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Abstract

This paper proposes a new forecasting method that exploits information from a large
panel of time series. The method is based on the generalized dynamic factor model proposed
in Forni, Hallin, Lippi, and Reichlin (2000), and takes advantage of the information on
the dynamic covariance structure of the whole panel. We ¯rst use our previous method to
obtain an estimation for the covariance matrices of common and idiosyncratic components.
The generalized eigenvectors of this couple of matrices are then used to derive a consistent
estimate of the optimal forecast, which is constructed as a linear combination of present
and past observations only (one-sided ¯lter). This two-step approach solves the end-of-
sample problems caused by two-sided ¯ltering (as in our previous work), while retaining the
advantages of an estimator based on dynamic information. Both simulation results and an
empirical illustration on the forecast of the Euro area industrial production and in°ation,
based on a panel of 447 monthly time series show very encouraging results.

JEL subject classi¯cation : C13, C33, C43. Key words and phrases : Dynamic factor models,
principal components, time series, large cross-sections, panel data, forecasting.

1 Introduction.

Economists and forecasters nowadays typically have access to information scattered through huge
numbers of observed time series { aggregated and disaggregated, real and nominal variables. In-

¤Research supported by a P.A.I of the Belgian Federal Government, an A.R.C. contract of the Communaut¶e
fran»caise de Belgique, and the Training and Mobility of Researchers Programme of the European Commission
(Contract ERBFMRX-CT98-0213).
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tuition suggests that disregarding potentially useful information always produces suboptimal
forecasts; the more scattered the information, the more severe this loss of forecasting e±ciency.
Yet, most multivariate forecasting methods in the literature are restricted to series of low di-
mension, and allow for incorporating only a limited number of key variables. Such methods are
thus of little help in large panels of time series, where the cross-sectional dimension is often of
the same order as, or even larger than the series lengths. The challenge for econometricians is to
develop alternative techniques that are su±ciently powerful as to overcome this dimensionality
problem, yet °exible enough to provide an adequate picture of economic reality.

Recently, Forni and Reichlin (1998), Stock and Watson (1999), and Forni, Hallin, Lippi, and
Reichlin (2000, 2001) have developed factor model techniques that are tailored to exploit a large
cross-sectional dimension. Under such models, each time series in the panel is represented as
the sum of two mutually orthogonal components : the common component, which is \strongly
correlated" with the rest of the panel and has reduced stochastic dimension, and the idiosyn-
cratic component. These idiosyncratic components are either mutually orthogonal or \mildly
cross-correlated" across the panel. The common component is (non-parametrically) consistently
estimated as both the size n of the cross-section and the series length T go to in¯nity. These
results are obtained under conditions that look reasonable in empirical situations, whenever
there are comovements between time series, as it is generally the case for macroeconomic data
(for a documentation of this point, see Altissimo et al. 2001).

In a factor model, multivariate information can help forecasting the common component,
while the idiosyncratic, being mildly cross-correlated, can be reasonably well predicted by means
of traditional univariate methods (or methods based on low dimension models such as VARs).
Therefore, the forecast of the future of any given series in the panel can be obtained as the
sum of the forecast of the common component, where we exploit multivariate information,
and the forecast of the idiosyncratic component, where multivariate information safely can be
disregarded. The common component being of reduced stochastic dimension, its forecast can be
expressed as a projection on the span of a small number of appropriately constructed aggregates.

The two methods proposed in the literature, Stock and Watson (1999) and Forni et al. (2001)
are both based on this general idea, but each of them presents a serious shortcoming. Forni et
al. (2000) base their estimation of the common and idiosyncratic components on the dynamic
covariance structure of the data. This is a highly desirable feature, since economic time series
in general are non-synchronized, and the leading variables should play a crucial role in the
forecast of the lagging ones. Typically, provided that leading series are included in the panel,
such methods should allow for forecasting even those lagging series that are unforecastable
at univariate level. The Forni et al. (2000) estimator, however, is derived from the spectral
density of the data and, as a consequence, is based on a two-sided ¯ltering of the observations
(linear combination of present, past and future observations). This two-sidedness feature is not
a problem when within-sample estimation of the common component is the objective; but it is
most unpleasant in the forecasting context, since at the end of the sample future observations
are not available.

Stock and Watson (1999), on the other hand, propose to estimate the common component
by projecting onto the static principal components of the data. Their estimator relies on a one-
sided ¯ltering of the observations, which does not cause any problems at the end of the sample.
However, being based on contemporaneous covariances only, it fails to exploit the potentially
crucial information contained in the leading-lagging relations between the elements of the panel.

The method we propose in this paper aims at combining the advantages of both approaches.
Firstly, using the dynamic techniques developed in Forni et al. (2000), we obtain estimates

2



of common and idiosyncratic cross-covariance matrices at all leads and lags as inverse Fourier
transforms of the corresponding estimated spectral density matrices. Secondly, we use these
estimates in the construction of the contemporaneous linear combinations of the observations
having smallest idiosyncratic-common variance ratio. The resulting aggregates can be obtained
as the solution of a generalized principal component problem (see Section 6). Our h-step ahead
forecast is obtained as the projection of the h step ahead observation onto these estimated
generalized principal components.

We prove, under ¯nite-order VARMA structure, that this forecast is a consistent estimator
(for n and T going to in¯nity) of the optimal h-step ahead forecast. The same method can
be used to reestimate the within sample common component, thus improving the accuracy of
the estimator based on the ¯rst step. These projections do not involve future observations and
hence do not su®er the end-of-sample problems of the Forni et al. (2000) method.

Both Stock and Watson's estimators and ours are linear combinations of present and past
observations, but the weighting schemes used are completely di®erent. Theoretically, we both
provide a consistent forecast. Empirical relative performance, however, are di±cult to establish
a priori. Indeed, though our weighting scheme, being tailored with the purpose of minimizing
the impact of the idiosyncratic in the aggregate, should perform better in approximating the
common factor space, relative performance depends in a very complicated way on the underlying
model, on T , and on n. Our simulation study con¯rms the conjecture that our method, at least
for the models studied, performs better than Stock and Watson's. The empirical illustration
from a simulated out-of-sample forecasting experiment on a panel of monthly time series for the
Euro area con¯rms this result. The same illustration also shows that our method outperforms
the univariate autoregressive model.

The paper is organized as follows. Section 2 de¯nes the framework, establishes notation,
and provides a brief summary of previous work. Section 3 illustrates the idea of our two-step
procedure, and Section 4 provides consistency results under the assumption of a ¯nite-order
VARMA structure. Section 5 reports the results of a simulation study, and describes an empirical
illustration. Technical proofs are concentrated in Section 6.

2 Factor models in the analysis of (large) panels of time series
data : a brief review.

2.1 Panels of time series data.

Denote by XT
n := (xit)i=1;::: ;n; t=1;::: ;T an n£ T rectangular array of observations. Throughout,

we assume that

(F0a) XT
n is a ¯nite realization of a real-valued stochastic processX := fxit; i 2 N; t 2 Zg indexed

by N£ Z, where the n-dimensional vector processes fxnt := (x1t ¢ ¢ ¢ xnt)0; t 2 Zg; n 2 N
are stationary, with mean 0n and ¯nite second-order moments ¡¡¡nk := E[xntx

0
n;t¡k], k 2 N.

The spectral techniques to be used in the sequel furthermore require the following technical
assumption

(F0b) For all n 2 N, the process fxnt; t 2 Zg admits a Wold representation xnt =P1
k=0C

n
kwn;t¡k,

where the full-rank innovations wnt have ¯nite moments of order four, and the matrices
Cn
k = (C

n
ij;k) satisfy

P1
k=0 jCnij;kjk1=2 <1 for all n; i; j 2 N.
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Assumptions (F0a) and (F0b) jointly will be referred to as (F0).
It is important to point out that the roles played by the cross-sectional and the time dimen-

sions in panel data are strongly asymmetric. A strong order in the time index t 2 Z is implicitly
imposed, allowing for meaningful measures of serial dependence at various lags, for the stationar-
ity assumption (F0), for the de¯nition of spectral densities, etc. By contrast, the cross-sectional
index i does not possess much structure : no past, no future, no meaningful ordering. As a rule,
all assumptions involving the ¯nite-dimensional processes fxnt; t 2 Zg should remain una®ected
by a permutation of the cross-sectional indexes i = 1; : : : ; n: This precludes, in particular, any
concept of cross-sectional stationarity or cross-sectional mixing : for example, there is no reason
for the correlation between x1t and x2t being the same as the correlation between x3t and x4t,
or to be less than the correlation between x1t and x987;t. Nevertheless, some regularity in the
cross-sectional dimension is needed, providing the red thread connecting all these series together
and ensuring that the panel is not just an arti¯cial collection of mutually unrelated observa-
tions. This regularity feature takes the form of an assumption on the eigenvalues of the spectral
density matrices of the vectors xnt as n!1 (see Section 2.2 below), and remains invariant, as
the reader can easily check, under any permutation of the n cross-sectional items in the panel.
As a rule, in the various factor models we are now describing, both the assumptions and the
results are independent of the particular cross-sectional indexing.

