ETQ d)(oo). Proposition 3 for instance
immediately allows for constructing non-Gaussian portmanteau test statistics and deriving their
local powers. Just as their classical versions (based on the classical I“Z(Tg ¢’s), such portman-
teau tests however fail to exploit the information available on the serial dependence structure
of the observations, and are not optimal. Section 6 is devoted to the construction of locally

asymptotically optimal tests based on K-cross-covariances.
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6 Optimal tests.

We are now ready to state the main results of this paper : the optimal testing procedures for the
problem under study, their invariance and distribution-freeness features, as well as their local
power and optimality properties. Optimality here means local asymptotic minimaxity, either,
based on fixed-score test statistics, at some selected radial density f,, or, based on estimated
scores, uniformly in f,.

6.1 Fixed-score test statistics.

Letting

S (9y) = (<n_1>1/z (vec T2 (80)) -, (n — i) /2 (vec T\ (80))', ,<vecf$‘)1;K<oo>>’) ’

define
nPE60) = QSO0 and 3= Q) Lo € e Q) a9)

where f)(n) denotes Tyler’s estimator of scatter (see Section 4.1). Finally, let

k*n
E[K?(U)IE[K3 (V)]

1 (80) = Ty 00) (30") 7 T (60).
The test statistics Q}T) (6p) allowing for local asymptotic optimality under radial density f, are

obtained with the score functions Ky := ¢y, OF*_kl and Ky = F*_kl. We then have the following
proposition.

Proposition 4 Assume that Assumptions (A), (B1), (B2), and (C) hold. Consider the se-
quence of rank tests qﬁ(;(l) (resp. qﬁyj)) that reject the null hypothesis H™ (8o) whenever Q%)(eo)

(resp. QSZ:) (00)) exceeds the a-upper quantile ngmhl_a of a chi-square distribution with k>
degrees of freedom, where my is defined in Section 3. Then,

(i) the test statistics Q%) (8o) do not depend on the particular choice of the fundamental system

{\Ifgl), . ,\IingJrqo)} (see Section 3); for given values of py and qo, it depends on p1 and ¢
only through m = max(p1 — po,q1 — qo);

(ii) Q%) (0p) is asymptotically invariant with respect to the group of continuous monotone
radial transformations;

(i) Q%) (80) is asymptotically chi-square with k*mg degrees of freedom under H™ (8y) (so that
gb%) has asymptotic level ), and

(iv) asymptotically noncentral chi-square, still with k*mg degrees of freedom but with noncen-
trality parameter

1 DR(Ka; f) CR(Ky; f)

k? E[K}(U)] E[K3(U)]

under H™ 0y + n=1/21, 8, f), provided however that (B1) is reinforced into (B1'), where
Np, = is defined in (9);

/
T NG() =T,
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(v) if we assume that f, satifies Assumptions (B1'), (B2), and (C'), the sequence of tests QSSZZ)
is locally asymptotically mazimin for H™ (0y) against Us H™ (80,2, f.), at probability
level a.

Proof. (i) Let {¥', ... w1 ang (@) . @P0T)} be two fundamental systems of
solutions associated with D(L). The vector structure of the space of solutions of D(L)x; = 0,
x; € R¥, implies that, for all j = 1,...,po + qo, there exists a k(po+ qo) X k matrix A; such that

%) = (wlV . ,\Ilgp°+q°))Aj. Letting A := (A1, ..., Apy+q), this implies that

o, e\ [(wl, e
o), ... glriw o), . oelge
s s — s s 1&7
Qg) q,%o.Jrqo) \Il;(%) \II%’(;WO)

so that ®,, = ¥,, (A ® Ij), where ®,, is the equivalent of ¥,,, but computed from the <I>l(5j)’s.

Thus, with obvious notation, Qg;% = Qg:,zl, A for all m, where A := ( Ik(;” A (2(; I ) , yielding
' ' k

)

(note that A, hence A, are non-singular, since the \Ill(fj )’s and <I>1(5j ’s form fundamental systems)

~(n)’ n —1m(n ~(n)’ 21 [z +(n 17t ~ =(n
(00 3y ) Tia00) = [Ee(60)A] (A3 A [A T 60)
= T(I?)\Il (6o) (Jé?g;q,)_l T%;)\Iz(eo),

as was to be proved. The statement about the dependence on p; and ¢y is trivial since T‘g?) (09),

Jén)ﬁ’ as well as 7y, depend on p; and ¢; only through .
0

)

/ =(n / =(n / !
(ii) Letting /2T (8) = Q" <(n — Y2 (vee T ks (60)) . (vecri)l;K;z(Oo))) , with

RV 002)y <R§2<oo,z>

n) VA
Pi;K;}:(BO)::C(Ty)l<mZKl( n+1 ntl

) Wi @0 W (00) ) (),
t=i+1

yl

one can verify (proceeding as for the first term in the decomposition argument in the proof of

