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Abstract

The paper uses a large data set, consisting of 447 monthly macroeconomic
time series concerning the main countries of the Euro area to simulate out-of-
sample predictions of the Euro area industrial production and the harmonized
inflation index and to evaluate the role of financial variables in forecasting. We
considered two models which allow forecasting based on large panels of time series :
Forni, Hallin, Lippi, and Reichlin (2000, 2001b) and Stock and Watson (1999).
Performance of both models were compared to that of a simple univariate AR
model. Results show that multivariate methods outperform univariate methods for
forecasting inflation at one, three, six, and twelve months and industrial production
at one and three months. We find that financial variables do help forecasting
inflation, but do not help forecasting industrial production.
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1 Introduction

There is a large literature in finance and macroeconomics suggesting that financial
variables are good predictors of inflation and real economic activity. Empirical evidence,
however, is mixed and results are not robust with respect to model specification, sample
choice, and forecast horizons (for an excellent review of the empirical literature, see
Stock and Watson, 2000). This is clearly a puzzle for economic theory and one that is
worth investigating.

Our paper exploits the information from a large panel of monthly time series for the
six main economies of the Euro area. The panel contains industrial production data (by
sectors and nations), prices (by sectors and nations), money aggregates (by nations), a
variety of potentially leading variables (survey data and others), and financial variables
such as interest rates (nominal and real, for different countries and maturities), spreads,
and exchange rates.

The key idea of the paper is to evaluate whether by pooling information from
a broad group of financial variables we can obtain good predictions for the Euro-area
industrial production and consumer price indexes. In other words, instead of evaluating
the predictive contents of single financial variables, we evaluate the predictive contents
of suitably selected averages of many of such variables. Forecasting performances at
different time horizons are evaluated through an out-of-sample simulation exercise.

The motivation of our strategy is not far from Stock and Watson (2000), who
have recently suggested that, by combining forecasts from poorly performing bivariate
models, the predictive power of financial variables is rescued. Here, instead of combining
bivariate forecasts obtained with different financial variables as predictors, we directly
combine information. By pooling forecasts, poor performances are averaged out; by
pooling predictors, as we do, noisy informations are averaged out.

Our reference model is the generalized dynamic factor model proposed and dis-
cussed in Forni, Hallin, Lippi, and Reichlin (2000, 2001a, 2001b, 2002) and Forni and
Lippi (2001), which is specifically designed to handle large panels of dynamically related
time series.

In this model, each time series in the panel is represented as the sum of two compo-
nents : a component which captures most of the multivariate correlation (the common
component) and a component which is poorly cross-sectionally correlated (the idiosyn-
cratic component). The common components in the cross section have, so to speak,
‘reduced rank’, meaning they are all driven by a few common shocks. Such low dimen-
sionality implies that common components can be consistently estimated and forecasted
on the basis of few regressors, i.e. the present and the past of the common shocks, or
linear combinations of them.

Unfortunately, the common shocks are not observable. Here we try to capture the
relevant information by constructing ‘aggregates’ of the variables in the panel. The key
idea behind this procedure is simply that suitable aggregation kills the idiosyncratic
components, which are almost uncorrelated, because of an obvious large-number effect.
A similar idea is what motivates the forecasting strategy suggested by Stock and Wat-
son (1999) (SW). The latter method and ours differ by the way the aggregates to be
used in the projection are constructed.

2



In Stock and Watson (1999), the averages used in prediction are simply the static
principal components of the variables in the panel. In Forni, Hallin, Lippi, and Reich-
lin (2001b) (FHLR), forecasting is in two steps. In the first, we estimate the covariance
structure of the common and the idiosyncratic components using the procedure sug-
gested in Forni, Hallin, Lippi, and Reichlin (2000). In the second step, we exploit the
additional information obtained in the first step about the variance of the common and
idiosyncratic components to construct averages which, loosely speaking, place larger
weights on the variables having larger ‘commonality’.

To evaluate the role of financial variables, we use both FHLR’s and SW’s methods
on a data set which contains different blocks of variables, and evaluate changes in
forecasting performance when financial variables are excluded. The performances of
the two multivariate methods (FHLR and SW) are also compared with those of simple
univariate autoregressive models.

