ADAPTIVE CIRCULAR DECONVOLUTION
BY MODEL SELECTION UNDER UNKNOWN ERROR DISTRIBUTION

JOHANNES, J., and M. SCHWARZ

This file can be downloaded from http://www.stat.ucl.ac.be/ISpub
Adaptive circular deconvolution by model selection under unknown error distribution

JAN JOHANNES * MAIK SCHWARZ *
Université catholique de Louvain

December 7, 2009

We consider a circular deconvolution problem, where the density \(f \) of a circular random variable \(X \) has to be estimated nonparametrically based on an iid. sample from a noisy observation \(Y \) of \(X \). The additive measurement error is supposed to be independent of \(X \). The objective of this paper is the construction of a fully data-driven estimation procedure when the error density \(\varphi \) is unknown. However, we suppose that in addition to the iid. sample from \(Y \), we have at our disposal an additional iid. sample independently drawn from the error distribution.

First, we develop a minimax theory in terms of both sample sizes. However, the proposed orthogonal series estimator requires an optimal choice of a dimension parameter depending on certain characteristics of \(f \) and \(\varphi \), which are not known in practice. The main issue addressed in our work is the adaptive choice of this dimension parameter using a model selection approach. In a first step, we develop a penalized minimum contrast estimator supposing the degree of ill-posedness of the underlying inverse problem to be known, which amounts to assuming partial knowledge of the error distribution. We show that this data-driven estimator can attain the lower risk bound up to a constant in both sample sizes \(n \) and \(m \) over a wide range of density classes covering in particular ordinary and super smooth densities. Finally, by randomizing the penalty and the collection of models, we modify the estimator such that it does not require any prior knowledge of the error distribution anymore. Even when dispensing with any hypotheses on \(\varphi \), this fully data-driven estimator still preserves minimax optimality in almost the same cases as the partially adaptive estimator.

Keywords: Circular deconvolution, Orthogonal series estimation, Spectral cut-off, Model selection, Adaptive density estimation, Minimax theory.

This work was supported by the IAP research network no. P6/03 of the Belgian Government (Belgian Science Policy) and by the “Fonds Spéciaux de Recherche” from the Université catholique de Louvain.

*Institut de Statistique, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgique, e-mail: {jan.johannes|maik.schwarz}@uclouvain.be
1 Introduction

This work deals with the estimation of the density of a circular random variable from noisy observations. Such data occur in various fields of natural science, as for example in geology and biology, to mention but two. Curray (1956) discusses the analysis of directional data in the context of geological research, where it is often useful to measure and analyze the orientations of various features. More recently, Cochran et al. (2004) investigated migrating songbirds’ navigation abilities. They fitted birds with radio transmitters and placed them in outdoor cages in an artificially turned magnetic field. The observations consisted of the directions the birds departed in when released. Directional observations can be represented as points on a compass rose and hence on the circle.

Let X be the circular random variable whose density f we are interested in and ε an independent additive circular error with unknown density φ. Denote by Y the observed contaminated data and by g their density. Throughout this work we will tacitly identify the circle with the unit interval $[0,1)$, for notational convenience. For a more general and detailed discussion of the particularities of circular data we refer to Mardia (1972), Fisher (1993), and Efroymovich (1997). Thus, X and ε take their values in $[0,1)$. Let $\lfloor \cdot \rfloor$ be the floor function. Taking into account the circular nature of the data, the model can be written as $Y = X + \varepsilon - \lfloor X + \varepsilon \rfloor$ or equivalently $Y = X + \varepsilon \mod [0,1)$. Then, we have

$$g(y) = (f * \varphi)(y):= \int_{[0,1)} f((y - s) - \lfloor y - s \rfloor) \varphi(s) \, ds, \quad y \in [0,1),$$

such that $*$ denotes circular convolution. Therefore, the estimation of f is called a circular deconvolution problem. Let $L^2 := L^2([0,1))$ be the Hilbert space of square integrable complex-valued functions defined on $[0,1)$ endowed with the usual inner product $\langle f, g \rangle = \int_{[0,1)} f(x) \overline{g(x)} \, dx$ where $\overline{g(x)}$ denotes the complex conjugate of $g(x)$. In this work we suppose that f and φ, and hence g, belong to the subset D of all densities in L^2. As a consequence, they admit representations as discrete Fourier series with respect to the exponential basis $\{e_j\}_{j \in \mathbb{Z}}$ of L^2, where $e_j(x) := \exp(-i2\pi jx)$ for $x \in [0,1)$ and $j \in \mathbb{Z}$. Given $p \in D$ and $j \in \mathbb{Z}$ let $[p]_j := \langle p, e_j \rangle$ be the j-th Fourier coefficient of p. In particular, $[p]_0 = 1$. The key to the analysis of the circular deconvolution problem is the convolution theorem which states that $g = f * \varphi$ if and only if $[g]_j = [f]_j[\varphi]_j$ for all $j \in \mathbb{Z}$. Therefore, as long as $[\varphi]_j \neq 0$ for all $j \in \mathbb{Z}$, which is assumed from now on, we have

$$f = 1 + \sum_{|j| > 0} \frac{[g]_j}{[\varphi]_j} e_j \quad \text{with} \quad [g]_j = \mathbb{E}e_j(-Y) \quad \text{and} \quad [\varphi]_j = \mathbb{E}e_j(-\varepsilon), \quad \forall j \in \mathbb{Z}. \quad (1.1)$$

There is a vast literature on the deconvolution problem for random variables on the real line. In the case the error density is fully known, a very popular approach based on kernel methods has been considered by Carroll and Hall (1988), Devroye (1989), Fan (1991, 1992), Stefanski (1990), Zhang (1990), Goldenshluger (1999, 2000) and Kim and Koo (2002)), to name but a few. Mendelsohn and Rice (1982) and Koo and Park (1996), for example, have studied spline-based methods, while a wavelet decomposition has been used by Pensky and Vidakovic (1999), Fan and Koo (2002) and Bigot and Van Bellegem (2009), for instance. Situations with only partial knowledge about the error density have also been considered (c.f. Butucea and Matias (2005), Meister (2004, 2006), or Schwarz and Van Bellegem (2009)). Consistent deconvolution without prior knowledge of the error distribution is also possible in the case of panel data (c.f. Horowitz and Markatou (1996), Hall and Yao (2003) or Neumann (2007)) or
by assuming an additional sample from the error distribution (c.f. Diggle and Hall (1993),
Neumann (1997), Johannes (2009) or Comte and Lacour (2009)). For a broader overview on
deconvolution problems the reader may refer to the recent monograph by Meister (2009).

Let us return to the circular case. In this paper we suppose that we do not know the error
density φ, but that we have at our disposal in addition to the iid. sample $(Y_k)_{k=1}^n$ of size
$n \in \mathbb{N}$ from g an independent iid. sample $(\varepsilon_k)_{k=1}^n$ of size $m \in \mathbb{N}$ from φ. Our purpose is
to establish a fully data-driven estimation procedure for the deconvolution density f which
attains optimal convergence rates in a minimax-sense. More precisely, given classes \mathcal{F}_γ and
\mathcal{E}_λ^d (defined below) of deconvolution and error densities, respectively, we shall measure the
accuracy of an estimator \hat{f} of f by the maximal weighted risk $\sup_{f \in \mathcal{F}_\gamma} \sup_{\varphi \in \mathcal{E}_\lambda^d} \mathbb{E} \|\hat{f} - f\|_\omega$
defined with respect to some weighted norm $\|\cdot\|_\omega := \sum_{j \in \mathbb{Z}} \omega_j |\hat{j}|^2$, where $\omega := (\omega_j)_{j \in \mathbb{Z}}$ is
a strictly positive sequence of weights. This allows us to quantify the estimation accuracy
in terms of the mean integrated square error (MISE) not only of f itself, but as well of
its derivatives, for example. It is well known that even in case of a known error density
and the optimal dimension parameter k in the sense of the MISE in the circular deconvolution problem is essentially
determined by the asymptotic behavior of the sequence of Fourier coefficients $(\hat{f})_{j \in \mathbb{Z}}$ and
$((\varphi))_{j \in \mathbb{Z}}$ of the deconvolution density and the error density, respectively. For a fixed density f, a faster decay of the Fourier coefficients $(\hat{\varphi})_{j \in \mathbb{Z}}$ results in a slower optimal rate of
convergence. In the standard context of an ordinary smooth deconvolution density, i.e.,
$((f))_{j \in \mathbb{Z}}$ decays polynomially, logarithmic rates of convergence appear when the error density is super smooth, i.e., $(\varphi)_{j \in \mathbb{Z}}$ has an exponential decay, (c.f. Efroimovich (1997)). This
situation and many others are covered by the density classes

$$
\mathcal{F}_\gamma := \left\{ p \in \mathcal{D} : \sum_{j \in \mathbb{Z}} \gamma_j |p_j|^2 =: \|p\|_\gamma^2 \leq r \right\} \quad \text{and} \quad \mathcal{E}_\lambda^d := \left\{ p \in \mathcal{D} : 1/d \leq \frac{\|p\|_\gamma^2}{\lambda_j} \leq d \quad \forall j \in \mathbb{Z} \right\},
$$

where $r, d \geq 1$ and the positive weight sequences $\gamma := (\gamma_j)_{j \in \mathbb{Z}}$ and $\lambda := (\lambda_j)_{j \in \mathbb{Z}}$ specify the
asymptotic behavior of the respective sequence of Fourier coefficients. In section 2 we show
a lower bound of the maximal weighted risk which is essentially determined by the sequences
γ, λ and ω. This lower bound is composed of two main terms, each of them depending on
the size of one sample, but not on the other. Let us define an orthogonal series estimator
by replacing the unknown Fourier coefficients in (1.1) by empirical counterparts, that is,

$$
\hat{f}_k := 1 + \sum_{0 \leq j \leq k} \frac{[\hat{g}]_j}{n} 1\{|[\hat{\varphi}]_j|^2 \geq 1/m\} e_j \quad \text{with} \quad [\hat{g}]_j := \frac{1}{n} \sum_{k=1}^n e_j (Y_k) \quad \text{and} \quad [\hat{\varphi}]_j := \frac{1}{m} \sum_{k=1}^m e_j (-\varepsilon_k).
$$

Similar estimators have already been studied by Neumann (1997) and Efroimovich (1997),
for example. We show below that the estimator \hat{f}_k attains the lower bound as long as the
dimension parameter k is chosen in an optimal way. In general, this optimal choice of k
depends among others on the sequences γ and λ. However, in the special case where the
error density is known to be super smooth, the optimal dimension parameter depends only
on λ but not on γ. Hence, the estimator is automatically adaptive with respect to γ under the optimal choice of k. In this situation Efromovich (1997) provides an estimator which is also adaptive with respect to the super smooth error density. Our main contribution is the development of a fully adaptive method to choose the parameter k, that is, only depending on the observations and not on characteristics of neither f nor φ. The central result of the present paper states that for this automatic choice \hat{k}, the estimator \hat{f}_k attains the lower bound up to a constant, and is thus minimax-optimal, over a wide range of sequences γ and λ. In particular, we prove that this fully adaptive estimator can attain minimax optimal rates for both ordinary and super smooth error densities, which generalizes the results in Efromovich (1997). It is interesting to note that Cavalier and Hengartner (2005), deriving oracle inequalities in an indirect regression problem based on a circular convolution contaminated by Gaussian white noise, treat the ordinary smooth case only. As in our model, their assumption on the respective noise levels means that the ε-sample size m is at least as large as the Y-sample size n. This assumption is also used by Efromovich (1997). Contrary to this, we do not restrict ourselves to this case. Surprisingly, the estimator proposed in this article remains often minimax-optimal even when the ε-sample size m is far smaller than the Y-sample size n.

The adaptive choice of k is motivated by the general model selection strategy developed in Barron et al. (1999). Concretely, following Comte and Taupin (2003), \hat{k} is the minimizer of a penalized contrast

$$\hat{k} := \arg\min_{1 \leq k \leq K} \left\{ -\|\hat{f}_k\|_2^2 + \text{pen}(k) \right\}.$$

Note that Comte and Taupin (2003) treat the case of a known error density only. Indeed, also in case of an unknown error density it turns out that the penalty function $\text{pen}(\cdot)$ as well as the upper bound K which are needed for the «right» choice of k depend on a characteristic of the unknown error density often referred to as the degree of ill-posedness of the underlying inverse problem. Therefore, as an intermediate step, assuming this parameter to be known, we show an upper risk bound for this partially adaptive estimator \hat{f}_k. We prove that over a wide range of sequences γ and λ, the adaptive choice of k yields the same upper risk bound as the optimal choice, up to a constant.

