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Abstract

The purpose of this paper is to investigate kernel density estimators for spatial processes
with linear or nonlinear structures. Sufficient conditions for kernel estimators to converge
in L; are obtained under extremely general, verifiable conditions. The results hold for
mixing as well as for non-mixing processes. Potential applications include testing for spatial
interaction, the spatial analysis of causality structures, the definition of leading/lagging sites,
the construction of clusters of comoving sites, etc.
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1 Introduction

The applications of spatial statistical models are extremely numerous and diverse. Data, in a
number of fields, are collected on the surface of the earth, thus involving two or three dimensional
spatial coordinates, possibly more. The subject has generated an enormous literature that
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cannot be reviewed here; for background material on spatial statistics and spatial time series, the
reader is referred to Anselin and Florex (1995), Basawa (1996a,b), Cressie (1991), Possolo (1991),
Ripley (1981), Rosenblatt (1985), and Tjgstheim (1987).

In this paper, our goal is to study nonparametric density estimation for spatial data with
linear or nonlinear structures in situations in which parametric estimation cannot be adopted
with confidence.

Denote by Z the set of integer lattice points in the N-dimensional Euclidean space, where
N >1land Z = {0, +1, £2, --- }. A d-dimensional random field over Z" is a R%valued stochas-
tic process {Xj,j € ZN} defined on some probability space (€2, F,P). In the sequel, we always
tacitly assume that {X;} is strictly stationary; a point j € ZN will be referred to as a site.

A random field {X;} is called linear if there exist an integer d, a collection of d x d matrices
a;, i€ ZV, and an i.i.d. Révalued random field {en} defined on (2, F,P), with E[e;] = 0 and
Eleje;] := 021, o < oo such that

= Z ajej—i, je ZN, (1.1)
iezZN

where the series on the right-hand side is convergent in Ls.

Such models were considered as early as 1954 by Whittle (1954, 1963), who suggested a linear
spatial autoregression model (see also Kulkarni 1992) whose stationary solution can be expressed
(with N = 2 and d = d = 1) as a spatial moving average of the form (1.1). The problem of
density estimation for linear random fields was studied in Hallin, Lu, and Tran (2001) from a
L5 point of view.

In this paper, we consider the much more general case of a nonlinear structure of the form

X;=gleji, i€ zZV), jezV, (1.2)

- ZN
where g is a Borel-measurable function from (]Rd) to R%. Let Z,, where n = (n1,...,nN) € N
is such that ny > 1, k=1,..., N, be the rectangular region of Z" defined by

Tn={iczZV : 1<ix<np, k=1,...,N};
the number of sites in 7y, is denoted as h := [[o_; ny. We write that n — co when

d <C
1£r}§1<nN{nk} oo A 1< EEN I/
for some fixed 0 < C' < 00; the same letter C' is used throughout for various positive constants,
the value of which is unimportant.

Suppose that {X;} has density f, and is observed on Z,,. The kernel density estimator fy of
f is defined by

fu(x) : Y K(x=Xy)/b), xR (1.3)

_]EIn

where K : R? — R* is a kernel function, and b = by, a sequence of bandwidths tending to zero
as n tends to infinity.

The convergence to f of fy, can be considered from several point of views, but Devroye and
Gyorfi (1985, page 1) convincingly pointed out that L is the natural distance to be considered



for densities. Accordingly, the main objective of this paper is to obtain weak conditions for the
L distance

Jui= [ 1fnx) = 10| dx (14)

between f,, and f to converge to zero in probability.

The nonparametric estimation of a probability density f has a pretty long history in statis-
tical inference. In the independent case with N = 1, the L; distance (1.4) tends to zero under
very mild conditions (see Devroye 1983); this consistency result was employed by Chan and
Tran (1992) in the problem of testing for serial dependence. The results obtained here similarly
have potential usefulness in testing for spatial interaction.

The same problem has been studied quite extensively in the context of strongly mixing
stationary processes (N = 1) (see Roussas 1988, Robinson 1983 and 1987, Ioannides and
Roussas 1987, Masry and Gyorfi 1987, Yakowitz 1987, Boente and Fraiman 1988, Bosq 1989,
Tran 1989, and Gyorfi, Hardle, Sarda, and Vieu 1990, to name only a few). For linear process
(satisfying (1.1) with N = 1 and d = d = 1), results have been obtained by Chanda (1982),
Tran (1992), and Hallin and Tran (1996) among others.