The paper is organized as follows. In Section 2 we introduce the model and provide
an illustrative example. In Section 3 we briefly illustrate the data set and the data
treatment. Section 4 reports detail of the forecasting exercise and the empirical results.
Section 5 concludes.

2 Theory

2.1 The model

We assume that the i-th time series in the panel, possibly after suitable transformation,
is a realization from a zero mean, wide-sense stationary process {xit; t ∈ Z}. Each
process in the panel is thought of as an element from an infinite sequence of processes,
indexed by i ∈ N. Moreover, all of the x’s are co-stationary, i.e. stationarity holds for
any of the n-dimensional vector processes {xnt = (x1t, ..., xnt)

′; t ∈ Z}, n ∈ N.
Each variable in the panel decomposes into

xit = χit + ξjt = bi(L)ut + ξit =
q∑

h=1

bih(L)uht + ξit, (2.1)

where χit is the common component, ut = (u1t, . . . , uqt)
′ is a q-dimensional vector of

common shocks, bi(L) = bi1(L), . . . , biq(L) is a row vector of polynomials of order not
larger than s in the lag operator, and the idiosyncratic component ξit is orthogonal to
ut−k for any k and i. The q processes {ujt; t ∈ Z}, j = 1, . . . , q are assumed to be
mutually orthogonal (at all leads and lags) white noise processes, with unit variance.

Moreover, we assume that (a) the q non-zero eigenvalues λχ
1 (θ), . . . , λχ

q (θ) of the
spectral density matrix of χχχnt = (χ1t, . . . , χnt)

′ go to infinity as n →∞, a.e. on [−π, π);

(b) the largest eigenvalue λξ
1(θ) of the spectral density matrix of ξξξnt = (ξ1t, . . . , ξnt)

′,
say is bounded by some real number λ > 0, a.e. on [−π, π) for any n.

Finally, in order to ensure consistency of the predictors that we use in the sequel,
we need the additional technical assumptions listed in Forni, Hallin, Lippi, and Reich-
lin (2001b).

For detailed comments on the model we refer to Forni, Hallin, Lippi, and Reich-
lin (2000, 2001b, 2002). Here we shall limit ourselves to a few remarks.
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First, the model generalizes the traditional dynamic factor model of Sargent and
Sims (1977) and Geweke (1977), in that the idiosyncratic components are not necessar-
ily orthogonal to each other. This feature is shared with the static approximate factor
model of Chamberlain and Rothschild (1983), of which our model provides a dynamic
generalization.

Second, the orthogonality assumption is replaced here by assumptions (a) and (b),
which, loosely speaking, impose a minimal amount of cross-correlation for the common
components and a maximal amount of cross-correlation among the idiosyncratic com-
ponents. Condition (b), in particular, includes the classic mutual orthogonality as a
specific case and guarantees that suitable linear combinations of the idiosyncratic com-
ponents, like simple unweighted averages, vanish as n goes to infinity. This property
will be used below.

Finally, note that the distributed lag operators bi(L) acting on the common shocks
ukt are quite general. Different variables in the cross-section may react to the same
shock with different signs and time delays, giving rise to a wide range of dynamic
behaviors. In particular, variables may be ‘leading’ or ‘lagging’ in a sense that will be
clarified in the sequel.

2.2 A stylized example

To convey the intuition of our forecasting procedure we introduce the highly stylized
example

xit = χit + ξit = ut−si
+ ξit,

where the spectral density matrix of the vector (ξ1t ξ2t · · · ξnt) is equal to In. This
corresponds to the case in which the variables ξ are strictly idiosyncratic (i.e. mutually
orthogonal). We also assume that si is equal to zero, one, or two, this being a stylization
of real situations in which some of the variables are lagging (si = 2), and some others
are leading (si = 0), with respect to a central group of variables (si = 1), let us call
them coincident.

Let us see what happens in this example when taking a simple cross-sectional av-
erage of a subset S of the xit’s. We get

Xt = a0ut + a1ut−1 + a2ut−2 +
∑

i∈S

ξit/nS ,

where a0, a1 and a2 are respectively the percentages of leading, coincident and lagging
variables in S (so that a1 + a2 + a3 = 1), and nS denotes the total number of variables
in the set.

The first thing to stress is that the variance of the averaged idiosyncratic component∑
i∈S ξit/nS is nS/n2

S = 1/nS , so that this component itself vanishes as nS →∞. Other
linear combinations, such as weighted averages, would have the same effect.

