SOME POISSON MIXTURES DISTRIBUTIONS
WITH A HYPERSCALE PARAMETER

LAURENT, S.
Some Poisson mixtures distributions with a hyperscale parameter

Stéphane Laurent

Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Abstract. We mainly investigate certain mixtures of Poisson distributions with a scale parameter in the mixing distribution. They help us to derive the bivariate Poisson mixtures arising from the prior and posterior predictive distributions in the semi-conjugate family defined by Laurent and Legrand (2009) for the ‘two Poisson samples’ model, which contains in particular the reference prior when the parameter of interest is the ratio of the two Poisson rates. As a by-product, we get a family of priors for the ‘one Poisson sample’ model whose prior predictive distributions form the Beta-negative binomial family.

1 Introduction

We firstly define certain families of univariate mixtures of Poisson distributions whose probability mass functions and probability generating functions involve the Gauss hypergeometric function or the Appell hypergeometric function in the more general case. Two interesting families are obtained by extending a family of Poisson mixtures by adding a scale parameter in the family of mixing distributions. We get in particular the ‘hyperscaled’ Beta-negative binomial distributions. The ‘hyperscaling’ on a Poisson mixture acts on its probability generating function by a linear change of variables. Consequently the factorial moments of the Poisson mixtures we define have a simple expression, and thus can be exploited to fit such a distribution to data. Actually all univariate Poisson mixtures we define are obtained by mixing some negative binomial distributions on their proportion parameter with a distribution which is constructively defined from a Beta distribution or, in the more general case, with the distribution we name Beta distribution of the third kind. Excepted for this case, our Poisson mixtures can be

Research supported by IAP research network grant nr. P6/03 of the Belgian government (Belgian Science Policy).

AMS 2000 subject classifications. Primary 60E05, 60E10, 62F15; secondary 33C05, 33C65

Keywords and phrases. Bayesian model, Hypergeometric functions, Jeffreys prior, Poisson mixtures distributions, Probability generating function, Reference prior
straightforwardly simulated with any standard statistical software. These investigations are the object of section 2.

In section 3, our univariate Poisson mixtures help us to derive the bivariate Poisson mixtures arising from the predictive distributions for the semi-conjugate family of priors defined by Laurent and Legrand (2009) for the ‘two Poisson samples’ model, and also the prior (but not the posterior) predictive distributions for a larger family we define (by adding a scale parameter for the prior on the ratio of the two Poisson rates). In particular we get the posterior predictive distributions corresponding to the Berger & Bernardo reference prior for the ratio of the Poisson rates. Of course, the probabilistic results we give on these bivariate Poisson mixtures could be directly derived by naive calculations, but they are more easily and intuitively derived and more clearly expressed with the help of the univariate Poisson mixtures introduced in section 2. As a by-product, we get a family of priors for the ‘one Poisson sample’ model whose prior predictive distributions form the Beta-negative binomial family, thereby allowing more dispersion in the prior distributions as compared to the conjugate Gamma family.

We display below the main no(ta)tions and conventions of the paper.

Hypergeometric functions and Pochhammer symbol. Following the usual notations, the Gauss hypergeometric function is denoted by \(_2F_1\), and the Appell first hypergeometric function, shortly termed as Appell hypergeometric function in the present paper, is denoted by \(_F_1\). The background on hypergeometric functions we use in this paper is given in the Appendix. We will mainly use the identity (A.1) and the integral representations (A.2) and (A.4). Definitions of these hypergeometric functions involve the Pochhammer symbol \(_{(a)}_{n} := a(a + 1)\dotsc (a + n - 1)\) for ascending factorials, with \(_{(a)}_{0} = 1\) by the empty product convention. We will use the following equality, denoting by \(B\) the Beta function:

\[
B(c, d)(c)_m(d)_n = B(c + m, d + n)(c + d)_{m+n},
\]

which holds for all integers \(m, n \geq 0\) and all real numbers \(c, d > 0\).

Beta distribution of second and third kinds. The Beta prime distribution \(B'(c, d)\) with positive parameters \(c\) and \(d\) is defined as the distribution of the random variable \(\psi = \theta(1 - \theta)^{-1}\) where the random variable \(\theta\) has the usual Beta distribution \(B(c, d)\). Its density function is

\[
B'(\psi \mid c, d) = \frac{1}{B(c, d) (1 + \psi)^{c+d}}, \quad \psi \geq 0.
\]
Note that the distribution of ψ^{-1} is then $B'(d, c)$, what we symbolically write as $B'(c, d)^{-1} = B'(d, c)$. The Beta distribution of the second kind $B_2(c, d, \tau)$ with positive parameters c, d and τ is symbolically defined by $B_2(c, d, \tau) = \tau \times B'(c, d)$. Rigorously speaking, with the notations above, this is the distribution of the random variable $\phi = \tau \psi$. Its density function is then

$$B_2(\phi | c, d, \tau) = \frac{\tau^{-c}}{B(c, d)} \phi^{c-1} \left(1 + \frac{\phi}{\tau}\right)^{c+d}, \quad \phi \geq 0. \quad (1.2)$$