Finally, we drop the requirement that the degree of ill-posedness is known. In order to choose k adaptively even in this case, we replace $\text{pen}(\cdot)$ and K by estimates only depending on the data. As in the case of known degree of ill-posedness, we show an upper risk bound for the now fully adaptive estimator. It is noteworthy that even though the proofs are more intricate in this case, the result strongly resembles its analogon in the case of known degree of ill-posedness. In particular, the convergence rate in the super smooth case remains unchanged while in the ordinary smooth case it changes only slightly.

This article is organized as follows. In the next section, we develop the minimax theory for the circular deconvolution model with respect to the weighted norms introduced above and we derive the optimal convergence rates in the ordinary and in the super smooth case. Section 3 is devoted to the construction of the adaptive estimator in the case of known degree of ill-posedness. An upper risk bound is shown and convergence rates for the ordinary and super smooth case are compared to the minimax optimal ones. The last section provides the fully adaptive generalization of this method. All proofs are deferred to the appendix.
2 Minimax optimal estimation

In this section we develop the minimax theory for the estimation of a circular deconvolution density under unknown error density when two independent samples from Y and ε are available. A lower bound depending on both sample sizes is derived and it is shown that the orthogonal series estimator \hat{f}_k defined in (1.2) attains this lower bound up to a constant.

All results in this paper are derived under the following minimal regularity conditions.

Assumption 2.1 Let $\gamma := (\gamma_j)_{j \in \mathbb{Z}}$, $\omega := (\omega_j)_{j \in \mathbb{Z}}$ and $\lambda := (\lambda_j)_{j \in \mathbb{Z}}$ be strictly positive symmetric sequences of weights with $\gamma_0 = \omega_0 = \lambda_0 = 1$ such that $(\omega_n/\gamma_n)_{n \in \mathbb{N}}$ and $(\lambda_n)_{n \in \mathbb{N}}$ are non-increasing, respectively.

Lower bounds The next assertion provides a lower bound in case of a known error density, which obviously will depend on the size of the Y-sample only. Of course, this lower bound is still valid in case of an unknown error density.

Theorem 2.2 Suppose an i.i.d. Y-sample of size n and that the error density φ is known. Consider sequences ω, γ, and λ satisfying Assumption 2.1 such that $\sum_{j \in \mathbb{Z}} \gamma_j^{-1} = \Gamma < \infty$ and such that $\varphi \in \mathcal{E}_\lambda^d$ for some $d \geq 1$. Define for all $n \geq 1$

$$
\psi_n := \psi_n(\gamma, \lambda, \omega) := \min_{k \in \mathbb{N}} \left\{ \max_{0 < |j| \leq k} \left\{ \frac{\omega_k}{\gamma_k}, \frac{\sum_{0 < |j| \leq k} \omega_j}{n \lambda_j} \right\} \right\} \text{ and }
$$

$$
k_n^* := k_n^*(\gamma, \lambda, \omega) := \arg\min_{k \in \mathbb{N}} \left\{ \max_{0 < |j| \leq k} \left\{ \frac{\omega_k}{\gamma_k}, \frac{\sum_{0 < |j| \leq k} \omega_j}{n \lambda_j} \right\} \right\}. \quad (2.1)
$$

If in addition $\eta := \inf_{n \geq 1} \{\psi_n^{-1} \min(\omega_k \sqrt{\gamma_k^{-1}}, \sum_{0 < |j| \leq k} \omega_j/n \lambda_j) \} > 0$, then for all $n \geq 2$ and for any estimator \tilde{f} of f we have

$$
\sup_{f \in \mathcal{F}_\gamma} \left\{ \mathbb{E}\|\tilde{f} - f\|_2^2 \right\} \geq \frac{\eta \min(r - 1, 1/(8d \Gamma))}{8} \psi_n.
$$

The proof of the last assertion is based on Assouad’s cube technique (c.f. Korostolev and Tsybakov (1993)), where we construct 2^{2k^2} candidates of deconvolution densities which have the largest possible $\| \cdot \|_\omega$-distance but are still statistically non distinguishable. It is worth to note that the additional assumption $\sum_{j \in \mathbb{Z}} \gamma_j^{-1} = \Gamma < \infty$ is only used to ensure that these candidates are densities. Observe further that in case $r = 1$, the lower bound is equal to zero, because in this situation the set \mathcal{F}_γ reduces to a singleton containing the uniform density.

In the next theorem we state a lower bound characterizing the additional complexity due to the unknown error density, which surprisingly depends only on the error sample size.

Theorem 2.3 Suppose independent i.i.d. sample from Y and ε of size n and m, respectively. Consider sequences ω, γ, and λ satisfying Assumption 2.1. For all $m \geq 2$, let

$$
\kappa_m := \kappa_m(\gamma, \lambda, \omega) := \max_{j \in \mathbb{N}} \{\omega_j \gamma_j^{-1} \min\left(1, \frac{1}{m \lambda_j}\right)\}. \quad (2.2)
$$

If in addition there exists a density in $\mathcal{E}_\lambda^{\sqrt{d}}$ which is bounded from below by $1/2$, then, for all $m \geq 2$ and for any estimator \tilde{f} of f we have

$$
\sup_{f \in \mathcal{F}_\gamma} \sup_{\varphi \in \mathcal{E}_\lambda^{\sqrt{d}}} \left\{ \mathbb{E}\|\tilde{f} - f\|_2^2 \right\} \geq \frac{\min(r - 1, 1) \min(1/(4d), (1 - d^{-1/4})^2)}{4 \sqrt{d}} \kappa_m.
$$
The proof of the last assertion takes its inspiration from a proof given in Neumann (1997). In contrast to the proof of Theorem 2.2 we only have to compare two candidates of error densities which are still statistically non distinguishable. However, to ensure that these candidates are densities, we impose the additional condition. It is easily seen that this condition is satisfied if
\[\Lambda := \sum_{j \in \mathbb{Z}} \lambda_j^{-1/2} < \infty \text{ and } \sqrt{d} \geq \max(4\Lambda^2,1). \]
It is worth to note that in case \(d = 1 \), the set \(E_\lambda^d \) of possible error densities reduces to a singleton, and hence the lower bound is equal to zero. Finally, by combination of both lower bounds we obtain the next corollary.

Corollary 2.4 Under the assumptions of Theorem 2.2 and 2.3 we have for any estimator \(\tilde{f} \) of \(f \) and for all \(n, m \geq 2 \) that
\[
\sup_{f \in F} \sup_{\varphi \in E_\lambda^d} \left\{ E \| \tilde{f} - f \|_2^2 \right\} \geq \eta \frac{\min(r - 1, (8d\Gamma)^{-1}) \min(d^{-1/2}, 4(1 - d^{1/4})^2)}{16d} \{ \psi_n + \kappa_m \}.
\]

Upper bound The next theorem summarizes sufficient conditions to ensure the optimality of the orthogonal series estimator \(\hat{f}_k \) defined in (1.2) provided the dimension parameter \(k \) is chosen appropriately. To be more precise, we use the value \(k^*_n \) defined in (2.1) which obviously depends on the sequences \(\omega, \gamma \) and \(\lambda \) but surprisingly not on the \(\varepsilon \)-sample size. However, under this choice the estimator attains the lower bound given in Corollary 2.4 up to a constant and hence it is minimax-optimal.

Theorem 2.5 Suppose independent i.i.d. sample from \(Y \) and \(\varepsilon \) of size \(n \) and \(m \), respectively. Consider sequences \(\omega, \gamma \) and \(\lambda \) satisfying Assumption 2.1. Let \(\hat{f}_{k^*_n} \) be the estimator given in (1.2) with \(k^*_n \) defined in (2.1). Then, there exists a numerical constant \(C > 0 \) such that for all \(n, m \geq 1 \) we have
\[
\sup_{f \in F} \sup_{\varphi \in E_\lambda^d} \left\{ E \| \hat{f}_{k^*_n} - f \|_2^2 \right\} \leq C d r \{ \psi_n + \kappa_m \}.
\]

Note that under slightly stronger conditions on the sequences \(\omega, \gamma \) and \(\lambda \) than Assumption 2.1 it is easily seen that in case of equally large samples from \(Y \) and \(\varepsilon \) we have always the rate as in case of known error density. However, below we show that in special cases the required \(\varepsilon \)-sample size can be much smaller than the \(Y \)-sample size.

2.1 Illustration: estimation of derivatives.

To illustrate the previous results we assume in the following that the deconvolution density \(f \) is an element of the Sobolev space of periodic functions \(W_p, p \in \mathbb{N} \), given by
\[
W_p = \left\{ f \in H_s : f^{(j)}(0) = f^{(j)}(1), \quad j = 0, 1, \ldots, p - 1 \right\},
\]
where \(H_p := \{ f \in L^2[0,1] : f^{(p-1)} \text{ absolutely continuous, } f^{(p)} \in L^2[0,1] \} \) is a Sobolev space (c.f. Neubauer (1988a,b)). However, if we consider the sequence of weights
\[
\gamma_0 = 1 \quad \text{and} \quad \gamma_j = |j|^{2p}, \quad |j| > 0,
\]
then, the Sobolev space \(W_p \) of periodic functions coincides with \(F_w \). Therefore, let us denote by \(W^r_p := F^r_w, r > 0 \), an ellipsoid in the Sobolev space \(W_p \]. In this illustration, we shall consider the estimation of derivatives of the deconvolution density \(f \). Therefore, it is
It is easily seen that the minimal regularity conditions given in Assumption 2.1 are satisfied.

As an estimator of \(\phi \in \mathcal{E} \), our attention to error densities being either

\[\text{ordinary smooth}, \] that is, the sequence \(\lambda \) is polynomially decreasing, i.e., \(\lambda_0 = 1 \) and \(\lambda_j = |j|^{-2a} \), \(|j| > 0 \), for some \(a > 1/2 \), or

\[\text{super smooth}, \] that is, the sequence \(\lambda \) is exponentially decreasing, i.e., \(\lambda_0 = 1 \) and \(\lambda_j = \exp(-|j|^{2a}) \), \(|j| > 0 \), for some \(a > 0 \).

It is easily seen that the minimal regularity conditions given in Assumption 2.1 are satisfied. Moreover, the additional conditions, i.e., \(\Gamma = \sum_{j \in \mathbb{Z}} \gamma_j^{-1} < \infty \) and that there there exists \(\varphi \in \mathcal{E}_V^d \) with \(\varphi \geq 1/2 \), are satisfied in the super smooth case [ss] if \(p > 1/2 \) and in the ordinary smooth case [os] if in addition \(a > 1 \). Roughly speaking, this means that both the deconvolution density and the error density are at least continuous. The lower bound presented in the next proposition follows now directly from Corollary 2.4. Here and subsequently, we write \(a_n \lesssim b_n \) when there exists \(C > 0 \) such that \(a_n \lesssim C b_n \) for all sufficiently large \(n \in \mathbb{N} \) and \(a_n \sim b_n \) when \(a_n \lesssim b_n \) and \(b_n \lesssim a_n \) simultaneously.

Proposition 2.6 Suppose independent i.i.d. sample from \(Y \) and \(\varepsilon \) of size \(n \) and \(m \), respectively. Then we have for any estimator \(\hat{f}^{(s)} \) of \(f^{(s)} \)

[os] in the ordinary smooth case, for all \(p > 1/2 \) and \(a > 1 \) that

\[\sup_{f \in \mathcal{W}_0^p} \sup_{\varphi \in \mathcal{E}_V^d} \left\{ \mathbb{E} \| \hat{f}^{(s)} - f^{(s)} \|^2 \right\} \gtrsim n^{-2(p-s)/(2p+2a+1)} + m^{-(p-s)/a}, \]

[ss] in the super smooth case, for all \(p > 1/2 \) that

\[\sup_{f \in \mathcal{W}_0^p} \sup_{\varphi \in \mathcal{E}_V^d} \left\{ \mathbb{E} \| \hat{f}^{(s)} - f^{(s)} \|^2 \right\} \gtrsim (\log n)^{-(p-s)/a} + (\log m)^{-(p-s)/a}. \]

As an estimator of \(f^{(s)} \), we shall consider, the \(s \)-th weak derivative of the estimator \(\hat{f}_k \) defined in (1.2). Given the exponential basis \(\{ e_j \}_{j \in \mathbb{Z}} \), we recall that for each integer \(0 \leq s \leq p \) the \(s \)-th derivative in a weak sense of the estimator \(\hat{f}_k \) is

\[\hat{f}_k^{(s)} = \sum_{j \in \mathbb{Z}} (2i\pi j)^s \hat{f}_k |j| e_j. \]

(2.3)

Applying Theorem 2.5, the rates of the lower bound given in the last assertion provide, up to a constant, also an upper bound of the \(L^2 \)-risk of the estimator \(\hat{f}_k^{(s)} \), which is summarized in the next proposition. We have thus proved that these rates are optimal and the proposed estimator \(\hat{f}_k^{(s)} \) is minimax optimal in both cases. Furthermore, it is of interest to characterize the minimal size \(m \) of the additional sample from \(\varepsilon \) needed to attain the same rate as in case of a known error density. Hence, we let the \(\varepsilon \)-sample size depend on the \(Y \)-sample size \(n \), too.
Proposition 2.7 Suppose independent i.i.d. sample from Y and ε of size n and m, respectively. Consider the estimator \hat{f}_k given in (2.3).