Proposition 2) that n'/ Q(T%) 6o) — T(I?)E (6p)) tends to zero in quadratic mean as n — oo under

Uy H(™) (09, %, f). This entails that
kQ

E[K}(U)E[KZ(U)]

/

Q5 (80) = (0T (00)) (3V2) ™ (n'2T(5(60)) + 0p (1)

05
is asymptotically invariant with respect to gg” under Jg H™) (0,2, f), since nl/QT%_)E (6p) and
J(”)

5 are strictly invariant with respect to the same group.
0,

(#i), (iv) Proposition 2 and multivariate Slutsky theorem show that Q&?) (6p) has the same
asymptotic behaviour (under H™) (09,%, f) as well as under the sequence of local alternatives
H™ (@0 +n~V/27, 2, f)) as

k2 1 ’
/2m(n) -1 1/2m(n)
s ey (ke 00) Jais (7T 00).
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where n'/ 2T§?,)2 (0p) = QGO n 1 5.7 (00) (see (18)). Now, Proposition 3 and a classical result
on triangular arrays (Brockwell and Davis (1987), Proposition 6.3.9) imply that n'/ 2Tg?;)27 (60)
is asymptotically k2mo-variate normal, with mean 0 under H (6, %, f), and mean

1
= Dy (K2; f) Cr(K1; f) Jo, 2 Po, Mg, T

under H™ (8 + n~1/%7, 8, f), and with covariance matrix (E[KZ(U)|E[K2(U)]/k?) Jg, 5 under
both. The result follows.

(v) It follows from Le Cam (1986, Chapter 11) and the LAN property in Proposition 1 that
the test le }* that rejects the null hypothesis whenever

ALY (B0) (Ts.f.(00) AL (B0) > X2 1o,

where A denotes any arbitrary generalized inverse of A and s := rank(I's f, (60)), is lo-
cally and asymptotically maximin, at probability level o, for H( (00,%, f+) against Us-2o,
H™(0,%, f,). Note that rank(T's ¢, (00)) = rank(M;OP/oOJQmEPgOMGO) = min(k%(p1 + q1),
k*mg) = k?mg, since Mpy,, Py, and Jp, s have maximal rank. Of course, the same optimal-
ity property holds for the asymptotically equivalent (under H ™) (00,%, fr), as well as under

contiguous alternatives) test QSZ*L) that rejects the null hypothesis whenever

n ) - n
ALY (60) (T} 80)) AR (80) > Xiarg 1o

where A(I?JE 09) = nl/? M;O P;O T%)(GO), with Ky = ¢ F," and Ko = F!, and
~(n) e Lho, fa / ’
L} (60) = Uprnletits My Py 3V Py, Mo, = T7, (60) + op(1) under K6, £,). But,

in view of Lemma 2.2.5 (c) of Rao and Mitra (1971),
AR (60) (7 60) AR (B0)

k2n
= Pl T (80) Py, Mo, (M, P, 0" Po, My,) My, Py, T5(60)
Bk+-1;f Lk, fo
k*n = (n)’ (n) \—1 An(n)
- - - T4 (80) (371 T4 (80):
El(or, (FLHON)AE(EL )Y 605 K

ngj) and ¢§Zf) thus are the same test. The result follows. ([

Again, there is no reason for expecting the test statistic to be affine-invariant, since the testing
problem itself in general is not; see Hallin and Paindaveine (2002c). Nevertheless, the following
proposition establishes that, whenever the testing problem under study is affine-invariant (for
instance, the problem of testing randomness against ARMA dependence), then the test statistics

Q(I?) (6p) also are affine-invariant.

Proposition 5 (i) The null hypothesis H™ (8y) is invariant under affine transformations, if
and only if Oy is such that A; = a1 for all i =1,...,py and B; = b1}, for all j =1,...,qo
(ii) When the null hypothesis H™ (8) is affine-invariant, then Q%) (0p) also is.
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Proof. (i) Model (1) under H((fy) can be written under the form
MA (LM 'MX,; = MB(L)M ™ 'Mg;

where M is an arbitrary full-rank & x k matrix. This null hypothesis is thus invariant under the
group of affine transformations &; — Mg, if and only if MA,M~! = A, forall i = 1,...,po and
MBjM*1 =B forall j =1,...,qo, ie., iff each A; and each B; commutes with any invertible
matrix M, which holds true iff they are proportional to the & x k identity matrix.

s X3)
RATR PR
write T (M) := T(MX(IQO IETR ,MXgn)). It follows from Lemma 3 and from the equivariance

properties of C%)l that f‘EnI)((M) = lelf‘l(-;nf)(M/. Hence, g(;(l) (M) =[I,_1® MM g(;(l)

In the same way,

{Inq ® (f:(n)

(7i) Let M be some nonsingular k x k matrix. For any statistic 7' = T(X(n)

)

()

(M) @ & ()] =

[In—l & (M ® Mlil)] [In—l ® (i(n) 5"

@ E ) Lo MeM ).

