BOUNDARY ESTIMATION IN THE PRESENCE OF MEASUREMENT ERROR WITH UNKNOWN VARIANCE

KNEIP, A., SIMAR, L. and I. VAN KEILEGOM

This file can be downloaded from http://www.stat.ucl.ac.be/ISpub
Boundary estimation in the presence of measurement error with unknown variance

Alois KNEIP\textsuperscript{1}    Léopold SIMAR\textsuperscript{2}    Ingrid VAN KEILEGOM\textsuperscript{2}

December 8, 2010

Abstract

Boundary estimation appears naturally in economics in the context of productivity analysis. The performance of a firm is measured by the distance between its achieved output level (quantity of goods produced) and an optimal production frontier which is the locus of the maximal achievable output given the level of the inputs (labor, energy, capital, etc.). Frontier estimation becomes difficult if the outputs are measured with noise and most approaches rely on restrictive parametric assumptions. This paper contributes to the direction of nonparametric approaches. A slightly simplified version of the general problem can be written as $Y = X \cdot Z$, where $Y$ is the observable output, $X$ is the unobserved variable of interest with support $[0, \tau]$ and density $f$, and $Z$ is the noise. Suppose that $f(\tau) > 0$, and that $Z$ is independent of $X$ and is log-normally distributed with $\log Z \sim N(0, \sigma^2)$ for some unknown variance $\sigma^2$. The novelty of our approach consists in proposing a method for simultaneous estimation of $\tau$ and $\sigma$. The asymptotic consistency and the rate of convergence of the estimators are established, and simulations are carried out to verify the performance of the estimators for small samples. We briefly describe how the approach could be extended to the problem of estimating a frontier function.

Key words: deconvolution, stochastic frontier estimation, nonparametric estimation, penalized likelihood

\textsuperscript{1} Department of Economics, University of Bonn, Bonn, Germany, E-mail: akneip@uni-bonn.de
\textsuperscript{2} Institute of Statistics, Université catholique de Louvain, Voie du Roman Pays 20, 1348 Louvain-la-Neuve, Belgium, E-mail: leopold.simar@uclouvain.be, ingrid.vankeilegom@uclouvain.be.
1 Introduction

Boundary estimation problems arise naturally in economics, in the context of productivity analysis. When analyzing the productivity of firms, one may compare how the firms transform their inputs $W$ (labor, energy, capital, etc.) into an output $X$ (the quantity of goods produced). In this context, the set of technically possible outputs is determined by a production frontier $\varphi(W)$ which is the geometric locus of optimal production plans. The economic efficiency of the firm operating at the level $(W_0, X_0)$ is then measured in terms of the distance between its production level $X_0$ and the boundary level $\varphi(W_0)$.

Efficiency and productivity analysis have been applied in many different fields of economic activity, including industry, hospitals, transportation, schools, banks, public services, etc. Frontier models were even introduced to measure the performance of portfolios in finance, in the line with the seminal work of Markovitz (1959) using Capital Assets Pricing Models (CAPM), where $W$ measures the risk of a portfolio and $X$ its average return. Gattoufi, Oral and Reisman (2004) cite more than 1,800 published articles on efficiency analysis, appearing in more than 400 journals in business and economics.

In deterministic frontier models it is assumed that $\varphi(W)$ corresponds to the boundary of the support of $X$. For a random sample $(W_i, X_i)$ one then has $P(X_i \leq \varphi(W_i)) = 1$. Most nonparametric approaches are then based on the idea of enveloping the data. Farrell (1957) introduced Data Envelopment Analysis (DEA), based on either the conical hull or the convex hull of the data. Deprins et al. (1984) extended the idea to non convex sets and suggested the Free Disposal Hull (FDH) estimator, equal to the smallest free disposal set containing all the data. Statistical properties of these estimators are well known (see Banker, 1993; Korostelev et al., 1995a,b; Kneip et al., 1998; Gijbels et al., 1999; Park et al. 2000; Jeong, 2004; Jeong and Park, 2006; Kneip et al. 2008; Park et al. 2010; Daouia et al. 2010). However all these methods rely on the unrealistic assumption of deterministic frontier models that the outputs $X_i$ are observed without noise. In the presence of noise, the envelopment methods will be biased and not consistent.

More realistic stochastic frontier models assume that observed outputs $Y_i$ represent underlying, “true” outputs $X_i$ contaminated with some additional noise. In most of the stochastic frontier approaches developed in the econometric literature, a fully parametric model is assumed. For instance, in the pioneering work of Aigner et al. (1977) and Meekusen and van den Broek (1977), we have an iid sample of $(W_i, Y_i)$ of inputs and outputs generated by the basic model

$$Y_i = \varphi(W_i) \exp(-U_i) \exp(V_i),$$

where $\varphi(W_i)$ is a parametric production function (e.g. a Cobb-Douglas) quantifying...
the optimal attainable output for a given input level $W_i$. Moreover, $U_i > 0$ is a positive random variable having a jump at the origin that represents the inefficiency; in parametric models, $U_i$ has a known density depending on one or two unknown parameters (often a half normal, truncated normal or exponential). So the latent unobserved output is $X_i = \varphi(W_i) \exp(-U_i)$. The noise term is $Z_i = \exp(V_i)$, where $V_i \in \mathbb{R}$ has usually a normal density with mean zero and unknown variance. Finally, $U_i$ is supposed to be independent of $V_i$. These approaches have been very popular in the econometric literature and estimation is based on standard parametric techniques, like maximum likelihood or modified least squares methods (see Greene 2008, for a survey).

However, these approaches rely on very restrictive assumptions on both the frontier function and on the stochastic part of the model. A crucial issue is the specification of the distribution of the inefficiencies $U_i$. While some central limit arguments can be advocated for the Gaussian noise, there does usually not exist any information justifying particular distributional assumptions on $U_i$.

Recent attempts have been made to attack the problem from a non- or semi-parametric point of view. Using nonparametric techniques it is possible to avoid any parametric assumptions on the structure of $\varphi(W_i)$. Important contributions in this direction are Fan et al. (1996) and Kumbhakar et al. (2007). They, however, still rely on parametric specifications for the density of $U_i$.

Even when assuming Gaussian noise, dropping parametric assumptions on the structure of the distribution of $U_i$ greatly complicates the problem and enforces to develop completely new methods. Estimation of the boundary $\varphi(W)$ of $X$ then necessitates to solve a complicated, non-standard deconvolution problem.

In order to concentrate on the core of the problem, we study a slightly simplified version of the general problem. It is assumed that the boundary $\varphi(\cdot)$ is constant, i.e. $\varphi(W) = \tau$ for all $W$ and some fixed, but unknown $\tau > 0$. With $X = \tau \exp(-U)$ and $Z = \exp(V)$ the setup considered in our paper then can be re-written as follows: There are i.i.d. observations $Y_1, \ldots, Y_n$ with a density $g$ on $\mathbb{R}_+$, generated by the model

$$Y_i = X_i \cdot Z_i,$$

where $X_i$ is a latent unobserved true signal having a density $f$ on the support $[0, \tau]$, with $f(\tau) > 0$ for some unknown $\tau > 0$, and $Z_i$ is the noise. We assume that $Z_i$ is independent of $X_i$ and is log-normally distributed. More precisely, $\log Z_i \sim N(0, \sigma^2)$, where $\sigma^2 > 0$ is an unknown variance. We are interested in the estimation of $\tau$ and of $\sigma$, when only the $Y_i$’s are observable.

Our estimation procedure is based on the maximization of a penalized profile like-
lihood. A precise description of the estimator and a corresponding asymptotic theory are given in Sections 2 and 3. In Section 2 we also discuss possible generalizations to non-constant boundaries.

Our basic model (1.2) is similar to the setup described in Hall and Simar (2002). They propose a nonparametric approach where the noise has an unspecified symmetric density with variance $\sigma^2$ converging to zero when the sample size increases. Different from their approach we avoid the restriction of having the noise converging to zero when the sample size increases. We want to note, however, that a lognormal distribution of $Z$ is crucial to ensure identifiability in our context, while Hall and Simar (2002) rely on unspecified error distributions.

As already mentioned above, (1.2) with unknown $\tau$ and $\sigma$ leads to a non-standard deconvolution problem. The novelty of our approach consists in the simultaneous estimation of both parameters and the derivation of resulting convergence rates. The problem of estimating an unknown boundary $\tau$ for a known error variance $\sigma^2$ has already been studied in a number of papers, see e.g. Delaigle and Gijbels (2006) for a recent paper, and the references cited therein. Another related problem is the deconvolution problem with unknown error variance, but without assuming the existence of a finite boundary. Butucea and Matias (2005), Butucea, Matias and Pouet (2008) and Schwarz and Van Bellegem (2009) proposed estimators under this model, and they proved (among others) the identifiability and consistency of their estimators.

The paper is organized as follows. Sections 2 and 3 describe our estimation procedure and corresponding asymptotic properties, respectively. A simulation study is presented in Section 4. All proofs can be found in an appendix.

2 Estimation procedure

Recall that under model (1.2), the latent variable $X$ is defined on $[0, \tau]$ and its density $f$ satisfies $f(\tau) > 0$. In addition, let $g$ be the density of the observed variable $Y$. Also note that the model can equivalently be written as $Y^* = X^* + Z^*$, where $Y^* = \log Y$, $X^* = \log X$ and where $Z^* \sim N(0, \sigma^2)$ is independent of $X^*$, and $\sigma^2$ is unknown.

Whenever confusion is possible, we will add a subindex 0 to indicate the true quantities (e.g. $f_0, g_0, \tau_0, \ldots$ stand for the true densities $f$ and $g$ and the true value of $\tau$). Let $\phi(z)$ denote the standard normal density, and recall that the density $\rho_{\sigma}$ of a log-normal random variable with parameters $\mu = 0$, $\sigma^2 > 0$ is given by $\rho_{\sigma}(z) = \frac{1}{\sigma z} \phi(\frac{\log z}{\sigma})$ for $z > 0$. For all
$y > 0$ we can then write

\[
g_0(y) = \int_0^{\tau_0} f_0(x) \frac{1}{x} \rho_{\sigma_0}(\frac{y}{x}) dx = \int_0^1 h_0(t) \frac{1}{t\tau_0} \rho_{\sigma_0}(\frac{y}{t\tau_0}) dt \\
= \frac{1}{\sigma_0 y} \int_0^1 h_0(t) \phi \left( \frac{1}{\sigma_0 \log \frac{y}{t\tau_0}} \right) dt,
\]

where

\[
h_0(t) = \tau_0 f_0(t\tau_0) \quad \text{for } 0 \leq t \leq 1.
\]

For an arbitrary density $h$ defined on $[0, 1]$ and for arbitrary values of $\tau > 0$ and $\sigma > 0$, define

\[
g_{h, \tau, \sigma}(y) = \frac{1}{\sigma y} \int_0^1 h(t) \phi \left( \frac{1}{\sigma \log \frac{y}{t\tau}} \right) dt.
\]

Obviously, $g_0 \equiv g_{h_0, \tau_0, \sigma_0}$. It is important to note that our model is identifiable, in the sense that there exists a unique $\sigma_0 > 0$, a unique $\tau_0 > 0$ and a unique density $h_0$ defined on $[0, 1]$ such that (2.1) holds true. This follows from Theorem 2.1 in Schwarz and Van Bellegem (2009), as well as from the asymptotic results shown in the next section.

Our estimation procedure is based on the maximization of a penalized profile likelihood. Before giving its formal definition, let us first outline the main ideas of the procedure. We will estimate $\tau_0$ and $\sigma_0$ by maximizing a penalized likelihood function that is based on the density $g_{h, \tau, \sigma}$. Note that this density not only depends on the parameters $\tau$ and $\sigma$, but also on the density $h$. For fixed, arbitrary values of $\tau$ and $\sigma$, we will first maximize the penalized likelihood with respect to a class of sieve estimators of $h \equiv h_{\tau, \sigma}$. In a second step, the so-obtained sieve estimator of $h_{\tau, \sigma}$ will be plugged in into the likelihood, leading to a penalized likelihood now only depending on $\tau$ and $\sigma$. The estimators of $\tau$ and $\sigma$ are the maximizers of this penalized likelihood.