For the ordinary smooth case, with dimension parameter $k \sim n^{1/(2p+2a+1)}$ we have

$$\begin{align*}
\sup_{f \in W^p_{\infty}} \sup_{\varphi \in \mathcal{E}^d_{\lambda}} \left\{ E\| \hat{f}_k(s) - f(s) \|^2 \right\} &\leq n^{-2(p-s)/(2p+2a+1)} + m^{-(p-s)/a} \\
\text{and for any sequence } (m_n)_{n \geq 1} \text{ follows as } n \to \infty
\end{align*}$$

For the super smooth case, with dimension parameter $k \sim (\log n)^{1/(2a)}$ we have

$$\begin{align*}
\sup_{f \in W^p_{\infty}} \sup_{\varphi \in \mathcal{E}^d_{\lambda}} \left\{ E\| \hat{f}_k(s) - f(s) \|^2 \right\} &\leq (\log n)^{-(p-s)/a} \left(\log m \right)^{-(p-s)/a} \\
\text{and for any sequence } (m_n)_{n \geq 1} \text{ follows as } n \to \infty
\end{align*}$$

$$\begin{align*}
\sup_{f \in W^p_{\infty}} \sup_{\varphi \in \mathcal{E}^d_{\lambda}} \left\{ E\| \hat{f}_k(s) - f(s) \|^2 \right\} &\leq \begin{cases}
O((\log n)^{-(p-s)/a}) & \text{if } \log n = O(\log m_n) \\
O((\log m_n)^{-(p-s)/a}) & \text{otherwise.}
\end{cases}
\end{align*}$$

Note that in the ordinary smooth case we obtain the rate of known error density whenever $n^{2((p-s)/\omega a)/(2p+2a+1)} = O(m_n)$ which is much less than $n = m$. This is even more visible in the super smooth case, here the rate of known error density is attained even if $m_n = n^r$ for arbitrary small $r > 0$. Moreover, we shall emphasize the influence of the parameter a which characterizes the rate of the decay of the Fourier coefficients of the error density φ. Since a smaller value of a leads to faster rates of convergence, this parameter is often called degree of ill-posedness (c.f. Natterer (1984)).

3 A model selection approach: known degree of ill-posedness

Our objective is to construct an adaptive estimator of the deconvolution density f. Adaption means that in spite of the unknown error density, the estimator should attain the optimal rate of convergence over the ellipsoid \mathcal{F}_r for a wide range of different weight sequences γ. However, in this section partial information about the error density φ is supposed to be available. To be precise, we assume that the sequence λ and the value d such that $\varphi \in \mathcal{E}^d_{\lambda}$ are given in advance. Roughly speaking, this means that the degree of ill-posedness of the underlying inverse problem is known. In what follows, the orthogonal series estimator \hat{f}_k defined in (1.2) is considered and a procedure to choose the dimension parameter k based on a model selection approach via penalization is constructed. This procedure will only involve the data and λ, d, and ω. First, we introduce sequences of weights which are used below.
Definition 3.1

(i) For all \(k \geq 1 \), define \(\Delta_k := \max_{0 \leq |j| \leq k} \omega_j / \lambda_j \), \(\tau_k := \max_{0 \leq |j| \leq k} (\omega_j)_{\gamma_1} / \lambda_j \) with \((q)_{\gamma_1} := \max(q, 1) \) and

\[
\delta_k := 2k \Delta_k \log(\tau_k \vee (k + 2)) / \log(k + 2).
\]

(ii) Define two sequences \(N \) and \(M \) as follows,

\[
N_n := N_n(\lambda) := \max \{ 1 \leq N \leq n \mid \delta_N / n \leq \delta_1 \},
\]

\[
M_m := M_m(\lambda, d) := \max \{ 1 \leq M \leq m \mid m^7 \exp\left(-\frac{m \lambda M}{72d}\right) \leq \exp\left(-\frac{1}{72d}\right) \}.
\]

Let further \(\Sigma \) be a non-decreasing function such that for all \(C > 0 \)

\[
\sum_{k \geq 1} d C \tau_k \exp\left(-\frac{k \log(\tau_k \vee (k + 2))}{C \log(k + 2)}\right) \leq \Sigma(C) < \infty. \tag{3.1}
\]

Note that we can compute \(\|\hat{f}_k\|_{\omega}^2 = 1 + \sum_{0 < |j| \leq k} \|\hat{\varphi}_j\|^2 \|\varphi_j\|^{-2} \{ \|\varphi_j\|^2 \geq 1 / m \} \).

It is easy to see that there exists always a function \(\Sigma \) satisfying condition (3.1). Consider the orthogonal series estimator \(\hat{f}_k \) defined in (1.2). The adaptive estimator \(\hat{f}_k \) is now obtained by choosing the dimension parameter \(\hat{k} \) such that

\[
\hat{k} := \arg\min_{1 \leq k \in (N_n \wedge M_m)} \left\{ -\|\hat{f}_k\|_{\omega}^2 + 60 \frac{d \delta_k}{n} \right\}. \tag{3.2}
\]

Next, we derive an upper bound for the risk of this adaptive estimator. To this end, we need the following assumption.

Assumption 3.2 The sequence \(M \) satisfies \(d^{-1} \min_{1 \leq |j| \leq M} \lambda_j \geq 2 / m \) for all \(m \geq 1 \).

By construction, this condition is satisfied for sufficiently large \(m \).

Theorem 3.3 Assume that we have independent i.i.d. \(Y \)- and \(\epsilon \)-samples of size \(n \) and \(m \), respectively. Consider sequences \(\omega, \gamma, \) and \(\lambda \) satisfying Assumption 2.1. Let \(\delta, \Delta, N, \) and \(M \) as in Definition 3.1 and suppose that Assumption 3.2 holds. Consider the estimator \(\hat{f}_k \) defined in (1.2) with \(\hat{k} \) given by (3.2). Then, there exists a numerical constant \(C \geq 0 \) such that for all \(n, m \geq 1 \)

\[
\sup_{f \in F} \sup_{\varphi \in E_{\Lambda}} \left\{ \mathbb{E}\|\hat{f}_k - f\|_{\omega}^2 \right\} \leq C d \left\{ r \left[\min_{1 \leq k \leq (N_n \wedge M_m)} \{ \max(\omega_k / \gamma_k, \delta_k / n) \} + \kappa_m \right] + \frac{\delta_1 \exp\left(-1/(72d)\right)}{m} + \frac{\delta_1 + \Sigma(3rd\Lambda)}{n} \right\},
\]

where \(\Lambda := \sum_{j \in Z} \lambda_j \) and \(\kappa_m \) is defined in Theorem 2.3.

Comparing the last assertion with the lower bound given in Corollary 2.4, it is easily seen that the adaptive estimator attains the lower bound up to a constant as long as \(\sup_{k \geq 1} \{ \delta_k / \sum_{0 < |j| \leq k} \omega_j / \lambda_j \} < \infty \) and the optimal dimension parameter \(k^*_n \) given in Theorem 2.2 is smaller than \(N_n \wedge M_m \). However, these conditions are not necessary as shown below.
3.1 Illustration: estimation of derivatives (continued)

In section 2.1, we described two different cases where we could choose the model \(k \) such that the resulting estimator reached the minimax optimal rate of convergence. The following result shows that in case of unknown error density \(\varphi \in \mathcal{E}_d^\lambda \) with a-priori known \(\lambda \) and \(d \), the adaptive estimator automatically attains the optimal rate over a wide range of values for the smoothness parameters.

Proposition 3.4 Assume that we have independent i.i.d. \(Y \)- and \(\varepsilon \)-samples of size \(n \) and \(m_n \), respectively. Consider the estimator \(\hat{f}_k^{(s)} \) given in (2.3) with \(\hat{k} \) defined by (3.2).

[os] In the ordinary smooth case, we have

\[
\Delta_k = k^{2a+2s}, \quad \delta_k \sim k^{2a+2s+1}, \quad N_n \sim n^{1/(2a+2s+1)}, \quad M_{m_n} \sim \left(\frac{m_n}{\log m_n} \right)^{1/(2a)}.
\]

In case \(p - s > a \) we obtain

\[
\sup_{f \in \mathcal{W}_r^s} \sup_{\varphi \in \mathcal{E}_d^\lambda} \left\{ \mathbb{E} \| \hat{f}_k^{(s)} - f(s) \|^2 \right\} = \begin{cases} O(n^{-2(p-s)/(2p+2a+1)}) & \text{if } n^{2(p-s)/(2p+2a+1)} = O(m_n) \\ O(m_n^{-1}) & \text{otherwise,} \end{cases}
\]

and in case \(p - s \leq a \), if \(n^{2a/(2p+2a+1)} = O(m_n) \)

\[
\sup_{f \in \mathcal{W}_r^s} \sup_{\varphi \in \mathcal{E}_d^\lambda} \left\{ \mathbb{E} \| \hat{f}_k^{(s)} - f(s) \|^2 \right\} = \begin{cases} O(n^{-2(p-s)/(2p+2a+1)}) & \text{if } n^{2a/(2p+2a+1)} = O(m_n/\log m_n) \\ O(m_n^{-s/a} (\log m_n)^{(p-s)/a}) & \text{otherwise,} \end{cases}
\]

while if \(m_n = o(n^{2a/(2p+2a+1)}) \),

\[
\sup_{f \in \mathcal{W}_r^s} \sup_{\varphi \in \mathcal{E}_d^\lambda} \left\{ \mathbb{E} \| \hat{f}_k^{(s)} - f(s) \|^2 \right\} = O(m_n^{-s/a} (\log m_n)^{(p-s)/a}).
\]

[ss] In the super smooth case, we have

\[
\Delta_k = k^{2s} \exp(k^{2a}), \quad \delta_k \sim k^{2a+2s+1} \exp(k^{2a}) (\log k)^{-1}, \quad N_n \sim \left(\frac{n \log \log n}{(\log n)^{2a+2s+1}/(2a)} \right)^{1/(2a)}, \quad M_{m_n} \sim \left(\frac{\log m_n}{\log m_n} \right)^{1/(2a)}.
\]

and

\[
\sup_{f \in \mathcal{W}_r^s} \sup_{\varphi \in \mathcal{E}_d^\lambda} \left\{ \mathbb{E} \| \hat{f}_k^{(s)} - f(s) \|^2 \right\} = \begin{cases} O((\log n)^{-s/a}) & \text{if } \log n = O(\log m_n) \\ O((\log m_n)^{-s/a}) & \text{otherwise.} \end{cases}
\]

Compare this result with Proposition 2.7. In case **[ss]**, the adaptive estimator mimics exactly the behavior of the minimax optimal non-adaptive estimator. The same is true in case **[os]** if additionally \(p - s > a \). However, if \(p - s \leq a \), the sequence \((m_n)_{n \geq 1} \) must grow a little faster than in the non-adaptive case. Otherwise, the convergence is slowed down by a logarithmic factor.
4 Unknown degree of ill-posedness

In this section, we dispense with any knowledge about the error density φ, that is, λ and d are not known anymore. We construct an adaptive estimator in this situation as well. Recall that in the previous section, the dimension parameter k was chosen using a criterion function that involved the sequences N, M, and δ which depend on λ and d. We circumvent this problem by defining empirical versions of these three sequences at the beginning of this section. The adaptive estimator is then defined analogously to the one from Section 3, but uses the estimated rather than the original sequences.

Definition 4.1 Let $\hat{\delta} := (\hat{\Delta}_k)_{k \geq 1}$, $\hat{N} := (\hat{N}_n)_{n \geq 1}$, and $\hat{M} := (\hat{M}_m)_{m \geq 1}$ be as follows.