Now assume that nS is large, so that the idiosyncratic term is negligible, and that
we want to use Xt = a0ut + a1ut−1 + a2ut−2 in order to predict, x1t+1, say, which we
assume to be coincident. Moreover, let us concentrate on the prediction of the common
component χ1t+1 of x1t+1; since x1t is coincident, we have χ1t+1 = ut (we shall come
back to the prediction of the idiosyncratic part). Finally, let us assume for illustrative
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purposes that we do not make use of the lagged values of Xt in prediction, and use
instead the static projection

χ1t+1 = ut = AXt + et.

Obviously,

A =
a0

a2
0 + a2

1 + a2
2

,

while the variance of the residual has a maximum for a0 = 0 and a minimum of zero
when a1 = a2 = 0. In other words, considering the common components χit = ut−si

,
none of them has any power to predict itself or the common component of leading
variables. However, the common components of the leading variables help predicting
the common components of the coincident (and lagging) variables.

This example shows that by taking appropriate leading averages we can get rid
of idiosyncratic components and successfully predict the common components of the
observed series (particularly the non-leading ones).

Our procedure will then be able to obtain suitable aggregates predicting the common
components of the European CPI and IP indexes. Clearly, however, our final aim is to
forecast the variables themselves, not just their common components. The idiosyncratic
term is white noise in the example, but in general is autocorrelated and therefore can
be predicted. Accordingly, our ith forecasting equation includes a linear combination
of the contemporaneous values of the aggregates (which takes care of the prediction
of the common component), along with a linear combination of lagged values of the
ith idiosyncratic (accounting for the predictibility of the idiosyncratic component); see
Section 4 for details.

2.3 The estimation procedure

In our empirical exercise we shall consider two different methods to obtain the aggre-
gates to be use as predictors. Both methods provide consistent forecasts as the number
of observations over time and over the cross-section go to infinity at appropriate rates,
as shown in Stock and Watson (1999) and Forni, Hallin, Lippi, and Reichlin (2002).
The relative performance of the two methods in small samples are studied in Forni,
Hallin, Lippi, and Reichlin (2001b).

• Stock and Watson (1999) (SW)

In the first method, recently discussed by Stock and Watson (1999), the averages
used in prediction are simply the static principal components of the variables in the
panel. In the example above, the principal components (suitably standardized) are
ut−k + ξ̃k/akN , k = 0, 1, 2, where ξ̃k is the sum of the idiosyncratic components of
the variables lagging k periods and N is the total number of variables in the panel.
Since the first principal components are ordered according to the percentages aj , the
first principal component is not necessarily leading, so that three aggregates could
be needed in order to obtain good forecasts. In general, we could need a number of
principal components equal to the (static) dimension of the common factor space.

• Forni, Hallin, Lippi, and Reichlin (2001b) (FHLR)
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With the second method, forecasting is in two steps. In the first one we estimate
the covariance structure of the common and the idiosyncratic components. More pre-
cisely, we estimate the spectral density matrix of the common and the idiosyncratic
components by means of a dynamic principal component procedure explained in detail
in the Appendix. The theoretical basis of such a procedure is found in Forni, Hallin,
Lippi, and Reichlin (2000). Consistency results for the entries of this matrix as both n
and T (the number of time series in the panel and the length of the observation period)
go to infinity follow from the results in that paper∗.

From the estimated spectral density matrices we can obtain all the autocovariances
and cross-covariances at all leads and lags by applying the inverse Fourier transform.

In the second step, we compute the generalized principal components of the x’s,
a construction which involves the (contemporaneous) variance-covariance matrices of
the common and the idiosyncratic components estimated in the first step (see the
Appendix). We do this because the generalized principal components have an important
“efficiency” property : they are the contemporaneous linear combinations of the x’s with
smallest idiosyncratic-common variance ratio.

The intuition behind this two-step procedure is then to exploit the additional infor-
mation obtained in the first step about the variance of the common and the idiosyncratic
components in order to construct averages which, loosely speaking, place larger weights
on the variables having larger ‘commonality’.