We will now formalize the estimation method, and describe the two estimation steps as follows:

1. **Estimation of $h$ for fixed $\tau$ and $\sigma$.**

   Fix $\tau > 0$ and $\sigma > 0$ and let $M$ be a natural number. Let

   \[
   \Gamma = \left\{ \gamma = (\gamma_1, \ldots, \gamma_M) : \gamma_k > 0 \text{ for all } k \text{ and } \sum_{k=1}^M \gamma_k = M \right\},
   \]

   and define

   \[
h_\gamma(t) = \gamma_1 I(t = 0) + \sum_{k=1}^M \gamma_k I(q_{k-1} < t \leq q_k)
   \]
for \(0 \leq t \leq 1\), where \(q_k = k/M\) \((k = 0, 1, \ldots, M)\). It is clear that \(h_\gamma\) is a density for all \(\gamma \in \Gamma\). Then

\[
g_{h_\gamma, \tau, \sigma}(y) = \frac{1}{\sigma y} \int_0^1 h_\gamma(t) \phi \left( \frac{1}{\sigma} \log \frac{y}{t \tau} \right) dt = \frac{1}{\sigma y} \sum_{k=1}^{M} \gamma_k \int_{q_k-1}^{q_k} \phi \left( \frac{1}{\sigma} \log \frac{y}{t \tau} \right) dt.
\]

The estimator of \(h\) is now defined as

\[
\hat{h}_{\tau, \sigma}(\cdot) = h_{\hat{\gamma}_{\tau, \sigma}}(\cdot),
\]

where

\[
\hat{\gamma}_{\tau, \sigma} = \arg \max_{\gamma \in \Gamma} \left\{ n^{-1} \sum_{i=1}^{n} \log g_{h_\gamma, \tau, \sigma}(Y_i) - \lambda \text{pen}(g_{h_\gamma, \tau, \sigma}) \right\},
\]

where \(\lambda \geq 0\) is a fixed value independent of \(n\), and where

\[
\text{pen}(g_{h_\gamma, \tau, \sigma}) = \max_{3 \leq j \leq M_n} |\gamma_j - 2\gamma_{j-1} + \gamma_{j-2}|.
\]

2. Estimation of \(\tau_0\) and \(\sigma_0\).

Let

\[
(\hat{\tau}, \hat{\sigma}) = \arg \max_{\tau > 0, \sigma > 0} \left\{ n^{-1} \sum_{i=1}^{n} \log g_{\hat{h}_{\tau, \sigma}, \tau, \sigma}(Y_i) - \lambda \text{pen}(g_{\hat{h}_{\tau, \sigma}, \tau, \sigma}) \right\}.
\]

The procedure also leads to an estimator \(\hat{h} := \hat{h}_{\hat{\tau}, \hat{\sigma}}\) of \(h_0\). Moreover, \(\hat{g} := g_{\hat{h}_{\hat{\tau}, \hat{\sigma}}}\) estimates the density \(g_0\) of \(Y\).

Note that \(\lambda\) can be taken equal to zero, which means that we consider both penalized and non-penalized estimators. However, as will be shown in the next section, the penalized estimator attains a better rate of convergence, and is therefore preferable over the non-penalized one. It is also important to highlight here that \(\lambda\) is a parameter that is chosen independent of the sample size, which is in contrast to most other penalized estimation methods in the literature, where \(\lambda\) is usually chosen as a function of the sample size \(n\).

Note that \(\text{pen}(\hat{g}) = \max_{3 \leq j \leq M_n} |\hat{h}(\frac{j}{M}) - 2\hat{h}(\frac{j-1}{M}) + \hat{h}(\frac{j-2}{M})|\). But \(\max_{3 \leq j \leq M_n} |h_0(\frac{j}{M}) - 2h_0(\frac{j-1}{M}) + h_0(\frac{j-2}{M})| = M_n^{-2} \max_{3 \leq j \leq M_n} |h''_0(\frac{j}{M})|(1 + o_P(1))\). Since \(\text{pen}(\hat{g}) = O_P(M_n^{-2})\) we thus ensure that the structure of our discretized estimator appropriately reflects the underlying smoothness of \(h_0\). We also refer to the proofs of the asymptotic results shown in the next section for better understanding the motivation for the precise formula of the penalty term.

Also note that although the above two-step procedure is valid for practical purposes, we need to be a bit more precise when developing the asymptotic results in the next section. In particular, we will require that \(\sigma\) and \(\tau\) belong to a compact interval and that
the function \( h_\gamma(t) \) is uniformly bounded above on \([0, t]\) and uniformly bounded below from 0 for \( t \) close to 1. However, except for the latter condition on the lower bound for \( h_\gamma \), these conditions do not play any role in practice, since the intervals and the upper bound can be chosen in an arbitrary way. We refer to assumption (A1) below for the precise formulation of the support of \( \sigma, \tau \) and \( h_\gamma \).

We finally want to note that there exists some straightforward generalization of our method which allows to estimate non-constant boundaries \( \varphi(W) \) depending on an explanatory variable \( W \in \mathbb{R}^d \). Therefore, suppose i.i.d observations \((W_i, Y_i)\) following the more general model (1.1) instead of (1.2). Resorting to the same ideas as in Hall and Simar (2002), the problem of estimating \( \varphi(w_0) \) at some point \( w_0 \) in the interior of the support of \( W_i \) can be viewed as a local boundary problem. The approach then consists in specifying a bandwidth \( b \) and determining estimates \( \hat{\tau}_{w_0} \) of \( \varphi(w_0) \) and \( \hat{\sigma}_0^2 \) of \( \sigma_0 \) by the two-step procedure described above, using only those observations \( Y_i \) with \( \|W_i - w_0\|_2 \leq b \).

If \( V_i \) is independent of \((W_i, U_i)\), then under suitable smoothness conditions, it is easily seen that as \( b \to 0 \) the conditional density \( g^*(y) \) of \( Y_i \) given \( \|W_i - w_0\|_2 \leq b \) satisfies

\[
g^*(y) = \int_0^{\varphi(w_0)} f^*(x|w) \frac{1}{x} \rho_\sigma(y/x) dx + O(b^2),
\]

where the conditional density \( f^*(x|w) \) of \( \varphi(w_0) \exp(-U_i) \) given \( W_i = w_0 \) satisfies \( f^*(x|w) = 0 \) for \( x > \varphi(w_0) \). We expect that when \( b \to 0 \), \( n^{1/d}b \to \infty \) as \( n \to \infty \), the logarithmic convergence rates established in Section 3 generalize to this situation. Details are not in the scope of the present paper.

3 Asymptotic results

For the asymptotic results, we need to make the following assumptions:

(A1) For some \( 0 < \sigma_{\min} < \sigma_{\max} < \infty \), \( 0 < \tau_{\min} < \tau_{\max} < \infty \), \( 0 < h_{\min} < h_{\max} < \infty \), and \( 0 < \delta < 1 \) the estimators \((\hat{g}, \hat{\tau}, \hat{\sigma})\) defined in steps 1 and 2 of our procedure are determined by minimizing over all

\[
(h_\gamma, \tau, \sigma) \in \mathcal{H}_n \times [\tau_{\min}, \tau_{\max}] \times [\sigma_{\min}, \sigma_{\max}],
\]

where \( \mathcal{H}_n \subset \mathcal{H}_{h_{\min}, h_{\max}, \delta} \). Here, \( \mathcal{H}_{h_{\min}, h_{\max}, \delta} \) denotes the set of all square integrable densities \( h \) with support \([0, 1]\) satisfying

\[- \sup_{t \in [0,1]} h(t) \leq h_{\max}, \text{ as well as} \]

\[- \sup_{t \in [0,1]} h(t) \geq h_{\min}. \]
\[ - \inf_{t \in [1-\delta,1]} h(t) \geq h_{\text{min}}, \]

(A2) \( h_0 \in \mathcal{H}_{h_{\text{min}},h_{\text{max}},\delta} \) and is twice continuously differentiable, \( \tau_0 \in [\tau_{\text{min}}, \tau_{\text{max}}] \), and \( \sigma_0 \in [\sigma_{\text{min}}, \sigma_{\text{max}}] \).

(A3) For some \( 0 < \beta < 1/5 \), \( M = M_n \sim n^\beta \) as \( n \) tends to \( \infty \).

(A4) For some \( A > \sqrt{2} \), \( P(\log Y < -A(\log n)^{1/2} \sigma_0) = o(n^{-1}) \).

**Remark 3.1** Note that condition (A4) is a natural condition, and is satisfied when e.g. \( h_0 \equiv 0 \) on a small interval \([0, \epsilon]\) close to 0.

For two arbitrary densities \( g_1 \) and \( g_2 \), let

\[
H^2(g_1, g_2) = \frac{1}{2} \int (\sqrt{g_1(y)} - \sqrt{g_2(y)})^2 \, dy
\]

be the Hellinger distance between \( g_1 \) and \( g_2 \).

**Theorem 3.1** Assume (A1)-(A4). Then, if \( \lambda \geq 0 \),

\[
H(\hat{g}, g_0) = O_P(M_n^{-2}),
\]

and if \( \lambda > 0 \),

\[
\text{pen}(\hat{g}) = O_P(M_n^{-2}).
\]

**Theorem 3.2** Under the assumptions of Theorem 3.1, we have:

a) If \( \lambda = 0 \) (i.e. without penalization),

\[
\hat{\sigma} - \sigma_0 = O_P\left(\left(\log n\right)^{-1}\right), \quad (3.1)
\]
\[
\hat{\tau} - \tau_0 = O_P\left(\left(\log n\right)^{-\frac{3}{2}}\right). \quad (3.2)
\]

b) If \( \lambda > 0 \) (i.e. with penalization),

\[
\hat{\sigma} - \sigma_0 = O_P\left(\left(\log n\right)^{-2}\right), \quad (3.3)
\]
\[
\hat{\tau} - \tau_0 = O_P\left(\left(\log n\right)^{-\frac{3}{2}}\right), \quad (3.4)
\]
\[
\hat{h}(1) - h_0(1) = O_P\left(\left(\log n\right)^{-1}\right). \quad (3.5)
\]
It can be easily seen from the proof of Assertion a) that (3.1) and (3.2) only require that \( \hat{h} \in H_{h_{\min}, h_{\max}, \delta}, h_0 \in H_{h_{\min}, h_{\max}, \delta} \) as well as \( H(\hat{g}, g_0) = O_P(n^{-2\beta}) \) for some \( \beta > 0 \). Smoothness of \( h_0 \) is of no importance, and also the precise value of \( \beta \) does not play any role. On the other hand, smoothness of \( h_0 \) as well as \( \text{pen}(\hat{g}) = O_P(M_n^{-2}) \) are crucial for deriving (3.3) - (3.4).

Our estimator does not make use of a higher degree of smoothness of \( h_0 \). However, if \( h_0 \) is \( m \)-times continuously differentiable for some \( m > 2 \) faster (logarithmic) rates of convergence may be achieved by relying on estimators which determine smooth approximations \( \hat{h} \) of \( h_0 \). For example, our histogram estimator may be replaced by suitable spline approximations. Determining a spline estimator \( \hat{h} \) as well as \( \hat{\sigma} \) and \( \hat{\tau} \) by maximizing the resulting likelihood seems to be extremely difficult from a computational point of view. But the following theorem shows that any estimation method can be applied which ensures that the corresponding convoluted density \( \hat{g} = g_{\hat{h}, \hat{\tau}, \hat{\sigma}} \) possesses some polynomial rate of convergence.

**Theorem 3.3** For some \( m = 0, 1, 2, \ldots \) let \( H_{h_{\min}, h_{\max}, \delta}^m \subseteq H_{h_{\min}, h_{\max}, \delta} \) denote a space of \( m \)-times continuously differentiable functions with \( \sup_{t \in [0, 1]} |h^{(m)}(t)| \leq h_{\max} \).