Owing to $B'(c, d)^{-1} = B'(d, c)$, we obviously have $B_2(c, d, \tau)^{-1} = B_2(d, c, \tau^{-1})$. Kleiber & Kotz (2003) provide many details on the Beta distributions of the second kind. We finally define the Beta distribution of the third kind $B_3(c, d, \kappa, \tau)$ with parameters $c > 0$, $d > 0$, $\tau > 0$ and $\kappa \in \mathbb{R}$ as the distribution whose density function is

$$B_3(\phi | c, d, \kappa, \tau) = \frac{1}{C_{c,d,\kappa,\tau} B(c, d)} \phi^{c-1}(1 + \phi)^{-\kappa} \left(1 + \frac{\phi}{\tau}\right)^{c+d-\kappa}, \quad \phi \geq 0, \quad (1.3)$$

where, thanks to (A.2) and (A.1),

$$C_{c,d,\kappa,\tau} = 2F_1 \left(c, c + d - \kappa, c + d; 1 - \frac{1}{\tau}\right) = \tau^{c+d-\kappa} 2F_1 \left(d, c + d - \kappa, c + d; 1 - \tau\right).$$

It is easy to check that $B_3(c, d, \kappa, \tau)^{-1} = B_3(d, c, \kappa, \tau^{-1})$. With the terminology of Chen and Novick (1984), if $\phi \sim B_3(c, d, \kappa, \tau)$, then the distribution of $\theta := \phi(1 + \phi)^{-1}$ is the four-parameter generalized Beta distribution. It appears as the posterior distribution on the proportion parameter of the Bayesian binomial model whose prior on the odds parameter is a Beta distribution of the second kind.

Hyperscaled Poisson mixtures. When $P\gamma$ denotes the mixture of the Poisson distributions $P(\theta)$ with $\theta \sim \gamma(d\theta)$ for some probability distribution γ on $(0, +\infty)$, then for a given $T > 0$, we denote by $T \star P\gamma$ the mixture of Poisson distributions $P(\theta T)$ with $\theta \sim \gamma(d\theta)$. For instance, consider the well-known Poisson-Gamma distribution $PG(a, b)$ with parameters $a, b > 0$ which is defined as the Poisson mixture with a Gamma distribution $G(a, b)$ with rate parameter b, hence the hyperscaling on the Poisson-Gamma distribution $PG(a, b)$ acts by division on b: one has $T \star PG(a, b) = PG(a, b/T)$.

The probability mass function of \(T \star \mathcal{P}G(a, b) \) is given by

\[
T \star \mathcal{P}G(x \mid a, b) = \frac{(a)_x}{x!} \frac{b^x T^x}{(b + T)^{a+z}}, \quad x \in \mathbb{N},
\]
(1.4)

where \(\mathbb{N} = \{0, 1, \ldots\} \).

We generically use the letter ‘\(G \)’ for denoting probability generating functions (pgf). Knowing that \(G_{\mathcal{P}\gamma}(s) = e^{\theta(s-1)} \), we have the following equality

\[
G_{\mathcal{P}\gamma}(s) = \int e^{\theta(s-1)} \gamma(d\theta),
\]
(1.5)

thereby giving an analytical continuation of \(G_{\mathcal{P}\gamma} \) for \(\Re(s) < 1 \). Throughout this paper, it will be understood that we always consider this analytical continuation of the pgf for any Poisson mixture distribution. The pgf of the hyperscaled Poisson mixture \(T \star \mathcal{P}\gamma \) is then given by the following elementary linear change of variables on the pgf of \(\mathcal{P}\gamma \):

\[
G_{T \star \mathcal{P}\gamma}(s) = G_{\mathcal{P}\gamma}(1 - T(1 - s)).
\]
(1.6)

Consequently the \(n \)-th factorial moment of \(T \star \mathcal{P}\gamma \) equals \(T^n \) multiplied by the \(n \)-th factorial moment of \(\mathcal{P}\gamma \). Note also that (1.5) provides a link between \(G_{\mathcal{P}\gamma} \) and the Laplace transform of \(\gamma \), from what we can deduce that \(\mathcal{P}\gamma \) uniquely determines \(\gamma \). We will use the following expression of the pgf of the Poisson-Gamma distribution \(\mathcal{P}G(a, b) \):

\[
G_{\mathcal{P}G(a, b)}(s) = \frac{b^a}{(1 - s + b)^a}.
\]
(1.7)

2 Some univariate Poisson mixtures

We shall define some families of Poisson mixtures (in fact, Poisson-Gamma mixtures). For each of them we provide the probability mass functions and the probability generating functions. The first family \(\mathcal{P}GB_3 \) of Poisson-Gamma-Beta distributions of the third kind contains the subfamily \(\mathcal{P}GB_2 \) of Poisson-Gamma-Beta distributions of the second kind which are nothing but the ‘hyperscaled’ Beta-negative binomial distributions. We next define the family \(\mathcal{P}GIB \) of Poisson-Gamma-inverse Beta distributions and its extension with a hyperscale parameter.

Poisson-Gamma-Beta distributions of the third kind. In view of the expression (1.4) of the probability masses of the Poisson-Gamma distribution, and the expression (1.3) of the density of the Beta distribution of the third kind, lemma below straightforwardly follows from Bayes’ formula.
Lemma 2.1. Let a, c, d, τ be positive numbers and κ a real number. Let ψ and x be random variables such that

$$\psi \sim B_3(c, d, \kappa, \tau)$$

and

$$(x \mid \psi) \sim PG(a, \psi).$$

Then

$$(\psi \mid x) \sim B_3(c + a, d + x, \kappa + a + x, \tau).$$

We then define the Poisson-Gamma-Beta distribution of the third kind $\mathcal{PGB}_3(a, c, d, \kappa, \tau)$ with parameters $a, c, d, \tau > 0$ and $\kappa \in \mathbb{R}$ as the absolute distribution of x in lemma above. The probability mass it assigns at $x \in \mathbb{N}$ is then

$$\mathcal{PGB}_3(x \mid a, c, d, \kappa, \tau) = \frac{(a)_x B(c + a, d + x)}{x! B(c, d)} \times {}_2F_1 \left(c + a, c + d - \kappa, c + d + a + x; 1 - \frac{1}{\tau} \right).$$

