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Abstract

Times between consecutive events are often of interest in medical studies.
Usually the events represent different states of the disease process and are
modeled using multi-state models. This paper introduces and studies a feasi-
ble estimation method for the transition probabilities in a progressive three-
state model. We assume that the vector of gap times (T1, T2) satisfies a
nonparametric location-scale regression model T2 = m(T1) + σ(T1)ε, where
the functions m and σ are ‘smooth’, and ε is independent of T1. Under this
model, Van Keilegom, de Uña-Álvarez and Meira-Machado (2011) proposed
estimators of the transition probabilities. In this paper, we study the per-
formance of their estimator in practice, we propose some modifications and
study practical issues related to the implementation of the estimator. In an
extensive simulation study the good performance of the method is shown.
Simulations also demonstrate that the proposed estimator compares favor-
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ably with alternative estimators. Furthermore, the proposed methodology is
illustrated with a real database on breast cancer.

Keywords: Censoring; computational statistics; location-scale model;
nonparametric regression; progressive three-state model; transition
probabilities.

1. Introduction

In many longitudinal studies, patients experience sequentially ordered
events. The events may be of the same nature (e.g. cancer patients may
experience recurrent disease episodes) or represent different states in the
disease process (e.g. alive and disease-free, alive with recurrence and dead).
If the events are of the same nature, they are usually referred to as recurrent
events and are modeled as such, whereas if they represent different states,
they are usually modeled through their intensity functions via so-called multi-
state models. A multi-state model (Andersen et al. 1993; Hougaard 2000) is
a model for a stochastic process that at any point in time may occupy one
state among a discrete set of states.

The times between two consecutive events (gap times) are often of inter-
est and lead to problems of great interest. These include the estimation of
several functions such as the bivariate distribution function, the conditional
distribution and the transition probabilities. In this paper we focus on the
estimation of the transition probabilities in a progressive three-state model.
These quantities provide useful means of characterizing and measuring the
disease progression. Traditionally the transition probabilities are estimated
via a nonparametric model (using e.g. the Aalen–Johansen estimator; Aalen
and Johansen, 1978). However, Meira-Machado et al. (2006) verified that
in non-Markov situations, the use of the Aalen-Johansen estimator to em-
pirically estimate the transition probabilities, may be inappropriate. In the
latter paper alternative estimators in the scope of the illness-death model are
proposed, which do not rely on the Markov assumption. In the presence of
heavy censoring, the estimation of these quantities in a completely nonpara-
metric way will be hard, especially in the right tail. In an attempt to solve
the inconsistency problems in the right tail, Van Keilegom et al. (2011) pro-
pose alternative ‘Markov-free’ estimators for the transition probabilities. The
authors assume a nonparametric location-scale regression model to transfer
tail information from light censored regions (small lifetimes) to regions with
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Figure 1: Progressive three-state model for the Galician breast cancer data

heavy censoring. The location-scale model assumes that the relation between
the gap times T1 and T2 is given by T2 = m(T1)+σ(T1)ε, where the functions
m and σ are ‘smooth’, and ε is independent of T1. On the basis of the idea
of transfer of tail information, the estimator of the error distribution is used
to introduce nonparametric estimators of the transition probabilities.

In this paper, we focus on some practical issues related to the compu-
tation and the implementation of the proposed estimator, building on the
work of Van Keilegom et al. (2011), who laid down the theoretical frame-
work of their estimator. We describe the method in detail, and discuss its
implementation in practice, which involves among others the selection of an
appropriate bandwidth and the construction of pointwise confidence bands
by means of a bootstrap approach.

The present paper is motivated by an application to a prospective study
on breast cancer from Galicia, Spain. This study was conducted at the
Hospital Clinico Universitario de Santiago (Santiago, Spain) to assess the
value of DNA index and S-phase fraction evaluated by flow cytometry as
prognostic markers in invasive breast carcinomas. In this study 584 incident
cases of breast cancer were diagnosed in the period between April 1991 and
December 2000. Out of these 584 patients, 172 relapsed (recurrence) and
among these 114 died. Under the gap time’s framework, T1 is the time from
randomization to cancer recurrence and T2 is the time from cancer recurrence
to death. These times are both subject to random right-censoring. Therefore,
we may use the progressive three-state model with states ‘alive and disease-
free’, ‘alive with recurrence’ and ‘dead’ (see Figure 1). Eleven patients died
without relapse. These patients are treated as censored on the recurrence
transition and they are not considered on the mortality transition from the
‘alive with recurrence’ state. The rest of the patients remained alive and
disease-free up to the end of the follow-up.

Figure 2 displays the scatter plot of the pair of gap times (T1, T2) for the
breast cancer study. We can see that the time to recurrence, T1, is more often
censored in the time interval between 2 and 6 years. We have a few (four)
complete (i.e. uncensored) observations for patients with time to recurrence
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Figure 2: Scatter plot of the pair of successive events for the Galician breast cancer data.

greater than 7 years. Similarly, we have a few complete observations with
time to death since recurrence, T2, greater than 4 years. This means that
it is expected that any estimator for the transition probabilities will behave
poorly in these areas (the right tail of the distribution).