2.2 Static, dynamic, and generalized dynamic factor models.

Traditional factor models, as well as traditional vector time-series models, deal with situations
in which T is large as compared to n; the classical asymptotic theory, which considers n as
¯xed, with T tending to in¯nity, can be regarded as relevant. The situation is quite di®erent
in the context of panel data, where n typically is large or even very large compared to T . The
challenge then is twofold. First, an alternative is to be found to traditional time series methods,
which cannot handle the number of parameters implied by such values of n. Second, a relevant
asymptotic theory should address the case where both n and T go to in¯nity. The dynamic
factor models considered in Forni et al. (2000) and in the present paper allow for handling large
values of n, and quite naturally enter this nonstandard asymptotic framework under which both
n and T tend to in¯nity.

Standard factor models decompose a given ¯nite number n of observed processes fxitg into
two non-observable components, a common component fÂitg driven by q common factors fFjtg,
j = 1; : : : ; q, where q is very small as compared to n, and an idiosyncratic component f»itg. In
the simplest case the factors are loaded only contemporaneously, yielding the static factor model,
of the form

xit = Âit + »it = ai1F1t + ai2F2t + ¢ ¢ ¢+ aiqFqt + »it = aiFt + »it; (2.1)

where ai := (ai1; : : : ; aiq) and Ft := (F1t; : : : ; Fqt)
0; the usual assumptions are

(F1a) the processes fFjt; j = 1; : : : ; q; t 2 Zg and f»it; i = 1; : : : ; n; t 2 Zg are mutually
orthogonal (hence also the processes fÂit; i = 1; : : : ; n; t 2 Zg and f»it; i = 1; : : : ; n; t 2
Zg);

(F1b) the idiosyncratic processes f»i0t; t 2 Zg and f»i00t; t 2 Zg are mutually orthogonal for all
i0 6= i00.

Under Assumptions (F1a) and (F1b), the static model (2.1) can be identi¯ed (up to rotations
of the factors) and estimated. This model has been extended by Sargent and Sims (1977) and
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Geweke (1977) to allow for a dynamic loading of the factors. More precisely, the dynamic factor
model is characterized by a decomposition of fxitg of the form

xit = Âit + »it = bi1(L)u1t + bi2(L)u2t + ¢ ¢ ¢+ biq(L)uqt + »it = bi(L)ut + »it; (2.2)

where fut := (u1t : : : uqt)0; t 2 Zg, the vector of common shocks, is a q-dimensional (q very small
with respect to n) non-observed orthonormal white noise process, and bij(L) :=

P1
k=0 bij;kL

k;
i = 1; : : : ; n; j = 1; : : : ; q are nq square-summable ¯lters. The assumptions on fut; t 2 Zg and
the idiosyncratic components f»itg, i = 1; : : : ; n are quite similar to (F1a) and (F1b) :
(F2a) the processes fut; t 2 Zg and f»it; i = 1; : : : ; n; t 2 Zg are mutually orthogonal (hence,

also fÂit; i = 1; : : : ; n; t 2 Zg and f»it; i = 1; : : : ; n; t 2 Zg);
(F2b) same as (F1b).

In most applications, the assumption (F1b)=(F2b) that the idiosyncratic processes associ-
ated with distinct cross-sectional items are mutually orthogonal is much too restrictive. On the
other hand, dropping this orthogonality assumptions destroys the identi¯ability of models (2.1)
and (2.2) for any given ¯nite n. Chamberlain and Rothschild (1983) have introduced a more
general de¯nition of idiosyncratic components under the assumption of an in¯nite cross-sectional
dimension for a static model of the form (2.1), and Forni et al. (2000) have provided the following
generalization to the dynamic case. Considering the spectral density matrices §§§Ân(µ) and §§§

»
n(µ),

µ 2 [¡¼; ¼], associated with fÂÂÂnt := (Â1t : : : Ânt)
0; t 2 Zg and f»»»nt := (»1t : : : »nt)

0; t 2 Zg,
respectively, denote by ¸Ânk and ¸

»
nk the corresponding dynamic eigenvalues, namely, the map-

pings µ 7! ¸Ânk(µ) and µ 7! ¸»nk(µ), where ¸
Â
nk(µ) and ¸

»
nk(µ) stand for the kth largest eigen-

values of §§§Ân(µ) and §§§
»
n(µ), respectively. The generalized dynamic factor model analyzed in

Forni et al. (2000) and Forni and Lippi (2001) still relies on the decomposition (2.2), but with
the following assumptions :

(F3a) same as (F2a);

(F3b) ¸Ânq(µ)!1 as n!1, µ-a.e. in [¡¼ ¼], and

(F3c) there exists a real ¤ such that ¸»n1(µ) · ¤ for any µ 2 [¡¼ ¼] and any n 2 N.
Assumptions (F3a), (F3b) and (F3c) jointly will be referred to as Assumption (F3), and

have been discussed in detail in Forni et al. (2000). We only recall here that the condition on

the asymptotic behavior of ¸»nk(µ) includes the case in which the idiosyncratic components are
mutually orthogonal with an upper bound for the variances (this condition is trivially satis¯ed
when n is ¯nite and (F1b)=(F2b) holds). Assumption (F3) relaxes the orthogonality condition
(F1b)=F2b) by allowing for a limited amount of cross-correlation among the various idiosyncratic
components. Moreover, as Forni and Lippi (2001) show, the existence of a q-dimensional white
noise futg satisfying Assumptions (F3) is equivalent to the following condition on the eigenvalues
¸nk(µ) of the \observable" spectral density matrix §§§n(µ) = §§§

Â
n(µ) +§§§

»
n(µ) :

(F4) ¸nq(µ)!1 µ-a.e. in [¡¼ ¼] as n!1, and there exists a real ¤ such that ¸nq+1(µ) · ¤
for any µ 2 [¡¼ ¼] and any n 2 N.

Forni et al. (2000) prove that under Assumptions (F0) and (F3), or equivalently (F0) and
(F4), model (2.2) is identi¯ed, that is, the common and the idiosyncratic components are
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uniquely characterized (not the vector of common shocks ut, though). Moreover, Forni et al. (2000)
construct a consistent ¯nite-sample estimator of the components Âit and »it, the de¯nition of
which we brie°y recall here.

Denote by §§§Tn (µ) =
³
¾Tij(µ)

´
; µ 2 [¡¼; ¼], an arbitrary periodogram-smoothing or lag-

window estimator of the spectral density §§§n(µ) = (¾ij(µ)) of xnt, based on the empirical cross-
covariance matrices ¡¡¡nTk := (n¡k)¡1PT

t=k+1 xntxn;t¡k. Let ¸Tnj(µ) be §§§
T
n (µ)'s j-th largest eigen-

value, and let pTnj(µ) = (p
T
nj;1(µ); : : : ; p

T
nj;n(µ)) be the corresponding row-eigenvector. De¯ning

pT
nj
(L) :=

1

2¼

1X
k=¡1

·Z ¼

¡¼
pTnj(µ)e

ikµdµ

¸
Lk; (2.3)

Forni et al. (2000) propose to estimate ÂÂÂnt := (Â1t ¢ ¢ ¢ Ânt)0 by means of
ÂÂÂTnt := (Â

T
1t;n ¢ ¢ ¢ ÂTnt;n)0 := ~pT

n1
(L)pT

n1
(L)xnt + ¢ ¢ ¢+ ~pT

nq
(L)pT

nq
(L)xnt; (2.4)

where tilde denotes complex conjugation and transposition, and show that ÂTit;n tends in prob-
ability to Âit, as T and n tend to in¯nity, for t in the \central part" of the sample.

The problem with the ¯lters (2.3) used in the de¯nition of the estimated principal components
ÂTit;n is that they are in general two-sided. Therefore, the performance of (2.4) as an estimator

of Âit deteriorates at the ends of the sample, so that Â
T
iT;n is of little help when forecasting

Âi;T+h or xi;T+h is the main objective. This does not imply, however, that the dynamic factor
approach just described is helpless in the forecasting context. The next section proposes a two-
step strategy, in which the dynamic principal components of §§§Tn (µ) play the major role, for
constructing one-sided ¯lters that are suitable for end-of-sample estimation and forecasting.

2.3 Further assumptions.

The techniques developed in Forni et al. (2000) are valid under extremely general dynamic
loadings bij(L). The forecasting methods we are proposing here are slightly more restrictive in
this respect, and require ¯nite-order VARMA loadings. More precisely, we make the following
assumption.