The case of random fields (N > 1) has not been studied much : the fact that the sites do
not have a natural ordering indeed makes the problem technically more difficult. Tran (1990)
and Tran and Yakowitz (1993) have investigated some aspects of the problem. More recently,
Hallin, Lu and Tran (2001) have obtained the limiting distribution of kernel density estimators
for linear random fields under general conditions.

To the best of our knowledge, the only paper dealing with a L1 approach of kernel estimation
problems in random fields is Carbon, Hallin and Tran (1996), under strong mixing assumptions.
Although the strong mixing property is often reasonable, it is not satisfied by many processes
of practical interest. A very simple example of a linear process that is not strong mixing is
the autoregressive process X; = (1/2)X;_; + e; with P(e; = 1) = 1/2 (here d = d = 1);
cf. Andrews (1984). Moreover, it is generally impossible to check whether or not a process is
strongly mixing.

In this paper, we relax both the linearity assumption of Hallin, Lu and Tran (2001), and the
mixing assumptions of Carbon, Hallin and Tran (1996). Our results show that kernel density
estimators of f converge in L; under general and rather simple conditions on the bandwidth b.

The paper is organized as follows. The main assumptions and consistency result (Theo-
rem 2.1) are presented in Section 2. In Section 3, this result is considered (Corollaries 3.1
and 3.2) in the the particular case of linear random fields. The conditions for J, to converge to
zero are quite simple in this case. Section 4 contains a series of lemmas which are crucial for the
proof of (Theorem 2.1). In Section 5, we devise a nonstandard blocking technique for spatial
random variables, from which we establish an exponential inequality by Poissonization, as done
by Devroye (1983). This exponential inequality in turn provides sharp bounds which are later
utilized to obtain mild conditions for the convergence of Jy, . The proof of the main result then
readily follows (Section 6).

2 Assumptions and main result

Assume throughout that {Xj}, observed over Z,, satisfies (1.2). For any site j = (j1, ..., jn)
and any m = (my, ..., my) € Z" such that my > 1, k=1,..., N, set
R(ym) = {i € Z" :[ir —ji| <ma, .o, liv = jv| < mak,



and

X{™ = gin (1,1 € R(j,m)) = B[X;le;,i € R(j,m)]|. (2.1)
Write v(m) = E||X; — X§m) |2, where || - || is the usual Euclidean norm in R? : the random field
{X;} is said to be v-stable (in L) with respect to {e;} if limm oo v(m) = 0 as m — oco. We
call v(m) the stability coefficients of {X;} (with respect to {e;}).

It is clear that, when g is linear, that is, when {Xj;} is a linear random field of the form (1.1),
then

d d
v(m)=022\laill2, with [lail* = D > (ai)is, (2.2)

k=1/¢=1
where the summation ) ; covers all sites i = (i1, ..., iny) such that iy > my for some k =
1,...,N.

Our consistency result (Theorem 2.1) of course requires some assumptions. Assumptions 2.1
and 2.2 are very mild and standard conditions on the kernel K and the boundedness of f,
respectively; the same assumptions are made in Carbon, Hallin, and Tran (1996). On top
of these two conditions, we also need an assumption relating the asymptotic behavior of the
bandwidth and the stability coefficients of the model. If the stability coefficients go to zero
“slowly” (Assumption2.3), then the bandwidth should go to zero “fast” (Assumption 2.4). If
If the stability coefficients go to zero “fast” (Assumption 2.5), then bandwidth decay can be
“slower” (Assumption 2.6).

Assumption 2.1 The kernel function K in (1.3) is absolutely integrable, with [ K(z)dz =1
and [ ||z|| K(z)dz < co. In addition, |K(x) — K(y)| < C||x — y|| for some constant C' > 0 and
any x,y € R%.

Assumption 2.2 The density f of X; is bounded.

Assumption 2.3 There exists a constant @ > 0 such that v(k1) = o(k™%) as kK — oo, where
1:=(1,...,1)ezZN.

Assumption 2.4 The bandwidth b = b, tends to 0 slowly enough that

lim ApL2EDN/a — o (2.3)
n—oo

Note that when a is large, condition (2.3) is close to the condition that nb% — oo, which is the
condition needed for J, to converge to zero in probability in the i.i.d. case (see, for example,
Devroye 1983).