3 Dataset and data treatment

The database used in this paper has been constructed by the Banca d’Italia research
department within a Bank of Italy-CEPR project. Here we used the 447 variables
subset fully documented in Cristadoro et al. (2001). We are using monthly time series
on key aggregate and sectoral variables for the six main economies in the Euro area—
Germany, France, Italy, Spain, the Netherlands, Belgium—and, when available, for the
Euro area as a whole. The time span is 1987 :2-2001 :3.

For the purpose of this paper we have organized the data into six blocks :

• block 1 : 118 financial variables (interest rates, nominal and real, spreads and
exchange rates);

• block 2 : 42 money aggregates (money stocks for different countries);

• block 3 : 46 industrial production variables (indexes for different countries and
industrial sectors);

• block 4 : 139 price variables (producer price indexes and consumer price indexes);

• block 5 : 62 European Commission surveys and price expectations;

• block 6 : 40 others.

∗For results on consistency rates see Forni, Hallin, Lippi, and Reichlin (2001a).
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We removed outliers from each series using Tramo, a procedure developed by Gomez
and Maravall (1996); in particular we focused on transitory changes, level shifts and
additive outliers. The same procedure allowed to adjust for working days effects, when-
ever requested. We did not remove seasonality. To induce stationarity we took first
log differences for industrial productions, financial series, monetary aggregates, prices
and nominal interest rates and first differences of survey responses; real interest rates
and the spreads between long and short term nominal interest rates did not need any
transformation.

The series were normalized subtracting their meansand then dividing for their stan-
dard deviations. This standardization is necessary to avoid overweighting series with
large variances when estimating the spectral density.

It should be stressed that the selection of an appropriate set of statistics for mone-
tary and financial markets is a more complex task given the multiplicity of alternative
definitions of money and the rapidly evolving range of instruments created by finan-
cial operators. Given the central role played in the ECB monetary policy strategy we
included the national components of M1, M2, and M3, as well as the corresponding
European aggregates. We also constructed real measures of money, by deflating the
nominal quantities with the national CPIs. We considered a relatively large collection
of interest rates : our panel contains almost 80 nominal interest rates (on Government
bills and bonds as well as on private loans); we also constructed interest rate spreads
and real interest rates based on Government long and short term maturities. Other
financial variables that might contain useful information for future price developments,
like stock market prices and exchange rates were also included.

4 Empirical results

The forecasting exercise is a traditional simulated out-of-sample experiment. We first
estimated the model using observations from 1987:2 to 1997:1 and we computed fore-
casts h = 1, 3, 6, 12 steps ahead. We then reestimated the model using an additional
observation and computed again h step ahead forecasts. We repeated the exercise un-
til all observations, from 1987:2 to 2001:3−h, are used in estimation and we averaged
mean squared errors at corresponding horizons.

This exercise is carried out (i) for a pure univariate AR model (M0), (ii) for the AR
model augmented by the factors of the FHLR method (FHLR), and (iii) for the AR
model augmented by the static factors of the SW method (SW). Approaches (ii) and
(iii) actually consist in computing the sum of the forecast of the common component
as a regression on the factors and the forecast of the idiosyncratic component treated
as a univariate autoregressive process. Note that, in the SW model, the observables
autoregressive terms should help forecasting the idiosyncratic component while the
aggregates help forecasting the common component. In the FHLR model, on the other
hand, the forecast of the idiosyncratic is computed by exploiting the first step from
which one obtains an estimate of the lagged covariances of the idiosyncratic component.

Our target variables are the harmonized consumer price index for the Euro area
and the aggregate industrial production index (both in difference of logs). Denoting by
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xt these target variables, and by vrt and v∗rt the r× 1 vectors of aggregates constructed
via the FHLR and SW methods, respectively, the models for these three approaches
take the following forms :

xt+h = αh
0(L)xt + εh

0t, (M0)

xt+h =
g∑

r=1

βh
r1vrt +

m∑

j=1

γjξt−j , (FHLR)

xt+h = αh
1(L)xt +

d∑

r=1

βh
r2v

∗
rt + εh

2t. (SW)

Models (FHLR) and (SW) have been estimated considering six alternative data
sets :

• D1 : all variables;

• D2 : all variables except those in the financial block;

• D3 : all variables except those in the money block;

• D4 : all variables except those in the price block;

• D5 : all variables except those in the IP block;

• D6 : all variables except those in the survey block.