(F2c) The dynamic factor model (2.2) holds with VARMA(S; s) transfer function, that is,

xnt = ÂÂÂnt + »»»nt = Bn(L)[A(L)]
¡1ut + »»»nt; (2.5)

where Bn(L) := Bn
0 +B

n
1L + : : : +B

n
sL

s is a n £ q polynomial of order s, and A(L) :=
I¡A1L¡: : :¡ASL

S a q£q polynomial of order S; moreover, all solutions of det[A(z)] = 0
and det[A(z)] = 0, z 2 C, lie outside the unit ball, and there exists an m such that Bns 6= 0
for n ¸ m, and S · s+ 1.

Note that the matrices Bn
k for ¯xed k and n 2 N are nested, whereas the polynomial A(L)

does not depend on n; the assumption on its characteristic roots guarantees the existence of
the inverse operator [A(L)]¡1. Finally, without the assumption that Bn

s 6= 0 for n ¸ m, the
inequality S · s+1 would be meaningless. Writing ft := (f1;t : : : fq;t)0 for [A(L)]¡1ut and Ft for
(f 0t f 0t¡1 : : : f 0t¡s)0, also note that the dynamic model (2.5) actually reduces to the static factor
model

xnt = Bn(L)ft + »»»nt = CnFt + »»»nt (2.6)
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with r = q(s+ 1) factors and Cn := (B
n
0 B

n
1 ¢ ¢ ¢ Bn

s ):

Denote by ¡¡¡Ânk and ¡¡¡
»
nk the k-lag covariance matrices of the vectors ÂÂÂnt and »»»nt respectively.

Letting ¹Ânj be the j-th eigenvalue of ¡¡¡
Â
n0, we also need strengthening (F3b) into

(F3b0) limn!1 ¹Ânr =1, where r := q(s+ 1).
Assumption (F3b) indeed does not imply (F3b0). For example, if Â1t = ut¡1 and Âit = ut for
i ¸ 2, (F3b) clearly holds, with q = 1, and (F2c) also holds with s = 1 (and S = 0). However,
(F3b0) does not hold since ¹Ân1 !1 whereas ¹Ân2 is bounded as n!1. In general, Assumption
(F3b0) rules out the case in which some of the fj;t¡s is loaded only by a ¯nite number of the x's,
so that the assumption that Bns 6= 0 for n ¸ m is also strengthened.

Finally, for the sake of convenience, and without much loss of generality, we also will make
the following assumption on the idiosyncratic processes :

(F3d) denoting by ¹»nj , j = 1; : : : ; n; the eigenvalues of ¡¡¡
»
n0, the smallest of them, ¹

»
nn, is bounded

away from zero as n!1.
This last assumption avoids trivial but unpleasant problems of asymptotic degeneracy of id-
iosyncratics.

3 A two-step forecasting method based on dynamic factors

3.1 Outline of the method.

In view of the orthogonality, at any lead and lag, of Âit and »it in the decomposition of xit into
Âit + »it, the problem of forecasting xit can be split into forecasting the common component
Âit and forecasting the idiosyncratic »it separately. Since we have assumed orthogonality (F2)
or weak cross-correlation (F3) between the idiosyncratic components of distinct cross-sectional
items, the forecast of »it safely can be based on traditional univariate or low dimensional vector
time series methods. Hence, we concentrate on forecasting Âit.

Suppose that Âi;T+h is to be predicted, at time T , for some given i and h. Denote by H(Â; ¿)
the Hilbert space spanned by the variables fÂjt, t · ¿ , j 2 Ng. If H(Â; T ) were known, then
the optimal linear forecast of Âi;T+h in the mean square sense would be the projection

Ái;T+hjT := proj
³
Âi;T+h

¯̄̄
H(Â; T )

´
=

qX
j=1

1X
k=0

bij;kproj
³
fj;T+h

¯̄̄
H(Â; T )

´
(3.1)

of Âi;T+h onto H(Â; T ), where bij;k is the coe±cient of Lk in the ¯lter bij(L) (see (2.2)). De¯ning
G(F; ¿) as the r-dimensional space spanned by the r omponents of F¿ , for k = 1; 2; : : : ; r (note
that only values of Ft at time t = ¿ are taken into account), and using Assumption (F2c), (3.1)
can be rewritten as

Ái;T+hjT = proj
³
Âi;T+h

¯̄̄
G(F; T )

´
:=MihFT (3.2)

where Mih is an r-dimensional vector whose components can be easily obtained from the coef-
¯cients of A(L) and the coe±cients bij;k.

Formula (3.2) of course is of little help in practice, since all quantities involved are unob-
servable. Our objective is to provide a sequence ÁnTi;T+hjT of predictors computable from the

observed XT
n , and converging, as n and T tend to in¯nity, to the optimal forecast of Âi;T+h.
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Our construction is in two steps.
Step 1. We construct, so as to say, a consistent estimate of G(F; T ). More precisely, we de¯ne
an r-tuple

W kT
nt := ZTnkxnt; k = 1; : : : ; r (3.3)

of linear aggregates of x1t; : : : ; xnt, and prove that r-dimensional space GTn (F; T ) spanned by
W 1T
nT ; : : : ;W

rT
nT converges to G(F; T ) as n and T go to in¯nity (see Proposition 3.1 for a precise

statement). This space GTn (F; T ) thus can be seen as an empirical substitute for the unknown
G(F; T ).
Step 2. We project Âi;T+h onto GTn (F; T ). This projection is our forecast. Proposition 3.2
provides a proof of the intuitive fact that when n and T tend to in¯nity, so that GTn (F; T ) tends
to G(F; T ), this forecast converges to the optimal forecast Ái;T+hjT .

Estimators of the covariance matrices ¡¡¡Ân0 and ¡¡¡
»
n0 are obtained as a simple application of

the dynamic analysis developed in Forni et al. (2000). First we construct estimates §§§ÂTn (µ) and
§§§»Tn (µ) of the spectral density matrices of ÂÂÂnt and »»»nt, respectively. These estimated spectral

matrices are used to compute estimators ¡¡¡ÂTnk and ¡¡¡
»T
nk of the common and idiosyncratic auto-

covariance matrices for all lags k. The weights ZTnk are then obtained as those vectors that
maximize the variance of the aggregate common component, given the variance of the aggre-
gate idiosyncratic component. As we shall see, these vectors ZTnk are solutions of a generalized
eigenvalue problem.

3.2 Consistent estimation of the autocovariance matrices of ÂÂÂnt and »»»nt.

As explained in Section 3.1, the ¯rst step of our method consists in de¯ning an r-tuple of
aggregates (3.3), the span of which eventually coincides with that of the unobserved common
shocks. Letting r = q(s + 1), our aggregates are constructed in a way that takes advantage
of the common/idiosyncratic decomposition of the observations through an estimation of the

covariance matrices ¡¡¡Ânk and ¡¡¡
»
nk.

We ¯rst compute the estimators §§§Tn (µ) =
³
¾Tij(µ)

´
1·i;j·n of the spectral density matrices

§§§n(µ) = (¾ij(µ))1·i;j·n as explained in Section 6.3. Under (F0), these estimators are such that,
for all n 2 N and ² > 0,

lim
T!1

P

"
max

1·i;j·n sup
µ2[¡¼;¼]

j¾T ij(µ)¡ ¾ij(µ)j > ²
#
= 0 (3.4)

(see for instance Brockwell and Davis 1987, p. 433). Denoting by ¸Tnj(µ) and p
T
nj(µ), j = 1; : : : ; n,

the eigenvalues and eigenvectors of §§§Tn (µ), put

PTn (µ) := (p
T 0
n1(µ) : : : p

T 0
nq(µ))

0 and QT
n (µ) := (p

T 0
n;q+1(µ) : : : p

T 0
nn(µ))

0;

and de¯ne

§§§ÂTn (µ) := ~PTn (µ)Diag
³
¸Tn1(µ); : : : ; ¸

T
nq(µ)

´
PTn (µ)

and

§§§»Tn (µ) := ~QT
n (µ)Diag

³
¸Tn;q+1(µ); : : : ; ¸

T
nn(µ)

´
QT
n (µ):
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Moreover, let

·§§§
Â
n(µ) :=

~Pn(µ)Diag (¸n1(µ); : : : ; ¸nq(µ))Pn(µ)

and

·§§§
»
n(µ) :=

~Qn(µ)Diag (¸n;q+1(µ); : : : ; ¸nn(µ))Qn(µ);

where ¸n;j , Pn(µ) and Qn(µ) are the population counterparts of ¸
T
n;j , P

T
n (µ), and Q

T
n (µ), re-

spectively.
Now, (3.4) and the continuity of eigenvalues and eigenvectors as functions of the correspond-

ing matrix entries imply that, for a given n, the matrices §§§ÂTnt and §§§
»T
nt are consistent estimators

of ·§§§
Â
nt and

·§§§
»
nt respectively, as T !1, whereas

¡¡¡ÂTnk =
1

2¼

Z ¼

¡¼
eikµ§§§ÂTn (µ)dµ and ¡¡¡»Tnk =

1

2¼

Z ¼

¡¼
eikµ§§§»Tn (µ)dµ (3.5)

are consistent estimators, as T !1, of

·¡¡¡
Â
nk =

1

2¼

Z ¼

¡¼
eikµ ·§§§

Â
n(µ)dµ and ·¡¡¡

»
nk =

1

2¼

Z ¼

¡¼
eikµ ·§§§

»
n(µ)dµ; (3.6)

respectively.