Now, A; = a;Ij clearly implies that the Green matrices of the operator A (L) all are proportional
to the identity matrix. The same property holds for B(L). It is then easy to verify that the
operator D(L) also is scalar (meaning that D, is proportional to the identity matrix for all
i =1,...,p0 + qo). This implies that the fundamental system of solutions provided by the
Green’s matrices of D(L) contains only matrices that are proportional to the identity. Hence,

ngl) = W @ Iz, for some (n — 1) x my matrix W) It follows that
Lo MeM )] Q) = Qi @ MeM ™),
which entails T%)(M) = I, ® (M @M 1) T%) and

I (M) = [I, © MM ™I 1, e MeM ™).
60,2 60,2

Consequently, Q%)(M) = Q(I?). O

6.2 Estimated-score test statistics.

The tests ¢(7:) considered in Proposition 4 achieve parametric efficiency at radial density f..
ARM A models, though, under adequate assumptions, are adaptive; this has been shown formally
in the univariate case only (without even requiring symmetric innovation densities; see, e.g.,
Drost et al., 1997), but is very likely to hold also in higher dimension. Adaptive optimality
property—that is, parametric optimality at all f,—thus can be expected, provided that estimated
scores are considered. The proposition below shows that this indeed is the case.

An adaptive procedure could be based on the score function ¢ i associated with an adequate

estimator f of the radial density. While being uniformly locally asymptotically maximin, such
a procedure however would miss the very desirable properties of rank-based procedures. This
is why we rather propose, in the spirit of Hallin and Werker (2002), an adaptive version of the
rank-based procedures described in Proposition 4.

Let us first assume that ¥ is known, so that the genuine distances dgn) = dgn) (60,%) can

be computed from the observations. Denote by Rﬁ”) = Rgn)(Oo,E) the rank of dﬁ”) among
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dgn), e ,d&”) . under H™ (00,%, f), the Rgn)’s are the ranks of i.i.d. random variables with

probability density function f;. Next consider any continuous kernel density estimator f,gn) of

fk that is measurable with respect to the order statistic of the dgn)’s, and satisfies

(n) (n) (n) (n) 72
B[ () (D)) () o (5 () (22) ] [ A7) = vt
(20)
under H™ (), %, f) as n — co, where F,gn) denotes the cumulative distribution function associ-
ated with fkn).

A possible choice for f,gn) satisfying (20) is given in Héjek and Sidak (1967), (1.5.7) of
Chapter VII. The adaptive (still, under specified X) version of (15) is then

F(2(0,) = 52 (i > o (EH () (1)

where we let gbgcn) (r) = P ) (r) + (k= 1)/r (since py(r) = ¢z (r) + (k= 1)/r).
k
Of course, in practice, ¥ is not known, and only the estimated distances ngn) = d,gn) (0o, f:(n))

can be computed : instead of f‘i"z) (6p) given in (21), we therefore rather use (with the notation
of Section 4)

n A(n)

- (n) n) 1 (n )1/ R

00 = o (5 3 () (25) )
t=i+1

st BN (n)’ (n)'\ 1

(E) () Wi e W (00)> (Cry) "

where fén), F én) and cﬁ(n) have been replaced with their counterparts fén), F én) and cﬁ(n) com-

puted from the order statistic of the dﬁ”) ’s. Using the multivariate Slutsky theorem and working
as in the proof of Proposition 2, we obtain that the difference between (21) and (22) is op(n~1/?)
under |J; H™ (B9, Z, f), as n — co. A direct adaptation of the proof of Proposition 3.4 in Hallin
and Werker (2002) then yields a multivariate generalization of the (symmetric version of) Propo-
sition 6.4 in Hallin and Werker (1999). This adaptation however requires the Fisher information
for location associated with fj, to be finite. Denote by F the set of all radial densities f for
which this condition is satisfied : clearly, {f |Z) s < ccand [;°r*™3 f(r)dr < oo} C F and, in
the univariate case (k = 1), F = {f|Z1 5 < oo}.

Lemma 4 Assume that Assumptions (B1), (B2) hold, and that f € F satisfies Assump-
tion (C'). Then, both vec (F\"” (8o) — T3 ;(60)) and vec (" (80) — T ,(60)) are op(n~1/2)
under H(")(OO,E,f), as n — oo.