(i) Given $\hat{\Delta}_k := \max_{0 \leq j \leq k} |\hat{\varphi}(j)|^{-2}$ and $\tilde{\tau}_k := \max_{0 \leq j \leq k} (\varphi(j))_{\nu 1} |\hat{\varphi}(j)|^{-2}$ let

$$\hat{\delta}_k := k \hat{\Delta}_k \log(\hat{\tau}_k + (k + 2)) \log(k + 2).$$

(ii) Given $\hat{N}_n := \arg\max_{0 < N \leq n} \left\{ \max_{0 \leq j \leq N} \omega_j / n \leq 1 \right\}$ let

$$\hat{N}_n := \arg\min_{0 < j \leq \hat{N}_n} \left\{ \frac{|\hat{\varphi}(j)|^2}{|\hat{\varphi}(j)|_{\nu 1}^2} < \frac{\log n}{n} \right\}, \quad \text{and} \quad \hat{M}_m := \arg\min_{0 \leq j \leq m} \left\{ \frac{|\hat{\varphi}(j)|^2}{|\hat{\varphi}(j)|_{\nu 1}^2} < \frac{(\log m)^2}{m} \right\}.$$

It worth to stress that all these sequences do not involve any a-priori knowledge about neither the deconvolution density f nor the error density φ. Now, we choose k as

$$\hat{k} := \arg\min_{0 < k \leq \hat{N}_n \wedge \hat{M}_m} \left\{ -\|f_k\|_\omega^2 + 600 \frac{\hat{\delta}_k}{n} \right\}. \quad (4.1)$$

Note that \hat{k} in contrast to the previous section, this choice does not depend on the sequences δ, N, or M, but only on $\hat{\delta}$, \hat{N}, and \hat{M}, which can be computed from the observed data samples. This choice of the regularization parameter is hence fully data-driven.

In order to show an upper risk bound, we need the following assumption.

Assumption 4.2

(i) The sequences N and M from Definition 3.1 (ii) satisfy the additional conditions

$$\max_{j \geq \hat{N}_n} \frac{\lambda_j}{j/\nu 1} \leq \frac{\log n}{4dn} \quad \text{and} \quad \max_{j \geq \hat{M}_m} \lambda_j \leq \frac{(\log m)^2}{4dm}.$$

(ii) For all $n \in \mathbb{N}$, N_n^u given in Definition 4.1 (ii) fulfills $N_n \leq N_n^u \leq n$.

By construction, these conditions are satisfied for sufficiently large n and m. We are now able to state the main result of this paper providing an upper risk bound for the fully adaptive estimator.

Theorem 4.3 Assume that we have independent i.i.d. Y- and ε-samples of size n and m, respectively. Consider sequences ω, γ, and λ satisfying Assumption 2.1. Let the sequences δ, N, and M be as in Definition 3.1 and suppose that Assumptions 3.2 and 4.2 hold. Define further $N_n^1 := \arg\max_{1 \leq j \leq \hat{N}_n} \left\{ \frac{\lambda_j}{j/\nu 1} \geq \frac{4d \log n}{n} \right\}$ and $M_m^1 := \arg\max_{1 \leq j \leq \hat{M}_m} \left\{ \lambda_j \geq \frac{4d (\log m)^2}{m} \right\}$.

11
Consider the estimator \hat{f}_k defined in (1.2) with k given by (4.1). Then there exists a numerical constant C such that for all $n, m \geq 1$

$$
\sup_{f \in F} \sup_{\varphi \in \mathcal{F}_{\lambda}} \left\{ \mathbb{E} \left[\| \hat{f}_k - f \|_w^2 \right] \right\} \leq C d \left\{ r \left[\min_{1 \leq k \leq (N_n^l \wedge M_m^l)} \max\{\omega_k / \gamma_k, \delta_k / n\} + \kappa_m \right] + \frac{\delta_1 \exp \left(-1/(72 d) \right)}{n} + \frac{\delta_1 + \Sigma (3 \rho \Lambda / \zeta_d)}{n} \right\},
$$

where $\Lambda := \sum_{j \in \mathbb{Z}} \lambda_j$, $\zeta_d := \log 3d / \log 3$, and κ_m is defined in Theorem 2.3.

Compare the last assertion with Theorem 3.3. Surprisingly, the estimation of the sequences δ, N, and M does essentially change the upper bound only by replacing N_m^l and M_m^l, respectively. Therefore, as in section 3 the fully adaptive estimator attains the lower bound given in Corollary 2.4 up to a constant as long as $\sup_{k \geq 1} \{ \delta_k / (\sum_{0 < j \leq k} \omega_j / \lambda_j) \} < \infty$ and the optimal dimension parameter k_n^* given in Theorem 2.2 is smaller than $N_n^l \wedge M_m^l$. However, these conditions are again not necessary as shown below.

4.1 Illustration: estimation of derivatives (continued)

The following result shows that even without any prior knowledge on the error density φ, the fully adaptive penalized estimator automatically attains the optimal rate in the super smooth case and in the ordinary smooth case as far as $p - s > a$. Recall that the computation of the dimension parameter \hat{k} given in (4.1) involves the sequence $(N_n^u)_n \geq 1$, which in our illustration satisfies $N_n^u \sim n^{1/(2a)}$ since $\omega_j = |j|^{2a}$, $j \geq 1$.

Proposition 4.4 Assume that we have independent i.i.d. Y- and ε-samples of size n and m, respectively. Consider the estimator $\hat{f}_k^{(s)}$ given in (2.3) with k defined by (4.1).

[os] In the ordinary smooth case with $p - s > a$ we obtain

$$
\sup_{f \in \mathcal{W}_p'} \sup_{\varphi \in \mathcal{E}_{\lambda}} \mathbb{E} \| \hat{f}_k^{(s)} - f^{(s)} \|_w^2 = \begin{cases} O(n^{-2(p-s)/(2p+2a+1)}) & \text{if } n^{2(p-s)/(2p+2a+1)} = O(m_n) \\
O(m_n^{1-1}) & \text{otherwise}, \end{cases}
$$

and with $p - s \leq a$, if $n^{2a/(2p+2a+1)} = O(m_n)$

$$
\sup_{f \in \mathcal{W}_p'} \sup_{\varphi \in \mathcal{E}_{\lambda}} \mathbb{E} \| \hat{f}_k^{(s)} - f^{(s)} \|_w^2 = \begin{cases} O(n^{-2(p-s)/(2p+2a+1)}) & \text{if } n^{2a/(2p+2a+1)} = O(m_n / (\log m_n)^2) \\
O(m_n^{-p-s/a} (\log m_n)^{2(p-s)/a}) & \text{otherwise}, \end{cases}
$$

while if $m_n = O(n^{2a/(2p+2a+1)})$

$$
\sup_{f \in \mathcal{W}_p'} \sup_{\varphi \in \mathcal{E}_{\lambda}} \mathbb{E} \| \hat{f}_k^{(s)} - f^{(s)} \|_w^2 = O(m_n^{-p-s/a} (\log m_n)^{2(p-s)/a}).
$$

[ss] In the super smooth case, we have

$$
\sup_{f \in \mathcal{W}_p'} \sup_{\varphi \in \mathcal{E}_{\lambda}} \mathbb{E} \| \hat{f}_k^{(s)} - f^{(s)} \|_w^2 = \begin{cases} O((\log n)^{-(p-s)/a}) & \text{if } \log n = O(\log m_n) \\
O((\log m_n)^{-(p-s)/a}) & \text{otherwise}. \end{cases}
$$

12
Notice that the last result differs from Proposition 3.4 solely in case \([os]\) with \(p - s \leq a\), where \((\log m_n)^2\) is replaced by \((\log m_n)^2\). Hence, in all other cases the fully adaptive estimator attains the minimax optimal rate. In particular, it is not necessary to know in advance if the error density is ordinary or super smooth. Moreover, as long as \(m_n \sim n\), the fully adaptive estimator always attains the same optimal rate as in case of known error density. However, over a wide range of values for the smoothness parameters, the minimax optimal rate is still obtained even when \(m_n\) grows slower than \(n\).

A Proofs

A.1 Proofs of section 2

Lower bounds

Proof of Theorem 2.2. Given \(\zeta := \eta \min(r-1,1/(8d\Gamma))\) and \(\alpha_n := \psi_n(\sum_{0<|j|\leq k_h^*} \omega_j/\gamma_j)\), we consider the function \(f := 1 + (\zeta \alpha_n/n)^{1/2} \sum_{0<|j|\leq k_h^*} \zeta_j^{1/2} e_j\). We will show that for any \(\theta := (\theta_j) \in \{-1,1\}^{2k_h^*}\), the function \(f_\theta := 1 + \sum_{0<|j|\leq k_h^*} \theta_j |f_j| e_j\) belongs to \(F_\gamma\) and is hence a possible candidate of the deconvolution density. For each \(\theta\), the \(Y\)-density corresponding to the \(X\)-density \(f_\theta\) is given by \(g_\theta := f_\theta * \phi\). We denote by \(g_\theta^0\) the joint density of an i.i.d. \(n\)-sample from \(g_\theta\) and by \(E_\theta\) the expectation with respect to the joint density \(g_\theta^0\). Furthermore, for \(0 \leq |j| \leq k_h^*\) and each \(\theta\) we introduce \(\theta^{(j)}\) by \(\theta^{(j)} = \theta_l\) if \(j \neq l\) and \(\theta^{(j)} = -\theta_j\). The key argument of this proof is the following reduction scheme. If \(\tilde{f}\) denotes an estimator of \(f\) then we conclude

\[
\sup_{f \in F_\gamma} \mathbb{E} \|\tilde{f} - f\|_2 \geq \sup_{\theta \in \{-1,1\}^{2k_h^*}} \mathbb{E}_{\theta} \|\tilde{f} - f_\theta\|_2 \geq \frac{1}{2^{2k_h^*}} \sum_{\theta \in \{-1,1\}^{2k_h^*}} \mathbb{E}_{\theta} \|\tilde{f} - f_\theta\|_2
\]

\[
\geq \frac{1}{2^{2k_h^*}} \sum_{\theta \in \{-1,1\}^{2k_h^*}} \sum_{0<|j|\leq k_h^*} \omega_j \mathbb{E}_{\theta} |\tilde{f} - f_\theta|_2
\]

\[
= \frac{1}{2^{2k_h^*}} \sum_{\theta \in \{-1,1\}^{2k_h^*}} \sum_{0<|j|\leq k_h^*} \omega_j \frac{1}{2} \left\{ \mathbb{E}_{\theta} |\tilde{f} - f_\theta|_2^2 + \mathbb{E}_{\theta^{(j)}} |\tilde{f} - f_{\theta^{(j)}}|_2^2 \right\}
\]

Below we show furthermore that for all \(n \geq 2\) we have

\[
\left\{ \mathbb{E}_{\theta} |\tilde{f} - f_\theta|_2^2 + \mathbb{E}_{\theta^{(j)}} |\tilde{f} - f_{\theta^{(j)}}|_2^2 \right\} = \frac{\zeta \alpha_n}{4\lambda_j n}
\]

(A.1)

Combining the last lower bound and the reduction scheme gives

\[
\sup_{f \in F_\gamma} \mathbb{E} \|\tilde{f} - f\|_2 \geq \frac{1}{2^{2k_h^*}} \sum_{\theta \in \{-1,1\}^{2k_h^*}} \sum_{0<|j|\leq k_h^*} \omega_j \frac{\zeta}{2} \frac{\alpha_n}{4\lambda_j n} = \frac{\zeta \alpha_n}{8} \sum_{0<|j|\leq k_h^*} \frac{\omega_j}{\lambda_j n}
\]

Hence, employing the definition of \(\zeta\) and \(\alpha_n\) we obtain the lower bound given in the theorem. To conclude the proof, it remains to check (A.1) and \(f_\theta \in F_\gamma\) for all \(\theta \in \{-1,1\}^{2k_h^*}\). The latter is easily verified if \(f \in F_\gamma\). In order to show that \(f \in F_\gamma\) we first notice that \(f\) integrates to one. Moreover, \(f\) is non-negative because \(|\sum_{0<|j|\leq k_h^*} |f_j| e_j| \leq 1\), and \(\|f\|_2 \leq r\).
which can be realized as follows. By employing the condition \(\sum_{j \in \mathbb{Z}} \gamma_j^{-1} = \Gamma < \infty \) we have

\[
| \sum_{0 < |j| \leq k_n^*} [f]_j e_j | \leq \sum_{0 < |j| \leq k_n^*} ||f||_j = \left(\frac{\zeta \alpha_n}{n} \right)^{1/2} \sum_{0 < |j| \leq k_n^*} \lambda_j^{-1/2} \\
\leq \left(\frac{\zeta \alpha_n}{n} \right)^{1/2} \left(\sum_{0 < |j| \leq k_n^*} \gamma_j^{-1} \right)^{1/2} \left(\sum_{0 < |j| \leq k_n^*} \frac{\gamma_j}{n \lambda_j} \right)^{1/2} \leq \left(\frac{\zeta \alpha_n \Gamma}{n} \right)^{1/2} \left(\sum_{0 < |j| \leq k_n^*} \frac{\gamma_j}{n \lambda_j} \right)^{1/2}.
\]