One main point of interest in breast cancer studies is the diagnosis at a
sufficiently early stage of the disease. Thus, it is important to make long-
term predictions and to identify possible times of diagnosis (threshold values).
Therefore, it is very important to obtain good estimates for the transition
probabilities. Multi-state models are usually assumed to be Markovian. This
assumption states that the future of the process depends on the history only
through the present, thus being independent of the times of previous tran-
sitions. However, by ignoring the disease history, Markov models may have
severe limitations, and may be unsuitable for a number of applications. This
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is the case for the breast cancer dataset for which there is a strong (negative)
effect of time since recurrence on the mortality transition (Cadarso et al.
2010). In these cases the use of estimators that do not rely on the Markov
assumption is preferable. This is the case for the estimators proposed here.
On the other hand, as mentioned above (see Figure 2), the estimator should
be efficient in the right tail (for larger values of time to recurrence, T1, and
also for larger values of the time since recurrence, T2). The idea of transfer
of tail information, which is at the basis of the proposed estimator, will help
to improve the estimation in the right tail of T2.

The paper is organized as follows. In the next section, some notations are
introduced and the estimators of the transition probabilities are presented. In
Section 3, an extensive simulation study is performed to compare our method
with alternatives. Some considerations about the choice of the kernel function
and about the optimal bandwidth are given in Section 4. The analysis of the
Galician breast cancer data is presented in Section 5, where we also discuss
some practical computational issues. Finally, we conclude with a discussion
section.

2. The Method

Let (T1, T2) be a pair of gap times corresponding to two consecutive
events. As usual, assume that T1 and T2 are subject to random right censor-
ing, and that the vector (T1, T2) is independent of the censoring time C. Note
that both times are subject to right censoring and in particular the second gap
time T2 is subject to right censoring by C2 = (C−T1)I(T1 ≤ C). This means

that instead of observing (T1, T2), we only observe
(
T̃1,∆1, T̃2,∆2

)
, where

T̃1 = min(T1, C), ∆1 = I (T1 ≤ C), T̃2 = min(T2, C2) and ∆2 = I (T2 ≤ C2).
The data consist of independently and identically distributed (i.i.d.) copies(

T̃1i,∆1i, T̃2i,∆2i

)
, 1 ≤ i ≤ n

with the same distribution as
(
T̃1,∆1, T̃2,∆2

)
.

Due to the independence assumption between C and (T1, T2), the marginal
distribution of the first gap time T1 can be consistently estimated by the

Kaplan-Meier estimator (Kaplan and Meier, 1958) based on the
(
T̃1i,∆1i

)
’s.

Similarly, the distribution of the total time may be consistently estimated
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by the Kaplan-Meier estimator based on the
(
T̃1i + T̃2i,∆2i

)
’s. Recently,

Meira-Machado et al. (2006) introduced nonparametric estimators for the
transition probabilities, based on the Kaplan-Meier weights of the distri-
bution of the first gap time and the total time. In the presence of heavy
censoring, these estimators are in general inconsistent in the right tail of the
distribution. Such problems are very common with survival data and can
also appear when estimating e.g. the bivariate distribution of (T1, T2) and
the conditional distribution of T2 given T1. This situation has been discussed
by Van Keilegom and Akritas (1999), where T2 denotes a possible transfor-
mation of the variable of interest (subject to censoring) and T1 is a covariate
(not subject to censoring). In an attempt to solve the inconsistency prob-
lems in the right tail, the authors assumed a nonparametric location-scale
regression model to transfer tail information from light censored regions to
heavily censored ones. Recently, Van Keilegom et al. (2011), applied the
idea of transferring tail information to a pair of gap times (T1, T2) (that are
both subject to censoring), showing that the proposed estimators behave
well in the right tail even under heavy censoring. Among other quantities
the authors propose new estimators of the transition probabilities. To make
this transfer possible, it is assumed that (T1, T2) follow the heteroscedastic
regression model

T2 = m(T1) + σ(T1)ε, (1)

where the error variable ε is independent of T1, m(·) is a location functional
and σ(·) is a scale functional. These functionals are given by

m(x) =

∫ 1

0

F−1(s|x)J(s)ds and σ2(x) =

∫ 1

0

F−1(s|x)2J(s)ds−m(x)2, (2)

where F (y|x) = P (T2 ≤ y|T1 = x), F−1(s|x) = inf {t : F (t|x) ≥ s} is the
quantile function of T2 given T1 = x and J is a score function satisfying∫ 1

0
J(s)ds = 1. Model (1) implies that

F (y|x) = Fe

(
y −m(x)

σ(x)

)
, (3)

where Fe denotes the distribution of the error variable ε.
To estimate the functionals given in (2) we use an extension of the Beran
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(1981) estimator, which copes with censoring in the first gap time:

F̃ (y|x) = 1−
∏

T2i≤y,∆2i=1

[
1− Bni(x; an)∑n

j=1 Bnj(x; an)I(T2j ≥ T2i)

]
(4)

with

Bni(x; an) =
∆1iK ((x− T1i)/an)∑n
j=1 ∆1jK ((x− T1j)/an)

and K is a known probability density function (kernel) and an a sequence of
bandwidths. Then, we define

m̂(x) =

∫ 1

0

F̃−1(s|x)J(s)ds and σ̂2(x) =

∫ 1

0

F̃−1(s|x)2J(s)ds− m̂(x)2.