3.3 Step 1: consistent estimation of the space of common factors.

A crucial feature of our method is the choice of the r aggregates providing an estimation of
H(Â; T ). Our r aggregates are of the form W kT

nt := ZTnkxnt, where the weights Z
T
nk are de¯ned

as the solutions, for 1 · ` · r, of the optimization problems

ZTn` := Arg max
aaa2Rn

var
³
aÂÂÂTnt

´
subject to var

³
a»»»Tnt

´
= 1 (3.7)

a»»»Tnt ? ZTnm»»»Tnt for 1 · m < `; 1 · ` · n:
The rationale behind this choice is that, given the estimated variance-covariance matrices ¡¡¡ÂTn0
and ¡¡¡»Tn0 , the weights Z

T
n` obtained in (3.7) are maximizing the common-to-idiosyncratic variance

ratio in the resulting aggregates.
Now, an equivalent form of (3.7) is

ZTn` := Arg max
aaa2Rn

a¡¡¡ÂTn0 ~a

subject to a¡¡¡»Tn0~a = 1 (3.8)

a¡¡¡»Tn0
~ZTnm = 0 for 1 · m < ` ; 1 · ` · n:

Under this form, (3.7) reduces (see Lemma 6.1) to a generalized eigenvalue problem. Precisely,
the vectors ZTnj, j = 1; : : : ; n, are the generalized eigenvectors, associated to the generalized

eigenvalues ºTnj, of the couple of matrices
³
¡¡¡ÂTn0 ;¡¡¡

»T
n0

´
, that is

ZTnj¡¡¡
ÂT
n0 = º

T
njZ

T
nj¡¡¡

»T
n0 j = 1; 2; : : : ; n (3.9)

9



(the reader is referred to Section 6.1 for a brief description of generalized eigenvalue problems).
The following proposition provides a formal statement of the intuitive idea that the space

spanned by the aggregates thus obtained approximates the unobserved space G(F; t). Let us
¯rst introduce some new notation. By wkTnt we denote the standardized version of W

kT
nt . Since

ZTnj¡¡¡
T
n0
~ZTnj = ZTnj¡¡¡

ÂT
n0
~ZTnj + Z

T
nj¡¡¡

»T
n0
~ZTnj = 1 + º

T
nj ;

then wkTnt = zTnjxnt, where z
T
nj := ZTnj=

q
1 + ºTnj: Note that since Z

T
nj¡¡¡

T
n0
~ZTnk = 0 for j 6= k

(using the constraints of (3.8)), the vectors wkTnt , for k = 1; 2; : : : ; r, form an orthonormal
system spanning a space of the same dimension as G(F; t). By Znj; ºnj etc., we denote the
objects playing the same role as ZTnj ; º

T
nj etc., but with respect to

·¡Ân0 and
·¡»n0.

Proposition 3.1 Assume that (2.2), Assumptions (F0), (F2a)-(F2c), (F3a), (F3b0), (F3c) and
(F3d) hold. Then, for all ² > 0 and ´ > 0, there exist N0 = N0(²; ´) and T0 = T0(n; ²; ´) such
that

P
h¯̄̄
wkTnt ¡ proj

³
wkTnt

¯̄̄
G(F; t)

´¯̄̄
> ²

i
· ´ (3.10)

for all 1 · t · T , all n ¸ N0, all T ¸ T0, and all 1 · k · r.
The proof of this Proposition relies on the following lemma, the proof of which is given in

the Appendix (Section 6).

Lemma 3.1 Let an := (an1; : : : ; ann) denote a triangular array of real numbers such that
limn!1

Pn
i=1 a

2
ni = 0. Then, under the assumptions of Proposition 3.1, an»»»nt ! 0 in quadratic

mean as n!1.
Proof of Proposition 3.1. Lemmas 6.2 and 6.3 imply that ºnr tends to in¯nity as n ! 1.
As a consequence, each of the r sequences fZnj=

p
1 + ºnj; n 2 Ng, j = 1; : : : ; r, is a triangular

array ful¯lling the assumption of Lemma 3.1. Indeed, Znj is bounded in modulus, since 1 =

Znj§§§
»
n0
~Znj ¸ ¹»nnZnj ~Znj where, in view of Assumption (F3d), ¹»nn is bounded away from zero.

It follows that the sequences Znjxnt=
p
1 + ºnj converge in probability to the space G(F; t) as

n!1 for any j = 1; : : : ; r, i.e. for all ² > 0 and ´ > 0, there exist N1 := N1(²; ´) such that for
all 1 · t · T , all n ¸ N1, and all 1 · k · r,

P
h¯̄̄
wknt ¡ proj

³
wknt

¯̄̄
G(F; t)

´¯̄̄
> ²

i
· ´: (3.11)

Turning to wkTnt , we have¯̄̄
wkTnt ¡ proj

³
wkTnt

¯̄̄
G(F; t)

´¯̄̄
·

¯̄̄
wkTnt ¡ proj

³
wknt

¯̄̄
G(F; t)

´¯̄̄
·

¯̄̄
wkTnt ¡ wknt

¯̄̄
+
¯̄̄
wknt ¡ proj

³
wknt

¯̄̄
G(F; t)

´¯̄̄
:

Hence,

P
h¯̄̄
wkTnt ¡ proj

³
wkTnt

¯̄̄
G(F; t)

´¯̄̄
> ²

i
· P

·¯̄̄
wknt ¡ proj

³
wknt

¯̄̄
G(F; t)

´¯̄̄
>
²

2

¸
+ P

·¯̄̄
wkTnt ¡ wknt

¯̄̄
>
²

2

¸
:= Pn1 + P

nT
2 ; say.
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From (3.11), Pn1 · ´
2 for all n ¸ N1 = N1(

²
2 ;

´
2 ). As for P

nT
2 , the convergence in probability, as

T !1, of ¡¡¡ÂTn0 to ·¡¡¡
Â
n0 and ¡¡¡

»T
n0 to

·¡¡¡
»
n0, and the continuous mapping theorem, imply the existence,

for all n, of T2 := T2(n;
²
2 ;

´
2) such that P

nT
2 · ´

2 for T larger that T2 and all 1 · k · r. The
proposition follows, with N0(²; ´) = N1(

²
2 ;

´
2) and T0(n; ²; ´) = T2(n;

²
2 ;

´
2). QED

3.4 Step 2: reconstructing the optimal forecast.

The forecast we propose for Âi;T+h is the estimated projection of xi;T+h onto the space spanned
by the r aggregates W kT

nT , k = 1; : : : ; r, i.e.

ÁnTi;T+hjT :=
³
¡¡¡ÂTnhZ

T
n (
~ZTn¡¡¡

T
n0Z

T
n )
¡1~ZTnxnT

´
i

(3.12)

where ZTn := (Z
T 0
n1 ¢ ¢ ¢ ZT 0nr)0.

The theoretical motivation of this forecast lies the following proposition, which shows that
ÁnTi;T+hjT is asymptotically equivalent, as n and T go to in¯nity, to the best possible forecast
Ái;T+hjT .

Proposition 3.2 Assume that (2.2), Assumptions (F0), (F2a)-(F2c), (F3a), (F3b0), (F3c) and
(F3d) hold. Then, for all ² > 0 and ´ > 0, there exist N3 = N3(²; ´) and T3 = T3(n; ²; ´) such
that, for all n ¸ N3, all T ¸ T3, and all 1 · i · N3,

P
h¯̄̄
ÁnTi;T+hjT ¡ Ái;T+hjT

¯̄̄
> ²

i
· ´: (3.13)

The proof of Proposition 3.2 relies on Proposition 3.1 and the following lemma.