Assumption 2.3 only requires that v(k1) decays at algebraic (polynomial) rate as k — oo. If
this decay is geometric, then the condition on the bandwidth can be much weaker, and almost
the same as in the i.i.d. case. More precisely, let us replace Assumption 2.3 with

Assumption 2.5 There exists 0 < p < 1 such that v(k1) = O(p*) as k — oo.

Then, Assumption 2.4 can be weakened into



Assumption 2.6 The bandwidth b, is such that
(nn) — 0 and #nbl(nn) Y — co. (2.4)
as n — oo.

Under these assumptions, we now can state the main result of this paper, which establishes
the Ly consistency of fy.

Theorem 2.1 Suppose that either Assumptions 2.1, 2.2, 2.3, and 2.4 or Assumptions 2.1, 2.2
2.5, and 2.6 are satisfied : then Jy L0 asn— oo

3 Linear random fields

In this section, we show that the conditions on the stability coefficients in Assumptions 2.3
and 2.5 are satisfied by a large class of linear random fields (of the form (1.1)). For simplicity,
weletd=d=1 (writing Xj instead of Xj, a; instead of aj, etc.). Suppose a; tends to zero at
algebraic rate, with

la;| = O(|ix| ... |in| %) (3.1)
as i — oo, where 6, > 1/2 for k=1, ---, N. From (2.2),
o0 o0
om) < OW)( Y. i 4.+ > i)
i1=mq IN=mN
< O 44PN,
Choose 0 < a < 2minj<i<n 0 — 1 : then,
kv(k1) = kOO (k—2™mmskn L)
so that Assumption 2.3 is satisfied. We have thus proved the following corollary to Theorem 2.1.

Corollary 3.1 Suppose the linear random field {X;} defined in (1.1) (with d = d = 1) satisfies
condition (3.1). Suppose that Assumptions 2.1, 2.2, and 2.4 also hold. Then Jy L0 asn — oco.

Next, if a; decays at a geometric rate, that is, if
jas| = O(py™! . phY) (3.2)
asi— oo, where 0 < pp <1 for k=1, ---, N, then
v(m) < O(p1" + ... + p"),

and thus v(k1) = O(p¥) — 0, with 0 < p = max;<x<n p; < 1. Hence Assumption 2.5 is satisfied,
and the following corollary to Theorem 2.1 holds.

Corollary 3.2 Suppose the linear random field {X;} defined in (1.1) (with d = d = 1) satisfies
condition (3.2). Suppose that Assumption 2.1, 2.2, and 2.6 also hold. Then Jy L0 asn— oo



4 Preliminaries and lemmas

The proof of Proposition 2.1 relies on a series of lemmas, which we now state and prove. For

any positive constant u, define

A= [ 100 = fldx, and o) = [ ) fGlex

Note that, for any u > 0, Jy, decomposes into J, = Jp1(u) + Jn2(u).

Lemma 4.1 Let € > 0 be an arbitrarily small positive number. Then, limy o E[Jn1(u)] < €

for all w larger than some U(¢).

Proof. Since [ f(x)dx =1 and [ K(x)dx < oo, for u > 0 sufficiently large, we have

/ f(x)dx <e/3 and / K(x)dx < ¢/3,
lIxl|>u/2 lIx[|>u

hence

E[Jn1 (u)]

IN

E l/|x”>u fn(x)dxl + /”x”>u f(x)dx

—d
< [ Gy vy +</3
Letting t := (x — y)/b and noting that b — 0 as n — oo, (4.1) and (4.2) yield
Blm] < [ [ K@)y +f3

/t”>”K e //Y||+b||t>u l[t]|<u K(t)dxf(y)dy +¢/3
/ / ltll<u (6)dxI(|y|+busu) (¥) [ (y)dy +2¢/3

IN

IN

< / fly)dy +2¢/3 < ¢,
llyll>u/2

which completes the proof.

Still for w > 0, define
= [ 100 EfaGlx and G = [ BA00) — (<)l

Obviously, Juo(u) < J& (u) + J&.

Lemma 4.2 For all u > 0, JI%) (u) = 0 as n — oo.