In order to construct adaptive procedures, we still need to estimate the asymptotic variance-
covariance matrices of either (21) or (22). More precisely, we need consistent estimates of Zj, ;
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and vy, = fii1;p/He-p = B[(Fy

n (n) \?2 (n)
n) _ 1 L(n) (-1 ( B ) . L ()1 ( Lt
z._n;<w<m@> Q+J> and 5 fnimwk)(n+0 |

L(U))?]. Such estimates are provided by

t=1
) L) a1 R i o LS (o B ’
W = — >0 o (B —— o\ = — Yy —=—
B (e () o= ().

respectively. Note that 7 (n)5(n) (resp., 7 (")f)(")) depends on the estimated radial density f,gn)
(resp., f,gn)) only through its density type—mamely, the scale family {a f,gn)(ar),a > 0} (resp.,
{a f,gn) (ar),a > 0}). By the way, the same property holds true for the adaptive rank-based
cross-covariances (21) and (22); consequently, without any loss of generality, we may assume
that fkn) and nggn) are such that o(™ = (") = 1.

Defining

S(9y) := ((n—1)1/2(vecr( 80))',. ,(vecfﬁj‘)m(oo))) and n!/2T0) (@) = Q'S (@),

let k2n

Q"(60) := 7y T (B0) (T )~ T (60). (23)

where J éz)z is defined in (19). The same quantities, when computed from the f‘z(n) (Bp)’s, are

denoted by S((8y) and T (8y), respectively, yielding the test statistic

2
K00 (gy) (30 ) 1 20 gy).

30 (g,
@) : Tm)pn) >

The test statistic (23) has the very desirable property of being conditionally distribution-free.

Conditional upon the o-algebra D™ generated by the order statistic dgng of the exact distances

d®™ = @™, ... d"), indeed,

(a) the vector of ranks R(™) := (Rgn), e %n)) is uniformly distributed over the n! permuta-
tions of (1,...,n),

(b) the normalized residuals Ugn) are i.i.d. and uniformly distributed over the unit hyper-
sphere, and

(¢) the ranks R(™ and the residuals U§") are mutually independent.

The situation is thus entirely parallel to the classical case of univariate signed ranks : conditional
on D™, Q" (@) is distribution-free. Denote by qa(dgni) its upper a-quantile, and by ¢

the test rejecting H(™(8y) whenever Q™ () > qa(dgn;). This test actually has Neyman a-
(n)

structure with respect to d(.) and, consequently is a permutation test. Proposition 6 and

Lemma 4 moreover imply that the sequence ¢ is asymptotically optimal, uniformly in f,
hence adaptive.

Unfortunately, unlike univariate adaptive signed rank tests, this permutation test cannot be
implemented, since ¥ in practice is unspecified. Instead of (™, based on Q™) (0p), we therefore
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recommend ¢ based on the test statistic Q™ (6p), which rejects the null hypothesis H<")(00)
whenever Q") (09) exceeds the a-upper quantile X%QWO 1_o, Of a chi-square distribution with k2mo
degrees of freedom. In view of Lemma 4, Q(")(Oo) and Q™ (6p) are asymptotically equivalent
under the null hypothesis and contiguous alternatives : ¢™ and ¢ thus share the same
asymptotic optimality properties. On the other hand, ™ loses the attractive finite-sample

Neyman a-structure of ¢(™.

Proposition 6 Assume that Assumptions (A), (B1') and (B2) hold, and that f € F satisfies
Assumption (C'). Then,

(i) statements (i), (i), (iii) of Proposition 4 hold for ¢\ ; statement (iv) also holds, with
asymptotic noncentrality parameter

o Bl )P Bl (B ()] 7' Noy s 7

under H™ @y +n=121, 2, f);

(ii) the sequence of tests ™ s locally asymptotically mazimin for H™ (00) against Us Uy
H™) (00,%, f), at probability level o, where the second union is taken over all radial den-
sities f € F satisfying Assumptions (B1'), (B2), and (C').

Proposition 5 readily extends to this adaptive procedure.

6.3 The Gaussian procedure.

We now briefly describe the parametric Gaussian procedure for the problem treated in Propo-
sitions 4 and 6. This Gaussian test will serve as a benchmark in Section 7 for the computation
of asymptotic relative efficiencies.

Under Gaussian assumptions, the empirical covariance S := n=1 57 Zgni(eo)zﬁn)'(oo) is
a consistent estimator, under H(™ (g, X, f), of the innovation covariance (E[(F}, *(U))?]/k)Z.
Let

n) . n)’ (n) n)
3, = Qf) L o8 |Qfy,

where f‘é:) = (n—1)"1 3", vec (Z,ﬁ”) (00)Z§2)1/ (00)) (Vec (Z§") (GO)Z,Y_Z){ (00)))/. In view of the

ergodic theorem (see Hannan (1970), Theorem 2, p. 203), f‘éz) is consistent, under H(™ (89, Z, f),

for (E[(F, ' (U))?/k)?E @ £, The following proposition then follows along the same lines as
Proposition 4.