Now, let

Êi =
T̃2i − m̂(T̃1i)

σ̂(T̃1i)

and let F̂e be the Kaplan-Meier estimator of Fe based on the (Êi,∆2i)’s:

F̂e(y) = 1−
∏

Êi≤y,∆2i=1

[
1− 1

n− i+ 1

]
.

The estimator F̂e , together with relation (3), is the key for the construction
of an estimator of F (y|x):

F̂ (y|x) = F̂e

(
y − m̂(x)

σ̂(x)

)
.

Consider now the problem of estimating the transition probabilities phj(s, t).
These quantities represent the probability of an individual being in state j at
time t conditional on being in state h at time s. The transition probability
is defined for a stochastic process that at any point in time may occupy one
state among a discrete set of states. This includes, recurrent events data (or
gap times), which may be seen as arising from a progressive k-state model
(a special case of multi-state model). Under this framework, for the pair of
gap times (T1, T2), we have three transition probabilities to estimate:
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p11(s, t) = (1− F1(t))/(1− F1(s)),

p12(s, t) =
1

1− F1(s)

∫ t

s

[1− F (t− u|u)]F1(du),

p22(s, t) =

∫ s
0

[1− F (t− u|u)]F1(du)∫ s
0

[1− F (s− u|u)]F1(du)
,

where F1(·) is the marginal distribution of the first gap time, which we may
estimate by the Kaplan-Meier estimator based on the (T̃1i,∆1i)’s:

F̂1(t) = 1−
∏

T̃1i≤t,∆1i=1

[
1− 1

n− i+ 1

]
.

Now, replace F1 by F̂1 and F (y|x) by F̂ (y|x) to get the following estimators:

p̂11(s, t) =
(

1− F̂1(t)
)
/
(

1− F̂1(s)
)
,

p̂12(s, t) =
1

1− F̂1(s)

∫ t

s

[
1− F̂ (t− u|u)

]
F̂1(du),

p̂22(s, t) =

∫ s
0

[
1− F̂ (t− u|u)

]
F̂1(du)∫ s

0

[
1− F̂ (s− u|u)

]
F̂1(du)

.

We note that p̂11(s, t) is equivalent to the estimator proposed by Meira-
Machado et al. (2006) (denoted by M-M hereafter), and also equivalent to
the Aalen-Johansen estimator of p11(s, t). Furthermore, in the framework
of the progressive three-state model (Figure 1) the transition probabilities
to be estimated reduce to p11(s, t), p12(s, t) and p22(s, t), since p13(s, t) =
1− p11(s, t)− p12(s, t) and p23(s, t) = 1− p22(s, t).

8



3. Simulation Study

In this section the results of a simulation study are presented, to assess
the behavior of the proposed estimators for finite sample sizes.

Given the first gap time T1 the second gap time T2 was generated accord-
ing to model (1) with m(T1) = 0.5 + 4 exp(−0.1T1), σ(T1) = 1.5 − 0.5T1/6
and ε ∼ N (0, 1). The censoring variable C was drawn independently from
a Uniform[0, a]. Note that the constant a determines the expected propor-
tion of censored responses. We have chosen several values for a, in such
a way that the censoring percentages of the total time Y = T1 + T2 equal
0%, 10.8% (4.9% and 5.9% for the first and second gap times respectively),
21.6% (10% and 11.6 %), 43.3% (20% and 23.4%), 64.9% (29.8% and 35.0%).
In all cases, T1 was chosen to be a uniform random variable on the in-
terval [0, 6], being independent of the error ε and the censoring time C.
The model behavior was evaluated using one thousand independent samples{

(T̃1i, T̃2i,∆1i,∆2i); i = 1, . . . , n
}

generated from model (1), with different

sample sizes: n = 50, n = 100, n = 150 and n = 300. The model was
evaluated in the following points (s, t): (1,2), (1,3.5), (1,5), (2.5,3), (2.5,4),
(2.5,5), (4,4.5), (4,4.75) and (4,5). The true values of phj(s, t) for all con-
sidered values of h, j, s and t are reported in Table 1. In order to evaluate
the performance of the transition probability functions p11, p12 and p22 we
examined respectively the mean squared errors MSE11, MSE12 and MSE22,
defined as follows:

MSEhj = (1/1000)
∑1000

i=1

(
p̂

(i)
hj (s, t)− phj(s, t)

)2

,

where p̂
(i)
hj (s, t) is the estimator obtained from sample i.

(s, t)
(1,2) (1,3.5) (1,5) (2.5,3) (2.5,4) (2.5,5) (4,4.5) (4,4.75) (4,5)

p11(s, t) 0.8000 0.500 0.2000 0.8571 0.5714 0.2857 0.7500 0.6250 0.5000
p12(s, t) 0.1966 0.4736 0.6614 0.1407 0.4159 0.6611 0.2459 0.3677 0.4882
p22(s, t) 0.9763 0.8167 0.4498 0.9678 0.8349 0.5993 0.9138 0.8609 0.8017

Table 1: True values of the transition probabilities phj(s, t) (1 ≤ h ≤ j ≤ 2) for different
values of (s, t) under the simulated model.