Lemma 3.2 Let K denote a subspace of the Hilbert space H of centered, square-integrable
random variables, with covariance scalar product. Assume that K is generated by a subset
(v1; : : : ; vk) of k linearly independent elements of H. Let fvn1; : : : ; vnk ; n 2 Ng be a sequence
of k-tuples of H such that, denoting by proj ( : jK) the projection onto K,
(i) vnj ¡ proj (vnjjK) converges to zero in probability as n!1,
(ii) the determinant of the covariance matrix (Cov (vni; vnj))i;j=1;::: ;k is bounded away from

zero as n!1.
Then, the projection of v 2 H onto the space Kn spanned by fvn1; : : : ; vnkg converges in proba-
bility, as n!1, to the projection of v onto K.
Proof. Let v := (v1; : : : ; vk)

0 and vn := (vn1; : : : ; vnk)
0. Consider the decomposition vn =

anv+Rn; of vn into its (componentwise) orthogonal projection anv onto K and the orthogonal

complement. Assumption (i) implies that kRnk := RnR
0
n

P¡! 0. Decomposing similarly v into

v = bnvn + sn = bnanv+ bnRn + sn and v = bv + s;

where bnvn and bv denote the orthogonal projections of v onto Kn and K, respectively, we
obtain

proj (vjKn)¡ proj (vjK) = bnvn ¡ bv = bnanv + bnRn ¡ bv = s¡ sn: (3.14)
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Assumption (ii) implies that bn is bounded. As a consequence bnRn
P¡! 0, hence bnvn ¡

bnanv
P¡! 0. This and (3.14) in turn implies that s¡ sn P¡! 0. The result follows. QED

Proof of Proposition 3.2. Choose two (otherwise arbitrary) strictly decreasing sequences
(²n)n2N and (´n)n2N of strictly positive constants such that ²n # 0 and ´n # 0 as n ! 1.
De¯ning T (n) := T0(n; ²n; ´n) + 1, the path (n; T (n))n2N has, in view of Theorem 3.1, the
property that, for any ² > 0 and ´ > 0, there exists a N¤ := N¤(²; ´) such that

P
h¯̄̄
w
k;T (n)
nt ¡ proj

³
w
k;T (n)
nt

¯̄̄
G(F; t)

´¯̄̄
> ²

i
· ´ (3.15)

for all 1 · t · T (n), all n ¸ N¤, and all 1 · k · r. Assumptions (i) of Lemma 3.2 thus holds

for (vn1; : : : ; vnk) = (w
1;T (n)
n;T (n); : : : ; w

r;T (n)
n;T (n)); since the vectors w

k;T (n)
n;T (n) are an orthonormal system,

assumption (ii) holds. Projecting onto the space spanned by the aggregates W
k;T (n)
nt or by their

standardized versions w
k;T (n)
nt of course does not make any di®erence. Applying Lemma 3.2

to v = xi;T+h, we thus obtain that (3.13) holds, with N3 = N¤ and T3(n; ²; ´) = T (n), and

with proj
³
xi;T+h

¯̄̄
G(F; T )

´
instead of Ái;T+hjT := proj

³
Âi;T+h

¯̄̄
G(F; T )

´
. However, since the

common component Âi;T+h is orthogonal, at all leads and lags, to the idiosyncratic process,

proj
³
xi;T+h

¯̄̄
G(F; T )

´
and proj

³
Âi;T+h

¯̄̄
G(F; T )

´
coincide, which completes the proof. QED

Throughout this section, the values of q and s, hence the value of r, have been assumed to be
correctly speci¯ed. In Section 4.2, we show how to deal with this speci¯cation issue in practical
situations. Note however that letting r > q(s+ 1) clearly does not a®ect consistency results.

3.5 One-sided estimation of common/idiosyncratic components.

Obviously, within the sample, the method just described yields the projection

ÁnTi;t :=
³
¡¡¡ÂTn0 Z

T
n (
~ZTn¡¡¡

T
n0Z

T
n )
¡1~ZTnxnt

´
i

(3.16)

of xit, t · T , onto the space spanned byW kT
nt , k = 1; : : : ; r. Under the same conditions as above,

ÁnTi;t converges in probability to Âit, yielding a one-sided consistent estimation of the common
component Âit for t · T which, for ¯xed t, avoids the end-of-sample inconsistency problems
mentioned in Section 2.2.

3.6 Stock and Watson's one-step forecasting method.

Stock and Watson (1999) also propose a forecast based on a one-sided ¯ltering of past and
present observations. Their weights STnk (playing the role of our weights Z

T
nk) are de¯ned (in

our notation) as the static principal components of the observations, de¯ned by

STn` := Arg max
aaa2Rn

a¡¡¡Tn0

subject to a~a = 1 (3.17)

a~STnm = 0 for 1 · m < ` ; 1 · ` · n:
The resulting forecasts are obtained by projecting xi;T+h onto the space spanned by the r scalar
aggregates

STnjxnt; j = 1; : : : ; r; (3.18)

12



i.e. by substituting STnj for Z
T
nj and ¡¡¡

T
nh for ¡¡¡

ÂT
nh in equations (3.12) and (3.16).

A comparison between the Z-weights of our two-step method ans the S-weights of Stock
and Watson's gives a useful insight into the respective merits of the two methods (see Section 4
for a numerical comparison). Both methods indeed provide a consistent estimation of G(F; T )
and Ái;T+hjT (under the assumptions of Section 2.3). If the matrices ¡¡¡

ÂT
nk and ¡¡¡

»T
nk are accurate

estimates of ¡¡¡Ânk and ¡¡¡
»
nk respectively, then our Z-weights, which are tailored with the purpose

of minimizing the impact of the idiosyncratic in the aggregate, should perform better than the
S-weights in approximating the space G(F; T ). However, the performance of such estimates
depends in a very complicated way on the underlying model, on T , and on n, so that an a
priori comparison between the two methods seems very di±cult. A numerical assessment of
their respective merits is made in Section 4.

4 Simulations and empirical results

4.1 Simulations

In order to evaluate the performance of our within-sample estimation and forecasting procedures
for ¯nite values of n and T , we carried out Monte Carlo experiments on three s-dependent
models. In the ¯rst one (M1), the common components are generated by moving averages of
order three, with two common factors (q = 2, s = 3), while the idiosyncratic components are
mutually orthogonal. More precisely, the observations x¤it were generated from the model

x¤it =
3X
k=0

akiu1;t¡k +
3X
k=0

bkiu2;t¡k + 3(ci + 1)²it; (M1)

where the shocks u1t, u2t, ²it, t = 1; : : : ; T , i = 1; : : : ; n and the coe±cients ci, aki, and bki,
k = 0; 1; 2; 3, i = 1; : : : ; n are mutually independent standard normal random variables.

The second model (M2) is identical to the ¯rst one (q = 2, s = 3) but for the idiosyncratic
components, which now have a non-diagonal variance-covariance matrix; the model is

x¤it =
3X
k=0

akiu1;t¡k +
3X
k=0

bkiu2;t¡k + »it; (M2)

with
»it = (1:5ci + 1)²it + (1:5ci+1 + 1)²i+1;t

and ²n+1;t = 0 for all t.
In the third model (M3), the common components are generated by moving averages of order

two, which are shifted in time in order to create leading, coincident, and lagging variables. Also
in this case q = 2, and all shocks and coe±cients are drawn from mutually independent standard
normal distributions. More precisely, the observations are generated from the model

x¤it =
li+2X
k=li

ak¡li;iu1;t¡k +
li+2X
k=li

bk¡li;iu2;t¡k + 2(ci + 1)²it; (M3)

where li = 0 for 1 · i · m (leading variables), li = 1 for m+1 · i · 2m (coincident variables),
and li = 2 for 2m + 1 · i · n (lagging variables); hence, s = 4. In order for the three types
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to be equally present in the panel, we took m = [n=3] (as usual, we denote by [z] the largest
integer less than or equal to z).

Before estimation of the spectral matrices, all variables were taken in deviation from their
sample means and divided by their standard deviations, i.e., spectral estimation was conducted
from the standardized observations

xit = (x
¤
it ¡ ¹x¤i )=si; (4.1)

where ¹x¤i :=
PT
t=1 x

¤
it=T and s

2
i :=

PT
t=1(x

¤
it ¡ ¹x¤i )2=(T ¡ 1).

An important empirical ¯nding of our simulations is that, when the cross-sectional dimension
n is large with respect to the period of observation T , forcing to zero the o®-diagonal entries of the
estimated variance-covariance matrix ¡¡¡»Tn0 of the idiosyncratic components improves forecasting
performance, even when the actual matrix is non diagonal (see results from model M2 below).
Our explanation for this somewhat counterintuitive result is the following. When computing
¡¡¡»Tn0 , we unavoidably get some spurious large covariances, even when the true covariance is zero.
When n increases and T is held ¯xed, the number of such errors increases as n2, the order of
the number of elements in the n £ n matrices ¡¡¡»Tn0 . On the other hand, by diagonalizing our
estimated matrix, we ignore the true o®-diagonal non-zero entries. Also in this case the error
increases with n, but, so to speak, owing to the boundedness of the eigenvalues, it increases only
linearly in n.

Therefore, we henceforth diagonalize the matrices ¡¡¡»Tn0 before computing eigenvectors. Con-
sistency is still ensured : indeed, it is easily seen from Lemmas 6.2 and 6.3 in the Appendix that
replacing ¡¡¡»Tn0 with any symmetric semi-positive de¯nite matrix with bounded eigenvalues does
not a®ect consistency results.