Proposition 7 Assume that Assumptions (A), (B1') and (B2) hold. Let
QU (B0) = n'Tg}, (B0) (357p,) ™ TS (o). (24)

Consider the sequence of parametric Gaussian tests ¢(Nn) rejecting the null hypothesis 'H(")(ao)
whenever QX}) (0p) exceeds the a-upper quantile Xi% of a chi-square distribution with k>

degrees of freedom. Then,

071—04
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(i) statements (i) and (iii) in Proposition 4 hold for qu ; statement (iv) also holds, with

asymptotic  noncentrality — parameter (E2[F, 1(U) o (F;7 1 (U))]/k*)T'Ng, 2T under
H™M (0o +n 11,8, f);

(ii) the sequence of tests qﬁ (,\f is locally asymptotically mazimin for H™ (0y) against the Gaus-

sian alternative Js 'H 00, , @), at probability level .

The test statistic QE\?) (6p) is not (not even asymptotically) invariant under continuous mono-
tone radial transformations. However, it is asymptotically distribution-free. On the other hand,
QX}) (8p), just like Q%) (80) and Q™ (@), is affine-invariant whenever the null hypothesis is.

7 Asymptotic performance.

7.1 Asymptotic relative efficiencies.

Computing the ratios of the noncentrality parameters in the asymptotic distributions of gb%),

qﬁ , and (5(") with respect to qbf\?) (see Propositions 4, 6 and 7) yields the asymptotic relative
efﬁmencies of these tests with respect to their parametric Gaussian counterparts.

Proposition 8 Assume that Assumptions (A), (B1'), (B2) and (C) hold. Then,
(i) the asymptotic relative efficiency, under radial density f, of ng?) with respect to ¢§\7) 18

1 D}(Ky; f) CR(Kq1; f).
k2 E[KZ(U)] E[K2(U)]’

ARE; (6% /o\)) =

(ii) assuming that (C') holds instead of (C),

1 D2, f) C3(fo f)
k2 Dk‘(f*) Ck(f*) ’

where we write Di(f1, f2) and Cx(f1, f2) for Dx(F; f2) and Cy (o1, oFyt; f2) respectively,
and let Ck(fx) := Cr(f«, f+) and Dg(fx) := Dr(f«, f+);

(11i) assuming moreover that f € F satisfies Assumption (C'), the asymptotic relative efficiency

ARE; (81 /6 =

of the adaptive test gt(") with respect to ¢§\7) under radial density f is

1

ARE; (6™ /83 = 75 Du(f) Crl)):

The AREs for the fixed-score procedures obtained in Proposition 8 coincide with those ob-
tained in Hallin and Paindaveine (2002b) for the related problem of testing randomness against
VARMA dependence. The numerical values of AREs of several versions of the proposed pro-
cedures (van der Waerden and Laplace score tests, sign test, Spearman-type test) with respect
to the Gaussian procedure, under a class of multivariate ¢-distributions, are reported there. As
usual in rank-based inference, the gain of efficiency over parametric L? procedures increases with
the tail weight (see Hallin and Paindaveine 2002b).
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In this subsection, we thus concentrate on the adaptive procedure described in Proposition 6.
As in Randles (1989), consider the family of exponential distributions with density

Fo(x) = Ky, W exp[— (x—0) S (x — 0) /)], >0, (25)
with
o kTR2v) o vT(k/2)
" Tk +2)/20) T Dk 2v) (meg B2

This family corresponds to radial densities of the form f,(r) := exp[—(r?/cy)”], and allows for
considering a variety of tail weights indexed by v. The k-variate normal case corresponds to
v =1, while, for 0 < v < 1 (resp. v > 1), the tails are heavier (resp. lighter) than in the normal
case.

Provided that 4v + k — 2 > 0, Proposition 8 yields

WP D((k+2)/20) T ((4v + k = 2)/2v)

AREy, 5, (3™ /¢{) = o k2] . (26)

Table 1 below provides some numerical values of (26).

v

0.1 0.2 0.3 0.5 1 2 5) 10

- - 28.40 2.00 1.00 1.37 3.18 6.43
261.24 8.08 277 133 1.00 1.22 230 4.26
59.63 4.77 216 1.25 1.00 1.18 2.08 3.71
1481 284 169 1.17 1.00 1.13 1.81 3.03
751 219 148 113 1.00 1.10 1.65 2.63
10| 502 1.8 137 1.10 1.00 1.09 154 2.36
oo | 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0 O = W |

Table 1 Asymptotic relative efficiencies of the adaptive test 95(") w.r.t.
the Gaussian test ¢(Nn) in the elliptically symmetric power family (25),
for various values of the tail index v and the space dimension k.

7.2 A multivariate version of two classical univariate results.

Since the AREs obtained in Proposition 8 for the fixed-score procedures gi)g?) and gb}il) coincide
with those in Hallin and Paindaveine (2002b), the generalizations obtained there of the famous
Chernoff-Savage and Hodges-Lehmann results still hold here. In view of their importance, we
adapt these results to the present context, referring to Hallin and Paindaveine (2002b) for proofs
and details.

A multivariate serial Chernoff-Savage result.