The performance of the location-scale estimator (LS; Van Keilegom et
al. 2011) is compared with the estimator proposed by Meira-Machado et al.
(2006).
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(s, t)
n P (∆2 = 0) (1,2) (1,3.5) (1,5) (2.5,3) (2.5,4) (2.5,5) (4,4.5) (4,4.75) (4,5)

50

64.9 7.2 21.6 41.4 19.1 51.3 79.8 110.7 146.9 185.6
43.3 4.6 14.4 25.6 10.5 34.6 49.5 50.3 73.8 97.3
21.6 1.6 6.4 11.1 5.0 12.4 21.1 18.4 29.7 41.9
10.8 0.7 3.3 6.5 2.2 6.7 11.8 9.0 15.6 21.4

0 0.2 1.5 3.8 0.2 2.2 6.1 2.2 4.9 8.7

100

64.9 4.0 12.7 13.8 9.9 21.5 26.9 37.6 53.8 68.1
43.3 2.7 7.8 7.7 5.6 11.7 15.1 19.8 31.3 35.3
21.6 1.5 3.1 3.2 2.5 4.9 6.7 9.9 14.9 16.6
10.8 0.8 1.5 1.6 1.0 2.4 3.3 4.4 6.4 8.6

0 0.2 0.4 0.2 0.2 0.1 0.5 0.6 1.3 2.3

150

64.9 1.9 7.4 10.3 5.9 12.7 20.5 36.3 49.1 53.4
43.3 1.2 4.8 5.2 3.2 8.4 10.2 17.5 24.8 26.0
21.6 0.5 2.0 2.0 1.6 3.6 4.1 7.7 10.8 10.4
10.8 0.3 1.0 0.9 0.8 1.6 1.9 3.9 6.2 4.6

0 0.0 0.2 0.0 0.2 0.1 0.0 1.0 2.3 0.0

300

64.9 1.2 3.3 4.6 2.7 6.3 9.2 14.2 21.2 24.8
43.3 0.8 2.1 2.7 1.6 3.6 5.3 8.6 11.5 14.3
21.6 0.3 0.9 1.1 0.8 1.8 2.2 3.6 4.8 5.4
10.8 0.2 0.4 0.5 0.4 0.8 1.0 1.7 2.6 2.6

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0

Table 2: Simulation-based averages of the MSE’s (×10000) of the estimated transition
probabilities p̂11(s, t) along 1000 replications for different sample sizes, and different cen-
soring percentages.

Tables 2, 3 and 4 summarize, for the sample sizes considered, numeri-
cal average results of the considered mean squared errors (MSE) over 1000
replicated samples according to each model of the corresponding scenario.
The results are presented in terms of the average of the MSE over the 1000
simulated samples. From these tables, we obtain the following conclusions.
As one would expect the simulations show a good behavior of the proposed
estimator (LS) when compared to the M-M estimator. In both cases the
MSE’s increase with increasing probability of censoring and decrease with
increasing sample size.

Graphical average results for the LS method are displayed in Figures
3 and 4. These figures plot the data generating functions and pointwise
95% oscillation limits of the estimates p̂12 and p̂22 along the simulations, for
percentages of censored data of 0%, 21.6% and 64.9%. The good performance
of the resulting estimates of p12 is evident, recovering the functional forms
of the corresponding true curves very successfully. The use of transfer of tail
information for the estimation of p22 reveals to be somewhat more difficult.
However, in both cases our approach yields estimators with small variability.

In Figures 5 and 6 the M-M estimators and pointwise 95% oscillation
limits of the estimates p̂12 and p̂22 are plotted, respectively. Note that these
figures can be compared with Figures 3 and 4, respectively. From these
figures we observe that the variability of the M-M estimator is clearly larger
than that of the LS estimator.
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(s, t)
n P (∆2 = 0) (1,2) (1,3.5) (1,5) (2.5,3) (2.5,4) (2.5,5) (4,4.5) (4,4.75) (4,5)