Since \(\omega/\gamma \) is non-increasing the definition of \(\zeta, \alpha_n \) and \(\eta \) implies

\[
| \sum_{0 < |j| \leq k_n^*} [f]_j e_j | \leq \left(\frac{\Gamma}{\eta} \right)^{1/2} \left(\frac{\gamma_{k_n^*}^*}{\omega_{k_n^*}^*} \alpha_n \sum_{0 < |j| \leq k_n^*} \frac{\omega_j}{\lambda_j n} \right)^{1/2} \leq \left(\frac{\Gamma}{\eta} \right)^{1/2} \leq 1 \quad (A.2)
\]
as well as \(\|f\|^2_t \leq 1 + \zeta\alpha_n^2 \sum_{0 < |j| \leq k_n^*} \frac{\omega_j}{\lambda_j n} \leq 1 + \zeta/\eta \leq r. \)

It remains to show (A.1). Consider the Hellinger affinity \(\rho(g_{\theta_0}^n, g_{\theta(\cdot)}^n) = \int \sqrt{g_{\theta_0}^n} \, \sqrt{g_{\theta(\cdot)}^n} \), then we obtain for any estimator \(\tilde{f} \) of \(f \) that

\[
\rho(g_{\theta_0}^n, g_{\theta(\cdot)}^n) \leq \int \frac{|\tilde{f} - f_{\theta(\cdot)}(j)|}{|f - f_{\theta(\cdot)}(j)|} \sqrt{g_{\theta(\cdot)}^n} \sqrt{g_{\theta_0}^n} + \int \frac{|\tilde{f} - f_{\theta(\cdot)}(j)|}{|f - f_{\theta(\cdot)}(j)|} \sqrt{g_{\theta_0}^n} \sqrt{g_{\theta(\cdot)}^n} \\
\leq \left(\int \frac{|\tilde{f} - f_{\theta(\cdot)}(j)|^2}{|f - f_{\theta(\cdot)}(j)|^2} g_{\theta(\cdot)}^n \right)^{1/2} + \left(\int \frac{|\tilde{f} - f_{\theta(\cdot)}(j)|^2}{|f - f_{\theta(\cdot)}(j)|^2} g_{\theta_0}^n \right)^{1/2}.
\]

Rewriting the last estimate we obtain

\[
\left\{ \mathbb{E}_{\theta_0} ||\tilde{f} - f_{\theta(\cdot)}||^2 + \mathbb{E}_{\theta(\cdot)} ||\tilde{f} - f_{\theta(\cdot)}||^2 \right\} \geq \frac{1}{2} ||f_{\theta(\cdot)} - f_{\theta(\cdot)}||^2 \rho(g_{\theta_0}^n, g_{\theta(\cdot)}^n). \quad (A.3)
\]

Next we bound from below the Hellinger affinity \(\rho(g_{\theta_0}^n, g_{\theta(\cdot)}^n) \). Therefore, we consider first the Hellinger distance

\[
H^2(g_{\theta_0}, g_{\theta(\cdot)}):= \int \left(\sqrt{g_{\theta_0}} - \sqrt{g_{\theta(\cdot)}} \right)^2 \\
= \int \frac{|g_{\theta_0} - g_{\theta(\cdot)}|^2}{\left(\sqrt{g_{\theta_0}} + \sqrt{g_{\theta(\cdot)}} \right)^2} \leq 4 ||g_{\theta_0} - g_{\theta(\cdot)}||^2 = 16 ||f_j||^2 ||\varphi_j||^2 \leq 16 \zeta d \frac{\Gamma}{\eta n},
\]

where we have used that \(\alpha_n \leq 1/\eta, \varphi \in \mathcal{E}_\lambda^d \) and \(g_{\theta_0} \geq 1/2 \) because \(\sum_{0 < |j| \leq k_n^*} [g_{\theta_0}]_j e_j \leq 1/2 \), which can be realized as follows. By using the condition \(\sum_{j \in \mathbb{Z}} \gamma_j^{-1} = \Gamma < \infty \) and \(\varphi \in \mathcal{E}_\lambda^d \) we obtain in analogy to the proof of (A.2) that

\[
| \sum_{0 < |j| \leq k_n^*} [g_{\theta}]_j e_j | \leq \sum_{0 < |j| \leq k_n^*} |f_j||\varphi_j| \leq \left(\frac{\zeta \alpha_n d}{n} \right)^{1/2} \sum_{0 < |j| \leq k_n^*} \lambda_j^{-1/2} \leq \left(\frac{\zeta d \Gamma}{\eta} \right)^{1/2} < 2/2.
\]

Therefore, the definition of \(\zeta \) implies \(H^2(g_{\theta_0}, g_{\theta(\cdot)}) \leq 2/n \). By using the independence, i.e., \(\rho(g_{\theta_0}^n, g_{\theta(\cdot)}^n) = \rho(g_{\theta_0}, g_{\theta(\cdot)})^n \), together with the identity \(\rho(g_{\theta_0}, g_{\theta(\cdot)}) = 1 - \frac{1}{2} H^2(g_{\theta_0}, g_{\theta(\cdot)}) \) it follows \(\rho(g_{\theta_0}^n, g_{\theta(\cdot)}^n) \geq (1 - n^{-1})^n \geq 1/4 \) for all \(n \geq 2 \). By combination of the last estimate with (A.3) we obtain (A.1) which completes the proof.
Proof of Theorem 2.3. We construct for each $\theta \in \{-1, 1\}$ an error density $\varphi_\theta \in E^d$ and a deconvolution density $f_\theta \in F^*_\gamma$, such that $g_\theta := f_\theta \ast \varphi_\theta$ satisfies $g_1 = g_{-1}$. To be more precise, define $k_m^* := \arg\max_{|\rho| > 0} \{\omega_j \gamma_j^{-1} \min(1, m^{-1} \lambda_j^{-1})\}$ and $\alpha_m := \min(1, m^{-\frac{1}{2} \lambda_m^{-1} / 2})$ with $\zeta := \min(1/(2\sqrt{d}), (1 - d^{-1/2}))$. Observe that $1 \geq (1 - \alpha_m)^2 \geq (1 - (1 - 1/d^{1/4})^2 \geq 1/d^{1/2}$ and $1 \leq (1 + \alpha_m)^2 \leq (1 + (1 - 1/d^{1/4}))^2 = (2 - 1/d^{1/4})^2 \leq d^{1/2}$, which implies $1/d^{1/2} \leq (1 + \alpha_m)^2 \leq d^{1/2}$. These inequalities will be used below without further reference.

By assumption there is a density $\varphi \in E^d$ such that $\varphi \geq 1/2$. We show below that for each θ the function $f_\theta := 1 + (1 - \theta \alpha_m)^{\min(\sqrt{r - 1}, 1)} \gamma^{-1} \epsilon_{k_m^*}$ belongs to F^*_γ and the function $g_\theta := \varphi + \theta \alpha_m [\varphi]_{k_m^*} \epsilon_{k_m^*}$ is an element of E^d. Moreover, it is easily verified that $g_\theta = 1 + (1 - \alpha_m)^{\min(\sqrt{r - 1}, 1)} \gamma^{-1} \epsilon_{k_m^*}$ and hence $g_1 = g_{-1}$. We denote by g^θ_0 the joint density of an i.i.d. n-sample from g_θ and φ^θ_0 the joint density of an i.i.d. m-sample from φ_θ. Since the samples are independent from each other, $p_\theta := g^\theta_0 \varphi^\theta_0$ is the joint density of all observations and we denote by E_θ the expectation with respect to p_θ. Applying a reduction scheme we deduce that for each estimator \tilde{f} of f

$$\sup_{f \in F^*_\gamma} \sup_{\varphi \in E^d_\gamma} E\|\tilde{f} - f\|_\omega^2 \geq \max_{\theta \in \{-1, 1\}} E\|\tilde{f} - f_\theta\|_\omega^2 \geq \frac{1}{2} \left\{ E\|\tilde{f} - f_1\|_\omega^2 + E_{-1}\|\tilde{f} - f_{-1}\|_\omega^2 \right\}. \tag{A.4}$$

Below we show furthermore that for all $m \geq 2$ we have

$$E\|\tilde{f} - f_1\|_\omega^2 + E_{-1}\|\tilde{f} - f_{-1}\|_\omega^2 \geq \frac{1}{8} \|f_1 - f_{-1}\|_\omega^2. \tag{A.4}$$

Moreover, we have $\|f_1 - f_{-1}\|_\omega^2 = 4e_m^2 \omega_k \alpha_m^{-1} (r - 1) / r^{1/2} = 4 (r - 1)^{1/2} \omega_k \alpha_m^{-1} \min(1, m^{-\lambda_m})$. Combining the last lower bound, the reduction scheme and the definition of k_m^* implies the result of the theorem.

To conclude the proof, it remains to check (A.4), $f_\theta \in F^*_\gamma$ and $\varphi_\theta \in E^d_\gamma$ for both θ. In order to show $f_\theta \in F^*_\gamma$, we first observe that f_θ integrates to one. Moreover, f_θ is non-negative because $|\varphi| \geq (1 - \theta \alpha_m)^{1/2} \gamma^{-1} \epsilon_{k_m^*} \leq \gamma^{-1} \epsilon_{k_m^*} \leq 1$ and $\|f_\theta\|_\omega^2 = 1 + \gamma_k \|f_\theta\|_\omega^2 \leq 1 + \gamma_k \|1 - \theta \alpha_m\|^{\sqrt{r - 1} / r^{1/2} \gamma^{-1} \epsilon_{k_m^*}^2} \leq 1$ by using the definition of α_m and ζ. To check that $\varphi_\theta \in E^d$, it remains to show that $1/d \leq |\varphi_\theta| / \lambda_m \leq d$ for all $|j| > 0$. Since $\varphi \in E^d$, it follows from the definition of φ_θ that these inequalities are satisfied for all $j \neq k_m^*$ and moreover that $1/d \leq |\varphi_\theta| / \lambda_m \leq \min(1, \lambda_m)^{-1} \sqrt{d} \lambda_m \leq 1/2$ by using the definition of α_m and ζ. As in the proof of Theorem 2.2 by employing the Hellinger affinity $\rho(p_1, p_{-1})$ we obtain for any estimator \tilde{f} of f

$$\left\{ E\|\tilde{f} - f_1\|_\omega^2 + E_{-1}\|\tilde{f} - f_{-1}\|_\omega^2 \right\} \geq \frac{1}{2} \|f_1 - f_{-1}\|_\omega^2 \rho(p_1, p_{-1}).$$

Next we bound from below the Hellinger affinity $\rho(p_1, p_{-1}) \geq 1/4$ for all $m \geq 2$ which proves (A.4). From the independence and the fact that $g_1 = g_{-1}$, it is easily seen that Hellinger affinity satisfies $\rho(p_1, p_{-1}) = \rho(g_1, g_{-1}) \rho(\varphi_1, \varphi_{-1}) = \rho(\varphi_1, \varphi_{-1}) = \left(1 - \frac{1}{2} H^2(\varphi_1, \varphi_{-1})\right)^m$.