Index k is used below for the results corresponding to each of these data sets (k =
D1, . . . , D6).

(M0) The pure autoregressive model (M0) with maximum lags l = 0, . . . , 30, is esti-
mated by OLS. We obtain the forecasts xT l

0T+h, h = 1, 3, 6, 12, T = 120, . . . , 170−h and
compute the mean squared errors

MSEl
0h =

170−h∑

T=120

(xT+h − xT l
0T+h)2/

170−h∑

T=120

(xT+h − x̄T )2,

where x̄T = T−1 ∑T
t=1 xt. We retained the dynamic specification l∗ minimizing the MSE.

(FHLR) We computed the forecast of the common component with static ranks
g = 1, . . . , 50 and the forecast of the idiosyncratic component with lags j = 1, . . . ,m
for m = 1, . . . , 30. For the latter we used the theoretical OLS coefficients based on the
lagged covariances resulting from the first step. We computed the mean squared errors

MSEg,m
kh =

170−h∑

T=121

(xT+h − xTgm
k,T+h)2/

170−h∑

T=120

(xT+h − x̄T )2

and retained the rank g∗ and maximal lag m∗ minimizing this MSE.

8



(SW) For this model we computed the forecasts for static ranks g = 1, . . . , d and
p = 1, . . . , 30 autoregressive terms. The corresponding mean squared errors are

MSEdp
kh =

170−h∑

T=121

(xT+h − xTdp
k,T+h)

2/
170−h∑

T=120

(xT+h − x̄T )2;

we retained the rank d∗ and the lag p∗ minimizing this MSE.

Those three models where estimated on the basis of the data sets D1-D6, yielding
h−step ahead forecasts for horizons h = 1, 3, 6, 12, with T = 121, . . . , 170 − h and
k = D1, . . . , D6.

For the FHLR method, two more parameters need to be set for estimation : the
number of common factors q and the window size M . Those were set to q = 2 and
M = 18 on the basis of minimum mean squared errors from the whole sample.

Tables 5.1 and 5.2 below illustrate results. The numbers in squared brackets in the
first column indicate the optimal lag length l∗ for (M0); the numbers in round brackets
in the other columns are the optimal static ranks (g∗ for FHLR and d∗ for SW), and
the minimal lag length (s∗ for FHLR and p∗ for SW), respectively.

Table 5.1 : Results for the (M0) and (FHLR) methods

IP

horizon M0 D1 D2 D3 D4 D5 D6
h=1 0.721[11] 0.682(6,3) 0.663(10,3) 0.661(5,11) 0.660(5,5) 0.713(5,3) 0.672(16,3)
h=3 0.811[18] 0.772(3,3) 0.822(1,4) 0.745(18,3) 0.779(2,3) 0.777(3,2) 0.764(4,2)
h=6 0.935[18] 0.995(3,3) 0.943(4,3) 0.965(3,1) 0.937(2,3) 0.940(3,3) 0.946(3,3)
h=12 0.912[24] 0.959(6,6) 1.006(4,6) 1.008(1,6) 1.042(3,6) 0.891(12,6) 0.997(6,6)

HICP

horizon M0 D1 D2 D3 D4 D5 D6
1 0.659[ 9] 0.532(10,1) 0.550(25,1) 0.520(8,1) 0.549(10,1) 0.547(13,1) 0.518(15,1)
3 0.660[10] 0.655(5,2) 0.726(13,2) 0.671(4,2) 0.605(25,2) 0.658(5,2) 0.650(5,2)
6 0.678[10] 0.672(2,3) 0.708(1,3) 0.664(2,3) 0.612(3,3) 0.684(2,3) 0.675(1,3)
12 0.854[13] 0.887(5,1) 0.945(1,1) 0.887(4,1) 0.852(3,1) 0.887(5,1) 0.901(1,1)

Table 5.2 : Results for the (M0) and (SW) methods

IP

horizon M0 D1 D2 D3 D4 D5 D6
h=1 0.721[11] 0.728(4,11) 0.715(11,11) 0.656(11,11) 0.668(12,11) 0.715(4,3) 0.703(4,11)
h=3 0.811[18] 0.810(2,1) 0.751(6,1) 0.790(6,9) 0.858(2,1) 0.744(5,1) 0.798(1,1)
h=6 0.935[18] 0.960(1,3) 0.845(6,3) 0.940(4,1) 0.949(1,3) 0.942(1,3) 0.970(1,1)
h=12 0.912[24] 0.968(17,7) 0.990(1,7) 0.980(1,7) 1.022(1,7) 0.952(19,8) 0.978(2,7)