(4.1)

(4.2)

Proof. See Lemma 2.1 of Carbon, Hallin, and Tran (1996, p.159), or Lemma 1 of De-

vroye (1983, page 897).

O



Clearly, we have, for all m |

(1) <) — £ (50)dxc (M) (%) — B £ (x)|dx
R < [ ) = el [ 1700 B0l

+ o BA00 ~ Bl
x||<u
= [nl(u) + Ing(u) + Ing(u),
say, where fr(lm)(x) = (b)Y ier K((x — Xém))/b), with Xém) defined in (2.1). Consider a

sequence m = m(n), n € Z", such that, for n — oo, m(n) — oco. In the sequel, we will make
some statements requiring that
b2 Dy (m(n)) — 0, (4.3)
and /or
m/(1b?) — 0, and rexp{—Cne?/m} — 0. (4.4)
for all £ > 0. Such sequences m(n) need not exist; later on (Section 6), however, we will show

that their existence follows from either Assumption 2.3 or Assumption 2.5 (for (4.3)), either
Assumption 2.4 or Assumption 2.6 (for (4.4)).

Lemma 4.3 Let the sequence m = m(n) satisfy (4.3). Then, for all u, I (u) 20 asn— .

Proof. Let A denote the d-dimensional Lebesgue measure. By the Lipschitz continuity of K (-)
and the definition of v(m),

Ellni(u)] < E [/| - (61~ > K ((x = X5)/b) = K((x = X{™) /b)| dx
x||<u €T,
< OE (") 37 X5 = XM | /bM(x]| < w)
i€Zn
= CbIE[IIX; = X§™ || AIx] < w)
_ m) ;2\ /2
< b (B)x5 - X{™(2) T A(Ix]| < w)
< (072 Du(m(n)) (x| < w),
a quantity which, in view of (4.3), converges to zero as n — oc. U

Lemma 4.4 Under the same assumptions as in Lemma 4.3, In3(u) Lo for all u, as n — oo.

Proof. Thee proof follows along the same lines as for Lemma 4.3. U

The same property also holds for Iys(u) provided that m = m(n) satisfies (4.4), but the
proof is more complicated.

Lemma 4.5 Let the sequence m = m(n) satisfy (4.4). Then, Ins(u) Lo for all u, as n — oo.

Proof. For any given € > 0, let the positive constants M, L, Ny, a1, ..., an,, and the Ny-tuple
of disjoint finite rectangles Ay, ..., Ay, in R? be such that the function K*(x) := Zf\fl a;l4,(x)
satisfies

IK*| < M, K*(x)=0 for x ¢ [-L, L], and /yK(x) _ K*(x)|dx < e

7



m
N
~

For all rectangle A in R%, set Mﬁlm)(A) =Y I(X.(‘“)eA) and p(™(4) = P(X™
Then, l

i) =57 [ K ((x = y) /Dl (dy)
and
E[£60)] =57 [ K((x = y) /5™ (dy).
Similarly, defining
Fatmx) = b0 [ K (G = y) o)™ ),
we have
B0 =0 [ K (x = y)/b)u™ (dy)

Thus, Ine(u) decomposes into
Io(w) = [ 176~ G+ [ £ 60— B o)l
l[x[<w l[x[[<u
[ ERMG) - A ol
[l <w

= I () + 18 () + 1) (w),

say. By the same argument as in the proof of Lemma 3.2 of Devroye and Gyorfi (1985), it is
easily proved that 15112) (u) < e and 11(132) (u) < e. For 15122) (u), we have

1% () < Mb~ dZ/ ) (x + bA;) — ™ (x + bA;)|dx.

x||<u
So, in order to prove that II(IZQ) (u) L 0, it suffices to show that, for all finite rectangle A of R?,

IA(u) = b_d/ 1) (x + bA) — ™ (x + bA)|dx 2o
x||<u

Consider a partition of R? into sets B that are d-fold products of intervals of the form
[(i — 1)b/Ny, ib/Ny), where i is an integer, and Ny a positive number to be chosen later. Call
this partition . Let aq,...,aq be positive numbers with a; > 2/Ny for all 1 < i < d. Define

d d
As=T]E 7 +a) and  A%:= ][5+ (1/No), & +ai — (1/No)),
i=1 i=1
where Z;, i = 1, .-+, d, are real constants, Cx := x +bA —U{B € ¥ : B C x + bA}, and