15
Hence, we conclude $\rho(p_1, p_{-1}) \geq (1 - 1/m)^m \geq 1/4$, for all $m \geq 2$, since

$$H^2(\varphi_1, \varphi_{-1}) \leq \int \frac{|\varphi_1 - \varphi_{-1}|^2}{\varphi_1 + \varphi_{-1}} = \int \frac{|\varphi_1 - \varphi_{-1}|^2}{\varphi} \leq 2 \int |\varphi_1 - \varphi_{-1}|^2$$

$$\leq 2 \int 4e_m^2 |[\varphi]|_{k_m}^2 |\varphi|_{k_m}^2 \leq 8d\alpha_m^2 \lambda_{k_m} = 8d\zeta^2 m^{-1} \leq 2m^{-1}$$

where we used that $\varphi \geq 1/2$ and the definition of α_m and ζ. This completes the proof. □

Upper bound

Proof of Theorem 2.5. We begin our proof with the observation that $\text{Var}(\tilde{g})_j \leq 1/n$ and $\text{Var}(\tilde{\varphi})_j \leq 1/m$ for all $j \in \mathbb{Z}$. Moreover, by applying Theorem 2.10 in Petrov (1995) there exists a constant $C > 0$ such that $E[|\tilde{\varphi})_j - [\varphi]|_4^4 \leq C/m^2$ for all $j \in \mathbb{Z}$ and $m \in \mathbb{N}$. These results are used below without further reference. Define now $\tilde{f} := 1 + \sum_{0<j<|j|<k_n} [f]_j \mathbf{1}\{|[\tilde{\varphi})_j|^2 \geq 1/m\})e_j$ and decompose the risk into two terms,

$$E\|\tilde{f} - f\|^2 \leq 2E\|	ilde{f} - \tilde{f}\|^2 + 2E\|\tilde{f} - f\|^2 =: A + B,$$

(A.5)

which we bound separately. Consider first A which we decompose further,

$$E\|\tilde{f} - f\|^2 \leq 2 \sum_{0<j<|j|<k_n} \omega_j E\left[\frac{|\tilde{g})_j - [g]|_j^2}{|[\varphi]|^2} \mathbf{1}\{|[\tilde{\varphi})_j|^2 \geq 1/m\}\right]$$

$$+ 2 \sum_{0<j<|j|<k_n} \omega_j |[f]|_j \mathbf{1}\{|[\tilde{\varphi})_j|^2 \geq 1/m\}\right] =: A_1 + A_2.$$

By using the elementary inequality $1/2 \leq |<[\tilde{\varphi})_j]/[\varphi]|_j - 1|^2 + |<[\tilde{\varphi})_j]/[\varphi]|_j|^2$, the independence of $\tilde{\varphi}$ and \tilde{g}, and $\varphi \in \mathcal{E}^d$ together with the definition of ψ_n given in (2.1), we obtain

$$A_1 \leq 4 \sum_{0<j<|j|<k_n} \omega_j \left\{ \frac{m \text{Var}(\tilde{g})_j \text{Var}(\tilde{\varphi})_j}{|[\varphi]|^2} \right\} \leq 8d \sum_{0<j<|j|<k_n} \frac{\omega_j}{n \lambda_j} \leq 8d \psi_n.$$

Moreover, we have

$$E[|\tilde{\varphi})_j - [\varphi]|_j^2 \mathbf{1}\{|[\tilde{\varphi})_j|^2 \geq 1/m\}] \leq \frac{2m E[|\tilde{\varphi})_j - [\varphi]|_j^4]}{|[\varphi]|^2} \leq \frac{2 \text{Var}(\tilde{\varphi})_j}{|[\varphi]|^2} \leq \frac{2(C+1)m}{m |[\varphi]|^2} \leq \frac{2(C+1)d}{m \lambda_j}$$

and $E[|\tilde{\varphi})_j - [\varphi]|_j^2 \mathbf{1}\{|[\tilde{\varphi})_j|^2 \geq 1/m\}] \leq 1$, where we have used again the elementary inequality and $\varphi \in \mathcal{E}^d$. By combination of both bounds together with $f \in \mathcal{F}_n^d$ and the definition of κ_m given in (2.2) we obtain

$$A_2 \leq 4(C + 1)d \sum_{0<j<|j|<k_n} \omega_j |[f]|_j \min(1, \frac{1}{m \lambda_j}) \leq 4(C + 1)(d - 1)r \kappa_m.$$

Consider now B which we decompose further into

$$E\|\tilde{f} - f\|^2 = \sum_{0<j<|j|<k_n} \omega_j |[f]|_j \mathbf{1}\{|0 < |j| < k_n\} \mathbf{1}\{|[\tilde{\varphi})_j|^2 \geq 1/m\}}^2

= \sum_{|j| > k_n} \omega_j |[f]|_j^2 + \sum_{0<j<|j|<k_n} \omega_j |[f]|_j \mathbf{P}\{|[\tilde{\varphi})_j|^2 < 1/m\} =: B_1 + B_2,$$
where $B_1 \leq \|f\|^2_{\gamma} \omega_{k_n^*}^{-1} \leq r \psi_n$ because $f \in F_{\gamma}^r$. Moreover, $B_2 \leq 4d r \kappa_m$ by using that

$$P\left(||[\varphi]||^2 < 1/m \right) \leq 4d \min \left(1, \frac{1}{m \lambda_j} \right),$$

(A.6)

which we will show below. The result of the theorem follows now by combination of the decomposition (A.5) and the estimates of A_1, A_2, B_1 and B_2.

To conclude, let us prove (A.6). If $||[\varphi]||^2 \geq 4/m$, then we deduce by employing Tchebychev’s inequality that

$$P(||[\varphi]||^2 < 1/m) \leq P(||[\varphi]/[\varphi]| < 1/2) \leq P(||[\varphi] - [\varphi]/||[\varphi]/2)|| \leq 4 \text{Var}([\varphi]_j) \leq 4d/(m \lambda_j).$$

On the other hand, in case $||[\varphi]||^2 < 4/m$ the estimate $P(||[\varphi]||^2 < 1/m) \leq 4d/(m \lambda_j)$ holds too since $1 \leq 4/(m ||[\varphi]||^2) \leq 4d/(m \lambda_j)$. Combining the last estimates and $P(||[\varphi]||^2 < 1/m) \leq 1$ we obtain (A.6), which completes the proof.

Illustration: estimation of derivatives

Proof of Proposition 2.6. Since for each $0 \leq s \leq p$ we have $E\|f^{(s)} - f^{(s)}\|^2 \sim E\|\tilde{f} - f\|^2$, we intend to apply the general result given Corollary 2.4. In both cases the additional conditions formulated in Theorem 2.2 and 2.3 are easily verified. Therefore, it is sufficient to evaluate the lower bounds ψ_n and κ_m given in (2.1) and (2.2), respectively. Note that the optimal dimension parameter $k_n^* := \arg\min_{j \in \mathbb{N}} \{\max(\frac{e_j}{\omega_j}, \sum_{0 < ||l|| \leq j} \frac{n \lambda_j}{\omega_j})\}$ satisfies $n \omega_{k_n^*}/\gamma_{k_n^*} \sim \sum_{0 \leq ||l|| \leq k_n^*} \omega/l$ since both sequences (γ_j/ω_j) and $(\sum_{0 < ||l|| \leq j} \frac{n \lambda_j}{\omega_j})$ are non-increasing.

[os] The well-known approximation $\sum_{j=1}^{m} j^r \sim m^{r+1}$ for $r > 0$ implies $(\gamma_{k_n^*}/\omega_{k_n^*}) \sum_{0 \leq ||l|| \leq k_n^*} \omega/l \sim (k_n^*)^{2a+2p+1}$. It follows that $k_n^* \sim n^{1/(2p+2a+1)}$ and the first lower bound writes $\psi_n \sim n^{-(1/(2p-2s))/(2p+2a+1)}$. Moreover, we have $\kappa_m \sim m^{-(p-s)(\sqrt{n})}/a$, since the minimum in $\kappa_m = \sup_{j \in \mathbb{Z}} \{||j|-2(p-s)| \min(1, |j|^{2a}/m)\}$ is equal to one for $|j| \geq m^{1/2a}$ and $|j|^{-2(p-s)}$ is non-increasing.

[ss] Applying Laplace’s Method (c.f. chapter 3.7 in Olver (1974)) we have $(\gamma_{k_n^*}/\omega_{k_n^*}) \sum_{0 \leq ||l|| \leq k_n^*} \omega/l \sim (k_n^*)^{2p} \exp((k_n^*)^{2a})$ which implies that $k_n^* \sim (\log n)^{1/(2a)}$ and that the first lower bound can be rewritten as $\psi_n \sim (\log n)^{-(p-s)/a}$. Furthermore, we have $\kappa_m \sim (\log m)^{-(p-s)/a}$ since the minimum in $\kappa_m = \sup_{j \in \mathbb{Z}} \{||j|-2(p-s)| \min(1, \exp(|j|^{2a}/m)\}$ is equal to one for $|j| \geq (\log m)^{(1/2a)}$ and $|j|^{-2(p-s)}$ is non-increasing. Consequently, the lower bounds in Proposition 2.7 follow by applying Corollary 2.4.

Proof of Proposition 2.7. Since in both cases the condition on the dimension parameter k ensures that $k \sim k_n^*$ (see the proof of Proposition 2.6) the result follows from Theorem 2.5.

A.2 Proofs of section 3

We begin by defining and recalling notations to be used in the proof. Given $u \in L^2[0, 1]$ we denote by $[u]$ the infinite vector of Fourier coefficients $[u]_j := \langle u, e_j \rangle$. In particular we use
Moreover, the adaptive choice \(\hat{k} \) of the dimension parameter can be rewritten as

\[
\hat{k} = \arg\min_{1 \leq k \leq (N_n \land M_m)} \left\{ \Upsilon(\hat{f}_k) + 60 \frac{d \delta_k}{n} \right\}.
\]

(A.9)

Let \(\text{pen}(k) := 60d \delta_k / n \), then for all \(1 \leq k \leq (N_n \land M_m) \) we have

\[
\Upsilon(\hat{f}_k) + \text{pen}(\hat{k}) \leq \Upsilon(\hat{f}_k) + \text{pen}(k) \leq \Upsilon(f_k) + \text{pen}(k),
\]

using first (A.9) and then (A.8). This inequality implies

\[
\|\hat{f}_k\|_\omega^2 - \|f_k\|_\omega^2 \leq 2(\hat{f}_k - f_k, \hat{g}_\omega) + \text{pen}(k) - \text{pen}(\hat{k}),
\]