Like in the univariate case, the van der Waerden version of the proposed rank-based procedure is
uniformly more efficient than the corresponding parametric Gaussian procedure. More precisely,
the following generalization of the results of Chernoff and Savage (1958) and Hallin (1994) holds.
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Proposition 9 Assume that Assumption (A) holds. Denote by gb%%,v and ¢§\7) the van der
Waerden test, based on the cross-covariance matrices (17), and the Gaussian test based on the
test statistic (24), respectively. For any f satisfying Assumptions (B1') and (B2),

AREy, (60 /83) = 1,

where equality holds if and only if f is normal.

A multivariate serial Hodges-Lehmann result.

Denote by Qg}) (6p) the Spearman-type version of the test statistics Q(I?) (6p), based on the
cross-covariances (16) associated with linear scores. This statistic can be considered as the
angle-based serial version of Peters and Randles’” Wilcoxon-type test statistic (see Hallin and
Paindaveine 2002d, Peters and Randles 1990).

Although the resulting test qbgg is never optimal (there is no f, such that ngj) (6p) coincides
with Qg}) (0p)), the resulting Spearman-type procedure exhibits excellent asymptotic efficiency
properties, especially for relatively small dimensions k. To show this, we extend Hodges and
Lehmann (1956)’s celebrated “.864 result” by computing, for any dimension k, the lower bound
for the asymptotic relative efficiency of gbgg with respect to the Gaussian procedure (bﬁ(}). More
precisely, we have the following proposition (see Hallin and Paindaveine (2002b) for the proof).

Proposition 10 Assume that Assumption (A) holds. Then, denoting by J, the first-kind Bessel
function of order r,

L@ T2

x

¢(r) := inf {x >0 ‘ (Vz J.(2)) = 0} = inf {x >0 Jri1() L } ;

the lower bound for the asymptotic relative efficiency of <b(573 with respect to q§§\7) 18

9(22(VZE—1/2) +k - 1)4
20 k2 c4(\ 2k —1/2)

where the infimum is taken over all radial densities f satisfying Assumptions (B1') and (B2).

inf ARE}. (637 /6)) = (27)

Some numerical values are presented in Table 2. Note that the sequence of lower bounds (27)
is monotonically decreasing for k£ > 2, and tends to 9/16 = 0.5625 as k — oo.

k| inff AREy ;(¢4p /05) | k| infy AREy f(05p /o)
1 0.856 59 0.818
2 0.913 6 0.797
3 0.878 10 0.742
4 0.845 “+00 0.563

Table 2 Some numerical values, for various values k of the space di-
mension, of the lower bound for the asymptotic relative efficiency of the
Spearman test gzﬁ(szlg) with respect to the Gaussian one ¢(Nn).
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8 Appendix : proofs of Propositions 2 and 3.

The following lemma, which follows along the same lines as Lemma 4 in Hallin and Paindav-
eine (2002b), will be used in the proof of Proposition 2.

Lemma 5 Leti € {1,...,n — 1} and t,t € {i +1,...,n} be such that t # t. Assume that
g:R™ =RF x ... x R¥ = R is even in all its arguments, and such that the expectation below
exists. Then, under Us H™ (00, Z, f),

E [g(Z{" 80), ..., 2 (80)) (P,Qy) (Ry_;S;_,)| =0,

where P;,Q;,R; and S; are any four statistics among W (00) and W (00) §n) (00,%).

Proof of Proposition 2. Throughout, we write dl(fn), Rﬁ”), Rﬁ”), th) and Ul(fn) for d§") (09, %),
Rtn) (00,%), R,ﬁ"’ (0o), Wgn) (6p) and Ugn) (09,%), respectively; all convergences and mathemat-

ical expectations are taken for n — oo, under H™ (8o, %, f). Decompose (n — i)1/2[(C¥ly)l ®

(Cg,fly)l/)*l) vec f‘f’}l(oo) — (7?2 @nY?) vec FE:})(;EJ(GO)] into vec (Tﬁ”) + Té”) + Tgn))7 where

n 5(n) > (n) n) (n)

(n) ._ N—1/2 Ry R~ Ry R, () ~xr(n)’
Tl = (TL — Z) Z (Kl K2 — Kl KQ Wt Wt—i s
1m0 82 () () (e Wi )

t=i+1
and

(n) NV R{" R, 7 (g™ B (g™ n)
T = (-2 Y <K1(n+1)K2(n+1) — Ky (Fr(d™)) Ka(F(d™ ))) urul).

t=i+1
We proceed by proving that vec T(n),vec T(n),vec T - 0in quadratic mean as n — oo.
1 2 3

Slutsky’s classical argument then concludes the proof.
Let us start with Té"). Using the fact that (vec A)'(vec B) = tr (A'B) and the independence
between the d;’s and the U,’s, one obtains