We generated data from each model with n = 20; 50; 100; 200 and T = 20; 50; 100; 200. Then
we applied the procedures described in Section 3 (see Section 6.3 of the Appendix for details)
in order to compute the within-sample estimates ÁnTit , t = 1; : : : ; T and the one-step-ahead
forecasts ÁnTi;T+1jT . For the sake of simplicity, we assumed both the number q of dynamic factors
and the number r = q(s+1) of static factors to be known. Each experiment was replicated 400
times.

An important term of comparison is given by the corresponding estimates and forecasts
obtained by using the static factor model method proposed by Stock and Watson (1999), i.e.
by projecting the x's on the ¯rst r static principal components (see Section 3.6). This actually
consists in using the same algorithm as for ÁnTi;T+1jT , but with weights S

T
n instead of ZTn (see

(3.7) and (3.17)), and ¡¡¡Tnh for ¡¡¡
ÂT
nh .

We measured the performance of one-step-ahead forecasts by means of the criterionPn
i=1(Á

nT
i;T+1jT ¡ Ái;T+1jT )2Pn
i=1 var(Ái;t+1jt)

and performance of within-sample estimates by means ofPn
i=1

PT
t=1(Á

nT
i;t ¡ Áit)2

T
Pn
i=1 var(Áit)

:

Note that, in these two criteria, we normalize by dividing by the theoretical variances.
Results for models M1, M2, and M3 are shown in Tables 5.1, 5.2, and 5.3, respectively, with

part (a) devoted to forecasts and part (b) devoted to within-sample estimation. In each cell
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we report (i) the average value of the criterion, across the 400 replications, for our two-step
method, (ii) (in brackets) the empirical standard deviation, across the 400 replications, of the
same criterion, still for our two-step method, and (iii) (in square brackets) the average value of
the criterion, across the 400 replications, for the one-step static principal component method.

Table 5.1a: Model M1, forecasting results

n = 20 n = 50 n = 100 n = 200

0.8769 0.6369 0.4894 0.3767
T = 20 (0.5461) (0.4219) (0.3601) (0.2590)

[0.9679] [0.7600] [0.6329] [0.5610]

0.7520 0.3790 0.2323 0.1534
T = 50 (0.4313) (0.1954) (0.1206) (0.0839)

[0.8693] [0.5067] [0.3383] [0.2346]

0.6336 0.3097 0.1657 0.1035
T = 100 (0.3309) (0.1588) (0.0838) (0.0498)

[0.7249] [0.3878] [0.2182] [0.1465]

0.6138 0.2712 0.1442 0.0806
T = 200 (0.3058) (0.1521) (0.0715) (0.0420)

[0.6883] [0.3188] [0.1772] [0.1020]

Table 5.1b: Model M1, within-sample results

n = 20 n = 50 n = 100 n = 200

0.9259 0.5196 0.3679 0.2920
T = 20 (0.2974) (0.1649) (0.1155) (0.0973)

[1.1457] [ 1.0111] [0.9072] [ 0.8213]

0.7339 0.3375 0.2127 0.1475
T = 50 (0.1563) (0.0719) (0.0446) (0.0334)

[0.8879] [0.5783] [0.4077] [0.2987]

0.6514 0.2753 0.1613 0.1014
T = 100 (0.1116) (0.0385) (0.0226) (0.0151)

[0.7436] [0.3783] [0.2358] [0.1609]

0.6075 0.2505 0.1360 0.0800
T = 200 (0.0854) (0.0260) (0.0138) (0.0082)

[0.6450] [0.2943] [0.1666] [0.1041]
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Table 5.2a: Model M2, forecasting results

n = 20 n = 50 n = 100 n = 200

0.9540 0.6098 0.4724 0.3606
T = 20 (0.5666) (0.4028) (0.3352) (0.2371)

[0.9913] [0.6781] [0.5938] [0.4992]

0.7339 0.3645 0.2330 0.1638
T = 50 (0.4130) (0.2047) (0.1272) (0.0938)

[0.8140] [0.4807] [0.3372] [0.2471]

0.6132 0.2811 0.1653 0.1060
T = 100 (0.3445) (0.1416) (0.0864) (0.0528)

[0.6878] [0.3459] [0.2074] [0.1387]

0.5641 0.2561 0.1325 0.0828
T = 200 (0.3197) (0.1501) (0.0723) (0.0369)

[0.6287] [0.2882] [0.1553] [0.0993]

Table 5.2b: Model M2, within-sample results

n = 20 n = 50 n = 100 n = 200

0.8639 0.5444 0.4058 0.3445
T = 20 (0.2802) (0.1739) (0.1239) (0.1138)

[1.0205] [ 0.9942] [0.9504] [ 0.9525]

0.6608 0.3253 0.2177 0.1648
T = 50 (0.1475) (0.0709) (0.0460) (0.0333)

[0.7907] [0.5713] [0.4360] [0.3481]

0.5688 0.2557 0.1559 0.1064
T = 100 (0.0885) (0.0372) (0.0212) (0.0160)

[0.6511] [0.3564] [0.2257] [0.1609]

0.5299 0.2211 0.1272 0.0778
T = 200 (0.0613) (0.0228) (0.0131) (0.0072)

[0.5614] [0.2578] [0.1521] [0.0963]
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Table 5.3a: Model M 3, forecasting results

n = 20 n = 50 n = 100 n = 200

0.7990 0.4962 0.4109 0.3595
T = 20 (0.5107) (0.3011) (0.2771) (0.2467)

[0.9046] [0.6136] [0.5406] [0.5116]

0.6172 0.3346 0.1957 0.1479
T = 50 (0.3740) (0.1876) (0.1094) (0.0961)

[0.7151] [0.4544] [0.3071] [0.2552]

0.5799 0.2587 0.1552 0.0896
T = 100 (0.3521) (0.1340) (0.0894) (0.0447)

[0.6683] [0.3264] [0.2067] [0.1292]

0.5490 0.2231 0.1251 0.0679
T = 200 (0.3057) (0.1308) (0.0730) (0.0318)

[0.6145] [0.2593] [0.1446] [0.0852]

Table 5.3b: Model M3, within-sample results

n = 20 n = 50 n = 100 n = 200

0.6048 0.3533 0.2595 0.2162
T = 20 (0.1908) (0.1053) (0.0704) (0.0561)

[0.7847] [ 0.7312] [0.6750] [ 0.6407]

0.4921 0.2413 0.1608 0.1175
T = 50 (0.1057) (0.0468) (0.0282) (0.0203)

[0.6411] [0.4470] [0.3425] [0.2668]

0.4523 0.2058 0.1245 0.0828
T = 100 (0.0774) (0.0278) (0.0159) (0.0108)

[0.5577] [0.3117] [0.1922] [0.1330]

0.4308 0.1865 0.1081 0.0670
T = 200 (0.0567) (0.0195) (0.0099) (0.0059)

[0.4999] [0.2355] [0.1337] [0.0835]

The tables show that for all models and all choices of n and T the two-step method outper-
forms the one-step method. This is true both for forecasting and within-sample reestimation.
Our relative advantage is particularly evident when n is large relative to T .

4.2 Empirics.

In this Section, we evaluate the performance of our methodology empirically. The database
used has been constructed by the Research Department of the Banca d'Italia within a Bank of
Italy-CEPR project. Here we used the n = 447 variable subset fully documented in Cristadoro
et al. (2001). The data consist of monthly time series on key aggregates and sectorial variables
for the six main economies in the Euro area|Germany, France, Italy, Spain, the Netherlands,
Belgium|and, when available, for the Euro area as a whole. The aim is to forecast two target
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variables : the Euro aggregate industrial production and the Euro area harmonized consumer
price index for the period 1987:1-2001:3. Data are logged and ¯rst-di®erenced whenever needed
to achieve stationarity. For details on data treatment, see Cristadoro et al. (2001).

The forecasting exercise is a traditional simulated out-of-sample experiment. Three di®erent
models (AR, FHLR, and SW; see below for a precise description) are considered successively,
with the corresponding forecasting method. For each of these models/methods, we proceed
as follows. Assume that the target variable xit is to be predicted. First, we estimate the
model using observations from 1987:2 to 1997:1 and, based on this estimation, we compute
h = 1; 3; 6; 12-step ahead forecasts; these forecasts are h-step ahead predictions xi;T+hjT , made
at time T = 1997 : 1, of xi;T+h. The corresponding forecasting error is xi;T+hjT¡xi;T+h. We then
reestimate the model using one additional observation, and compute again h-step ahead forecasts
xi;T+hjT , and the corresponding forecasting error, for T = 1997 : 2. Adding one observation at a
time, we repeat the same exercise until all observations, from 1987:2 to 2000:3, are used in the
estimation. Finally, for each method, and for each value of the forecasting horizon h, we average
the squared prediction errors thus obtained over 50 successive values of T . After dividing by
the corresponding empirical variance, we obtain

MSEh :=
X
T

(xi;T+hjT ¡ xi;T+h)2=
X
T

(xi;T+h ¡ ¹x¤i )2; where ¹x¤i :=
1

50

X
T

xi;T+h: (4.2)

This MSEh is used as an assesment of the forecasting performance of the model/method used,
at lag h.