(A.10)
and hence, using (A.7), we have for all \(1 \leq k \leq (N_n \wedge M_m)\)
\[
\|\hat{f}_k - f\|_\omega^2 \leq \|f - f_k\|_\omega^2 + \text{pen}(k) - \text{pen}(\hat{k})
+ 2(\hat{f}_k - f_k, \hat{\Phi}_\nu)_\omega + 2(\hat{f}_k - f_k, \hat{\Phi}_\nu - \tilde{\Phi}_\nu)_\omega + 2(\hat{f}_k - f_k, \hat{\Phi}_g - \tilde{\Phi}_g)_\omega.
\] (A.10)
Consider the unit ball \(B_k := \{f \in S_k : \|f\|_\omega \leq 1\}\) and, for arbitrary \(\tau > 0\) and \(t \in S_k\), the elementary inequality
\[
2|\langle t, h \rangle_\omega| \leq 2\|t\|_\omega \sup_{t \in B_k} |\langle t, h \rangle_\omega| \leq \tau |t|_\omega^2 + \frac{1}{\tau} \sup_{t \in B_k} |\langle t, h \rangle_\omega| = \tau |t|_\omega^2 + \frac{1}{\tau} \sum_{j=\hat{k}}^{k} \omega_j |h_j|^2.
\]
Combining the last estimate with (A.10) and \(\hat{f}_k - f_k \in S_{k \vee \hat{k}} \subset S_{N_n \wedge M_m}\) we obtain
\[
\|\hat{f}_k - f\|_\omega^2 \leq \|f - f_k\|_\omega^2 + 3\tau \|\hat{f}_k - f_k\|_\omega^2 + \text{pen}(k) - \text{pen}(\hat{k})
+ 2 \frac{1}{\tau} \sup_{t \in B_{k \vee \hat{k}}} |\langle t, \hat{\Phi}_\nu \rangle_\omega|^2 + \frac{1}{\tau} \sup_{t \in B_{k \vee \hat{k}}} |\langle t, \hat{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega|^2 + \frac{1}{\tau} \sup_{t \in B_{k \vee \hat{k}}} |\langle t, \hat{\Phi}_g - \tilde{\Phi}_g \rangle_\omega|^2.
\]
Decompose \(\|\langle t, \hat{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega\|^2 = |\langle t, \hat{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega|^2 1\{\Omega_q\} + |\langle t, \hat{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega|^2 1\{\Omega_q^c\}\) further using
\[
\Omega_q := \left\{ \forall 0 < |j| \leq M_m : \left| \frac{1}{|\varphi|_j} - \frac{1}{|\hat{\varphi}|_j} \right| \leq \frac{1}{2\|\varphi\|_j} \wedge \left| \hat{\varphi}_j \right| \geq 1/m \right\}.
\] (A.11)
Since \(1\{\|\varphi\|_j^2 \geq 1/m\} \{\Omega_q\} = 1\{\Omega_q\}\), it follows that for all \(1 \leq k \leq (N_n \wedge M_m)\) we have
\[
\left(\frac{1}{|\varphi|_j} \right) 1\{\|\varphi\|_j^2 \geq 1/m\} - 1 \right)^2 1\{\Omega_q\} = \|\varphi\|_j^2 1\{\Omega_q\} \frac{1}{|\varphi|_j} \left| \frac{1}{|\varphi|_j} \right|^2 \leq 1/4.
\]
Hence, \(\sup_{t \in B_k} |\langle t, \hat{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega|^2 1\{\Omega_q\} \leq \frac{1}{4} \sup_{t \in B_k} |\langle t, \hat{\Phi}_\nu \rangle_\omega|^2 \) for all \(1 \leq k \leq (N_n \wedge M_m)\).
Letting \(\tau := 1/8\) it follows from \(\|\hat{f}_k - f_k\|_\omega^2 \leq 2\|\hat{f}_k - f\|_\omega^2 + 2\|f_k - f\|_\omega^2\) that
\[
\frac{1}{4} \|\hat{f}_k - f\|_\omega^2 \leq \frac{7}{4} \|f - f_k\|_\omega^2 + 10 \left(\sup_{t \in B_{k \vee \hat{k}}} |\langle t, \hat{\Phi}_\nu \rangle_\omega|^2 - \left(6d\delta_{k \vee \hat{k}} \right)/n \right)
+ \left(60d\delta_{k \vee \hat{k}} \right)/n + \text{pen}(k) - \text{pen}(\hat{k})
+ 8 \sup_{t \in B_{(N_n \wedge M_m)}} |\langle t, \hat{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega|^2 1\{\Omega_q^c\} + 8 \sup_{t \in B_{(N_n \wedge M_m)}} |\langle t, \hat{\Phi}_g - \tilde{\Phi}_g \rangle_\omega|^2.
\]
Since \(\omega/\gamma\) is non-increasing we obtain \(\|f - f_k\|_\omega^2 \leq r\omega_k/\gamma_k\) for all \(f \in F_\gamma^t\). Furthermore, notice that \(\text{pen}(k \vee \hat{k}) \leq \text{pen}(k) + \text{pen}(\hat{k})\). By taking the expectation on both sides we conclude that there exists a numerical constant \(C > 0\) such that
\[
\sup_{f \in F_\gamma^t} \sup_{\varphi \in \mathcal{R}_\lambda^q} \mathbb{E} \|\hat{f}_k - f\|_\omega^2 \leq C \frac{\min_{1 \leq k \leq (N_n \wedge M_m)} \left\{ \max \left(\frac{r\omega_k}{\gamma_k}, \frac{\delta_k}{n} \right) \right\}}{1 \leq k \leq (N_n \wedge M_m)}
+ C \sup_{f \in F_\gamma^t} \sup_{\varphi \in \mathcal{R}_\lambda^q} \sum_{1 \leq k \leq (N_n \wedge M_m)} \mathbb{E} \left(\sup_{t \in B_{k \vee \hat{k}}} |\langle t, \hat{\Phi}_\nu \rangle_\omega|^2 - \left(6d\delta_{k \vee \hat{k}} \right)/n \right)
+ C \sup_{f \in F_\gamma^t} \sup_{\varphi \in \mathcal{R}_\lambda^q} \mathbb{E} \left[\sup_{t \in B_{(N_n \wedge M_m)}} |\langle t, \hat{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega|^2 1\{\Omega_q^c\} \right]
+ C \sup_{f \in F_\gamma^t} \sup_{\varphi \in \mathcal{R}_\lambda^q} \sup_{t \in B_{(N_n \wedge M_m)}} |\langle t, \hat{\Phi}_g - \tilde{\Phi}_g \rangle_\omega|^2 1\{\Omega_q^c\}.
\]
In order to bound the second term, apply Lemma A.2 with $\delta_k^* = d \delta_k$ and $\Delta_k^* = d \Delta_k$. Due to the properties of N_n and of the function Σ from Definition 3.1, there is a numerical constant $C > 0$ such that
\[
\sum_{k=1}^{N_n} \mathbb{E} \left(\sup_{t \in B_k} |\langle t, \tilde{\Phi}_\nu \rangle_\omega|^2 - \frac{6 \delta_k}{n} \right) \leq C \frac{d}{n} \left(\delta_1 + \Sigma(3 \| \varphi \|^2 \| f \|^2) \right).
\]
It is readily verified that $\| \varphi \|^2 \leq d \Lambda$ for all $\varphi \in \mathcal{E}_\lambda^d$ and $\| f \|^2 \leq r$ for all $f \in \mathcal{F}_r^\gamma$. The result follows now by virtue of Lemma A.3, A.4, A.5, and Definition 3.1 (i).

In the proof of Lemma A.2 below we will need the following Lemma, which can be found in Comte et al. (2006).

Lemma A.1 (Talagrand’s Inequality) Let T_1, \ldots, T_n be independent random variables and $\nu_n^*(r) = (1/n) \sum_{i=1}^n \left[r(T_i) - \mathbb{E}[r(T_i)] \right]$, for r belonging to a countable class \mathcal{R} of measurable functions. Then,
\[
\mathbb{E}[\sup_{r \in \mathcal{R}} |\nu_n^*(r)|^2 - 6H_2^4] \leq C \left(\frac{v}{n} \exp(-(nH_2^2/6v)) + \frac{H_2^2}{n^2} \exp(-K_2(nH_2/H_1)) \right)
\]
with numerical constants $K_2 = (\sqrt{2} - 1)/(21\sqrt{2})$ and C and where
\[
\sup_{r \in \mathcal{R}} \| r \|_\infty \leq H_1, \quad \mathbb{E} \left[\sup_{r \in \mathcal{R}} |\nu_n^*(r)| \right] \leq H_2, \quad \mathbb{E} \left[\sup_{r \in \mathcal{R}} \frac{1}{n} \sum_{i=1}^n \mathbb{E}[r(T_i)] \right] \leq v.
\]

Lemma A.2 Let $(\delta_k^*)_{k \in \mathbb{Z}}$ and $(\Delta_k^*)_{k \in \mathbb{Z}}$ be sequences such that
\[
\delta_k^* \geq \sum_{0 \leq |j| \leq k} \frac{\omega_j}{\| \varphi_j \|^2} \quad \text{and} \quad \Delta_k^* \geq \max_{0 \leq |j| \leq k} \frac{\omega_j}{\| \varphi_j \|^2}
\]
and let $K_2 := (\sqrt{2} - 1)/(21\sqrt{2})$. Then, there is a numerical constant $C > 0$ such that
\[
\sum_{k=1}^{N_n} \mathbb{E} \left(\sup_{t \in \mathcal{S}_k} |\langle t, \tilde{\Phi}_\nu \rangle_\omega|^2 - \frac{6 \delta_k^*}{n} \right) \leq C \left\{ \frac{\| \varphi \|^2 \| f \|^2}{n} \sum_{k=1}^{N_n} \Delta_k^* \exp \left(-\frac{1}{6 \| \varphi \|^2 \| f \|^2} (\delta_k^* / \Delta_k^*) \right) + \frac{1}{n^2} \exp \left(-K_2 \sqrt{n} \sum_{k=1}^{N_n} \delta_k^* \right) \right\}.
\]

Proof. For $t \in \mathcal{S}_k$ define the function $r_t := \sum_{0 \leq |j| \leq k} \omega_j |t_j| |\varphi_j|^{-1} e_j$, then it is readily seen that $\langle t, \tilde{\Phi}_\nu \rangle_\omega = \frac{1}{n} \sum_{k=1}^n r_t(Y_k) - \mathbb{E}[r_t(Y_k)]$. Next, we compute constants H_1, H_2, and v verifying the three inequalities required in Lemma A.1, which then implies the result.

Consider H_1 first:
\[
\sup_{t \in \mathcal{S}_k} \| r_t \|_\infty^2 = \sup_{y \in \mathbb{R}} \sum_{0 \leq |j| \leq k} \omega_j |\varphi_j|^{-2} |e_j(y)|^2 = \sum_{0 \leq |j| \leq k} \omega_j |\varphi_j|^{-2} \leq \delta_k^* =: H_1^2.
\]

Next, find H_2. Notice that
\[
\mathbb{E}[\sup_{t \in \mathcal{S}_k} |\langle t, \tilde{\Phi}_\nu \rangle_\omega|^2] = \frac{1}{n} \sum_{0 \leq |j| \leq k} \omega_j |\varphi_j|^{-2} \mathbb{E}[e_j(Y_1)].
\]
As \(\var{v} \ar(e_j(Y_1)) \leq \ee[\|e_j(Y_1)\|^2] = 1 \), we define \(\ee[\sup_{t \in B_k} |\langle t, \tilde{\Phi}_g - \Phi_g \rangle|] \leq \delta_k/n =: H_k^2 \).

Finally, consider \(v \). Given \(t \in B_k \) and a sequence \((z_j)_{j \in \mathbb{Z}} \) let \([t] := ([t]_{-k}, \ldots, [t]_k)^\top \) and denote by \(D_k(z) := \text{diag}[z_{-k}, \ldots, z_k] \) the corresponding diagonal matrix. Define the Hermitian and positive semi-definite matrix \(A_k := \left(\frac{\| \psi \|^{-1}}{\| \psi \|} |[\psi]_{j-j'}|[j]_{j-j'} \right)_{j,j'=-k,\ldots,k} \). Straightforward algebra shows \(\sup_{t \in B_k} \var{v} \ar(r_t(Y_1)) \leq \sup_{t \in B_k} (A_k D_k(\omega)[t], D_k(\omega)[t])_{\mathbb{C}^{2k+1}} \), hence

\[
\sup_{t \in B_k} \frac{1}{n} \sum_{k=1}^n \var{v} \ar(r_t(Y_k)) \leq \sup_{t \in B_k} (A_k^{1/2} D_k(\omega)[t], A_k^{1/2} D_k(\omega)[t])_{\mathbb{C}^{2k+1}} = \sup_{t \in B_k} \| A_k^{1/2} D_k(\omega)[t] \|_{\mathbb{C}^{2k+1}}^2 = \| D_k(\sqrt{\omega}) A_k D_k(\sqrt{\omega}) \|_{\mathbb{C}^{2k+1}}.
\]

Clearly, we have \(A_k = D_k([\psi]^{-1}) B_k D_k([\psi]^{-1}) \), where \(B_k := ([\psi]_{j-k}[j]_{j-k})_{j,k=-k,\ldots,k} \). Consequently,

\[
\sup_{t \in B_k} \frac{1}{n} \sum_{k=1}^n \var{v} \ar(r_t(Y_k)) \leq \| D_k(\sqrt{\omega}) [\psi]^{-1} \|_{\mathbb{C}^{2k+1}}^2 \| B_k \|_{\mathbb{C}^{2k+1}}.
\]

We have that \(\| D_k(\sqrt{\omega}) [\psi]^{-1} \|_{\mathbb{C}^{2k+1}}^2 = \max_{0 \leq \|z\|_2 \leq 1} \| B_k z \|_2^2 \leq \| \var{\psi} \| \| f \|_2 \|^2 \), and hence \(\| B_k \|_2^2 \leq \| \var{\psi} \| \| f \|_2 \|^2 \). Given the orthogonal projection \(\Pi_k \) in \(\ell^2 \) onto \(S_k \) the operator \(\Pi_k B \Pi_k : S_k \rightarrow S_k \) has the matrix representation \(B_k \) via the isomorphism \(S_k \cong \mathbb{C}^{2k+1} \) and hence \(\| \Pi_k B \Pi_k \|_2 = \| B_k \|_{\mathbb{C}^{2k+1}} \). Orthogonal projections having a norm bounded by 1, we conclude that \(\| B_k \|_{\mathbb{C}^{2k+1}} \leq \| B \|_2 \) for all \(k \in \mathbb{N} \), which implies \(\sup_{t \in B_k} \frac{1}{n} \sum_{k=1}^n \var{v} \ar(r_t(Y_k)) \leq \| \var{\psi} \| \| f \|_2^2 \Delta_k^* =: v \) and completes the proof. \(\square \)

Lemma A.3 There is a numerical constant \(C > 0 \) such that for every \(k,m \in \mathbb{N} \)

\[
\ee \left[\sup_{t \in B_k} |\langle t, \tilde{\Phi}_g - \Phi_g \rangle| \right] \leq C d \rho \kappa_m(\gamma, \lambda, \omega).
\]