(2.1)

In the particular case when $\kappa = 0$ we call this distribution the Poisson-Gamma-Beta distribution of the second kind and denote it by $\mathcal{PGB}_2(a, c, d, \tau)$. Its probability masses are then given by

$$\mathcal{PGB}_2(x \mid a, c, d, \kappa, \tau) = \frac{(a)_x B(c + a, d + x)}{x! B(c, d)} \times \tau^{-\tau} {}_2F_1 \left(c + a, c + d, c + d + a + x; 1 - \frac{1}{\tau} \right), \quad x \in \mathbb{N}.$$

(2.2)

In case when $\tau = 1$, the Poisson-Gamma-Beta distribution of the second kind $\mathcal{PGB}_2(a, c, d, \tau)$ reduces to the well-known Beta-negative binomial distribution which we also call Poisson-Gamma-Beta prime distribution and we denote it by $\mathcal{PGB}'(a, c, d)$. Its probability masses are given by

$$\mathcal{PGB}'(x \mid a, c, d) = \frac{(a)_x B(c + a, d + x)}{x! B(c, d)}, \quad x \in \mathbb{N}.$$

This distribution is also known as a type IV general hypergeometric distribution and also named generalized Waring distribution (see Johnson, Kemp and Kotz, 2005). We notice that, with the notations given in the introduction, the hyperscaling acts by division on the fourth parameter τ of $\mathcal{PGB}_2(a, c, d, \tau)$, that is:

$$T \star \mathcal{PGB}_2(a, c, d, \tau) = \mathcal{PGB}_2(a, c, d, \tau/T).$$
In particular $\mathcal{PG}B_2(a, c, d, \tau) = \tau^{-1} * \mathcal{PG}B'(a, c, d)$, thus the $\mathcal{PG}B_2$ family is nothing but the family of hyperscaled Beta-negative binomial distributions.

Result 2.1. The pgfs in the $\mathcal{PG}B_3$ family are given by the following expressions.

\[
G_{\mathcal{PG}B'(a,c,d)}(s) = \frac{B(c + a, d)}{B(c, d)} (1 - s)^{c} \, _2F_1\left(c + a, c + d, c + d + a; s\right),
\]

\[
G_{\mathcal{PG}B_2(a,c,d,\tau)}(s) = \frac{B(c + a, d)}{B(c, d)} \left(\frac{1 - s}{\tau}\right)^{c}
\] \[
\times _2F_1\left(c + a, c + d, c + d + a; \frac{1 - 1 - s}{\tau}\right),
\]

\[
G_{\mathcal{PG}B_3(a,c,d,\kappa,\tau)}(s) = \frac{B(c + a, d)}{B(c, d)} \frac{1}{(1 - s)^{a}}
\] \[
\times \frac{F_1\left(c + a, a, c + d - \kappa, c + d + a; 1 - \frac{1 - s}{1 - \frac{1}{\tau}}\right)}{_2F_1\left(c, c + d - \kappa, c + d; 1 - \frac{1}{\tau}\right)},
\]

Proof. Using the expression (1.7) of $G_{\mathcal{PG}(a,\psi)}(s)$ and the expression (1.1) of $B'(\psi \mid c, d)$, the integral representation (A.2) of $_2F_1$ straightforwardly yields

\[
G_{\mathcal{PG}B'(a,c,d)}(s) = (1 - s)^{-a} \frac{B(c + a, d)}{B(c, d)} \, _2F_1\left(c + a, a, c + d + a; 1 - \frac{1 - s}{1 - \frac{1}{\tau}}\right),
\]

which equals the announced expression due to identity (A.1). In the same way, the announced expression of $G_{\mathcal{PG}B_3(a,c,d,\kappa,\tau)}(s)$ is derived from the expression of $B_3(\psi \mid c, d, \kappa, \tau)$ given by (1.3), and the integral representation (A.4) of the Appell hypergeometric function. The pgf of $\mathcal{PG}B_2(a,c,d,\tau)$ is obtained from the pgf of $\mathcal{PG}B'(a,c,d)$ with the help of the linear change of variables (1.6).

Because of $\mathcal{PG}B_3(a,c,d,\kappa,\tau) = \mathcal{PG}B_2(a,c,d,\tau)$ when $\kappa = 0$, the previous result yields the following reduction of the Appell hypergeometric function, which was noticed by Bailey (1934):

\[
F_1(\alpha, \beta, \beta', \beta + \beta'; 1 - x, 1 - y) = x^{-\alpha} \, _2F_1\left(\alpha, \beta', \beta + \beta'; 1 - \frac{y}{x}\right)
\]

\[= y^{-\alpha} \, _2F_1\left(\alpha, \beta, \beta + \beta'; 1 - \frac{x}{y}\right) \quad (2.3)
\]

(the second equality is obtained by exchanging β and x with β' and x'). This reduction will help later.
Poisson-Gamma-inverse Beta distributions. Another straightforward application of Bayes’ formula yields the following lemma.