50

64.9
M-M 68.8 163.2 246.0 153.9 381.9 515.1 352.8 608.5 860.8
LS 7.2 23.5 47.1 18.4 53.0 88.6 106.1 144.5 187.9

43.3
M-M 28.3 57.4 99.2 46.5 116.5 171.0 136.1 195.7 265.3
LS 4.7 15.8 29.2 10.4 34.7 50.8 48.4 72.2 97.0

21.6
M-M 9.3 23.4 50.4 13.3 43.8 68.0 48.2 73.9 100.4
LS 1.6 6.8 16.4 4.9 11.7 21.3 17.8 28.5 40.5

10.8
M-M 4.2 12.9 34.7 6.6 17.8 34.5 19.2 27.5 38.8
LS 0.7 3.5 12.3 2.1 5.8 11.4 8.2 14.4 19.9

0
M-M 0.2 4.8 23.8 0.6 3.7 16.1 2.3 4.3 8.9
LS 0.1 1.1 11.0 0.1 1.1 5.5 1.5 3.2 5.3

100

64.9
M-M 37.6 94.9 133.4 58.7 148.8 227.3 214.2 363.8 496.9
LS 4.0 13.7 16.5 9.6 20.1 29.3 49.4 60.4 72.0

43.3
M-M 16.4 29.5 39.5 18.8 52.0 69.8 61.4 87.2 113.8
LS 2.7 9.5 11.8 5.4 10.9 18.0 29.9 38.6 39.4

21.6
M-M 5.3 12.0 19.4 6.4 16.2 23.4 20.6 30.3 38.5
LS 1.8 3.9 7.3 2.4 5.1 8.3 17.6 19.2 17.6

10.8
M-M 3.0 6.7 13.7 3.2 8.0 14.6 9.2 13.9 17.9
LS 1.1 1.7 6.2 0.9 2.6 4.8 10.5 9.5 8.9

0
M-M 0.6 2.2 9.0 0.2 2.0 5.4 0.5 1.4 3.0
LS 0.6 0.7 5.7 0.1 0.9 2.1 6.2 5.0 4.0

150

64.9
M-M 23.0 57.5 83.2 28.0 78.4 136.7 141.8 199.2 265.1
LS 1.9 10.3 16.4 5.9 13.7 26.9 35.2 49.6 52.2

43.3
M-M 8.1 17.3 31.7 11.4 30.9 50.2 45.4 63.8 81.8
LS 1.2 7.0 8.8 3.1 8.0 12.3 17.1 24.4 24.5

21.6
M-M 2.6 8.1 14.1 4.1 10.9 19.1 13.6 19.6 25.1
LS 0.6 2.4 4.8 1.5 3.6 5.2 7.5 10.8 9.6

10.8
M-M 1.1 4.3 10.3 1.8 5.4 11.5 7.0 10.7 12.5
LS 0.3 1.3 3.4 0.7 1.4 3.0 3.5 5.4 4.9

0
M-M 0.1 1.7 7.9 0.1 0.8 4.7 0.7 1.8 1.5
LS 0.1 0.6 3.7 0.1 0.2 1.5 0.7 1.6 0.3

300

64.9
M-M 9.2 28.9 48.2 18.0 46.8 99.0 90.9 143.6 190.2
LS 1.2 5.4 8.4 2.6 7.4 15.8 14.0 21.5 25.6

43.3
M-M 3.9 9.6 12.9 6.1 14.7 19.4 26.2 38.3 41.7
LS 0.8 3.4 4.7 1.6 3.8 6.9 8.4 11.3 13.6

21.6
M-M 1.5 4.2 6.6 1.9 5.7 7.7 8.5 11.6 17.1
LS 0.4 1.3 2.5 0.8 1.8 2.8 3.6 4.6 5.3

10.8
M-M 0.8 2.3 5.2 1.0 2.7 5.1 3.6 5.1 7.0
LS 0.2 0.7 1.9 0.4 0.9 1.5 1.6 2.3 2.5

0
M-M 0.1 1.1 3.4 0.1 0.7 2.3 0.2 0.5 0.9
MLS 0.1 0.6 1.7 0.0 0.4 1.4 0.1 0.0 0.4

Table 3: Simulation-based averages of the MSE’s (×10000) of the estimated transition
probabilities p̂12(s, t) along 1000 replications for different sample sizes and different cen-
soring percentages. Both the location-scale (LS) estimator and the estimator of Meira-
Machado et al (M-M) are given.
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(s, t)
n P (∆2 = 0) (1,2) (1,3.5) (1,5) (2.5,3) (2.5,4) (2.5,5) (4,4.5) (4,4.75) (4,5)