Assume that

1) \( h_0 \in H_{h_{\min}, h_{\max}, \delta}^m \),

2) there exist estimators \((\hat{h}, \hat{\tau}, \hat{\sigma}) \in H_{h_{\min}, h_{\max}, \delta}^m \times [\tau_{\min}, \tau_{\max}] \times [\sigma_{\min}, \sigma_{\max}]\) such that \( \hat{g} = g_{\hat{h}, \hat{\tau}, \hat{\sigma}} \) satisfies

\[
H(\hat{g}, g_0) = O_P(n^{-\kappa}) \quad \text{for some } \kappa > 0.
\]

Then,

\[
\hat{\sigma} - \sigma_0 = O_P \left( (\log n)^{-\frac{1+\frac{m}{2}}{2}} \right),
\]

(3.6)

\[
\hat{\tau} - \tau_0 = O_P \left( (\log n)^{-\frac{m+1}{2}} \right),
\]

(3.7)

\[
\hat{h}(1) - h_0(1) = O_P \left( (\log n)^{-\frac{m}{2}} \right).
\]

(3.8)

4 Some Monte-Carlo experiments

4.1 Monte-Carlo scenarios

The Monte-Carlo scenario we consider is inspired by the econometric literature on stochastic frontier models, as described in the introduction, Section 1. Mimicking (1.1), we can
write
\[ Y = \tau \exp(-U) \exp(V), \text{ where } U > 0 \text{ and } V \sim N(0, \sigma^2). \]

So in our notation (1.2), \( X = \tau \exp(-U) \) is the signal and \( Z = \exp(V) \) is the noise. Often \( U \) is an exponential or a half-normal random variable, as in Aigner et al. (1977) and Meeusen and van den Broek (1977), or a truncated normal random variable, as in Stevenson (1980). In the exponential case the density of \( U \) is
\[ U \sim \text{Exp}(\beta) \iff f_U(u) = \beta \exp(-\beta u) I(u > 0), \]
where \( I(\cdot) \) is the indicator function. Moreover, \( \mu_U = \sigma_U = 1/\beta \). For the truncated normal case, the density of \( U \) is a normal density with mean \( \alpha \) and variance \( \beta^2 \) but truncated at zero:
\[ U \sim N^+(\alpha, \beta^2) \iff f_U(u) = \frac{\Phi^{-1}(\alpha/\beta)}{\sqrt{2\pi}\beta} \exp \left\{ -\frac{1}{2} \left( \frac{u - \alpha}{\beta} \right)^2 \right\} I(u > 0). \]
Mean and variance of \( U \) are then given by \( \mu_U = \alpha + c\beta \) and \( \sigma_U^2 = \beta^2(1 - c(\alpha/\beta) - c^2) \) with \( c = \phi(\alpha/\beta)/\Phi(\alpha/\beta) \). Here \( \phi \) and \( \Phi \) represent the density and the cumulative distribution function of a standard normal variable. The very popular half-normal is the particular case where \( \alpha = 0 \). We will concentrate on four examples. Two exponential cases and two truncated normal cases.

**Example 1 : Exponential Signal, \( U \sim \text{Exp}(\beta) \)**
The density of \( X \) can be written as
\[ f(x) = \frac{\beta}{\tau^\beta} x^{\beta-1} I(0 \leq x \leq \tau). \]
In our simulation study we consider the cases \( \beta = 2 \) as well as \( \beta = 1 \). For \( \beta = 2 \) the density \( f(x) \) is linearly increasing from 0 to \( 2/\tau^2 \) on \([0, \tau]\), while for \( \beta = 1 \) the r.v. \( X \) is uniform on \([0, \tau]\). In the Monte-Carlo experiments below we tuned the value of \( \sigma \) (size of the noise \( V \)) as a factor of \( \sigma_U \). We choose \( \sigma = \rho_{nts}\sigma_U \) with \( \rho_{nts} = 0, 0.01, 0.05, 0.25, 0.50, 0.75. \)

**Example 2 : Truncated Normal Signal, \( U \sim N^+(\alpha, \beta^2) \)**
Here the density of \( X \) is given by
\[ f(x) = \frac{\Phi^{-1}(\alpha/\beta)}{\sqrt{2\pi}\beta} \exp \left\{ -\frac{1}{2} \left( \frac{\log(\tau) - \log(x) - \alpha}{\beta} \right)^2 \right\} x^{-1}I(0 \leq x \leq \tau). \]
Here we first consider the case where \( U \) is a half-normal, i.e. the density of \( U \) is decreasing from zero: we choose \( U \sim N^+(0, (0.80)^2) \) providing values \( E(U) = 0.6383 \) and \( \sigma_U = 0.4822 \).
which are not too far from the case of the Exp(2)-distribution. In the second scenario we consider \( U \sim N^+(0.60, (0.60)^2) \). The resulting mean \( E(U) = 0.7726 \) and standard deviation \( \sigma_U = 0.4761 \) are of the same order of magnitude as above, but here the density is increasing from zero to \( E(U) \) and then decreasing. For, \( V \) we follow the same scenario as for the Exponential case with \( \sigma = \rho_{nts}\sigma_U \).

In the simulations we fixed arbitrarily the boundary \( \tau = 1 \), so that the signal is \( X = e^{-U} \). Figure 1 displays the densities of \( X \) for the 4 cases considered here.

Note that only in the first case of an Exp(2)-distribution the density of \( X \) is strictly decreasing from the boundary point. In the two situations with truncated normal distributions the density of \( X \) is increasing a little when leaving the boundary point \( (\tau = 1) \) and then decreases. In the fourth case, the jump of the density at the boundary is rather small and the mode is far from the boundary point. This latter scenario is certainly the most complicated one.

We want to emphasize that large values of \( \rho_{nts} \) may result in huge noise to signal ratios in the space of the observations. Table 1 evaluates the ratio \( \sigma_Z/\sigma_X \) for the four experiments. We see also that in all scenarios the variances of the corresponding signals \( X \) are of the same order of magnitude. This facilitates the comparison across the various experiments.

### 4.2 The results

In Tables 2 to 5, we display the results obtained with \( MC = 500 \) replications of each experiment. In the columns \( \log_{10} \lambda \), we indicate the optimal values (given by the Monte-Carlo experiment) obtained over the grid search \( \log_{10} \lambda = -4, -3, -2, -1, 0, 1, 2, 3, 4 \), where “optimal” is in terms of the sum of the Root Mean Squared Error (\( RMSE \)) of \( \hat{\tau} \) and of \( \hat{\sigma} \).

These are not the optimal values for estimating \( \tau \) and \( \sigma \) separately, the individual optimal values may in some cases be different from the values reported in the table by an order 10 or \( 10^2 \), but globally the results are rather stable in terms of the \( RMSE \).

For the number of bins we used the rule \( M = \max(3, c \times \text{round}(n^{1/5})) \) where \( \text{round}(a) \) is the nearest integer to \( a \). We fix \( c = 2 \). Note that we obtained very similar results in some pilot experiments with \( c = 3 \) (and even with \( c = 1 \) but here the number of bins was very small). For the selected sample sizes \( n = 50, 100, 500 \) this rule of thumb gives \( M = 4, 5 \) and 7, respectively.

\(^1\)Some previous pilot experiments showed indeed that finer grids for the values of \( \lambda \) were not necessary, the results being rather stable to small changes in \( \lambda \). We choose this “rough” grid for limiting the numerical burden in the Monte-Carlo experiments.
When we look to the 4 tables, we first see that our estimators behave rather well for reasonable sample sizes and not too much noise. Looking through each table, we see also that the performances behave as expected: horizontally, when the sample size increases we improve the performance of the estimators for both \( \tau \) and \( \sigma \). Vertically, we can investigate the effect of increasing the size of the noise. We see that when increasing the noise from \( \rho_{nts} = 0 \) to 0.50 the performance deteriorates. This effect is stronger for estimating \( \tau \) than for estimating \( \sigma \), in particular for large samples.

We note also that an increasing density for \( X \) from 0 to \( \tau \) (Table 2) gives better results than the others. The most difficult case (small jump and mode far from the boundary) is reported in Table 5. As to be expected the performance is less good but still quite reasonable. We note also that when \( \rho_{nts} = 0.50 \) or 0.75, in some cases, the performance seems to be quite similar. This might be due to the “rough” grid we used for selecting the optimal \( \lambda \).

To summarize, we can conclude that the procedure for estimating \( \tau \) and \( \sigma \) works pretty well even for moderate sample sizes. In the application in economics, where \( X \) will be output, \( U \) firm inefficiencies and \( V \) the noise, we may expect a size of the noise relatively small with respect to the size of the signal. In this case, even with small samples we may expect good behavior of our estimators. The suggested rule of thumb for selecting the number of bins also seems to be a good choice in our experiments. Finally, the selection of the penalty parameter \( \lambda \) seems not to be crucial. In practice, with a real sample, we suggest to use a bootstrap procedure to estimate the \( RMSE \) of the estimators as a tool for selecting \( \lambda \).

5 Appendix

Proof of Theorem 3.1. Let

\[
F_n = \left\{ y \to g_{n, \tau, \sigma}(y) = \frac{1}{\sigma y} \sum_{k=1}^{M_n} \gamma_k \int_{q_{k-1}}^{q_k} \phi \left( \frac{1}{\sigma \log \frac{y}{t\tau}} \right) dt : \tau_{\min} \leq \tau \leq \tau_{\max}, \right. \\
\tau_{\min} \leq \sigma \leq \sigma_{\max} \sum_{k=1}^{M_n} \gamma_k = M_n, 0 \leq \gamma_k \leq h_{\max} \text{ for all } k = 1, \ldots, M_n, \\
\text{and } \inf_{1-\delta \leq t \leq 1} h_{\gamma}(t) \geq h_{\min} \right\}. 
\]  

(5.1)

For any \( g(\cdot) = \frac{1}{\sigma} \int_0^1 h(t) \phi \left( \frac{1}{\sigma \log \frac{1}{t\tau}} \right) dt \), define the projection onto \( F_n \) by \( \pi_n g(y) = g_{n, \tau, \sigma}(y) \), where the vector \( \gamma \) is determined such that \( H(g, \pi_n g) \) is minimal. Some easy calculations
show that 

\[ \gamma_k = M_n \int_{q_{k-1}}^{q_k} h(t) dt \]  

(\(k = 1, \ldots, M_n\)), and hence 

\[ \pi_n g(y) = \frac{M_n}{\sigma y} \sum_{k=1}^{M_n} \int_{q_{k-1}}^{q_k} h(t) dt \int_{q_{k-1}}^{q_k} \phi \left( \frac{1}{\sigma} \log \frac{y}{\tau_1} \right) dt. \]

Let \(q^*_n = (q_{k-1} + q_k)/2\) and let \(R_0(y, t) = \frac{\partial}{\partial t} \phi \left( \frac{1}{\sigma_0} \log \frac{y}{\tau_0} \right)\). Consider 

\[
\left| E(\log \pi_n g_0(Y)) - E(\log g_0(Y)) \right| = \left| \int \log \pi_n g_0(y) g_0(y) dy \right| \\
\leq \int \left| \frac{\pi_n g_0(y)}{g_0(y)} - 1 \right| g_0(y) dy = \int \left| \pi_n g_0(y) - g_0(y) \right| dy \\
\leq \frac{M_n}{\sigma_0 y} \sum_{k=1}^{M_n} \int \int_{q_{k-1}}^{q_k} (h_0(s) - h_0(t)) ds \phi \left( \frac{1}{\sigma_0} \log \frac{y}{\tau_0} \right) dt \left| dy \right| \\
\leq \frac{M_n}{\sigma_0 y} \sum_{k=1}^{M_n} \int \int_{q_{k-1}}^{q_k} (h_0(s) - h_0(t)) ds \phi \left( \frac{1}{\sigma_0} \log \frac{y}{q_k^* \tau_0} \right) dt \left| dy \right| \\
+ \frac{M_n}{\sigma_0 y} \sum_{k=1}^{M_n} \int \int_{q_{k-1}}^{q_k} (h_0(s) - h_0(t)) ds R_0(y, \eta_t(t)) (t - q_k^*) dt \left| dy \right| \\
= \frac{M_n}{\sigma_0 y} \sum_{k=1}^{M_n} \int \int_{q_{k-1}}^{q_k} h_0'(q_k^*) (s - t) dt \phi \left( \frac{1}{\sigma_0} \log \frac{y}{q_k^* \tau_0} \right) \left| dy \right| + O(M_n^{-2}) \\
= O(M_n^{-2}),
\]