Lemma 2.2. Let a, c, d, τ be positive numbers. Let ψ and x be random variables such that

$$
\psi \sim \mathcal{B}'(c, d) \quad \text{and} \quad (x \mid \psi) \sim \tau \star \mathcal{PG}(a, 1 + \psi).
$$

Then $(\psi \mid x) \sim \mathcal{B}_3(c, d + x, c + d - a, \tau + 1)$.

In lemma above, it is easy to see that $(1 + \psi)^{-1}$ is distributed according to $\mathcal{B}(d, c)$. We then call Poisson-Gamma-inverse Beta distribution with parameters $a, c, d > 0$ the absolute distribution of x in lemma above when $\tau = 1$ and we denote it by $\mathcal{PGIB}(a, c, d)$. For an arbitrary $\tau > 0$, the absolute distribution of x is then $\tau \star \mathcal{PGIB}(a, c, d)$ which we do not name.

Result 2.2. The probability generating function of $\tau \star \mathcal{PGIB}(a, c, d)$ is given by

$$
G_{\tau \star \mathcal{PGIB}(a, c, d)}(s) = 2F_1(d, a, c + d; -\tau(1 - s)).
$$

Consequently the n-th factorial moment of $\tau \star \mathcal{PGIB}(a, c, d)$ is $\tau^n \frac{(d)_n}{(c + d)_n}$.

Proof. We know from (1.7) that the probability generating function of $\mathcal{PG}(a, 1 + \psi)$ is given by

$$
G_{\mathcal{PG}(a, 1 + \psi)}(s) = (1 - s)^{-a} \frac{(1 + \psi)^a}{1 + \frac{s}{1 - s}} = (2 - s)^{-a} \frac{(1 + \psi)^a}{\left(1 + \frac{s}{2 - s}\right)^a}.
$$

Hence, using the expression (1.1) of $\mathcal{B}'(\psi \mid c, d)$, the integral representation (A.2) and the identity (A.1) for $2F_1$, we obtain

$$
G_{\mathcal{PGIB}(a, c, d)}(s) = (2 - s)^{-a} 2F_1\left(c, a, c + d; \frac{1 - s}{2 - s}\right) = 2F_1\left(d, a, c + d; s - 1\right).
$$

The expression for $G_{\tau \star \mathcal{PGIB}(a, c, d)}(s)$ follows from the linear change of variables (1.6). The factorial moments derive from the equality

$$
\frac{d}{dz} 2F_1(\alpha, \beta, \gamma; z) = \frac{\alpha \beta}{\gamma} 2F_1(\alpha + 1, \beta + 1, \gamma + 1; z),
$$

which easily follows from the power series representation of $2F_1$. \qed
Using the factorial moments, we get that the mean of \(\tau \ast \mathcal{P}_{\text{GiB}}(a,c,d) \) is
\[\tau ad(c + d)^{-1} \]
and its variance is
\[\tau ad \left[\frac{1}{c + d} + \tau \frac{c(a + d + 1) + d(d + 1)}{(c + d)^2(c + d + 1)} \right]. \]

3 Some bivariate Poisson mixtures

Laurent and Legrand (2009) defined a natural semi-conjugate family of priors for the ‘two Poisson samples’ model. It contains in particular the Berger & Bernardo reference prior for the ratio of the two Poisson rates. The results we give in this section provide the prior and posterior predictive distributions for this family of priors, and also the prior predictive distributions for a larger family of priors (defined in lemma 3.1). As a by-product, we will get a family of priors for the ‘one Poisson sample’ model whose corresponding prior predictive distributions form the Beta-negative binomial family.

Consider the statistical model given by two independent observations
\[x \sim \mathcal{P}(\lambda S) \quad \text{and} \quad y \sim \mathcal{P}(\mu T) \]
with unknown incidence rates \(\lambda, \mu \), and fixed ‘observation-opportunity sizes’, or ‘sample sizes’, \(S \) and \(T \), and put \(\phi = \lambda/\mu \). When \(\mu \) and \(\phi \) have independent prior distributions with \(\mu \sim \mathcal{G}(a,b) \), then, as shown by Laurent and Legrand (2009), the conditional joint prior predictive distribution of \((x,y)\) given \(\phi \) is the bivariate Poisson-Gamma distribution having the marginal-conditional factorization
\[(y \mid \phi) \sim \mathcal{G}(a,b) \quad \text{and} \quad (x \mid y, \phi) \sim \phi S \ast \mathcal{G}(a + y, b + T). \]

Since the marginal distribution of \(y \) does not depend on \(\phi \), the posterior on \(\phi \) is then the same as if \(x \) has been assumed to be generated from \(\phi S \ast \mathcal{G}(a + y, b + T) = \mathcal{G}\left(a + y, \frac{b + T}{S} \phi^{-1}\right) \). Therefore lemma 2.1 yields the following extension of the semi-conjugate family defined by Laurent and Legrand (2009).