50

64.9
M-M 218.9 487.2 872.9 37.2 135.9 272.4 51.7 85.4 123.9
LS 6.8 81.7 206.3 4.6 41.9 97.5 8.0 16.2 26.9

43.3
M-M 19.4 238.9 453.4 25.9 105.6 184.5 38.1 60.7 80.1
LS 6.4 75.1 132.5 3.5 32.4 68.9 5.4 11.0 18.5

21.6
M-M 19.2 191.8 315.2 21.0 85.2 128.5 28.5 44.1 57.3
LS 6.5 71.3 150.9 3.0 31.5 66.8 4.0 7.8 11.8

10.8
M-M 19.6 175.2 293.3 19.5 84.6 120.4 27.2 41.8 55.5
LS 4.9 72.9 178.6 2.8 33.5 78.3 4.5 8.9 13.3

0
M-M 21.1 175.6 252.0 20.0 79.0 103.6 25.5 37.8 52.5
LS 5.4 89.8 132.5 3.5 35.3 69.6 5.0 10.2 16.0

100

64.9
M-M 15.9 168.7 390.3 12.0 64.5 124.6 25.9 38.9 46.1
LS 8.9 37.8 96.7 2.6 16.3 49.7 3.0 7.0 13.7

43.3
M-M 14.0 117.4 230.5 9.2 49.7 83.0 18.5 28.7 32.3
LS 8.5 39.5 57.6 2.1 14.5 28.4 1.9 4.0 6.9

21.6
M-M 13.0 102.8 191.3 7.9 39.4 66.6 13.6 21.1 25.8
LS 4.9 39.8 69.3 1.6 14.5 28.9 1.8 3.7 5.8

10.8
M-M 13.5 94.9 171.5 7.4 34.5 59.0 13.5 19.4 25.4
LS 2.4 33.0 88.4 1.2 15.4 34.3 2.1 4.2 6.7

0
M-M 13.3 91.0 161.1 7.0 32.2 55.8 13.0 18.4 24.3
LS 2.5 40.2 88.7 1.4 15.8 35.8 2.1 4.4 7.0

150

64.9
M-M 11.0 93.0 206.6 8.3 39.9 76.6 14.8 26.8 36.8
LS 9.4 27.2 64.9 2.4 10.9 34.6 2.4 5.5 10.7

43.3
M-M 10.1 79.3 156.4 6.8 28.0 57.0 14.5 21.9 30.0
LS 9.9 38.0 42.2 2.3 12.5 23.0 1.5 3.3 6.1

21.6
M-M 9.3 69.4 112.7 5.8 25.3 43.1 11.8 15.3 20.5
LS 2.8 26.2 56.7 1.1 10.7 21.7 1.4 2.8 4.4

10.8
M-M 8.6 60.1 96.9 5.4 22.7 38.4 10.6 13.8 18.7
LS 3.5 31.8 60.6 1.1 9.8 21.2 1.2 2.4 3.9

0
M-M 8.4 60.0 94.5 5.5 21.5 34.0 9.4 12.5 16.8
LS 1.4 23.6 98.0 0.8 10.6 31.3 1.8 3.9 6.5

300

64.9
M-M 6.2 42.6 98.3 3.6 16.7 36.2 8.9 13.4 18.7
LS 8.3 15.5 43.6 1.7 5.2 25.6 1.3 3.7 8.3

43.3
M-M 5.3 32.5 68.3 3.1 12.0 28.3 6.3 10.0 14.4
LS 8.8 32.4 17.3 2.1 8.3 10.3 0.7 1.6 3.4

21.6
M-M 4.7 29.9 50.7 2.7 11.5 20.6 5.3 7.7 10.5
LS 5.4 30.6 26.1 1.4 7.8 9.6 0.6 1.2 2.0

10.8
M-M 4.6 25.6 47.7 2.4 10.3 18.3 4.9 7.1 9.2
LS 0.9 12.6 54.0 0.4 5.5 15.9 1.0 2.2 3.5

0
M-M 4.4 22.9 44.5 2.4 9.9 17.1 4.6 6.4 8.4
LS 1.0 20.7 60.2 0.5 7.0 17.6 0.8 1.6 2.6

Table 4: Simulation-based averages of the MSE’s (×10000) of the estimated transition
probabilities p̂22(s, t) along 1000 replications for different sample sizes and different cen-
soring percentages.
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4. About the choice of the kernel and the optimal bandwidth

For the kernel weights in the Beran-type estimator (4) we use the bi-
quadratic kernel K(u) = (15/16) (1− u2)

2
I (|u| ≤ 1), but we believe that

this choice has relatively little impact on the mean squared error. However,
the use of different bandwidths in the calculation of the Beran-type estimator,
F̃ (y|x), may have a substantial effect on the performance of the estimators.
In the paper by Van Keilegom et al. (2011), the bandwidth sequence an is
chosen by minimizing the asymptotic mean-squared error (AMSE):

AMSE = AsVar
(
F̃ (y|x)

)
+
(

AsBias
(
F̃ (y|x)

))2

= (nan)−1s2(y|x)+a4
nb

2(y|x),

where the precise formulas for s(y|x) and b(y|x) are derived from the formulas
provided in Van Keilegom et al. (2001). The adaptation to the context of
censored T1 is obtained by calculating Beran’s estimator by using only the
observations for which ∆1i = 1. Hence the optimal choice for the bandwidth
sequence is given by

an = an(x, y) =

(
s2(y|x)

4b2(y|x)

)1/5

n−1/5.

However, this method cannot be directly applied for real data. To over-
come this problem, Dabrowska (1992) replaces all the unknown quantities
in the expressions of s(y|x) and b(y|x) (H (y|x), Hu (y|x) and their deriva-
tives) by consistent estimators. Another way to select the bandwidth is to
use bootstrap techniques (see, for example, Li and Datta, 2001). We believe
that the performance of the location-scale regression model depends on how
successful the location and scale functionals m(x) and σ2(x) are estimated.
Therefore, in this paper we propose to use two bandwidths, one for each
functional. More precisely, we have

m̂h1(x) =

∫ 1

0

F̃−1
h1

(s|x)J(s)ds and σ̂2
h2

(x) =

∫ 1

0

F̃−1
h2

(s|x)2J(s)ds− m̂h1(x)2,

where F̃hj
(y|x) stands for the Beran-type estimator (4) computed using the

optimal bandwidth hj, j = 1, 2.
In this paper we propose the following procedure to obtain the bandwidth

h1 used to obtain the estimator m̂ and the bandwidth h2 used to obtain σ̂:
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Step 1. First for b = 1 to B (e.g. B=1000) simulate two independent random
samples

Sb1 =
{
T̃ •1b1i , T̃

•1b
2i ,∆

•1b
1i ,∆

•1b
2i

}n
i=1

and Sb2 =
{
T̃ •2b1i , T̃

•2b
2i ,∆

•2b
1i ,∆

•2b
2i

}n
i=1

by randomly sampling the n items from the original data set
{
T̃1i, T̃2i,∆1i,∆2i

}n
i=1

with replacement.