(5.3)

using two Taylor expansions of first order, where \(\eta_t(t)\) is between \(t\) and \(q_k^*\) for any \(q_{k-1} < t < q_k\). Next, note that for all \(g \in \mathcal{F}_n\), we have that 

\[
E \left[ \log g(Y) - \log g_0(Y) \right]^2 = \int \left[ \log \frac{g(y)}{g_0(y)} \right]^2 g_0(y) dy = 4 \int \left[ \log \frac{\sqrt{g(y)}}{\sqrt{g_0(y)}} \right]^2 g_0(y) dy \\
\leq 4 \int \left[ \sqrt{\frac{g(y)}{g_0(y)}} - 1 \right]^2 g_0(y) dy = 4 \int \left[ \sqrt{g(y)} - \sqrt{g_0(y)} \right]^2 dy \\
= 4H^2(g, g_0),
\]

which is uniformly bounded for all \(g \in \mathcal{F}_n\). Hence, for all \(g \in \mathcal{F}_n\), \(\text{Var}(\log g(Y)) \leq D\) for some \(D < \infty\), and 

\[
n^{-1} \sum_{i=1}^{n} \log g(Y_i) - E(\log g(Y)) = O_P(n^{-1/2}).
\]
Consider now a subset $\mathcal{F}_n^*$ of $\mathcal{F}_n$ of size $n^{\kappa_2 M_n}$ for some $\kappa_2 > 0$, and let $0 < \kappa_3 < 1/2$. Let $y_{\max} = \exp\{ A (\log n)^{1/2} \sigma_0 + \log \tau_0 \}$ and $y_{\min} = \exp\{ -A (\log n)^{1/2} \sigma_0 \}$, where $A > \sqrt{2}$, and define

$$
\tilde{g}(y) = \begin{cases} 
    g(y) & y_{\min} \leq y \leq y_{\max} \\
    g(y_{\max}) & y > y_{\max} \\
    g(y_{\min}) & y < y_{\min}.
\end{cases}
$$

Then, it is clear that $\max_{g \in \mathcal{F}_n^*} |E(\log g(Y)) - E(\log \tilde{g}(Y))| \leq C n^{-\kappa_3} (\log n)^{1/2}$ for some $0 < C < \infty$. Hence,

$$
P\left( \max_{g \in \mathcal{F}_n^*} \left| \frac{1}{n} \sum_{i=1}^n \log g(Y_i) - \frac{1}{n} \sum_{i=1}^n \log \tilde{g}(Y_i) \right| \geq C n^{-\kappa_3} (\log n)^{1/2} \right)
\leq P\left( \max_{g \in \mathcal{F}_n^*} \left| \frac{1}{n} \sum_{i=1}^n \log \tilde{g}(Y_i) - E(\log \tilde{g}(Y)) \right| \geq C n^{-\kappa_3} (\log n)^{1/2} \right)
+ P\left( \frac{1}{n} \sum_{i=1}^n \log \tilde{Y}_i - \log \tau_0 > A (\log n)^{1/2} \right)
+ P\left( \frac{1}{n} \sum_{i=1}^n -\log \tilde{\sigma}_i > A (\log n)^{1/2} \right)
= P_1 + P_2 + P_3 \quad \text{(say)}.
$$

Using Bernstein’s inequality (see e.g. Serfling (1980), p. 95), we obtain that

$$
P_1 \leq 2 n^{\kappa_2 M_n} \exp \left( -\frac{1}{4} \frac{2 n^{-2 \kappa_3} \log n}{2 n^{-1} D + K n^{-1} (\log n)^{-\kappa_3} (\log n)^{1/2}} \right)
\leq 2 n^{\kappa_2 M_n} \exp \left( -K' n^{-1-2 \kappa_3} \log n \right) \leq 2 n^{\kappa_2 M_n} n^{-K' n^{-1-2 \kappa_3}} = o(1),
$$

for some $0 < K, K' < \infty$, provided $M_n = O(n^{1-2 \kappa_3})$ and provided $K'$ (and hence $C$) is chosen sufficiently large. This together with assumption (A3) implies that $\kappa_3$ should be chosen at most equal to $(1 - \beta)/2$ which is strictly between 2/5 and 1/2 depending on the value of $\beta$. Now, note that

$$
P_2 \leq n P(\log Y > \log \tau_0 + A (\log n)^{1/2} \sigma_0) \leq n P(\log Z/\sigma_0 > A (\log n)^{1/2})
\leq \frac{n}{\sqrt{2 \pi}} \frac{1}{A \sqrt{\log n}} \exp \left\{ -\frac{1}{2} \frac{\log n}{A^2} \right\} = \frac{1}{A \sqrt{2 \pi}} \frac{1}{\sqrt{\log n}} n^{1-\frac{2}{2}} = o(1),
$$

since $A > \sqrt{2}$. Moreover, from assumption (A4) we know that $P_3 \leq n P(Y < y_{\min}) = o(1)$. Hence,

$$
\max_{g \in \mathcal{F}_n^*} \left| \frac{1}{n} \sum_{i=1}^n \log g(Y_i) - E(\log g(Y)) \right| = O_P(n^{-\kappa_3} (\log n)^{1/2}). \quad (5.4)
$$

Next, we specify the set $\mathcal{F}_n^*$. Divide the interval $[0, h_{\max}]$ into $O(n^{\kappa_2})$ intervals $[\alpha_j, \alpha_{j+1}]$ with $\alpha_j = j n^{-\kappa_2}$ $(j = 0, 1, \ldots, O(n^{\kappa_2}))$. Also, divide $[\tau_{\min}, \tau_{\max}]$ into $O(n^{\kappa_2})$ intervals
where

\[ \tau_i = \tau_{\min} + i n^{-\kappa_2} \quad (i = 0, 1, \ldots, O(n^{\kappa_2})) \]

and similarly, divide \([\sigma_{\min}, \sigma_{\max}]\) into \(O(n^{\kappa_2})\) intervals \([\sigma_l, \sigma_{l+1}]\) with \(\sigma_l = \sigma_{\min} + l n^{-\kappa_2}, \ (l = 0, 1, \ldots, O(n^{\kappa_2}))\). Let

\[
\mathcal{F}^*_n = \left\{ y \rightarrow g_{h, \tau, \sigma}(y) \in \mathcal{F}_n : \text{there exist } i, j, \ldots, j_{M_n} \text{ such that } \tau = \tau_i, \sigma = \sigma_l, \gamma_k = \alpha_{j_k} \text{ for all } k = 1, \ldots, M_n \right\}. \tag{5.5}
\]

Then, it is clear that the number of elements of \(\mathcal{F}^*_n\) is \(n^{\kappa_2(M_n+2)}\). We will show that

\[
\sup_{g \in \mathcal{F}_n} \inf_{g^* \in \mathcal{F}^*_n} \left| n^{-1} \sum_{i=1}^{n} \left[ \log g(Y_i) - \log g^*(Y_i) \right] \right| = o_P(n^{-\kappa_4}) \tag{5.6}
\]

for some \(\kappa_4 > 0\). In a similar way it can also be shown that

\[
\sup_{g \in \mathcal{F}_n} \inf_{g^* \in \mathcal{F}^*_n} \left| E \left[ \log g(Y) - \log g^*(Y) \right] \right| = o_P(n^{-\kappa_4}). \tag{5.7}
\]

To prove (5.6), note that for any \(g_{h, \tau, \sigma}(\cdot) \in \mathcal{F}_n\), there exist a \(\tau_i, \sigma_l, \) and \(\alpha_{j_1}, \ldots, \alpha_{j_{M_n}}\) such that \(0 < \tau - \tau_i < n^{-\kappa_2}, 0 < \sigma - \sigma_l < n^{-\kappa_2}, 0 < \gamma_k - \alpha_{j_k} < n^{-\kappa_2}\) for all \(k = 1, \ldots, M_n\). Denote this element of \(\mathcal{F}^*_n\) by \(g_{h^*, \tau^*, \sigma^*}\). Then, for any \(y > 0\),

\[
\log g_{h, \tau, \sigma}(y) - \log g_{h^*, \tau^*, \sigma^*}(y) = \left[ \log w(y, \tau, \sigma) - \log w(y, \tau^*, \sigma^*) \right] + \left[ \log v(y, h, \tau, \sigma) - \log v(y, h^*, \tau^*, \sigma^*) \right]
\]

\[
= T_1(y, g, g^*) + T_2(y, g, g^*),
\]

where

\[
w(y, \tau, \sigma) := \frac{1}{\sqrt{2\pi} \sigma y} \exp \left( -\frac{\log y}{2\sigma^2} + \frac{\log y (\log \tau)}{\sigma^2} \right), \tag{5.8}
\]

\[
v(y, h, \tau, \sigma) := \int_0^1 h(t) \exp \left( -\frac{(\log y)(\log t)}{\sigma^2} \right) \exp \left( -\frac{(\log \tau t)^2}{2\sigma^2} \right) dt. \tag{5.9}
\]

It can be easily shown that \(\sup_{g \in \mathcal{F}_n} \inf_{g^* \in \mathcal{F}^*_n} \left| n^{-1} \sum_{i=1}^{n} T_1(Y_i, g, g^*) \right| = o_P(n^{-\kappa_4})\) if \(\kappa_4 < \kappa_2\). In fact, write

\[
P\left( \sup_{g \in \mathcal{F}_n} \inf_{g^* \in \mathcal{F}^*_n} \left| n^{-1} \sum_{i=1}^{n} T_1(Y_i, g, g^*) \right| > n^{-\kappa_4} \right)
\]

\[
\leq P\left( \min_i \log Y_i < -A(\log n)^{1/2} \sigma_0 \right) + P\left( \max_i \log Y_i > \log \tau_0 + A(\log n)^{1/2} \sigma_0 \right)
\]

\[
+ P\left( \sup_{g \in \mathcal{F}_n} \inf_{g^* \in \mathcal{F}^*_n} \left| n^{-1} \sum_{i=1}^{n} T_1(Y_i, g, g^*) \right| \left\{ -A(\log n)^{1/2} \sigma_0 \leq \log Y_i \right. \right.
\]

\[
\left. \leq \log \tau_0 + A(\log n)^{1/2} \sigma_0 \left\} \right| > \frac{1}{2} n^{-\kappa_4} \right). \tag{5.10}
\]
As before (see the derivation for $P_2$ and $P_3$) we have that the first two terms above are $o(1)$. For the third term note that the expression between absolute values is $O_P((\log n)n^{-\kappa_4}) = o_P(n^{-\kappa_4})$ uniformly over $g$. Next, write

$$
P \left( \sup_{g \in \mathcal{F}_g} \inf_{g^* \in \mathcal{F}_g} n^{-1} \sum_{i=1}^{n} T_2(Y_i, g, g^*) \right) > n^{-\kappa_4} \right) \\
\leq P \left( \min \log Y_i < -A(\log n)^{1/2}\sigma_0 \right) \\
+ P \left( \sup_{g \in \mathcal{F}_g} \inf_{g^* \in \mathcal{F}_g} n^{-1} \sum_{i=1}^{n} T_2(Y_i, g, g^*)I \left\{ -A(\log n)^{1/2}\sigma_0 \leq \log Y_i \leq 0 \right\} \right) > \frac{1}{2}n^{-\kappa_4} \right) \\
+ P \left( \sup_{g \in \mathcal{F}_g} \inf_{g^* \in \mathcal{F}_g} n^{-1} \sum_{i=1}^{n} T_2(Y_i, g, g^*)I \{ Y_i > 1 \} \right) > \frac{1}{2}n^{-\kappa_4} \right) \\
= S_1 + S_2 + S_3.
$$

Clearly, by assumption (A4), $S_1 = o(1)$. Next, consider $S_2$. We focus attention on the term involving $\log v(Y_i, h, \tau, \sigma) - \log v(Y_i, h^*, \tau, \sigma)$, as the terms dealing with $\tau - \tau^*$ and $\sigma - \sigma^*$ can be dealt with in a similar way. It is easy to see that on the interval $[\exp{-A(\log n)^{1/2}\sigma_0}, 1]$, the function $y \to \int_0^1 \exp{-\frac{\log y}{\sigma_0^2}} \exp{-\frac{\log\tau^2}{2\sigma_0^2}} dt$ attains its maximum for $y = \exp{-A(\log n)^{1/2}\sigma_0}$ and hence $v(y, h, \tau, \sigma) - v(y, h^*, \tau, \sigma)$ is bounded by $Cn^{-\kappa_2}n^{2A^2\sigma_0^2/\sigma^2_{\min}}$ for some constant $0 < C < \infty$. By choosing $\kappa_2$ large enough, this will be $o(n^{-\kappa_4})$ uniformly on the interval $[\exp{-A(\log n)^{1/2}\sigma_0}, 1]$. Since the function $v(y, h, \tau, \sigma)$ is bounded below from zero uniformly over all $y$ in $[\exp{-A(\log n)^{1/2}\sigma_0}, 1]$ and all $g, h, \tau, \sigma \in \mathcal{F}_g$, it follows that also $\log v(y, h, \tau, \sigma) - \log v(y, h^*, \tau, \sigma)$ is $o(n^{-\kappa_4})$. Hence, $S_2 = 0$ for $n$ large enough.