Without loss of generality, assume again that xit is the target variable to be predicted (in
our case, either in°ation or the industrial production index, both in di®erence of logs). The
three models/forecasting methods we are considering are

(AR) (univariate AR models). The model used for predicting xit is a simple univariate AR
model, of the form

xi;t =
lX

j=1

®jxi;t¡j + ²i;t: (AR)

First assume that l is ¯xed. After traditional OLS estimation, a mean squared prediction
error MSElh (4.2) is obtained for each horizon h. This exercise is performed for l =
1; : : : ; 36, and the value l¤h of l minimizing MSElh is adopted : MSE¤h := MSEl

¤
h is

thus the best forecasting performance obtainable, at horizon h, via a pure univariate AR
approach.

(FHLR) (our method). Here, xit decomposes into Âit+»it. The common component Âit is predicted
as explained in the previous sections, whereas the idiosyncratic component »it is predicted
from its own past only; the autoregressive coe±cients are obtained from the lagged covari-
ances computed by using the estimated covariances ¡¡¡»Tnh in the OLS formula. The h-step
ahead forecast xi;T+hjT of xi;T+h then is obtained by adding the respective forecasts of
Âi;T+h and »i;T+h. The model used for predicting xit thus has the form8>>>>>><>>>>>>:

xi;t+h = Âi;t+h + »i;t+h

Âi;t+h =
rX
k=1

¯hkw
k
nt + ²

Â;h
t

»i;t+h =
mX
j=1

°j»i;t¡j + ²»;ht ;

(FHLR)
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where the two OLS estimations are to be performed independently of each other, leading
for each h to a MSEh (4.2). The MSEh was computed for each combination of h =
1; 3; 6; 12, r = 1; : : : ; 50, and m = 1; : : : ; 30. The values r¤h, and m

¤
h minimizing this

MSEh were selected, yielding a minimal value MSE¤h. This MSE¤h thus is the best
forecasting performance obtainable, at horizon h, via the two-step procedure based on the
dynamic factor approach.

(SW) (one-step method based on the static factor approach). The prediction model now is

xi;t+h = ±
h(L)xit +

rX
k=1

^̄h
k ŵ

k
nt + ´

h
t : (SW)

where ±h(L) is polynomial of order p, and ŵknt, k = 1; : : : ; r denote the aggregates ob-
tained by solving (3.17) rather than (3.8). Note that the observable autoregressive terms
±h(L)x1t here help forecasting the idiosyncratic component, while the aggregates ŵ

k
nt help

forecasting the common component. Mean square errors are obtained, along the same
lines as in (FHLR), then minimized in order to identify, for each horizon h, optimal values
of p and r, yielding again, for each h, the best forecasting performance MSE¤h that can
be achieved by means of the one-step procedure based on static factors.

For the FHLR method, two more parameters need to be set for estimation : the number of
common factors q and the window size M used in spectral estimation. Both are needed for the
computation of the covariances in the ¯rst step and were set as M = 24, q = 3 (see Section 6.3
in the appendix).

The results are presented in Table 5.4 for industrial production, in Table 5.5 for the harmo-
nized in°ation index. The numbers in squared brackets in the ¯rst column are the optimal lags
l¤ for (AR); the numbers in round brackets in the other columns are the optimal static ranks r¤

and optimal idiosyncratic lags (m¤ for FHLR, p¤ for SW), respectively.

Table 5.4 Industrial Production

horizon AR FHLR SW

static idiosyncratic static idiosyncratic
MSE lag l¤ MSE rank r¤ lag m¤ MSE rank r¤ lag p¤

h=1 0.72 11 0.68 6 3 0.73 4 11
h=3 0.81 18 0.77 3 3 0.81 2 1
h=6 0.94 18 0.93 3 3 0.96 1 3
h=12 0.91 34 0.96 6 6 0.97 17 7
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Table 5.5 Harmonized In°ation Index

horizon AR FHLR SW

static idiosyncratic static LAG
MSE lag l¤ MSE rank r¤ lag m¤ MSE rank r¤ lag p¤

h=1 0.66 9 0.53 10 1 0.67 10 9
h=3 0.66 10 0.66 5 2 0.62 6 8
h=6 0.68 10 0.67 2 3 0.67 1 6
h=12 0.83 13 0.89 5 1 0.89 4 8

Results indicate that the FHLR method outperforms both the AR and the SW methods at
horizons h = 1; 3, and 6. For in°ation, the superiority of our method is clear only at one month
horizon, while for larger values of h, all methods yield roughly the same predictive performances.

It is interesting also to analyze the stability of the ranks r¤ that minimize the MSE in the
out-of-sample forecast exercise. This analysis is illustrated in Figures 5.1 and 5.2, where MSE
is plotted against di®erent values of the static rank r. The results based on the FHLR method
appear to be more stable, in this respect, than those based on the SW method.
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Figure 5.1. Industrial Production: mean squared errors
FHLR, SW and AR over static rank
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Figure 5.2. Consumer Price Index: mean squared errors
FHLR, SW and AR over static rank
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5 Summary and conclusions

This paper proposes a new forecasting method that exploits information from a large panel
of time series. The method is based on the dynamic factor model proposed by Forni, Hallin,
Lippi, and Reichlin (2000) and proceeds in two steps. In the ¯rst step, we estimate the lagged
covariances of the common and idiosyncratic components using the frequency domain approach
proposed by Forni et al. (2000) for computing linear aggregates of present and past observations
in the panel that minimize the ratio of the variance of the idiosyncratic component with respect to
that of the common component. We show that these aggregates allow for a consistent estimation
of the space spanned by the unobserved common components up to time T . The second step
consists in projecting the observation to be predicted onto the linear spacespanned by these
aggregates. We show that this projection converges to the optimal forecast as n and T go to
in¯nity. Being a linear combination of present and past observations only, the proposed predictor
solves the end-of-sample problems caused by two-sided ¯ltering in the estimation method of Forni
et al. (2000), while exploiting the advantages of dynamic information. Simulation results and
empiric results show very encouraging results.

6 Appendix

6.1 Generalized eigenvalues.

Denoting by ¡¡¡ and D two real, symmetric, positive semide¯nite n £ n matrices, consider all complex
numbers ºj , and all 1£ n complex vectors vj such that

¡¡¡~vj = ºjD~vj ;
vjD~vj = 1;
vjD~vm = 0; j 6= m:

(6.1)

The solutions ºj and vj of (6.1) are called the generalized eigenvalues and generalized eigenvectors of
the couple (¡¡¡;D), respectively (see Wilkinson, 1965). The problem (6.1) of obtaining all generalized
eigenvalues and eigenvectors of a given couple (¡¡¡;D) is known as a generalized eigenvalue problem.

Since ¡¡¡ and D in (6.1) have been assumed positive semide¯nite, the eigenvalues ºj are nonnegative
real numbers; throughout, we tacitly assume that they are ranked in decreasing order of magnitude. The
relation between generalized eigenvalues and maximization problems of the form (3.8) is established in
the following Lemma.

Lemma 6.1 Let ¡¡¡ and D denote two real, symmetric, positive semide¯nite n£n matrices, and consider
the n-tuple of maximization problems

aj := Arg max
a2Rn

a¡¡¡~a

subject to aD~a = 1; (6.2)

aD~am = 0 for 1 · m · j ¡ 1;

j = 1; : : : ; n. The solutions of (6.2) are those of the generalized eigenvalue problem (6.1). More precisely,
denoting by ºj and vj the generalized eigenvalues and eigenvectors of the couple (¡¡¡;D), the solutions of
(6.2) are aj = vj , and aj¡¡¡~aj = ºj .

Proof. The Lagrangian for j = 1 in (6.2) is a¡¡¡~a¡ ¸(aDa0 ¡ 1), so that the ¯rst order conditions are

¡¡¡~a = ¸D~a and aD~a = 1:
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These conditions are satis¯ed only by the generalized eigenvectors vj , j = 1; : : : ; n. Since ºj = vj¡¡¡~vj is
the value of the objective function, a1 = v1 solves the problem for j = 1.