Step 2. Then, the bandwidth h1 is automatically selected by minimizing
the following weighted cross-validation error criterion:

CV1 =
∑B

b=1

∑n

i=1
Wi

(
T̃ •2b2i − m̂•b(T̃ •2b1i )

)2

,

where m̂•b is the estimate obtained from the sample Sb1 and Wi is the Kaplan-

Meier weight based on
(
T̃ •2b1i + T̃ •2b2i ,∆

•2b
2i

)
.

Step 3. Using the h1 obtained in the previous step we compute the residuals
Ẽ•1bi = T̃ •1b2i − m̂•b(T̃ •1b1i ) and Ẽ•2bi = T̃ •2b2i − m̂•b(T̃ •2b1i ), and then h2 is selected
in a similar way as in Step 1 by minimizing

CV2 =
∑B

b=1

∑n

i=1
Wi

(
Ẽ•2bi − σ̂2•b(T̃ •2b1i )

)2

,

where σ̂2•b is the estimate obtained from the sample
{
T̃ •1b1i , Ẽ

•1b
i ,∆•1b

1i ,∆
•1b
2i

}n
i=1

.

For the location and scale functionals m̂(x) and σ̂(x) we need to choose
a proper score function J . Since F̃−1(s|x) is only defined for s less than
F̃ (∞|x), the score function must be 0 from that point on (otherwise m̂(x)
and σ̂(x) are not defined). Therefore we choose J(s) = I(a ≤ s ≤ b)/(b− a),
where a = 0 and b = miniF̃ (+∞|Xi). This choice of b ensures that m̂(x)
and σ̂(x) are always defined.

5. Breast Cancer Study

To illustrate the methods discussed in Section 2, we use survival data on
breast cancer, diagnosed at the Santiago University Teaching Hospital, Spain.
In the period between 1991 and 2000, 584 incident cases of breast cancer were
diagnosed. The main goal of this study was to assess the prognostic value of
flow cytometry-based proliferation markers, DNA index and S-phase fraction,
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in breast cancer. Other goals included the study of the relationship between
the different covariates and the disease evolution (Chavez-Uribe et al., 2007;
Cadarso et al. 2010).

For each patient the vital status and date of relapse or death were ob-
tained from their physicians, until the end of follow-up on December 31, 2004.
In the period between 1991 and 2004, out of the 584 women, 402 (69%) were
alive and disease-free, 167 (29%) experienced a recurrence (local-regional or
metastases), 117 patients (20%) died due to cancer, and 11 due to other
causes. In the analysis of the breast cancer data set, recurrence may be re-
garded as an associated state of risk, and the progressive three-state model
depicted in Figure 1 can thus be used. The 11 patients dying due to other
causes are included in the study but in the multi-state model (of Figure 1)
they are treated as censored on the recurrence transition and they are not
considered on the mortality transition from the ‘alive with recurrence’ state.

As mentioned in the introduction section, in these longitudinal cancer
studies, the amount of time spent in the healthy state (sojourn time) is often
of interest. By including covariates depending on the history (Kay, 1986),
we verified the assumption that the transition rate from state 2 to state 3 is
affected by the time spent in the previous state (p-value <0.05). This allowed
us to conclude that the Markov model was unsatisfactory for the Galician
breast cancer dataset.

Cancer patients who have experienced a recurrence are known to be at
a substantially higher risk of death, thus rendering it essential to make di-
agnosis at sufficiently early stages. A balance between the number of points
of diagnosis and the risk of recurrence should exist, making it essential to
obtain good estimates for the transition probabilities. Since the process for
the breast cancer data is not Markovian it is preferable to use estimators
which do not rely on the Markov assumption. Both estimators considered in
this section are free of the Markov assumption and therefore are suitable for
the breast cancer data.

In this section we present results (plots) for the transition probabilities
using the location-scale regression model (LS) and the estimator by Meira-
Machado et al (2006). Recall that the results obtained in the simulation
section suggest that the LS estimator is more efficient than the M-M estima-
tor.

To illustrate the difference between the estimator proposed by Meira-
Machado et al. (2006) and the new estimator (LS), we present several plots.
Figures 7, 8 and 9 depict respectively the LS nonparametric estimates of
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p11(s, t), p12(s, t) and p22(s, t) together with pointwise confidence bands based
on the bootstrap. Likewise, in Figures 9 and 10 the M-M estimators are plot-
ted. Given s and t, the steps for construction of the confidence interval for
the true transition probabilities phj(s, t) are as follows:

Step 1. Obtain the estimated p̂hj(s, t) from the sample
{
T̃1i, T̃2i,∆1i,∆2i

}n
i=1

as explained above.