In order to deal with $S_3$, define $v_y(y, h, \tau, \sigma)$ by integrating over the interval $[1 - \delta, 1]$ instead of $[0, 1]$ in (5.9). Let $0 < z_{\min} < z_{\max} < \kappa \sigma^2_{\min} \sigma_0^{-2}$ where $\kappa = 2\beta$ and $\beta$ is defined in condition (A3), and for $z \in [z_{\min}, z_{\max}]$ set

$$
y_{z,n} := \exp\left(\frac{1}{2}\sigma_0^2 z \log n^2\right).
$$

Since $h \in \mathcal{H}_{h_{\min}, h_{\max}, \delta}$ is bounded by $h_{\max}$, it is now immediately seen that

$$
\sup_{z \in [z_{\min}, z_{\max}]} \left| \frac{v(y_{z,n}, h, \tau, \sigma)}{v_y(y_{z,n}, h, \tau, \sigma)} - 1 \right| \to 0 \quad \text{as} \quad n \to \infty \quad (5.10)
$$

uniformly for all $(h, \tau, \sigma) \in \mathcal{H}_{h_{\min}, h_{\max}, \delta} \times [\tau_{\min}, \tau_{\max}] \times [\sigma_{\min}, \sigma_{\max}]$. Furthermore,

$$
\int_{1-\delta}^{1} h(t) \exp\left(\frac{\log y_{z,n}(h, \tau, \sigma)}{\sigma^2}\right) \frac{dt}{\sigma^2} \geq \int_{1-\delta}^{1} h_{\min} \frac{dt}{\sigma^2} \frac{(2\sigma_0^2 z \log n / \sigma^4)^{1/2}}{(2\sigma_0^2 z \log n / \sigma^4)^{1/2} + 1} \geq \frac{h_{\min}}{(2\sigma_0^2 z \log n / \sigma^4)^{1/2} + 1}, \quad (5.11)
$$

15
and
\[
\int_0^1 h(t) \exp \left( \frac{\left( \log y_{z,n} \right) \left( \log t \right)}{\sigma^2} \right) dt \leq h_{\text{max}} \int_0^1 t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2}} dt \\
\leq \frac{h_{\text{max}}}{(2\sigma_0^2 z \log n/\sigma^4)^{1/2} + 1}. \tag{5.12}
\]

Now, write
\[
n^{-1} \sum_{i=1}^n \left( \log v(Y_i, h, \tau, \sigma) - \log v(Y_i, h^*, \tau^*, \sigma^*) \right) I(Y_i > 1) \\
= n^{-1} \sum_{i=1}^n \frac{I(Y_i > 1)}{v(Y_i, h, \tilde{\tau}, \tilde{\sigma})} \left( [v(Y_i, h, \tau, \sigma) - v(Y_i, h^*, \tau, \sigma)] \\
+ [v(Y_i, h^*, \tau, \sigma) - v(Y_i, h^*, \tau^*, \sigma)] + [v(Y_i, h^*, \tau^*, \sigma) - v(Y_i, h^*, \tau^*, \sigma^*)] \right),
\]
for some intermediate \(h, \tilde{\tau}\) and \(\tilde{\sigma}\). Then, each \(Y_i\) in this sum can be written as \(Y_i = \exp((2\sigma_0^2 Z_i \log n)^{1/2})\) for some \(Z_i > 0\). It is now easily seen using (5.11) and (5.12) that
\[
n^{-1} \sum_{i=1}^n T_2(Y_i, g, g^*) I(Y_i > 1) = O_P(n^{-\kappa_2}) = o_P(n^{-\kappa_4}) \text{ uniformly over } g.
\]

It now follows from (5.4), (5.6) and (5.7) that
\[
\sup_{g \in \mathcal{F}_n} \left| n^{-1} \sum_{i=1}^n \log g(Y_i) - E(\log g(Y)) \right| = O_P(n^{-\min(\kappa_3, \kappa_4)}(\log n)^{1/2}). \tag{5.13}
\]

Now, let \(\kappa = \min(\kappa_3, \kappa_4)\). Since \(\kappa_3\) needs to be at most \((1 - \beta)/2\) and \(\kappa_4\) can be any value smaller than \(\kappa_2\), which on its turn can be chosen as large as needed, it follows that the highest possible value for \(\kappa\) is \(\kappa = (1 - \beta)/2\).

Next, denoting the \(\gamma\)-vector corresponding to \(\pi_n g_0\) by \(\gamma_0\), and defining the function
\[
\tilde{h}_0(s) = M_n \int_{s-1/M_n}^s h_0(t) dt,
\]
it follows from (5.2) that \(\gamma_{0k} = \tilde{h}_0(q_k)\) for all \(k = 3, \ldots, M_n\), and hence
\[
\gamma_{0k} - 2\gamma_{0,k-1} + \gamma_{0,k-2} = M_n^{-1} \tilde{h}_0(q_k) + \frac{1}{2} M_n^{-2} \tilde{h}_0''(\xi_k) - M_n^{-1} \tilde{h}_0(q_{k-1}) - \frac{1}{2} M_n^{-2} \tilde{h}_0''(\xi_{k-1}) \\
= M_n^{-2} \tilde{h}_0''(\eta_k) + O(M_n^{-2}) = O(M_n^{-2}),
\]
uniformly in \(k\), where \(q_k = (q_{k-1} + q_k)/2\) as before, and where \(\xi_k, \xi_{k-1}\) and \(\eta_k\) are intermediate points. It now follows that \(\text{pen}(\pi_n g_0) = O(M_n^{-2})\). Moreover,
\[
n^{-1} \sum_{i=1}^n \log \tilde{g}(Y_i) - \lambda \text{pen}(\tilde{g}) \geq n^{-1} \sum_{i=1}^n \log g(Y_i) - \lambda \text{pen}(g)
\]
16
for any \( g \in \mathcal{F}_n \). Now, consider

\[
0 \leq \lambda \text{pen}(\hat{g}) \leq E[\log g_0(Y) - \log \hat{g}(Y)] + \lambda \text{pen}(\hat{g}) = \left[ n^{-1} \sum_{i=1}^{n} \log g_0(Y_i) - n^{-1} \sum_{i=1}^{n} \log \hat{g}(Y_i) + \lambda \text{pen}(\hat{g}) \right]
- \left[ n^{-1} \sum_{i=1}^{n} \log g_0(Y_i) - E(\log g_0(Y)) \right] + \left[ n^{-1} \sum_{i=1}^{n} \log \hat{g}(Y_i) - E(\log \hat{g}(Y)) \right]
\leq n^{-1} \sum_{i=1}^{n} \log g_0(Y_i) - n^{-1} \sum_{i=1}^{n} \log \pi_n g_0(Y_i) + \lambda \text{pen}(\pi_n g_0) + O_P(n^{-\kappa}(\log n)^{1/2})
\leq E[\log g_0(Y) - \log \pi_n g_0(Y)] + \lambda \text{pen}(\pi_n g_0) + O_P(n^{-\kappa}(\log n)^{1/2})
= O(M_n^{-2}) + O_P(n^{-\kappa}(\log n)^{1/2}) = O_P(M_n^{-2}),
\]

by assumption (A3) and since \( \kappa = (1 - \beta)/2 \). Here, the third and the fourth inequality follow from (5.13) and the first equality in the last line is a consequence of (5.3). This shows that

\[ \lambda \text{pen}(\hat{g}) = O_P(M_n^{-2}), \]

and also that

\[ E[\log g_0(Y) - \log \hat{g}(Y)] = O_P(M_n^{-2}). \]

It now follows from Reiss (1989) (p. 99) that

\[ H^2(\hat{g}, g_0) \leq \int \log \left( \frac{g_0(y)}{\hat{g}(y)} \right) g_0(y) dy = E[\log g_0(Y) - \log \hat{g}(Y)] = O_P(M_n^{-2}), \]

which finishes the proof.

\[ \square \]

**Proof of Theorem 3.2.** We first consider Assertion a) and take \( \lambda \geq 0 \). By assumption \( H(\hat{g}, g_0) = O_P(M_n^{-2}) = O_P(n^{-\kappa}) \) for \( \kappa = 2\beta \). Recall that \( g_{h,\tau,\sigma}(y) = \frac{1}{\sigma y} \int_0^1 h(t) \phi \left( \frac{1}{\sigma} \log \frac{y}{t} \right) dt \) for all possible values \((h, \tau, \sigma) \in \mathcal{H}_{h_{\min},h_{\max},\delta} \times [\tau_{\min}, \tau_{\max}] \times [\sigma_{\min}, \sigma_{\max}]\). By definition of \( \phi \) we have

\[ g_{h,\tau,\sigma}(y) = w(y, \tau, \sigma) \cdot v(y, h, \tau, \sigma), \quad (5.15) \]

where \( w(\cdot) \) and \( v(\cdot) \) are defined by (5.8) and (5.9).

Similar as in the proof of Theorem 3.1 let \( 0 < z_{\min} < z_{\max} < \frac{\sigma_{\min}^2}{\sigma_0^2} \), and for \( z \in [z_{\min}, z_{\max}] \) set

\[ y_{z,n} := \exp \left( \left( 2\sigma^2 \log n \right)^{1/2} \right). \]
Obviously, \( \exp \left( \frac{-(\log((1-\delta)\tau))^2}{2\sigma^2} \right) \leq \exp \left( \frac{-(\log(\tau))^2}{2\sigma^2} \right) \leq \exp \left( \frac{-(\log \tau)^2}{2\sigma^2} \right) \) for all \( 1 - \delta \leq t \leq 1 \). We can thus infer from (5.10) - (5.12) that there exist constants \( 0 < C_0 < C_1 < \infty \) such that
\[
\frac{C_0}{(\log n)^{1/2}} \leq v(y_{z,n}, h, \tau, \sigma) \leq \frac{C_1}{(\log n)^{1/2}},
\]
f for all \( z \in [z_{\min}, z_{\max}] \), all \( (h, \tau, \sigma) \in \mathcal{H}_{h_{\min}, h_{\max}, \delta} \times [\tau_{\min}, \tau_{\max}] \times [\sigma_{\min}, \sigma_{\max}] \), and all sufficiently large \( n \).