(n) (n) ?
(n)r2 Ry R~ 5 (o) (n)
T E||K K — Ky (F Ko (F
Hvec tzi;rl(cm )? ( 1(71—1— 1) 2\ 1) 1(Fi(dy 7)) Ko (Fi(dy ))) ;
where CE?? = (n—d) Y2 forallt =i+ 1,...,n. H&jek’s projection result thus implies that
2
Hvec Tgn) o= o(1) as n — oo. The same result also implies that for all t =i+ 1,...,n,
(n) R ?
R i N AN ) _
E (Kl(n L) K () — K (Frd ) Ka (@) || = ol1): (28)
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For T ( )| decomposing th) Wgn) Utn) Uy_l)l into (th) - Ugn))WgT_l)'l + Utn) (WET_Z) -

7 K3 7 7

Ugﬁ)-)/, then using the identity (vec A)'(vec B) = tr (A'B) again and Lemma 5, one obtains

2

n (n) m \?2 ]
ert a0 3 bl (1) e e
t=1+1

t=i+1

on i) Y () B () | IWE = O P | 29)

Consider the first term in the right-hand side of (29) (the second term can be dealt with in the
same way). Let A" = K(Ry"/(n+1))Ka(R{",/(n+1)) and By := K1 (Ej.(d{")) K2 (Fi(d\™)).

7 K3

Using (28) and the independence between the dgn)’s and the Ugn)’s, we obtain
E[(Af)? WY - 0”12 = BB [WiY - U] +0(1)
= K@) [1E2)7:W =072 +o(1),

where U is uniformly distributed over ]0, 1[. Lemma 2 thus implies that vec Tén) = 0gm(1).
Finally, using Lemma 5 again,

»(n) 2
t—1

) o 20 R R™ R
e[} = - > (1 () ) - ()

This entails that vec Tgn) also is 0qm (1), provided that

R(n L) n (n)
Kl(f‘%')l)K2(7/lR—ti__Z1) _Kl(fé—)l)Kz(nRj—_il) B0 asn— o (30)

Now, Lemma 1 establishes the same convergence as in (30), but in probability. On the other
hand, it follows from (28) that [K1(R:/(n+1))Kao(R;—;/(n+1))])? is uniformly integrable, which
(in view of the invariance of Tyler’s estimator of scatter under permutations of the residuals)
implies that [K7(R;/(n + 1))Ka(Rs—;/(n + 1))]? also is. The L? convergence in (30) follows.

Summing up, we have shown that (n— )1/2[(C( y)l ® (Cgly)l/)_ ) vec 1"2 K(00) (Z120 £'1/2)

VecPET})(,E #(60)] is ogm(1) as n — oo. This concludes the proof, since, from a multivariate
application of Slutsky’s Theorem,

(n— )2/, @ ()~ vee i (80) — (72 @ £1/%) vee Ty (80)] = op (1),

under H™ (80,2, f). O

Proof of Proposition 3. Under H (09, %, f), one can use the same argument as in Lemma 4.12
in Garel and Hallin (1995). The result under the sequence of alternatives is obtained as usual,

first establishing the joint normality of Sgn)KE f(00) and Lé zrn V2 905 under H™ (00,2, f),
then applying Le Cam’s third Lemma; the required joint normality easﬂy follows from a routine

application of the classical Cramér-Wold device. O

26



References

[1]
2]

[10]
[11]

[12]

Bickel, P. J. (1982). On adaptive estimation, Ann. Statist. 10, 647-671.

Brockwell, P. J., and R. A. Davis (1987). Time Series : Theory and Methods, Springer,
New York.

Chernoff, H., and I. R. Savage (1958). Asymptotic normality and efficiency of certain non-
parametric tests, Ann. Math. Statist. 29, 972-994.

Drost, F.C., C.A.J. Klaassen, and B.J.M. Werker (1997). Adaptive estimation in time-series
models, Annals of Statistics 25, 786-818.

Garel, B., and M. Hallin (1995). Local asymptotic normality of multivariate ARMA pro-
cesses with a linear trend, Ann. Inst. Statist. Math. 47, 551-579.

Hallin, M. (1986). Non-stationary g-dependent processes and time-varying moving-average
models : invertibility properties and the forecasting problem, Adv. Appl. Prob. 18, 170-210.

Hallin, M. (1994). On the Pitman-nonadmissibility of correlogram-based methods, Jour.
Time Series Anal. 15, 607-612.

Hallin, M., J.-F. Ingenbleek, and M. L. Puri (1985). Linear serial rank tests for randomness
against ARMA alternatives, Ann. Statist. 13, 1156-1181.

Hallin, M., J.-F. Ingenbleek, and M. L. Puri (1989). Asymptotically most powerful rank
tests for multivariate randomness against serial dependence, J. Multivariate Anal. 30,
34-71.

Hallin, M., and G. Mélard (1988). Rank-based tests for randomness against first-order serial
dependence, J. Amer. Statist. Assoc. 83, 1117-1128.

Hallin, M., and D. Paindaveine (2002a). Optimal tests for multivariate location based on
interdirections and pseudo-Mahalanobis ranks, to appear in Ann. Statist.