Step 2. For b = 1 to B (e.g. B = 1000), simulate a random sample{
T̃ •b1i , T̃

•b
2i ,∆

•b
1i ,∆

•b
2i

}n
i=1

by randomly sampling the n items from the original

data set
{
T̃1i, T̃2i,∆1i,∆2i

}n
i=1

with replacement (that is, each individual

value (T̃1i, T̃2i,∆1i,∆2i) has a probability n−1 of occurring), and obtain the
bootstrap estimates p̂bhj(s, t).

Finally, the (1− α) 100% limits for the confidence interval of phj(s, t) are
given by (

2p̂hj(s, t)− p̂(1−α/2)
hj (s, t), 2p̂hj(s, t)− p̂(α/2)

hj (s, t)
)
,

where p̂
(α)
hj (s, t) represents the α× 100%-percentile of the bootstrapped esti-

mates p̂bhj(s, t) for b = 1, . . . , B.
As expected, the LS estimator has less variability than the M-M estima-

tor, which has fewer jump points as s increases. Since few events (‘death’)
are observed at higher time values, consistency problems are expected at the
right tail of the distribution when using the M-M estimator. These features
can be seen in all plots but especially in the figures of the transition probabil-
ity p22(s, t). While the LS estimator decreases smoothly with time (showing
a good behavior in the right tail), the M-M estimator shows a sharp decrease
to zero.

We note however the strange shape of the wiggly curve of the transition
probability p12 when using the LS estimator. Though this can be explained
by the location-scale model, we believe that a smoothed version of this curve
could be more plausible. This could be obtained by smoothing the functions
F1 and Fe. Further details about this topic are out of the scope of the present
work and will be reported elsewhere.
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6. Discussion

In this paper we proposed and investigated nonparametric estimators for
the transition probabilities in a progressive three-state model. The estima-
tors are based on a location-scale model which is typically used to transfer
tail information from lightly censored areas to heavily censored ones. We ver-
ified through simulations that the method based on the location-scale model
may be much more efficient than other available estimators. We consid-
ered some modifications and practical issues while illustrating the proposed
methodology using a real database on breast cancer from Galicia in Spain.

The estimates obtained from the location-scale regression method re-
vealed to be quite wiggly (in particular the estimated curves for the transi-
tion probability p12). We therefore propose to use smoothed versions of these
curves (obtained by smoothing the functions F1 and Fe). The smoothed ver-
sion of the location-scale estimator provides smoothed curves for the transi-
tion probabilities which we believe to be more plausible for explaining real
problems. The asymptotic properties of this smoothed estimator are not yet
studied and such a theory is left for future research. Simulation results (not
reported here) suggest a good behavior of these smoothed estimators.

We plan to provide users a R based package which, among others, will
enable the estimation of the transition probabilities using the location-scale
model. This package will be submitted to CRAN.
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Figure 3: True transition probability functions p12(s, t) and 95% oscillation limits of the
LS estimates p̂12(s, t) for s = 1.009, s = 2.526 and s = 4.043. Estimates with n = 300
for percentage of censored data equal to 0 % (first row), 21.6 % (second row) and 64.9 %
(third row).
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Figure 4: True transition probability functions p22(s, t) and 95% oscillation limits of the
LS estimates p̂12(s, t) for s = 1.009, s = 2.526 and s = 4.043. Estimates with n = 300
for percentage of censored data equal to 0 % (first row), 21.6 % (second row) and 64.9 %
(third row).
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Figure 5: True transition probability functions p12(s, t) and 95% oscillation limits of the
M-M estimates p̂12(s, t) for s = 1.009, s = 2.526 and s = 4.043. Estimates with n = 300
for percentage of censored data equal to 0 % (first row), 21.6 % (second row) and 64.9 %
(third row).
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Figure 6: True transition probability functions p22(s, t) and 95% oscillation limits of the
M-M estimates p̂12(s, t) for s = 1.009, s = 2.526 and s = 4.043. Estimates with n = 300
for percentage of censored data equal to 0 % (first row), 21.6 % (second row) and 64.9 %
(third row).
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Figure 7: Estimated transition probabilities p̂11(s, t), for some fixed values of s, using the
LS estimator together with the corresponding 95 % pointwise confidence bands.

24



2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

s= 0.5

2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

s= 1

4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

s= 4

7 8 9 10 11 12

0.
00

0.
05

0.
10

0.
15

0.
20

s= 7

Figure 8: Estimated transition probabilities p̂12(s, t), for some fixed values of s, using the
LS estimator together with the corresponding 95 % pointwise confidence bands.
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Figure 9: Estimated transition probabilities p̂22(s, t), for some fixed values of s, using the
LS estimator together with the corresponding 95 % pointwise confidence bands.
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Figure 10: Estimated transition probabilities p̂12(s, t), for some fixed values of s, using the
M-M estimator together with the corresponding 95 % pointwise confidence bands.
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Figure 11: Estimated transition probabilities p̂22(s, t), for some fixed values of s, using the
M-M estimator together with the corresponding 95 % pointwise confidence bands.
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