Lemma 3.1. For any positive numbers \(a, b, c, d \), if the joint prior of \((\mu, \phi)\) is defined by
\[(\mu \mid \phi) \sim \mathcal{G}(a,b) \quad \text{and} \quad \phi \sim \mathcal{B}_2(c,d,\rho), \]
then the joint posterior on \((\mu, \phi)\) is given by
\[(\mu \mid \phi, x, y) \sim \mathcal{G}(a + x + y, b + \phi S + T) \]
and
\[(\phi \mid x, y) \sim \frac{T + b}{S} \ast \mathcal{B}_3\left(c + x, d + a + y, a + x + y, \rho \frac{S}{b + T}\right). \]
Some Poisson mixtures distributions

The semi-conjugate family defined by Laurent and Legrand (2009) is the case when \(\rho = \frac{T + b}{S} \), that is when \(\phi \) has the \(\mathcal{B}_2(c + x, d + a + y, \rho) \) posterior distribution. Hereafter, we will simply call it the semi-conjugate family. More particularly, the case when \(\rho = \frac{T + b}{S} \) and \(a = c = \frac{1}{2} \) and \(b = d = 0 \) corresponds to the Berger & Bernardo reference prior when \(\phi \) is considered to be the parameter of interest (hereafter called the \(\phi \)-reference prior). Reference priors are widely recognized nowadays as the most successful noninformative priors. We refer to Bernardo (2005) for a review on reference priors.

Bailey distribution. The posterior predictive distributions will involve the bivariate discrete distribution we define now and name the Bailey distribution for the following reason. In addition to the reduction (2.3) of the Appell hypergeometric function \(F_1(\alpha, \beta, \beta'; \gamma; z, z') \), Bailey (1934) also gives a reduction of \(F_1(\alpha, \beta, \beta'; z, z') \). The following elementary equality is then nothing but a particular case of one or the other of these two reductions:

\[
\sum_{x=0}^{\infty} \sum_{y=0}^{\infty} \frac{(\alpha)_{x+y}(\beta)_x(\beta')_y}{x!y!(\beta + \beta')_{x+y}} z^{x+y} = (1 - z)^{-\alpha}, \quad |z| < 1.
\]

Then we define the bivariate Bailey distribution \(\text{Bailey}(a, c, d, \rho) \) with parameters \(a, c, d, \rho > 0 \) as the probability distribution on \(\mathbb{N}^2 \) whose probability masses are given by

\[
\text{Bailey}(x, y \mid a, c, d, \rho) = \left(\frac{\rho}{1 + \rho} \right)^a \frac{(a)_{x+y}(c)_x(d)_y}{x!y!(c+d)_{x+y}} \left(\frac{1}{1 + \rho} \right)^{x+y}, \quad x, y \in \mathbb{N}.
\]

(3.1)

By the double power series representation of \(F_1 \), we easily see that the pgf of Bailey\((a, c, d, \rho)\) is given by

\[
G_{\text{Bailey}(a, c, d, \rho)}(u, v) = (1 - \theta)^a F_1(a, c, d + c; \theta u, \theta v) \quad \text{with} \quad \theta = (1 + \rho)^{-1},
\]

which, reduces to

\[
G_{\text{Bailey}(a, c, d, \rho)}(u, v) = \left(\frac{\rho}{1 - v + \rho} \right)^a \text{pgf}_1 \left(a, c, c + d, 1 - \frac{1 - u + \rho}{1 - v + \rho} \right)
\]

(3.2)

thanks to equality (2.3).

As a by-product of our derivation of the posterior predictive distributions for the semi-conjugate family, we will see that the Bailey distribution Bailey \((a, c, d, \rho)\) is a bivariate Poisson mixture whose first and second margins are \(\rho^{-1} \ast \mathcal{PGB}(a, d, c) \) and \(\rho^{-1} \ast \mathcal{PGB}(a, c, d) \) respectively, and we
will see that the scalar hyperscaling acts on the fourth parameter \(\rho \) by division, that is:

\[
(\tau M, \tau N) \star \text{Bailey} (a, c, d, \rho) = (M, N) \star \text{Bailey} (a, c, d, \rho / \tau),
\]

(3.3)

where we have extended in a obvious way our hyperscaling notation ‘\(\star \)’ for bivariate Poisson mixtures. We note the following analogous of the linear change of variables (1.6) for bivariate Poisson mixtures:

\[
G_{(T,T') \star (P_{\gamma} \otimes P_{\gamma'})}(u,v) = G_{P_{\gamma} \otimes P_{\gamma'}}(1-T(1-u), 1-T'(1-v)).
\]

(3.4)

Predictive distributions for the semi-conjugate family. Before deriving them, we display below our results on the predictive distributions in the case of the semi-conjugate family defined by Laurent and Legrand (2009), shorter called the semi-conjugate family.

- **The marginal prior predictive distributions are**

\[
x \sim (T + b) \star \mathcal{PGB}_2 (a, d, c, b) \quad \text{and} \quad y \sim T \star \mathcal{PGB}(a, b),
\]

and the conditional prior predictive distribution of \(x \) given \(y \) is

\[
(x \mid y) \sim \mathcal{PGB}' (a + y, d, c).
\]

- **Denoting by \(x^* \) and \(y^* \) the ‘future observations’ and by \(S^* \) and \(T^* \) the ‘future sample sizes’, the marginal posterior predictive distributions are**

\[
(x^* \mid x, y) \sim \frac{S^*}{S} \star \mathcal{PGB}(a + x + y, d + a + y, c + x)
\]

and

\[
(y^* \mid x, y) \sim \frac{T^*}{T + b} \star \mathcal{PGB}(a + x + y, c + x, d + a + y),
\]

and the joint posterior predictive distribution is

\[
(x^*, y^* \mid x, y) \sim \left(\frac{S^*}{S}, \frac{T^*}{T + b} \right) \star \text{Bailey} (a + x + y, c + x, d + a + y, 1),
\]

which simplifies to \(\text{Bailey} (a + x + y, c + x, d + a + y, R^{-1}) \) in the case when \(\frac{S^*}{S} = \frac{T^*}{T + b} =: R \).
The following result provides the prior predictive distributions for the larger family of priors defined in lemma 3.1 by substituting t for T and τ for ρS. In the case of the semi-conjugate family, one has in particular $(x \mid y) \sim \mathcal{PGB}'(a + y, d, c)$, a fact which was also noticed by Laurent & Legrand (2009).