Since by construction of \( z_{\min}, z_{\max} \) we have \( \exp \left( \frac{-(\log \tau)^2}{2\sigma^2} \right) = n^{-\sigma_0^2 \tilde{z}/\sigma^2} \) with \( \sup_{z \in [z_{\min}, z_{\max}]} \sup_{\sigma \in [\sigma_{\min}, \sigma_{\max}]} \sigma_0^2 \tilde{z}/\sigma_{\min}^2 < \kappa \), definition of \( w \) in (5.8) as well as relations (5.15) and (5.16) imply the existence of some \( \kappa^* > 0 \) such that
\[
\sup_{z \in [z_{\min}, z_{\max}]} \sup_{(h, \tau, \sigma) \in \mathcal{H}_{h_{\min}, h_{\max}, \delta} \times [\tau_{\min}, \tau_{\max}] \times [\sigma_{\min}, \sigma_{\max}]} \frac{n^{-\kappa}}{g(h, \tau, \sigma)(y_{z,n})} = O(n^{-\kappa^*}) \quad \text{as} \quad n \to \infty.
\]
(5.17)

Now, let \( N_n \) denote the largest integer with \( N_n \leq y_{z\max,n} - y_{z\min,n} \). There then exists a unique sequence \( z_{\min} =: z_0 < z_1 < \cdots < z_{N_n} \leq z_{\max} \) such that \( y_{z,j,n} - y_{z_{j-1},n} = 1 \) for all \( j = 1, \ldots, N_n \). Obviously, \( N_n \to \infty \) as \( n \to \infty \). By assumption \( H(\hat{g}, g_0) = O_P(n^{-\kappa}) \), and hence \( \sum_{j=1}^{N_n} \int_{y_{z_{j-1},n}}^{y_{z,j,n}} \left( \sqrt{g(y)} - \sqrt{g_0(y)} \right)^2 dy = O_P(n^{-\kappa}) \). The mean value theorem implies that for every \( j = 1, \ldots, N_n \) there exists some \( \tilde{z}_j \in [z_{j-1}, z_j] \) such that
\[
\int_{y_{z_{j-1},n}}^{y_{z,j,n}} \left( \sqrt{g(y)} - \sqrt{g_0(y)} \right)^2 dy = \left( \sqrt{g(\tilde{z}_j,n)} - \sqrt{g_0(\tilde{z}_j,n)} \right)^2.
\]
We can infer that \( \sum_{z \in Z_n} \left( \sqrt{g(\tilde{z}_j,n)} - \sqrt{g_0(\tilde{z}_j,n)} \right)^2 = O_P(n^{-\kappa}) \), where \( Z_n = \{ \tilde{z}_1, \ldots, \tilde{z}_{N_n} \} \). It follows that \( \sup_{z \in Z_n} \left( \sqrt{g(\tilde{z}_j,n)} - \sqrt{g_0(\tilde{z}_j,n)} \right)^2 = O_P(n^{-\kappa}) \). At the same time \( \hat{g} = g_{h, \tilde{\tau}, \tilde{\sigma}} \) as well as \( g_0 \equiv g_{h_0, \tau_0, \sigma_0} \), and (5.17) thus leads to
\[
\sup_{z \in Z_n} \left( \sqrt{g_{h, \tilde{\tau}, \tilde{\sigma}}(y_{z,n})} - \sqrt{g_{h_0, \tau_0, \sigma_0}(y_{z,n})} \right)^2 = O_P(n^{-\kappa^*}).
\]
(5.18)

Together with (5.15) and the definitions of \( w \) and \( v \) in (5.8) and (5.9) we therefore obtain
\[
\sup_{z \in Z_n} \left| \log \frac{g_{h, \tilde{\tau}, \tilde{\sigma}}(y_{z,n})}{g_{h_0, \tau_0, \sigma_0}(y_{z,n})} \right| = O_P(n^{-\kappa^*/2}).
\]
(5.19)

But (5.16) implies that \( \sup_{z \in Z_n} \left| \log \frac{v(y_{z,n}, h, \tilde{\tau}, \tilde{\sigma})}{v(y_{z,n}, h_0, \tau_0, \sigma_0)} \right| = O_P(1) \). Consequently,
\[
\sup_{z \in Z_n} \left| \frac{\log \frac{g_{h, \tilde{\tau}, \tilde{\sigma}}(y_{z,n})}{g_{h_0, \tau_0, \sigma_0}(y_{z,n})}}{\log \frac{v(y_{z,n}, h, \tilde{\tau}, \tilde{\sigma})}{v(y_{z,n}, h_0, \tau_0, \sigma_0)}} \right| = O_P(1)
\]
(5.20)
Since $\mathcal{Z}_n$ contains an increasing number of $N_n$ elements, $\hat{\gamma} - \tau_0 = O_P\left((\log n)^{-1/2}\right)$ as well as $\hat{\sigma} - \sigma_0 = O_P\left((\log n)^{-1}\right)$ are immediate consequences of (5.20).

This completes the proof of Assertion a). Note that the above arguments only require $H(\tilde{g}, \theta_0) = O_P(n^{-\alpha})$ and do not at all depend on $\lambda$. The proof of Assertion b) is based on an analysis of the structure of $\hat{h}$ to be obtained under penalized estimation. This then allows a more precise evaluation of the difference $\log \hat{h}_{\theta, \hat{\sigma}}$ on an analysis of the structure of $\hat{h}$.

Let $\hat{\gamma} = \hat{\gamma}_{\hat{\sigma}, \hat{\theta}}$ and $p_j := \hat{\gamma}_{M_n-j} - 2\hat{\gamma}_{M_n-j+1} + \hat{\gamma}_{M_n-j+2}$ and recall that by construction of our estimator $\hat{h}$ we have $\hat{h}(\frac{M_n-j}{M_n}) = \hat{\gamma}_{M_n-j}$, $j = 0, 1, \ldots, M_n - 1$, and $\hat{h}(0) = \hat{\gamma}_1 = \hat{h}(\frac{1}{M_n})$. Obviously, with $\gamma^{(1)} := M_n(\hat{h}(\frac{M_n-1}{M_n}) - \hat{h}(1))$ we then obtain $\hat{h}(\frac{M_n-1}{M_n}) = \gamma^{(1)} \frac{1}{M_n} + \hat{h}(1)$ as well as

$$\hat{h}(\frac{M_n-j}{M_n}) = \hat{h}(1) + \gamma^{(1)} \frac{j}{M_n} + \sum_{k=2}^{j}(j-k+1)p_k, \quad j = 2, \ldots, M_n - 1. \quad (5.21)$$

For all $j = 2, \ldots, M_n - 1$,

$$|\sum_{k=2}^{j}(j-k+1)p_k| \leq (M_n^2 \max_k |p_k|) \sum_{k=2}^{j}(j-k+1) \leq (M_n^2 \max_k |p_k|) \frac{1}{2}(j^2). \quad (5.22)$$

Furthermore, Theorem 3.1 implies that

$$M_n^2 \max_{2 \leq k \leq M_n - 1} |p_k| = M_n^2 \text{pen}(\tilde{g}) = O_P(1). \quad (5.23)$$

Let $J$ denote the largest integer such that $\frac{J}{M_n} \leq \delta$. Relations (5.21) and (5.22) then imply that

$$|\gamma^{(1)}| = \frac{|\hat{h}(\frac{M_n-1}{M_n}) - \hat{h}(1) - \sum_{k=2}^{J}(J-k+1)p_k|}{J/M_n} \leq \frac{\hat{h}_{\text{max}} - \hat{h}_{\text{min}}}{\delta-1/M_n} + \frac{\sum_{k=2}^{J}(J-k+1)p_k}{\delta-1/M_n} = O_P(1). \quad (5.24)$$

Recall that $\hat{h}$ is constant between the points $\frac{1}{M_n}, \frac{2}{M_n}, \ldots$. Therefore, there exists a constant $B_2 < \infty$, which can be chosen independently of $M_n$, such that for all $t \in [0, 1]$,

$$\hat{h}(t) = \hat{h}(1) - \gamma^{(1)}(t-1) + R_M(t), \quad |R_M(t)| \leq (M_n^2 \max_k |p_k|) \cdot \left(\frac{1}{2}(t-1)^2 + \frac{B_2}{M_n}\right). \quad (5.25)$$

On the other hand, a Taylor expansion of the true function $h_0$ yields

$$h_0(t) = h_0(1) + h_0'(1)(t-1) + R_2(t), \quad \text{where } R_2(t) \leq \max_{s \in [0,1]} |h_0''(s)| \cdot (t-1)^2 \quad (5.26)$$
Using partial integration, some straightforward calculations show that for each $j = 1, 2, 3, \ldots$ there exist constants $0 < D_{0,j} < D_{1,j} < \infty$ such that

$$
\frac{D_{0,j}}{(z \log n)^{(j+1)/2}} \leq \int_0^1 |t - 1|^j \exp \left( \frac{(\log y_{z,n})(\log t)}{\sigma^2} \right) \exp \left( -\frac{(\log t \tau)^2}{2\sigma^2} \right) dt \\
= \int_0^1 |t - 1|^j t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2}} \exp \left( -\frac{(\log t \tau)^2}{2\sigma^2} \right) dt \leq \frac{D_{1,j}}{(z \log n)^{(j+1)/2}}
$$

(5.27)

for all $z \in [z_{\min}, z_{\max}]$, all $(h, \tau, \sigma) \in \mathcal{H}_{h_{\min}, h_{\max}, \delta} \times [\tau_{\min}, \tau_{\max}] \times [\sigma_{\min}, \sigma_{\max}]$, and all sufficiently large $n$.

Note that the derivatives of $t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2}} \exp \left( -\frac{(\log t \tau)^2}{2\sigma^2} \right)$ with respect to $\sigma$ and $\tau$ are sums of terms which are of the general form $D_3 (z \log n)^{1/2} (log t) t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2}} \exp \left( -\frac{(\log t \tau)^2}{2\sigma^2} \right)$ and $D_4 (\log t) t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2}} \exp \left( -\frac{(\log t \tau)^2}{2\sigma^2} \right)$, where $D_3, D_4$ are constants, and where $j = 0, 1, 2$ as well as $s = 0, 1$. But for a suitable choice of constants relation (5.27) remains valid when replacing $|t - 1|^j$ by $|\log t|^j$ and $t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2}}$ by $t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2} - s}$. It then follows from a straightforward Taylor expansion that for all $j = 0, 1, \ldots$ there exist some constants $A_j, A'_j < \infty$ such that

$$
\left| \int_0^1 (t - 1)^j t^{(\sigma_0^2 z \log n/\sigma^4)^{1/2}} \exp \left( -\frac{(\log t \tau)^2}{2\sigma^2} \right) dt - \int_0^1 (t - 1)^j t^{(\sigma_0^2 z \log n/\sigma_0^4)^{1/2}} \exp \left( -\frac{(\log t \tau_0)^2}{2\sigma_0^2} \right) dt \right| \\
\leq \frac{A_j}{(z \log n)^{(j+1)/2}} |\widehat{\sigma} - \sigma_0| + \frac{A'_j}{(z \log n)^{(j+1)/2}} |\widehat{\tau} - \tau_0|
$$

(5.28)

It has already been shown above that $\widehat{\sigma} - \sigma_0 = O_P((\log n)^{-1})$ as well as $\widehat{\tau} - \tau_0 = O_P((\log n)^{-1/2})$. By definition of the function $v(\cdot)$, relations (5.16) as well as (5.21) - (5.28) then obviously imply that for $\alpha = \frac{1}{2}$

$$
\sup_{z \in \mathbb{Z}_n} \left| \log \frac{v(y_{z,n}, h, \widehat{\tau}, \widehat{\sigma})}{v(y_{z,n}, h_0, \tau_0, \sigma_0)} \right| = \sup_{z \in \mathbb{Z}_n} \left| \frac{\int_0^1 \left( \widehat{h}(1) - \gamma(1)(t - 1) \right) t^{(2\sigma_0^2 z \log n/\sigma^4)^{1/2}} \exp \left( -\frac{(\log t \widehat{\tau})^2}{2\sigma^2} \right) dt}{\int_0^1 \left( h_0(1) + h_0'(1)(t - 1) \right) t^{(2\sigma_0^2 z \log n/\sigma_0^4)^{1/2}} \exp \left( -\frac{(\log t \tau_0)^2}{2\sigma_0^2} \right) dt} \right| + O_P((\log n)^{-\alpha})
$$

$$
= \sup_{z \in \mathbb{Z}_n} \left| \frac{\int_0^1 \left( \widehat{h}(1) - h_0(1) - (\gamma(1) + h_0'(1))(t - 1) \right) t^{(2\sigma_0^2 z \log n/\sigma_0^4)^{1/2}} \exp \left( -\frac{(\log t \tau_0)^2}{2\sigma_0^2} \right) dt}{\int_0^1 \left( h_0(1) + h_0'(1)(t - 1) \right) t^{(2\sigma_0^2 z \log n/\sigma_0^4)^{1/2}} \exp \left( -\frac{(\log t \tau_0)^2}{2\sigma_0^2} \right) dt} \right| + O_P((\log n)^{-\alpha})
$$

(5.29)
By (5.18) and (5.29) we now obtain the following generalization of (5.20):

\[
\sup_{\tilde{z} \in \mathcal{Z}_n} \left| \log \frac{g_{\tilde{z}, \tilde{\sigma}}(y_{\tilde{z}, n})}{g_{h_0, \tau_0, \sigma_0}(y_{\tilde{z}, n})} \right| \\
\leq \sup_{\tilde{z} \in \mathcal{Z}_n} \left| -\frac{\sigma_0^2}{\sigma^2} \log \tilde{z} \right| n + \frac{(2\sigma_0^2 \log n)^{1/2}}{\sigma^2} \log \tilde{\tau} - \frac{(2\sigma_0^2 \log n)^{1/2}}{\sigma_0^2} \log \tau_0 \\
+ \int_0^1 \left( \tilde{h}(1) - h_0(1) - (\gamma(1) + h_0'(1))(t - 1) \right) t^{(2\sigma_0^2 \log n/\sigma_0^2)^{1/2}} \exp \left( -\frac{(\log t\tau_0)^2}{2\sigma_0^2} \right) dt \\
+ O_P((\log n)^{-\alpha}) \\
= O_P((\log n)^{-\alpha}). \tag{5.30}
\]

Here, again \( \alpha = \frac{1}{2} \). Since \( \mathcal{Z}_n \) contains an increasing number of \( N_n \) elements, this already leads to \( |\tilde{\sigma} - \sigma_0| = O_P((\log n)^{-1.5}) \), \( |\tilde{\tau} - \tau_0| = O_P((\log n)^{-1}) \), and \( |\tilde{h}(1) - h_0(1)| = O_P((\log n)^{-1/2}) \).