Hallin, M., and D. Paindaveine (2002b). Optimal procedures based on interdirections and
pseudo-Mahalanobis ranks for testing multivariate elliptic white noise against ARMA de-
pendence, to appear in Bernoulli.

Hallin, M., and D. Paindaveine (2002c). Affine invariant linear hypotheses for the multi-
variate general linear model with ARMA error terms, submitted.

Hallin, M., and D. Paindaveine (2002d). Multivariate signed ranks : Randles’ interdirections
or Tyler’s angles?, submitted.

Hallin, M., and M.L. Puri (1988). Optimal rank-based procedures for time-series analy-
sis : testing an ARMA model against other ARMA models, Ann. Statist. 16, 402-432.

Hallin, M., and M.L. Puri (1991). Time-series analysis via rank-order theory: signed-rank
tests for ARMA models. J. Multivariate Anal. 39, 1-29.

Hallin, M., and M.L. Puri (1994). Aligned rank tests for linear models with autocorrelated
error terms. J. Multivariate Anal. 50, 175-237.

Hallin, M., and O. Tribel (2000). The efficiency of some nonparametric competitors to
correlogram-based methods. In Game Theory, Optimal Stopping, Probability, and Statistics,
Papers in honor of T.S. Ferguson on the occasion of his 70th birthday (F.T. Bruss and
L. Le Cam, eds), I.M.S. Lecture Notes-Monograph Series, I.M.S., Hayward, California,
249-262.

27



[19]

[27]
[28]

[29]

[33]
[34]

[35]

Hallin, M., and B. J. M. Werker (1999). Optimal testing for semi-parametric AR mod-
els: from Gaussian Lagrange multipliers to autoregression rank scores and adaptive tests.
In Asymptotics, Nonparametrics and Time Series (Ghosh, S. Ed.), 295-350. M. Dekker,
New York.

Hallin, M., and B. J. M. Werker (2002). Semiparametric efficiency, distribution-freeness,
and invariance, Bernoulli, to appear.

Hannan, E. J. (1970). Multiple Time series. J. Wiley, New York.

Hettmansperger, T. P., J. Nyblom, and H. Oja (1994). Affine invariant multivariate one-
sample sign tests, J. Roy. Statist. Soc. Ser. B 56, 221-234.

Hettmansperger, T. P., J. Méttonen, and H. Oja (1997). Affine invariant multivariate one-
sample signed-rank tests, J. Amer. Statist. Assoc. 92, 1591-1600.

Hodges, J. L., and E. L. Lehmann (1956). The efficiency of some nonparametric competitors
of the t-test, Ann. Math. Statist. 27, 324-335.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag,
New York.

Mottonen, J., and H. Oja (1995). Multivariate spatial sign and rank methods, J. Nonparam.
Statist. 5, 201-213.

Mottonen, J., H. Oja, and J. Tienari (1997). On the efficiency of multivariate spatial sign
and rank methods, Ann. Statist. 25, 542-552.

Mottonen, J., T. P. Hettmansperger, H. Oja, and J. Tienari (1998). On the efficiency of
the multivariate affine invariant rank methods, J. Multivariate Anal. 66, 118-132.

Oja, H. (1999). Affine invariant multivariate sign and rank tests and corresponding esti-
mates : a review, Scand. J. Statist. 26, 319-343.

Peters, D., and R. H. Randles (1990). A multivariate signed-rank test for the one-sample
location problem, J. Amer. Statist. Assoc. 85, 552-557.

Puri, M. L., and P. K. Sen (1971). Nonparametric Methods in Multivariate Analysis. J. Wi-
ley, New York.

Randles, R. H. (1989). A distribution-free multivariate sign test based on interdirections,
J. Amer. Statist. Assoc. 84, 1045-1050.

Randles, R. H. (2000). A simpler, affine-invariant, multivariate, distribution-free sign test,
J. Amer. Statist. Assoc. 95, 1263-1268.

Randles, R. H. and Y. Um (1998). Nonparametric tests for the multivariate multi-sample
location problem, Statistica Sinica 8, 801-812.

Rao, C. R., and S. K. Mitra (1971). Generalized inverses of matrices and its applications.
J. Wiley, New York.

Tyler, D. E. (1987). A distribution-free M-estimator of multivariate scatter, Ann. Statist.
15, 234-251.

28



Marc HALLIN

Département de Mathématique,
I.S.R.O., and E.C.A.R.E.S.

Université Libre de Bruxelles

Campus de la Plaine CP 210

B-1050 Bruxelles BELGIUM

mhallin@ulb.ac.be

29

Davy PAINDAVEINE
Département de Mathématique
and 1.S.R.O.

Université Libre de Bruxelles
Campus de la Plaine CP 210
B-1050 Bruxelles BELGIUM

dpaindav@ulb.ac.be