Result 3.1. Let $a, b, c, d, \tau, t > 0$ be given and consider a four-tuple of random variables (μ, ψ, x, y) whose distribution is defined by:

- $\mu \sim \mathcal{G}(a, b)$ is independent of $\psi \sim \mathcal{B}'(c, d)$;
- x and y are conditionally independent given (μ, ψ) and their conditional distributions are $(x \mid \mu, \psi) \sim \mathcal{P}(\mu \psi \tau)$ and $(y \mid \mu, \psi) \sim \mathcal{P}(\mu t)$.

Then the marginal distributions of x and y are

$$y \sim t \star \mathcal{PG}(a, b) \quad \text{and} \quad x \sim \tau \star \mathcal{PGB_2}(a, d, c, b),$$

the conditional distribution of x given y is

$$(x \mid y) \sim \tau \star \mathcal{PGB_2}(a + y, d, c, b + t),$$

and the joint probability generating function of x and y is given by

$$G(u, v) = \frac{B(d + a, c)}{B(d, c)} \left(\frac{b}{\tau(1 - u)} \right)^a {}_2F_1 \left(d + a, a, c + d + a; 1 - \frac{b + t(1 - v)}{\tau(1 - u)} \right).$$

Proof. Obviously, $y \sim t \star \mathcal{PG}(a, b)$. As the conditional distribution of $\lambda := \mu \psi$ given ψ is $\frac{1}{b} \times \mathcal{G}(\psi^{-1})$, one has $(x \mid \psi) \sim \frac{\tau}{b} \star \mathcal{PG}(a, \psi^{-1})$ and hence $x \sim \tau \star \mathcal{PGB_2}(a, d, c; b)$. Using Bayes’ formula, we easily see that the conditional distribution of μ given (y, ψ) depends only on y and is $\mathcal{G}(a + y, b + t)$. Hence the conditional distribution of x given (y, ψ) is $\tau \psi \star \mathcal{PG}(a + y, b + t) = \frac{T}{\tau} \star \mathcal{PG}(a + y, \psi^{-1})$. Since y and ψ are independent, because μ and ψ are independent and the conditional distribution $(y \mid \mu, \psi)$ does not depend on ψ, we then have $(x \mid y) \sim \tau \star \mathcal{PGB_2}(a + y, d, c, b + t)$. Therefore we know from result 2.1 that the pgf of the conditional law of x given y is given by

$$G(u \mid y) = \frac{B(d + a + y, c)}{B(d, c)} \left(\frac{\tau(1 - u)}{b + t} \right)^d {}_2F_1 \left(d + a + y, c + d + a + y; 1 - \frac{\tau(1 - u)}{b + t} \right).$$

Hence, with the help of the equality $\frac{B(d + a + y, c)}{B(d, c)} = \frac{B(d + a, c)}{B(d, c)} \frac{(d + a)_y}{(c + d + a)_y}$, the expression of $t \star \mathcal{PG}(y \mid a, b)$ given by (1.4) and the series expansion (A.3) of...
the Appell hypergeometric function, we obtain the following equality
\[
G(u, v) = \frac{B(d + a, c)}{B(d, c)} \left(\frac{b}{b + t} \right)^a \left(\frac{\tau(1 - u)}{b + t} \right)^d
\times {}_2F_1 \left(d + a, a, c + d, c + d + a; \frac{vt}{b + t}, 1 - \tau(1 - u) \right),
\]
thereby yielding the announced result owing to the Bailey reduction (2.3). Obviously, we also could have firstly derived the pgf in the particular case \(t = \tau = 1 \), and then we would have derived the general case by applying the linear change of variables (3.4).

The following result provides the posterior predictive distributions for the semi-conjugate family by substituting \(x \) for \(x^* \), \(y \) for \(y^* \), \(a \) for \(a + x + y \), \(c \) for \(c + x \), \(d \) for \(d + a + y \), \(t \) for \(T^*/(T + b) \), and \(\tau \) for \(S^*/S \). Unfortunately, the conditional distribution of \(x \) given \(y \) in result above is not of the kind of distributions defined in this paper.

\[\text{Result 3.2.} \quad \text{Let} \, \, a, c, d, t, \tau > 0 \, \text{be given and consider a four-tuple of random variables} \, \, (\mu, \psi, x, y) \, \text{whose distribution is defined by:}
\]
\[\bullet \, \, (\mu \mid \psi) \sim G(a, 1 + \psi) \, \text{and} \, \psi \sim B'(c, d);
\]
\[\bullet \, \, x \, \text{and} \, y \, \text{are conditionally independent given} \, (\mu, \psi) \, \text{and their conditional distributions are} \, (x \mid \mu, \psi) \sim \mathcal{P} \left(\mu \psi \tau \right) \, \text{and} \, (y \mid \mu, \psi) \sim \mathcal{P}(\mu t).
\]