But \( |\tilde{\tau} - \tau_0| = O_P((\log n)^{-1}) \) (instead of \( |\tilde{\tau} - \tau_0| = O_P((\log n)^{-1/2}) \)) implies that for \( j = 0 \) the error of the Taylor expansions in (5.28) can even be bounded by \( O_P((\log n)^{-1.5}) \) (instead of \( O_P((\log n)^{-1}) \)). Together with (5.21) - (5.27) we can then conclude that (5.29) and (5.30) even hold with \( \alpha = 1 \).

Since \( \mathcal{Z}_n \) contains an increasing number of \( N_n \) elements, \( |\tilde{\tau} - \tau_0| = O_P((\log n)^{-1}) \) \( |\tilde{\sigma} - \sigma_0| = O_P((\log n)^{-2}) \), \( |\tilde{\tau} - \tau_0| = O_P((\log n)^{-1.5}) \), \( |\tilde{h}(1) - h_0(1)| = O_P((\log n)^{-1}) \), as well as \( |\gamma(1) + h_0'(1)| = O_P((\log n)^{-1/2}) \) are immediate consequences of (5.27) and (5.30) with \( \alpha = 1 \).

\[ \Box \]

**Proof of Theorem 3.3.** Recall that \( \sup_{t \in [0,1]} |h^{(m)}(t)| \leq h_{m,\max} \) as well as \( \sup_{t \in [0,1]} |h(t)| \leq h_{\max} \) for all \( h \in H_{h_{\min},h_{\max},h_{\max},\delta}^m \). By using Taylor expansions it is now immediately seen that this implies the existence of a constant \( H_{\max} \) such that \( \sup_{t \in [0,1]} |h^{(j)}(t)| \leq H_{\max} \) for all \( j = 0, 1, \ldots, m \) and all \( h \in H_{h_{\min},h_{\max},h_{\max},\delta}^m \).

The theorem is proved by induction over \( m = 0, 1, 2, \ldots \). The arguments used in the proof of Assertion a) of Theorem 3.2 readily generalize to the present situation and already show that (3.6) - (3.8) hold for \( m = 0 \).

Now consider the case that \( m > 0 \) and assume that the assertions of the theorem hold for all \( m' = 0, \ldots, m - 1 \). The proof follows from a generalization of the arguments used in the proof of Assertion b) of Theorem 3.2. We already know that \( \tilde{\sigma} - \sigma_0 = \)
\[ O_P \left( (\log n)^{-1+(m-1)/2} \right) \] as well as \( \hat{\tau} - \tau_0 = O_P \left( (\log n)^{-m/2} \right) \). Therefore, (5.28) implies

\[
\left| \int_0^1 (t-1)^j t (\sigma_0^2 z \log n / \sigma_1^2)^{1/2} \exp \left( \frac{-(\log t \hat{\tau})^2}{2\hat{\sigma}^2} \right) dt \right| + \left| - \int_0^1 (t-1)^j t (\sigma_0^2 z \log n / \sigma_1^2)^{1/2} \exp \left( \frac{-(\log t \tau_0)^2}{2\sigma_0^2} \right) dt \right| = O_P \left( (\log n)^{-(m+1)/2} \right)
\]

for all \( j = 0, \ldots, m \). Taylor expansions of \( h_0 \) and \( \hat{h} \) then provide

\[ h_0(t) = h_0(1) + \sum_{j=1}^{m-1} h_0^{(j)}(1)(t-1)^j + R_3(t), \quad \text{where } |R_3(t)| \leq H_{\text{max}} \cdot (t-1)^m \]

\[ \hat{h}(t) = \hat{h}(1) + \sum_{j=1}^{m-1} \hat{h}^{(j)}(1)(t-1)^j + R_4(t), \quad \text{where } |R_4(t)| \leq H_{\text{max}} \cdot (t-1)^m \]

Recall that \( \sup_{t \in [0,1]} |h_0^{(j)}(t)| \leq H_{\text{max}} \) and \( \sup_{t \in [0,1]} |\hat{h}^{(j)}(t)| \leq H_{\text{max}} \) for all \( j = 0, \ldots, m \). By (5.27) and (5.31) a straightforward generalization of the arguments leading to (5.29) and (5.30) then yields

\[
\sup_{z \in \mathcal{Z}_n} | \log \frac{g_{h,\hat{\tau},\hat{\sigma}}(y,z)}{g_{h_0,\tau_0,\sigma_0}(y,z)} | = \sup_{z \in \mathcal{Z}_n} \left| \frac{(2\sigma_0^2 z \log n)^{1/2} \hat{\tau}}{\sigma^2} \log \tau - \frac{(2\sigma_0^2 z \log n)^{1/2}}{\sigma_0^2} \log \tau_0 \right|
\]

\[
+ \sum_{j=0}^{m-1} \frac{(\hat{h}^{(j)}(1) - h_0^{(j)}(1)) \int_0^1 (t-1)^j t (2\sigma_0^2 z \log n / \sigma_0^2)^{1/2} \exp \left( \frac{-(\log t \tau_0)^2}{2\sigma_0^2} \right) dt}{\sum_{j=0}^{m-1} h_0^{(j)}(1) \int_0^1 (t-1)^j t (2\sigma_0^2 z \log n / \sigma_0^2)^{1/2} \exp \left( \frac{-(\log t \tau_0)^2}{2\sigma_0^2} \right) dt} \right|
\]

\[
= O_P \left( (\log n)^{-m/2} \right).
\]

Since \( \mathcal{Z}_n \) contains an increasing number of \( N_n \) elements, \( \hat{\tau} - \tau_0 = O_P \left( (\log n)^{-(1+m)/2} \right) \), \( \hat{\sigma} - \sigma_0 = O_P \left( (\log n)^{-(1+m)/2} \right) \), and \( |\hat{h}(1) - h_0(1)| = O_P \left( (\log n)^{-m/2} \right) \) are immediate consequences of (5.27) and (5.32).

\[ \square \]

**Acknowledgments.** The second and third author acknowledge support from IAP research network nr. P6/03 of the Belgian government (Belgian Science Policy). In addition, the third author acknowledges financial support from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant agreement No. 203650.
References


Figure 1: Density of $X$ in the 4 scenarios considered.

- Inefficiency $U$ is Exponential with $\beta = 2$
- Inefficiency $U$ is Exponential with $\beta = 1$
- Inefficiency $U$ is Truncated Normal with $\alpha = 0$ and $\beta = 0.8$
- Inefficiency $U$ is Truncated Normal with $\alpha = 0.6$ and $\beta = 0.6$

Table 1: Links between various noise to signal ratios for the 4 scenarios: the table evaluates the ratios $\sigma_Z/\sigma_X$ for different values of $\rho_{nts} > 0$.

<table>
<thead>
<tr>
<th>Case</th>
<th>$\sigma_X$</th>
<th>$\rho_{nts} = 0.01$</th>
<th>$\rho_{nts} = 0.05$</th>
<th>$\rho_{nts} = 0.10$</th>
<th>$\rho_{nts} = 0.25$</th>
<th>$\rho_{nts} = 0.50$</th>
<th>$\rho_{nts} = 0.75$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U \sim \text{Exp}(2)$</td>
<td>0.2357</td>
<td>0.0212</td>
<td>0.1061</td>
<td>0.2125</td>
<td>0.5365</td>
<td>1.1115</td>
<td>1.7686</td>
</tr>
<tr>
<td>$U \sim \text{Exp}(1)$</td>
<td>0.2887</td>
<td>0.0346</td>
<td>0.1735</td>
<td>0.3490</td>
<td>0.9076</td>
<td>2.0921</td>
<td>3.9881</td>
</tr>
<tr>
<td>$U \sim \text{N}^+(0, 0.82)$</td>
<td>0.2319</td>
<td>0.0208</td>
<td>0.1040</td>
<td>0.2082</td>
<td>0.5252</td>
<td>1.0851</td>
<td>1.7188</td>
</tr>
<tr>
<td>$U \sim \text{N}^+(0.6, 0.62)$</td>
<td>0.2179</td>
<td>0.0218</td>
<td>0.1093</td>
<td>0.2188</td>
<td>0.5519</td>
<td>1.1391</td>
<td>1.8017</td>
</tr>
</tbody>
</table>
Table 2: Example 1.a: $U \sim \text{Exp}(2)$ with $\mu_U = \sigma_U = 0.5$

Noise to signal ratios: $\rho_{nts} = 0, \sigma = 0, \sigma_Z/\sigma_X = 0$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0129</td>
<td>0.45e-03</td>
<td>1</td>
<td>0.0066</td>
<td>0.45e-03</td>
<td>1</td>
<td>0.0013</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0087</td>
<td>0.41e-03</td>
<td>-1</td>
<td>-0.0042</td>
<td>0.42e-03</td>
<td>-1</td>
<td>-0.0009</td>
</tr>
<tr>
<td>STD</td>
<td>0.0095</td>
<td>0.18e-03</td>
<td>0.0500</td>
<td>0.17e-03</td>
<td></td>
<td></td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.01, \sigma = 0.005, \sigma_Z/\sigma_X = 0.0212$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0151</td>
<td>0.0118</td>
<td>-1</td>
<td>0.0100</td>
<td>0.0079</td>
<td>-2</td>
<td>0.0035</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0082</td>
<td>0.0083</td>
<td>-1</td>
<td>-0.0055</td>
<td>-0.0010</td>
<td>-2</td>
<td>-0.0010</td>
</tr>
<tr>
<td>STD</td>
<td>0.0127</td>
<td>0.0084</td>
<td>0.0084</td>
<td>0.0079</td>
<td></td>
<td></td>
<td>0.0034</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.05, \sigma = 0.025, \sigma_Z/\sigma_X = 0.1061$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0239</td>
<td>0.0279</td>
<td>-1</td>
<td>0.0178</td>
<td>0.0190</td>
<td>-2</td>
<td>0.0079</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0092</td>
<td>0.0112</td>
<td>-1</td>
<td>-0.0019</td>
<td>-0.0054</td>
<td>-2</td>
<td>0.0000</td>
</tr>
<tr>
<td>STD</td>
<td>0.0221</td>
<td>0.0255</td>
<td>0.0177</td>
<td>0.0182</td>
<td></td>
<td></td>
<td>0.0079</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.10, \sigma = 0.05, \sigma_Z/\sigma_X = 0.2125$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0312</td>
<td>0.0363</td>
<td>-1</td>
<td>0.0215</td>
<td>0.0250</td>
<td>-1</td>
<td>0.0125</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0054</td>
<td>0.0083</td>
<td>-1</td>
<td>-0.0038</td>
<td>0.0090</td>
<td>-1</td>
<td>-0.0009</td>
</tr>
<tr>
<td>STD</td>
<td>0.0308</td>
<td>0.0353</td>
<td>0.0212</td>
<td>0.0234</td>
<td></td>
<td></td>
<td>0.0125</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.25, \sigma = 0.125, \sigma_Z/\sigma_X = 0.5365$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0485</td>
<td>0.0492</td>
<td>-1</td>
<td>0.0352</td>
<td>0.0332</td>
<td>-1</td>
<td>0.0161</td>
</tr>
<tr>
<td>BIAS</td>
<td>0.0022</td>
<td>0.0039</td>
<td>-1</td>
<td>0.0020</td>
<td>0.0049</td>
<td>-1</td>
<td>0.0055</td>
</tr>
<tr>
<td>STD</td>
<td>0.0485</td>
<td>0.0491</td>
<td>0.0351</td>
<td>0.0329</td>
<td></td>
<td></td>
<td>0.0152</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.50, \sigma = 0.250, \sigma_Z/\sigma_X = 1.1115$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0660</td>
<td>0.0554</td>
<td>1</td>
<td>0.0540</td>
<td>0.0432</td>
<td>-1</td>
<td>0.0312</td>
</tr>
<tr>
<td>BIAS</td>
<td>0.0297</td>
<td>0.0253</td>
<td>-1</td>
<td>0.0134</td>
<td>-0.0019</td>
<td>-1</td>
<td>0.0200</td>
</tr>
<tr>
<td>STD</td>
<td>0.0590</td>
<td>0.0493</td>
<td>0.0523</td>
<td>0.0432</td>
<td></td>
<td></td>
<td>0.0239</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.75, \sigma = 0.375, \sigma_Z/\sigma_X = 1.7686$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
<td>$\hat{\tau}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0957</td>
<td>0.0627</td>
<td>1</td>
<td>0.0750</td>
<td>0.0544</td>
<td>-1</td>
<td>0.0527</td>
</tr>
<tr>
<td>BIAS</td>
<td>0.0604</td>
<td>0.0103</td>
<td>-1</td>
<td>0.0250</td>
<td>-0.0090</td>
<td>-1</td>
<td>0.0385</td>
</tr>
<tr>
<td>STD</td>
<td>0.0743</td>
<td>0.0619</td>
<td>0.0708</td>
<td>0.0537</td>
<td></td>
<td></td>
<td>0.0360</td>
</tr>
</tbody>
</table>