HICP

horizon M0 D1 D2 D3 D4 D5 D6
h=1 0.659[ 9] 0.670(10,9) 0.741(1,9) 0.684(50,1) 0.722(1,9) 0.641(14,9) 0.612(35,4)
h=3 0.660[10] 0.622(6,8) 0.632(4,8) 0.663(24,8) 0.642(5,7) 0.671(28,6) 0.647(1,8)
h=6 0.678[10] 0.667(1,6) 0.672(1,6) 0.616(2,6) 0.656(2,6) 0.623(3,6) 0.684(1,6)
h=12 0.854[13] 0.894(4,8) 0.921(5,1) 0.930(1,8) 0.940(1,8) 0.915(4,1) 0.900(7,1)
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Careful inspection of the tables shows that in general the models (FHLR and SW)
based on multivariate information do well in forecasting both variables at all horizons,
and improve over the univariate AR model (M0) for one and three months ahead
forecasts. At those horizons, the FHLR method outperfoms the SW one for forecasting
inflation. For industrial production, the improvement over the SW method is limited to
one month horizon while, at three months, the two methods yield similar performances.
The best results, however, are not always obtained with the largest data set (D1).

The SW and FHLR methods lead to similar conclusions about the marginal pre-
dictive contents of different blocks of variables. Results about the role of financial
variables are of particular interest. Excluding financial variables induces a deteriora-
tion of forecasting performance at all horizons (this is clear on the basis of both SW’s
and FHLR’s methods). The same is not true however for industrial production, where
results depend on the forecast horizon and are not so easily interpretable.

It is interesting to compare the performances of the financial block with those of
the surveys. Both financial and survey data are available with minimal delay, and this
is why they are widely used for short term forecasting. Moreover, they both should
capture the expectations of consumers and those of business sectors. While, as we have
seen, excluding the financial block deteriorates forecasting performance for inflation,
this is not true for survey data : excluding them leaves mean squared errors basically
unchanged. This indicates that, once financial variables are considered, the marginal
role of surveys is nil.

5 Conclusions

We used a large data set, consisting of 447 monthly macroeconomic time series con-
cerning the main countries of the Euro area to simulate out-of-sample predictions of
the Euro area industrial production and consumer price indexes and to evaluate the
role of financial variables in forecasting.

Our theoretical reference was the forecasting method recently proposed by Forni,
Hallin, Lippi, and Reichlin (2001b). This method, which is based on dynamic principal
components, allows for exploiting large numbers of time series in prediction problems.
We also used an alternative method, based on static principal components, which was
suggested by Stock and Watson (1999). Both methods have been used on the basis of
the whole panel of time series and excluding, in turn, various blocks of variables. The
performances of these two methods were also compared to that of a simple univariate
AR model. Results show that (i) the multivariate methods outperform the univariate
ones in forecasting inflation at all horizons, and industrial production at one and three
months, and (ii) that financial variables do help forecasting inflation, at all horizons,
but not industrial production.
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Appendix A : Technical details

In this appendix, we provide a brief outline of the technical details underlying the
FHLR forcasting method; for details and a more rigorous presentation, the reader is
referred to Forni, Hallin, Lippi, and Reichlin (2001b).

A.1 Estimating the covariances of the common components

The method proceeds in two steps. The first step consists in estimating the spectral
density matrix and the covariances of the common components. We start by estimat-
ing the spectral density matrix ΣΣΣ(θ) of xt = (x1t, . . . , xnt)

′. The estimation Σ̂ΣΣ(θ) is
obtained by using a Bartlett lag-window of size M = 18, i.e. by computing the sam-
ple autocovariance matrices Γ̂ΓΓk, multiplying them by the weights wk = 1 − |k|

M+1 and
applying the discrete Fourier transform :

Σ̂ΣΣx(θ) =
1

2π

M∑

k=−M

wk · Γ̂ΓΓk · e
−iθk.