Then the marginal distributions of \(x \) and \(y \) are
\[
x \sim \tau \ast \mathcal{PGIB}(a, d, c) \, \text{and} \, y \sim t \ast \mathcal{PGIB}(a, c, d),
\]
the joint distribution of \(x \) and \(y \) is
\[
(x, y) \sim (\tau, t) \ast \text{Bailey} \left(a, c, d, 1 \right),
\]
and the probability mass assigned by this distribution at \(x, y \in \mathbb{N} \) is
\[
p(x, y) = \frac{(a)_{x+y}(c)_{x+d}y^x}{x!y!(c + d)_{x+y}(t + 1)^{a+x+y}} \tau^x \frac{\tau^y}{t^y}
\times {}_2F_1 \left(c + x, a + x + y, c + d + x + y; 1 - \frac{\tau + 1}{t + 1} \right).
\]
One also has
\[
(x, y) \sim (\tau/\rho, t/\rho) \ast \text{Bailey} \left(a, c, d, \rho^{-1} \right)
\]
whatever the value of \(\rho > 0 \) (thereby showing (3.3)). The joint probability generating function of \(x \) and \(y \) is given by
\[
G_{(\tau, t) \ast \text{Bailey}(a, c, d, 1)}(u, v) = [1 + t(1 - v)]^{-a} {}_2F_1 \left(c, a, c + d, 1 - \frac{1 + \tau(1 - u)}{1 + t(1 - v)} \right).
\]
Some Poisson mixtures distributions

Proof. One has \((y \mid \psi) \sim t \star \mathcal{PG}(a, 1 + \psi)\) and \((x \mid \psi) \sim \psi \tau \star \mathcal{PG}(a, 1 + \psi) = \tau \star \mathcal{PG}(a, 1 + \psi^{-1})\), hence \(y \sim t \star \mathcal{PGIB}(a, c, d)\) and \(x \sim \tau \star \mathcal{PGIB}(a, d, c)\). One has \((\mu \mid y, \psi) \sim \mathcal{G}(a + y, t + 1 + \psi)\) by a straightforward application of Bayes’ formula, therefore \((x \mid y, \psi) \sim \psi \tau \star \mathcal{PG}(a + y, t + 1 + \psi)\), and thus one has

\[
p(x, y \mid \psi) \mathcal{B}'(\psi \mid c, d) = \frac{1}{B(c, d)} \frac{(a + y)_x(a)_y}{x!y!} \left(\frac{\psi^{c+x-1}(1 + \psi)^{-(c+d-a)}}{(t + 1 + \psi(\tau + 1))^{a+x+y}} \right)
\]

The announced expression of \(p(x, y)\) follows by using the density function of \(\mathcal{B}_3\left(c + x, d + y, c + d - a, \frac{\tau + 1}{\tau + t + 1}\right)\) given by (1.3) and the equality \(\frac{B(c+x,d+y)}{B(c,d)} = \frac{(c)_x(d)_y}{(c+d)_x+y}\). With (3.1), we see that \(p(x, y) = \text{Bailey}(x, y \mid a, c, d, \rho^{-1})\) when \(t = \tau = \rho\). Hence, one obviously has \((x, y) \sim (\tau/\rho, t/\rho) \star \text{Bailey}(a, c, d, \rho^{-1})\) in the general case, thereby showing (3.3). The expression of the pgf is then obtained by applying the linear change of variables (3.4) to the pgf of Bailey \((a, c, d, 1)\) given by (3.2).

The covariance between \(x\) and \(y\) in lemma above is easy to derive with the help of the probability generating function; we find that

\[
\text{Cov}(x, y) = \frac{\tau t acd(c + d - a)}{(c + d)^2(c + d + 1)}.
\]

Hence we see that \(\text{Cov}(x^*, y^* \mid x, y) > 0\) in the context of the posterior predictive distributions in the semi-conjugate family, whatever the values of the hyperparameters \(a, b, c, d\), the sample sizes \(S, T, S^*, T^*\), and the observations \(x\) and \(y\).

Comparison with the conjugate family. The natural conjugate family of priors for the ‘two Poisson samples’ model is formed by the independent products of Gamma distributions on \(\mu\) and \(\lambda\).

This family contains the Jeffreys prior which corresponds to the case when \(\mu \sim \mathcal{G}\left(\frac{1}{2}, 0\right)\) and \(\lambda \sim \mathcal{G}\left(\frac{1}{2}, 0\right)\), and, as noticed by Laurent & Legrand (2009), the Jeffreys prior and the \(\phi\)-reference prior yield the same posterior on \(\phi\), but do not yield the same posterior predictive distributions. However, these posterior predictive distributions are close, because of

\[
(\tau, t) \star \text{Bailey}(a, c, d, 1) \approx (\tau \star \mathcal{PG}(c, 1)) \otimes (t \star \mathcal{PG}(d, 1)) \quad \text{when } a \approx c + d,
\]
with equality when \(a = c + d \). This approximation follows from the two approximations \(\frac{(a)_{x+y}}{(c+d)_{x+y}} \approx 1 \) and

\[
2F_1 \left(c + x, a + x + y, c + d + x + y; 1 - \frac{\tau + 1}{t + 1} \right) \\
\approx 2F_1 \left(c + x, a + x + y, a + x + y; 1 - \frac{\tau + 1}{t + 1} \right) = \left(\frac{\tau + 1}{t + 1} \right)^{-c-x}.
\]

Thus, in the context of the semi-conjugate family, one obtains

\[
(x^*, y^* \mid x, y) \approx (S^* \ast \mathcal{P}G(c + x, S)) \otimes (T^* \ast \mathcal{P}G(d + a + y, T + b))
\]

when \(c + d \) is small, as in the case of the \(\phi \)-reference prior for which \(c + d = 0.5 \), and moreover, in that case, the right member is exactly the posterior predictive distribution corresponding to the Jeffreys prior.