27
Table 3: Example 1.b : $U \sim \text{Exp}(1)$ with $\mu_U = \sigma_U = 1$

Noise to signal ratios: $\rho_{nts} = 0, \sigma = 0, \sigma_Z/\sigma_X = 0$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0259</td>
<td>0.46e-03</td>
<td>1</td>
<td>0.0138</td>
<td>0.39e-04</td>
<td>-3</td>
<td>0.0026</td>
<td>0.24e-04</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0180</td>
<td>0.43e-03</td>
<td>-0.0098</td>
<td>0.13e-04</td>
<td>-0.0181</td>
<td>0.08e-04</td>
<td>-0.0197</td>
<td>0.0233</td>
</tr>
<tr>
<td>STD</td>
<td>0.0187</td>
<td>0.19e-03</td>
<td>0.0098</td>
<td>0.37e-04</td>
<td>0.0019</td>
<td>0.23e-04</td>
<td>0.0649</td>
<td>0.0498</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.01, \sigma = 0.01, \sigma_Z/\sigma_X = 0.0346$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0339</td>
<td>0.0198</td>
<td>-2</td>
<td>0.0228</td>
<td>0.0169</td>
<td>-2</td>
<td>0.0079</td>
<td>0.0072</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0210</td>
<td>-0.0021</td>
<td>-2</td>
<td>-0.0130</td>
<td>-0.0008</td>
<td>-2</td>
<td>-0.0026</td>
<td>0.0007</td>
</tr>
<tr>
<td>STD</td>
<td>0.0266</td>
<td>0.0197</td>
<td>-2</td>
<td>0.0188</td>
<td>0.0169</td>
<td>-2</td>
<td>0.0075</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.05, \sigma = 0.05, \sigma_Z/\sigma_X = 0.1735$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0535</td>
<td>0.0469</td>
<td>-2</td>
<td>0.0370</td>
<td>0.0350</td>
<td>-2</td>
<td>0.0191</td>
<td>0.0155</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0196</td>
<td>-0.0143</td>
<td>-2</td>
<td>-0.0067</td>
<td>-0.0121</td>
<td>-2</td>
<td>-0.0013</td>
<td>0.0020</td>
</tr>
<tr>
<td>STD</td>
<td>0.0498</td>
<td>0.0447</td>
<td>-2</td>
<td>0.0365</td>
<td>0.0328</td>
<td>-2</td>
<td>0.0191</td>
<td>0.0154</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.10, \sigma = 0.10, \sigma_Z/\sigma_X = 0.3490$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0783</td>
<td>0.0741</td>
<td>-2</td>
<td>0.0581</td>
<td>0.0525</td>
<td>-2</td>
<td>0.0135</td>
<td>0.0242</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0131</td>
<td>-0.0262</td>
<td>-2</td>
<td>-0.0249</td>
<td>0.0196</td>
<td>-2</td>
<td>-0.0002</td>
<td>0.0040</td>
</tr>
<tr>
<td>STD</td>
<td>0.0773</td>
<td>0.0694</td>
<td>-2</td>
<td>0.0525</td>
<td>0.0517</td>
<td>-2</td>
<td>0.0356</td>
<td>0.0239</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.25, \sigma = 0.25, \sigma_Z/\sigma_X = 0.9076$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1280</td>
<td>0.1154</td>
<td>-1</td>
<td>0.0988</td>
<td>0.0840</td>
<td>-1</td>
<td>0.0444</td>
<td>0.0399</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0205</td>
<td>0.0062</td>
<td>-1</td>
<td>-0.0251</td>
<td>0.0182</td>
<td>-1</td>
<td>-0.0230</td>
<td>0.0239</td>
</tr>
<tr>
<td>STD</td>
<td>0.1264</td>
<td>0.1154</td>
<td>-1</td>
<td>0.0956</td>
<td>0.0821</td>
<td>-1</td>
<td>0.0380</td>
<td>0.0320</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.50, \sigma = 0.50, \sigma_Z/\sigma_X = 2.0921$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1141</td>
<td>0.1552</td>
<td>-1</td>
<td>0.0919</td>
<td>0.1431</td>
<td>-1</td>
<td>0.0627</td>
<td>0.0502</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0668</td>
<td>0.1110</td>
<td>-1</td>
<td>-0.0628</td>
<td>0.1204</td>
<td>-1</td>
<td>-0.0239</td>
<td>0.0245</td>
</tr>
<tr>
<td>STD</td>
<td>0.0926</td>
<td>0.1085</td>
<td>-1</td>
<td>0.0671</td>
<td>0.0774</td>
<td>-1</td>
<td>0.0580</td>
<td>0.0438</td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.75, \sigma = 0.75, \sigma_Z/\sigma_X = 3.9881$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th></th>
<th></th>
<th>$n = 100$</th>
<th></th>
<th></th>
<th>$n = 500$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>log$_{10}$ $\lambda$</td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1138</td>
<td>0.1697</td>
<td>2</td>
<td>0.0872</td>
<td>0.1495</td>
<td>1</td>
<td>0.0678</td>
<td>0.0549</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0414</td>
<td>0.1029</td>
<td>2</td>
<td>-0.0460</td>
<td>0.1153</td>
<td>1</td>
<td>-0.0197</td>
<td>0.0233</td>
</tr>
<tr>
<td>STD</td>
<td>0.1061</td>
<td>0.1351</td>
<td>2</td>
<td>0.0742</td>
<td>0.0952</td>
<td>1</td>
<td>0.0649</td>
<td>0.0498</td>
</tr>
</tbody>
</table>
Table 4: Example 2.a: $U \sim N^+(0, 0.8^2)$ so $\mu_U = 0.6383$ and $\sigma_U = 0.4822$

Noise to signal ratios: $\rho_{nts} = 0, \sigma = 0, \sigma_Z/\sigma_X = 0$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0259</td>
<td>0.93e-04</td>
<td>-2</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0186</td>
<td>0.34e-04</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>0.0181</td>
<td>0.87e-04</td>
<td></td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.01, \sigma = 0.0048, \sigma_Z/\sigma_X = 0.0208$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0314</td>
<td>0.0183</td>
<td></td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0225</td>
<td>0.0181</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>0.0219</td>
<td>0.0020</td>
<td></td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.05, \sigma = 0.0241, \sigma_Z/\sigma_X = 0.1040$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0660</td>
<td>0.0519</td>
<td>-2</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0397</td>
<td>0.0133</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>0.0528</td>
<td>0.0503</td>
<td></td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.10, \sigma = 0.0482, \sigma_Z/\sigma_X = 0.2082$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0775</td>
<td>0.0640</td>
<td>-3</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0401</td>
<td>0.0089</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>0.0663</td>
<td>0.0635</td>
<td></td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.25, \sigma = 0.1206, \sigma_Z/\sigma_X = 0.5252$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1112</td>
<td>0.0894</td>
<td>-2</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0570</td>
<td>0.0102</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>0.0956</td>
<td>0.0889</td>
<td></td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.50, \sigma = 0.2411, \sigma_Z/\sigma_X = 1.0851$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1109</td>
<td>0.1009</td>
<td>1</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0898</td>
<td>0.0830</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>0.0652</td>
<td>0.0575</td>
<td></td>
</tr>
</tbody>
</table>

Noise to signal ratios: $\rho_{nts} = 0.75, \sigma = 0.3617, \sigma_Z/\sigma_X = 1.7188$

<table>
<thead>
<tr>
<th></th>
<th>$n = 50$</th>
<th>$n = 100$</th>
<th>$n = 500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\tau}$</td>
<td>$\hat{\sigma}$</td>
<td>$\log_{10} \lambda$</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0995</td>
<td>0.0856</td>
<td>1</td>
</tr>
<tr>
<td>BIAS</td>
<td>-0.0627</td>
<td>0.0554</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>0.0773</td>
<td>0.0653</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Example 2.b : $U \sim N^+(0.6, 0.6^2)$ so $\mu_U = 0.7726$ and $\sigma_U = 0.4761$

Noise to signal ratios: $\rho_{nts} = 0, \sigma = 0, \sigma_Z/\sigma_X = 0$

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda & n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda \\
\hline
50 & 0.0448 & 0.98e-04 & -2 & 100 & 0.0255 & 0.13e-03 & -2 \\
500 & & & & 50 & 0.0052 & 0.38e-03 & 0 \\
\hline
\end{array}
\]

Noise to signal ratios: $\rho_{nts} = 0.01, \sigma = 0.0048, \sigma_Z/\sigma_X = 0.0218$

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda & n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda \\
\hline
50 & 0.0574 & 0.0180 & -1 & 100 & 0.0386 & 0.0187 & -1 \\
500 & & & & 50 & 0.0222 & 0.0183 & -2 \\
\hline
\end{array}
\]

Noise to signal ratios: $\rho_{nts} = 0.05, \sigma = 0.0238, \sigma_Z/\sigma_X = 0.1093$

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda & n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda \\
\hline
50 & 0.1391 & 0.1030 & -4 & 100 & 0.1038 & 0.0776 & -4 \\
500 & & & & 50 & 0.0579 & 0.0473 & -2 \\
\hline
\end{array}
\]

Noise to signal ratios: $\rho_{nts} = 0.10, \sigma = 0.0476, \sigma_Z/\sigma_X = 0.2188$

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda & n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda \\
\hline
50 & 0.1592 & 0.1146 & -4 & 100 & 0.1193 & 0.0843 & -3 \\
500 & & & & 50 & 0.0759 & 0.0533 & -2 \\
\hline
\end{array}
\]

Noise to signal ratios: $\rho_{nts} = 0.25, \sigma = 0.1190, \sigma_Z/\sigma_X = 0.5519$

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda & n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda \\
\hline
50 & 0.1760 & 0.1138 & -4 & 100 & 0.1483 & 0.0894 & -3 \\
500 & & & & 50 & 0.1111 & 0.0554 & -2 \\
\hline
\end{array}
\]

Noise to signal ratios: $\rho_{nts} = 0.50, \sigma = 0.2381, \sigma_Z/\sigma_X = 1.1391$

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda & n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda \\
\hline
50 & 0.2120 & 0.1223 & -4 & 100 & 0.1854 & 0.0885 & -4 \\
500 & & & & 50 & 0.1436 & 0.0498 & -3 \\
\hline
\end{array}
\]

Noise to signal ratios: $\rho_{nts} = 0.75, \sigma = 0.3571, \sigma_Z/\sigma_X = 1.8017$

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda & n & \hat{\tau} & \hat{\sigma} & \log_{10} \lambda \\
\hline
50 & 0.2284 & 0.1247 & -3 & 100 & 0.1812 & 0.0876 & 2 \\
500 & & & & 50 & 0.1465 & 0.0523 & -3 \\
\hline
\end{array}
\]