The spectra were evaluated at 101 equally spaced frequencies in the interval [−π, π],
namely, at a grid of frequencies θh = 2πh

100 , h = −50, . . . , 50.
We then performed the dynamic principal component decomposition (see Brillinger,

1981). For each frequency of the grid, we computed the eigenvalues and eigenvectors of
Σ̂ΣΣ(θ). By ordering the eigenvalues in descending order for each frequency and collecting
values corresponding to different frequencies, the eigenvalue and eigenvector functions
λ̂j( . ) and Ûj( . ), j = 1, . . . , n, are obtained. The function λ̂j(θ) can be interpreted as
the (sample) spectral density of the j-th principal component series and, in analogy
with standard static principal component analysis, the ratio

pj =

∫ π

−π
λ̂j(θ)dθ/

n∑

j=1

∫ π

−π
λ̂j(θ)dθ

represents the contribution of the j-th principal component series to the total variance
in the system. Denote by ΛΛΛq(θ) the diagonal matrix Diag(λ̂1(θ), . . . , λ̂q(θ)) of spectral
eigenvalues and by Uq(θ) the corresponding (n×q) matrix (Û1(θ), . . . , Ûq(θ)) of spectral
eigenvectors. Then, our estimate of the spectral density matrix of the vector of common
components χχχt = (χ1t, . . . , χnt)

′ is

Σ̂ΣΣχ(θ) = U(θ)ΛΛΛ(θ)Ũ(θ), (.2)

where tilde denotes complex conjugation. Given a correct choice of q, consistency
results for the entries of this matrix as both n and T go to infinity follow from Forni,
Hallin, Lippi, and Reichlin (2000); related results on consistency rates can be found in
Forni, Hallin, Lippi, and Reichlin (2002). We identified q = 2 (as well as M = 18) by
comparing the forecasting performances of different alternative choices.

An estimate of the spectral density matrix of the vector of idiosyncratic components
ξξξt = (ξ1t, . . . , ξnt)

′ can be obtained as the difference Σ̂ΣΣξ(θ) = Σ̂ΣΣ(θ)− Σ̂ΣΣχ(θ).
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Starting from the estimated spectral density matrix we obtain estimates of the
covariance matrices of χχχt at different leads and lags by using the inverse discrete Fourier
transform

Γ̂ΓΓχk =
2π

101

50∑

h=−50

Σ̂ΣΣχ(θh)eiθhk.

A.2 Estimating the static factors

Starting from the covariances estimated in the first step, we estimate the static factors
as linear combinations of (the present of) the observable variables xjt, j = 1, . . . , n.
Indeed, as observed in the main text, the static factors uht−k, h = 1, . . . , q, k = 1, . . . , s
appearing in representation (2.1) are not identified without imposing additional as-
sumptions and therefore cannot be estimated. This however is not a problem, since we
need only a set of r = q(s + 1) variables forming a basis for the linear space spanned
by the uht’s and their lags. We then can obtain χ̂jt by projecting χjt on such factors.

Our strategy is to take the first r generalized principal components of Γ̂ΓΓχ0 with
respect to the diagonal matrix having on the diagonal the variances of the idiosyncratic
components ξjt, j−1, . . . , n, denoted by Γ̂ΓΓξ0. More precisely, we compute the generalized

eigenvalues µj , i.e. the n complex numbers solving det(ΓΓΓT
χ0− zΓ̂ΓΓξ0) = 0, along with the

corresponding generalized eigenvectors Vj, j = 1, . . . , n, i.e. the vectors satisfying

VjΓ̂ΓΓχ0 = µjVjΓ̂ΓΓξ0,

and the normalizing condition

VjΓ̂ΓΓξ0V
′
i =

{
0 for j 6= i,
1 for j = i.

Ordering the eigenvalues µj in descending order and taking the eigenvectors corre-
sponding to the r largest ones, our estimated static factors are the generalized principal
components

vjt = V′
jxt, j = 1, . . . , r.

The motivation for this strategy is that, if Γ̂ΓΓξ0 is the variance-covariance matrix of the
idiosyncratic components, the generalized principal components are the linear combina-
tions of the xjt’s having smallest idiosyncratic-common variance ratio (see Forni, Hallin,
Lippi, and Reichlin 2001b for a proof). We diagonalize the idiosyncratic variance-
covariance matrix since, as shown in the paper cited above, this gives better results
under simulation when n is large with respect to T as is the case here.
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