By-product: A family of priors for the Poisson model. The semi-conjugate family in the case when \(T = 0 \) in the ‘two Poisson samples’ model yields a family of priors for the ‘one Poisson sample’ model for which the prior predictive distributions form the Beta-negative binomial family. Precisely, we obtain the following result.

Consider the ‘one Poisson sample’ model \(x \sim \mathcal{P}(\lambda S) \) with known ‘sample size’ \(S \) and unknown rate parameter \(\lambda \). If the prior on \(\lambda \) has the distribution of the product \(\mu \phi \) of two independent random variables \(\mu \sim \mathcal{G}(a, S) \) and \(\phi \sim B'(c, d) \), then

- the prior predictive is \(x \sim \mathcal{P}GB'(a, d, c) \);
- the posterior predictive is \((x^* \mid x) \sim \frac{S^*}{S} \ast \mathcal{P}GB(a + x, d + a, c + x) \);
- \((by definition of \mathcal{P}GB) the posterior (\lambda \mid x) has the distribution of the product \mu \theta \) of two independent random variables \(\mu \sim \mathcal{G}(a + x, S) \) and \(\theta \sim B'(c + x, a + d) \).

The prior and the posterior distributions of \(\lambda \) can be straightforwardly simulated but they are not analytically easy to handle. It can be shown that both the prior and the posterior densities of \(\lambda \) involve the Tricomi function (also known as the Kummer’s confluent hypergeometric function of the second kind). Certain distributions whose densities involve this function are studied by Fitzgerald (2000), but they do not cover the case of the prior and posterior distributions of \(\lambda \).
Appendix A: Hypergeometric background

We refer to Slater (1966) for more details on the contents of this Appendix.

The Gauss hypergeometric function \(\,_2F_1(\alpha, \beta; \gamma; x) \) with complex parameters \(\alpha, \beta, \gamma \notin \mathbb{N} \) and complex variable \(x \) is defined for \(|x| < 1 \) as the sum of the absolute convergent series

\[
\sum_{n=0}^{\infty} \frac{(\alpha)_n (\beta)_n x^n}{(\gamma)_n n!}.
\]

For \(\Re(\alpha) > 0 \) and \(\Re(\gamma - \alpha) > 0 \), the analytical continuation in the complex plane with the cut along \((1, +\infty)\) is given by the Euler integral representation:

\[
B(\alpha, \gamma - \alpha) \,_2F_1(\alpha; \beta, \gamma; x) = \int_0^1 u^{\alpha-1} (1-u)^{\gamma-\alpha-1} (1-ux)^{-\beta} \, du.
\]

Making the change of variables \(u \to 1-u \) in the Euler integral representation and setting \(y = 1-x \) leads to the equality

\[
\,_2F_1(\alpha, \beta, \gamma; 1-y) = y^{-\beta} \,_2F_1(\gamma - \alpha, \beta, \gamma; 1 - \frac{1}{y})
= y^{-\alpha} \,_2F_1(\alpha - \beta, \gamma; 1 - \frac{1}{y}). \tag{A.1}
\]

The change of variable \(z = \frac{1}{1-u} \) in the Euler integral representation yields the other integral representation

\[
B(\alpha, \gamma - \alpha) \,_2F_1(\alpha, \beta, \gamma; x) = \int_0^{+\infty} \frac{z^{\alpha-1} (1+z)^{\beta-\gamma}}{(1+(1-x)z)^{\beta}} \, dz. \tag{A.2}
\]

The Appell first hypergeometric function \(\,_1F_1(\alpha, \beta, \beta'; \gamma; x, y) \) with complex parameters \(\alpha, \beta, \beta', \gamma \) and complex variables \(x \) and \(y \) is defined for \(|x| < 1 \) and \(|y| < 1 \) as the sum of the absolute convergent double series

\[
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(\alpha)_{m+n} (\beta)_n (\beta')_n x^m y^n}{(\gamma)_{m+n} m! n!}.
\]

Thus

\[
\,_1F_1(\alpha, \beta, \beta'; \gamma; x, y) = \sum_{m=0}^{\infty} \frac{(\alpha)_m (\beta)_m}{(\gamma)_m} \,_2F_1(\alpha + m, \beta' + m; \gamma; y) \frac{x^m}{m!}, \tag{A.3}
\]
where $\pFq{1}{2}{\alpha, \beta, \beta'; \gamma; x, y}$ is the Gauss hypergeometric function introduced above. For $\Re(\alpha) > 0$ and $\Re(\gamma - \alpha) > 0$, the analytical continuation of the Appell hypergeometric function on $\{\Re(x), \Re(y) < 1\}$ is given by the following so-called Picard integral representation:

$$B(\alpha, \gamma - \alpha)\pFq{1}{2}{\alpha, \beta, \beta'; \gamma; x, y} = \int_0^1 u^{\alpha - 1}(1-u)^{\gamma - \alpha - 1}(1-ux)^{-\beta}(1-uy)^{-\beta'} \, du.$$

The change of variable $z = u^{1-u}$ leads to the other integral representation

$$B(\alpha, \gamma - \alpha)\pFq{1}{2}{\alpha, \beta, \beta'; \gamma; x, y} = \int_0^{+\infty} \frac{z^{\alpha - 1}(1+z)^{\beta + \beta' - \gamma}}{(1+(1-x)z)^{\beta}(1+(1-y)z)^{\beta'}} \, dz.$$

(A.4)

References