Cf:=x+b(A— A*). Tt is easy to see that Cx C C%. Thus,

Ehw < 6 [ S ™ B) - a @)+ b [ (C5) + (O dx
Bev
BCx+bA

‘= (¢in + @2n, (45)



say. Let us show that Eqi, and Egs, can be made arbitrarily small for sufficiently large Ny
and n.
(a) Starting with gopn, note that

d
C; = X—|—bH {[i‘l, T; + 1/N0) U [fz +a; — 1/N0, T; —{-ELZ)} = X+bé
=1

From (4.5) and (4.6), and the fact that, for any Borel set C, and any probability measure v on
the Borel sets of RY, [v(x + bO)dx = A(bC),

B < 070 [ (B (C2) + n(C))dw = 27" [ fm(Coda = 26N < e

for Ny large enough.

(b) Turning to qin, let @ > 0, S := [[%,[~a, a], and T := [[L,[2a, 2a]. Choose a large enough
so that (™) (S¢) < £/2 for m = m(n) large enough (S¢ stands for the complement of S in R%).
Let () denote the empty set. In the following, we let n, hence m, be large enough. Define

F:={BeW:BnS#0, '™ (B) < (¢/2AB)/AT)}, and E :=5°U (UperB),

where A denotes the d-dimensional Lebesgue measure. Note that UgcrB C T for b < Nya :
thus, u™ (UperB) < €/2 and p™)(E) < e.

Next, define G :={B € ¥:BNS #0,B ¢ F}. Clearly, GUF = {B € ¥ : BnNS # 0},
V-G={BeV¥,BNS=0or BeF}, and Ugeg_g)B C E. Since the collection of sets B € ¥
which are subsets of © + bA is no larger than the collection of all sets B € W,

an = 0[O [umB) - ) (B)] dx (4.6)
Bevw
BCx+bA

. /Z ™ (B A (x4 bA)) — u™ (B (x + bA))| dx

Bew
BCx+bA

< b /Z]u (B (x+bA)) — u™ (B N (x4 bA)) | dx

Bew
_— /Z U™ (B (¢ + bA)) + (1™ — ™)~ (B (x + bA)) } dx.
Bew

Hence, by the definitions of u](nm) and (™),

n < bl In(y)Ix (m) _ M)+ (dy)dx
@ B;{//B(y) 1A (™) = n™)* (dy)
+ / / I(y) Ixoa(y) (0™ — ™)~ (dy) dX}
= 0y { (bA) /IB — plm ))+(dY)+A<bA)/IB(y)(u§1m) —M(m))(d}’)}
Bev
< Y |ue p™ (B)],
Bevw



since b=9\(bA) is bounded by a constant C. Tt follows that

o < CY|™(B) = p™B)+C Y |u(B) - p™(B)
Beg Bev—-G
< [ Y W (B) = u™(B)] + p (B) — pn™(B) + 24 ().
Beg

From the definition of E, it is now easy to see that u(m)(E) < g, so that ¢qin tends to 0 in
probability if

3 p(B) — ™ (B)| -0, (4.7)
Beg
and
™ (E) — p™(E)|-2-0. (4.8)

In order to complete the proof of Lemma 4.5, it is thus sufficient to show that condition (4.4)
implies the convergences (4.7) and (4.8). This final part of the proof is postponed to Section 6,
and relies on a delicate blocking argument and an exponential inequality, which we rather develop
in a separate section.

5 Blocking and exponential inequality.

This section is devoted to a nonstandard blocking of spatial Bernoulli random variables, which is
crucial in proving that (4.4) implies (4.7) and (4.8), hence in the end of the proof of Lemma 4.5.
Without any loss of generality, we may assume that m(n) := (my,...,my) € Z" is such that
ng = (2my + 1)gx(n), where qx, k = 1,..., N, are positive integers. For all € := ({1,...,{y)
with I € {0,1,...,2mg}, k=1,..., N, define

q1 aNn
Zg(B) = Z ce. Z I X(m) EB}.
ji=1 jn=1 2my (J1—D+i1+e1, - 2my N —D+HIN+HN

Then, Z;(B) is the sum of a block of independent Bernoulli random variables, and

2mq 2mpy

pa™ (B) = u™(B) = (1/8) Y~ ... >~ (Z(B) — EZy(B)).