The Lagrangian for j = 2 in (6.2) is a¡¡¡~a¡ ¸(aD~a¡ 1)¡ ¹(aD~v1), so that the ¯rst order conditions
take the form

2¡¡¡~a¡ 2¸D~a¡ ¹D~v1 = 0; aD~a = 1; and aD~vm = 0: (6.3)

Premultiplying by v1 and taking (6.1) into account, we get 2v1¡¡¡~a¡ ¹ = 2¸v1D~a¡ ¹ = ¡¹ = 0, so that
(6.3) reduces to

¡¡¡~a = ¸D~a; aD~a = 1; and aD~v1 = 0:

These conditions are satis¯ed only by the generalized eigenvectors vj , j = 2; : : : ; n, so that (6.2) for j = 2
is solved by a2 = v2. The lemma follows recursively. QED

Lemma 6.2 Consider a sequences of real, symmetric, semi-positive de¯nite n £ n matrices (¡¡¡n;Dn),
n = k; k + 1; : : : ; and assume that

(i) ¡¡¡n's kth largest eigenvalue ¸nk diverges as n!1, and
(ii) Dn's largest eigenvalue is bounded from above by ¹.

Then, the kth largest generalized eigenvalue of (¡¡¡n;Dn), ºnk, diverges as n!1.
Proof. Denote byWn the k £ n matrix whose rows are the k ¯rst eigenvectors of ¡¡¡n, and consider the
representation

WnDnW
0
n = UnRn

~Un;

where Un is a unitary k £ k matrix and Rn = Diag(rn1; : : : ; rnj) is the diagonal matrix of the k largest

eigenvalues of Dn. Clearly, rnj · ¹ for all j, whereas the rows of R¡1=2 ~UnWn satisfy the normalization
and the orthogonality constraints of problem (6.2), since

R¡1=2 ~UnWnDn
~WnUnR

¡1=2 = Ik:

Hence, Lemma 6.1 implies that R¡1=2 ~UnWn's last row, namely, ½½½n ~UnWn, where

½½½n := (0 ¢ ¢ ¢ 0 r¡1=2nk ); is such that ½½½n
~UnWn¡¡¡n ~WnUn~½½½n · ºnk. It follows that, denoting by ¤¤¤n :=

Diag(¸n1; : : : ; ¸nk) the diagonal matrix of ¡¡¡n's ¯rst k eigenvalues,

ºnk ¸ ½½½n ~Un¤¤¤nUn~½½½n ¸
¸nk
rk

¸ ¸nk
¹
:

The lemma follows. QED

Lemma 6.3 Let ·¡¡¡
Â

n0 and
·¡¡¡
»

n0 denote the common and idiosyncratic covariance matrices, as de¯ned in
(3.6). Then, under the assumptions of Proposition 4.1,

(i) the r = q(s+ 1) largest eigenvalues of ·¡¡¡
Â

n0 go to in¯nity as n!1, and
(ii) the eigenvalues of ·¡¡¡

»

n0 are bounded as n!1.
Proof. For any n-dimensional row vector v, we have

v·¡¡¡
»

n0~v = v

Z ¼

¡¼
·§§§
»

n(µ)dµ ~v =

Z ¼

¡¼
v·§§§

»

n(µ)~vdµ

·
Z ¼

¡¼
¸̧̧n;q+1(µ)dµ · 2¼¤

by (F3c). Part (ii) of the lemma follows. By the same argument, it follows from (F3a) that v¡¡¡»n0~v · 2¼¤.
Setting An := ¡¡¡

»
n0 ¡ ·¡¡¡

»

n0 and observing that v¡¡¡
»
n0~v cannot be negative, we obtain

jvAn~vj = jv¡¡¡»n0~v ¡ v·¡¡¡
»

n0~vj · 2¼¤:
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Since

An =

Z ¼

¡¼

³
§§§»n(µ)¡ ·§§§

»

n(µ)
´
dµ =

Z ¼

¡¼

³
·§§§
Â

n(µ)¡§§§Ân(µ)
´
dµ = ·¡¡¡

Â

n0 ¡¡¡¡Ân0;

it follows that
·¡¡¡
»

n0 + 2¼¤In = ¡¡¡
»
n0 + [2¼¤In ¡An]:

Since the matrix in square brackets is positive semi-de¯nite, Theorem 1 in Lancaster and Tismenetsky
(1985, p. 301) implies that the eigenvalues of the sum on the left-hand side are larger than or equal to

the corresponding eigenvalues of ¡¡¡Ân0. Denoting by ·¹
Â
nj , j = 1; : : : ; n the eigenvalues of ·¡¡¡

Â

n0, this entails
that ·¹Ânr + 2¼¤ ¸ ¹Ânr; part (i) of the lemma thus follows from Assumption (F3b0).

6.2 Proof of Lemma 3.1.

Chamberlain (1983, p. 1312) shows that, for any sequence an := (an1; : : : ; ann) such that
Pn

i=1 a
2
ni ! 0,

an»»»nt ¡! 0 in quadratic mean as n!1 provided that the ¯rst eigenvalue of the covariance matrix ¡¡¡»n0
of »»»nt is bounded as n!1|a condition that holds in view of Assumption (F3a). It follows that anxnt
converges to G(F; ¿ ) for any ¿ ¸ t. QED

6.3 Spectral estimation.

The ¯rst step of our forecasting method relies on the estimation

§§§Tn (µ) =
1

2¼

MX
k=¡M

wk¡¡¡
nT
k e¡iµk:

of the spectral density matrix §§§n(µ). In Section 4.1 we used a Bartlett window of size M = [T 1=3] + 1;
while in the empirical application of Section 4.2 we used a Bartlett window of M = 24, i.e. with weights

wk = 1 ¡ jkj
M+1 = 1 ¡ jkj

25 . The spectra were evaluated at 101 equally spaced frequencies in the interval

[¡¼; ¼], namely, at a grid of frequencies µh = 2¼h
100 , h = ¡50; : : : ; 50.

We then computed the dynamic principal component decomposition, as explained in Section 3.2, in
order to obtain ¡¡¡ÂTnk and ¡¡¡

»T
nk via the inverse discrete Fourier transforms (see (3.5))

¡¡¡ÂTnk :=
2¼

101

50X
h=¡50

§§§ÂTn (µh)e
iµhk and ¡¡¡»Tnk :=

2¼

101

50X
h=¡50

§§§»Tn (µh)e
iµhk;

with §§§»Tn (µ) = §§§n(µ)¡§§§ÂTn (µ).
In the simulation exercise of Section 4.1 we simply assumed q as known. In Section 4.2 we identi¯ed

q = 3 (as well as M = 24) using the information criterion suggested in Li·ska (2002).

6.4 Stacking.

While the ¯rst step of our forecasting method, involving dynamic eigenvalues and eigenvectors, is dynamic,
the second step, where projections are made onto a space of static principal components, has a more static
°avour. Intuitively, an improvement of predictive performance could be expected from introducing some
dynamic features into this second step. This could be achieved, as in Stock and Watson (1999), by
stacking the observations made at time t; t ¡ 1; : : : ; t ¡ g, for some g ¸ 1. The theory developed (for
g = 0) in Section 3 goes through with little changes. The consistency results of Section 3.4 hold without
stacking, and the empirical study of Section 4 all indicates that stacking does not bring any signi¯cant
improvement;

We brie°y indicate how the proofs of Section 3.4 are to be modi¯ed in order to handle such stacking.
For some g 2 N, de¯ne the n(g + 1)£ 1 stacks xnt;g := (x0nt x0n;t¡1 : : : x

0
n;t¡g)0: In the same way, stacks

ÂÂÂTnt;g and »»»
T
nt;g are obtained from the estimates ÂÂÂTnt and »»»

T
nt; with covariance matrices ¨̈̈

T
n;g, ¨̈̈

ÂT
n;g, and
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¨̈̈»T
n;g respectively; these matrices result in an obvious way from rearranging the elements of the covariance

matrices ¡¡¡Tnk, ¡¡¡
ÂT
nk and ¡¡¡

»T
nk . The generalized eigenvalue problem (3.8) then takes the form

ZTn`;g := Arg max
aaa2Rn(g+1)

a¨̈̈ÂT
n;g~a

subject to a¨̈̈»T
n;g~a = 1 (6.4)

a¨̈̈»T
n;g
~ZTnm;g = 0 for 1 · m < ` ; 1 · ` · n(g + 1);

leading to the r aggregates W kT
nt;g := ZTnk;gxnt;g; k = 1; : : : ; r (1 · r · n(g + 1)). The resulting forecasts

are ÁnTi;T+hjT :=
³
¨̈̈ÂT
n;ghZ

T
n (~Z

T
n ¨̈̈

T
n;gZ

T
n )
¡1~ZTnxnT;g

´
i
, where ZTn := (ZT 0n1;g ¢ ¢ ¢ ZT 0nr;g)0. Letting h = 0 and

T = t, the same method yields ÁnTi;t :=
³
¨̈̈ÂT
n0 Z

T
n (
~ZTn ¨̈̈

T
n;gZ

T
n )
¡1 ~ZTnxnt;g

´
i
:
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