01=0 In=0

In the notation we introduced in the proof of Lemma 4.5, we then have the two following
exponential inequalities.

Lemma 5.1 For alle > 0,

N N
P [Iu&m)(E) — p"™(E)| > 6} < 3(]J@me +1)) {—(H %)52/25}
k;l k=1 N
= 3(J](2mi +1))exp {—(H ny/(2my + 1))52/25} )
k=1 k=1

10



Lemma 5.2 If ab?/t — oo, then, for all € > 0,

k=1

N N
P (Z W™ (B) — ™ (B)] > ) < 3([] @my + 1)) exp {—(H qk>ez/z5}
Beg k=1

= 3(J] (@mi + 1)) exp {—(H ni/(2my + 1))52/25} :

k=1 k=1
Proof. We only prove Lemma 5.2; the proof for Lemma 5.1 is entirely similar. Let
q = (qi,...,qn). Since the number of elements in G is bounded by Cb~¢, and since

Cb=%/q = O(mb~?/h) — 0 in view of the assumption made,

2mq 2mpy
P(Z|ugm><3>—u<m><3>|>e) < P(Z S ... Y (Z(B) ~ EZ(B) zﬁe)
Beg Beg [£1=0 £n=0
<

N
(H(ka + 1)) P (Z |Zo(B) — EZo(B)| > qe)

k=1 Beg
N

< (H(zmk + 1)) 3 exp{—qs?/25},
k=1

where the last inequality is obtained from Lemma 3 of Devroye (1983, page 898). O

Proof of Lemma 4.5 (continued). Assume that condition (4.4) holds. Noting that the
exponential bound, in Lemmas 5.2 and 5.1, is O(mexp{—Cne?/m}), (4.7) and (4.8) easily
follow from these two lemmas. O

Summing up, piecing together Lemmas 4.1 through 4.5, we have proved the following result.

Lemma 5.3 Assume that Assumptions 2.1 and 2.2 are satisfied. If there exists a sequence m(n)
such that conditions (4.3) and (4.4) hold, then Jy, 20 asn — oco.

6 Proof of the main result.

In view of Lemma 5.3, the proofs of the two consistency results of Theorem 2.1 are now straight-
forward.

Proof of Theorem 2.1. The proof simply consists in exhibiting a particular sequence m(n)
satisfying conditions (4.3) and (4.4).
(a) First consider the system of Assumptions 2.1-2.4. Set m(n) := (m{(n),...,m%(n)), with
mi(n) := b2+ for k=1, ---, N, where a is the positive constant in Assumption 2.3 : this
sequence m(n) clearly satisfies condition (4.3).

As for condition (4.4), note that, for the same sequence m(n),

(In1) /b4 = (2(d+1)/a)(In b~ Hp? — 0,
hence (fi/m)/(Inm) > (n/m)/b~? diverges to infinity, if nb?/m — oo, a condition which is

satisfied under Assumption 2.4. Thus condition (4.4) is a consequence of Assumption 2.4.
Hence, conditions (4.3) and (4.4) hold, and the theorem follows from Lemma 5.3.

11



(b)

Next consider the system of Assumptions 2.1-2.2-2.5-2.6. Set m(n) := (mi(n),...,my(n)),

with my(n) := (2b?/InP )N for k =1, ---, N, where 0 < a < 1 is a positive constant and
B =—(N/a)(1 —a). Then m = (ab?/In” 4)®, and

(nm)/b~% = a(@?mn+ 6% Inb? — fb?Inlnh) — 0

if “Infh — 0. Thus

(/1) /(Inth) > (/i) /b~ = (8b/(ln0)™)'~* = o,

and hence condition (4.4) is satisfied under Assumption 2.6.

For condition (4.3), note that, by Assumption 2.5,

b*Q(dH)v(m) _ b72(d+1)p(ﬁbd/ln5ﬁ)a/N

= exp{—(flbd/lnﬁ ﬁ)a/N np~t+1n b—2(d+1)} =0

if (Ab?/In” n)*/N /Inb~! — oco. Since nb? — oo, so Infi > dInb~! for n large enough. Thus fb?
is greater than

d(@b?/In® 0)*N /Inh = d(ap?/ In™ 2)/N,

which tends to co by Assumption 2.6. This, along with Lemma 5.3, completes the proof. O
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