Proof. Firstly, as \(f \in F_{\gamma}^\alpha \), it is easily seen that

\[
\ee \left[\sup_{t \in B_k} |\langle t, \tilde{\Phi}_g - \Phi_g \rangle| \right] \leq r \sup_{0 < \|\psi\| \leq k} \frac{\omega_j}{\gamma_j} \ee[|R_j|^2],
\]

where \(R_j \) is defined by

\[
R_j := \frac{[\psi]^j}{[\psi]^j} \mathbb{1}\{|[\psi]^j|^2 \geq 1/m\} - 1 \quad (A.12)
\]

In view of the definition (2.2) of \(\kappa_m \), the result follows from \(\ee[|R_j|^2] \leq C \min \left\{ 1, \frac{1}{m|\psi|^2} \right\} \), which can be realized as follows. Consider the identity

\[
\ee|R_j|^2 = \ee \left[\frac{[\psi]^j}{[\psi]^j} - 1 \right]^2 \mathbb{1}\{|[\psi]^j|^2 \geq 1/m\} + \ee \left[|[\psi]^j|^2 < 1/m \right] =: R_j^I + R_j^{II}. \quad (A.13)
\]

\[21\]
Trivially, \(R_j^{II} \leq 1. \) If \(1 \leq 4/(m \, ||\varphi||^2) \), then obviously \(R_j^{II} \leq 4 \min \left\{ 1, \frac{1}{m ||\varphi||^2} \right\} \). Otherwise, we have \(1/m < ||\varphi||^2/4 \) and hence, using Tchebychev’s inequality,

\[
R_j^{II} \leq \mathbb{P}\{||\tilde{\varphi}_j - [\varphi]_j|| > ||\varphi||_j/2\} \leq \frac{4 \, \mathbb{V} \text{ar}(\tilde{\varphi}_j)}{||\varphi||_j^2} \leq 4 \min \left\{ 1, \frac{1}{m ||\varphi||^2} \right\},
\]

where we have used that \(\mathbb{V} \text{ar}(\tilde{\varphi}_j) \leq 1/m \) for all \(j \). Now consider \(R_j^I \). We find that

\[
R_j^I = \mathbb{E}\left[\left| \frac{||\tilde{\varphi}_j - [\varphi]_j||^2}{||\varphi||^2} \right| \mathbb{1}\{||\varphi||^2 \geq 1/m\} \right] \leq m \, \mathbb{V} \text{ar}(\tilde{\varphi}_j) \leq 1. \tag{A.14}
\]

On the other hand, using that \(\mathbb{E}\{||\varphi||_j - ||\varphi||^4\} \leq c/m^2 \) for some numerical constant \(c > 0 \) (cf. Petrov (1995), Theorem 2.10), we obtain

\[
R_j^I \leq 2 \, m \mathbb{E}\left[\left| \frac{||\tilde{\varphi}_j - [\varphi]_j||^2}{||\varphi||^2} \right| \mathbb{1}\{||\varphi||^2 \geq 1/m\} \right] \leq \frac{2 \, m \mathbb{E}(||\tilde{\varphi}_j - [\varphi]_j||^2)}{||\varphi||^2} + \frac{2 \, \mathbb{V} \text{ar}(\tilde{\varphi}_j)}{||\varphi||^2} \leq \frac{2 \, c}{m} + \frac{2}{m ||\varphi||^2}.
\]

Combining with (A.14) gives \(R_j^I \leq 2(c + 1) \min \left\{ 1, \frac{1}{m ||\varphi||^2} \right\} \), which completes the proof. \(\square \)

Lemma A.4 There is a numerical constant \(C > 0 \) such that

\[
\mathbb{E}\left[\sup_{t \in B_{2N_m \land M_m}} \left| \langle t, \tilde{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega \mathbb{1}\{\Omega_q^c\} \right|^2 \right] \leq C \delta_1 (\mathbb{P}[\Omega_q^c])^{1/2}.
\]

Proof. Given with \(R_j \) from (A.12) we begin our proof observing that

\[
\mathbb{E}\left[\sup_{t \in B_{2N_m}} \left| \langle t, \tilde{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega \mathbb{1}\{\Omega_q^c\} \right|^2 \right] \leq \frac{1}{n} \sum_{0 < |j| \leq (N_m \land M_m)} \frac{\omega_j}{||\varphi||^2} \mathbb{E}\{||R_j||^2 \mathbb{1}\{\Omega_q^c\}}.
\]

and using the independence of the two samples and \(\mathbb{V} \text{ar}(\tilde{\varphi}_j) \leq n^{-1} \). Since \(d \delta_k \geq \sum_{0 < |j| \leq k} \frac{\omega_j}{||\varphi||^2} \) for all \(\varphi \in \mathcal{E}_d^d \), the Cauchy-Schwarz inequality yields

\[
\mathbb{E}\left[\sup_{t \in B_{2N_m}} \left| \langle t, \tilde{\Phi}_\nu - \tilde{\Phi}_\nu \rangle_\omega \mathbb{1}\{\Omega_q^c\} \right|^2 \right] \leq d \, (\mathbb{P}[\Omega_q^c]^{1/2}) \frac{\delta N_m}{n} \max_{0 < |j| \leq N_m} (\mathbb{E}\{||R_j||^4\})^{1/2}.
\]

Proceeding analogously to (A.13) and (A.14), there exists a numerical constant \(C \) such that \(\mathbb{E}[||R_j||^4] \leq C \). The result follows then by Definition 3.1 (ii). \(\square \)

Lemma A.5 For the event \(\Omega_q \) defined in (A.11), we have

\[
\mathbb{P}[\Omega_q^c] \leq 4m^{-6} \exp \left(-1/(72 \, d) \right).
\]
Proof. Consider the complement of Ω_q given by
\[
\Omega_q^c = \left\{ 0 < |j| \leq M_m : \left| \frac{[\varphi]_j}{[\varphi]_j} - 1 \right| > \frac{1}{2} \lor \left| [\varphi]_j \right|^2 < 1/m \right\}.
\]
It follows from Assumption 3.2 that $|[\varphi]_j|^2 \geq 2/m$ for all $0 < |j| \leq M_m$. This yields
\[
\Omega_q^c \subseteq \left\{ 0 < |j| \leq M_m : \left| \frac{[\varphi]_j}{[\varphi]_j} - 1 \right| > \frac{1}{3} \right\}.
\]
By Hoeffding’s inequality,
\[
\Pr\left(|[\varphi]_j| > 1/3\right) \leq 2 \exp\left(-\frac{m|[\varphi]_j|^2}{72}\right), \tag{A.15}
\]
which implies the result by employing the definition of M_m. \qed

Illustration: estimation of derivatives

Proof of Proposition 3.4. In the light of the proof of Proposition 2.6 we apply Theorem 3.3, where in both cases the additional conditions are easily verified and the result follows by an evaluation of the upper bound.

[os] Let $k_n^* := n^{1/(2a+2p+1)}$ and note that $k_n^* \lesssim N_n$. Thus, the upper bound is
\[
(k_n^* \land M_m)^{-2(p-s)} + m_n^{-1} \land ((p-s)/a)). \tag{A.16}
\]
We consider two cases. First, let $p-s > a$. Suppose that $n^{2(p-s)/(2p+2a+1)} = O(m_n)$. Then,
\[
\frac{k_n^*}{M_m} = n^{1/(2a+2p+1)} = n^{1/(2a+2p+1)} \frac{m_n^{1/2(p-s)} (\log m_n)^{1/2a}}{m_n^{1/2a}} = o(1).
\]
This means that $k_n^* \lesssim M_m$, so the resulting upper bound is $(k_n^*)^{-2(p-s)} + m_n^{-1} \lesssim (k_n^*)^{-2(p-s)}$. Suppose now that $m_n = o(n^{2(p-s)/(2p+2a+1)})$. If in addition $k_n^* = O(M_m)$, then the first summand in (A.16) reduces to $(k_n^*)^{-2(p-s)}$ and hence the upper bound is m_n^{-1}. On the other hand, if $M_m/k_n^* = o(1)$, then the first term is $(M_m)^{-2(p-s)} \lesssim M_m^{-2a} (\log m_n)^{-1} = m_n^{-1}$, since $p-s > a$. Combining both cases, we obtain the result in case $p-s > a$.

Now assume $p-s \leq a$. First, suppose that $k_n^* = O(M_m)$. Then, then the first summand in (A.16) reduces to $(k_n^*)^{-2(p-s)}$ and moreover $n^{2a/(2p+2a+1)} = O(m_n)$. Therefore, the upper bound is $(k_n^*)^{-2(p-s)}$. Consider now $M_m = o(k_n^*)$. Then (A.16) can be rewritten as $(M_m/\log m_n)^{(p-s)/a} + m_n^{-(p-s)/a}$ which results in the rate $(M_m/\log m_n)^{(p-s)/a}$. Combining both cases gives the result. More precisely, $m_n = o(n^{2a/(2p+2a+1)})$ implies $M_m = o(k_n^*)$. On the other hand, in case $n^{2a/(2p+2a+1)} = O(m_n)$, if $k_n^*/M_m = O(1)$, then the rate is $(k_n^*)^{-2p}$, while if $M_m/k_n^* = o(1)$, we have the rate $(m_n/\log m_n)^{-p/a}$.

[ss] Choose $k_n^* \sim (\log n)^{1/2a}(1 + o(1))$. And note that $N_n \sim (\log n)^{1/2a}(1 + o(1))$ and $M_m \sim (\log m_n)^{1/2a}(1 + o(1))$. The upper risk bound is now $(k_n^* \land M_m)^{-2p} + (\log m_n)^{p/a}$. Consider two cases. Firstly, log $n/\log m_n = O(1)$. This implies $N_n/M_m = O(1)$ and hence $k_n^*/M_m = O(1)$. This means that the upper bound is in fact $(k_n^*)^{-2p} + (\log m_n)^{p/a} \sim (\log n)^{-p/a}$. In the case $\log m_n/\log n = o(1)$, analogously, argument proves the claim, which completes the proof. \qed
A.3 Proofs of section 4

Proof of Theorem 4.3. Define \(\Delta_k^\omega := \max_{0 \leq j < k} \omega_j / ||\omega_j||^2 \), \(\tau_k^\omega := \max_{0 \leq j < k} (\omega_j)_{\vee 1} / ||\omega_j||^2 \), and \(\delta_k^\omega := 2k\Delta_k^\omega \left\{ \log(\tau_k^\omega \vee (k+2)) / \log(k+2) \right\} \). Then, it is easily seen that

\[
\delta_k^\omega \leq \delta_k d \frac{\log(3d)}{\log 3} \quad \forall \ k \geq 1.
\] (A.17)

Moreover, define the event \(\Omega_{qp} := \Omega_\omega \cap \Omega_p \) where \(\Omega_\omega \) is given in (A.11) and

\[
\Omega_p := \left\{ (\tilde{N}^l_n \wedge M^l_m) \leq (\tilde{N}^s_n \wedge \tilde{N}^s_m) \leq (N_n \wedge M_m) \right\}.
\] (A.18)

Observe that on \(\Omega_\omega \) we have \((1/2)\Delta_k^\omega \leq \tilde{\Delta}_k \leq (3/2)\Delta_k^\omega \) for all \(1 \leq k \leq M_m \) and hence \((1/2)[\Delta_k^\omega \vee (k+2)] \leq [\tilde{\Delta}_k \vee (k+2)] \leq (3/2)[\Delta_k^\omega \vee (k+2)] \), which implies

\[
(1/2)k\Delta_k^\omega \left(\frac{\log[\Delta_k^\omega \vee (k+2)]}{\log(k+2)} \right) \left(1 - \frac{\log 2}{\log(2k)} \frac{\log(k+2)}{\log(\tilde{\Delta}_k \vee [k+2])} \right)
\leq \delta_k \leq (3/2)k\Delta_k^\omega \left(\frac{\log[\Delta_k^\omega \vee (k+2)]}{\log(k+2)} \right) \left(1 + \frac{\log 2}{\log(2k)} \frac{\log(k+2)}{\log(\Delta_k^\omega \vee [k+2])} \right).
\]

Using \(\log(\Delta_k^\omega \vee (k+2))/\log(k+2) \geq 1 \), we conclude from the last estimate that

\[
\frac{\delta_k}{10} \leq (\log 3/2) / (2 \log 3) \delta_k^\omega \leq (1/2)\delta_k^\omega [1 - (\log 2)/\log(k+2)] \leq \delta_k \leq (3/2)\delta_k^\omega [1 + (\log 3/2)/\log(k+2)] \leq 3\delta_k^\omega.
\]

Letting \(\text{pen}(k) := 60\delta_k^\omega n^{-1} \) and \(\hat{\text{pen}}(k) := 600\delta_k n^{-1} \), it follows that on \(\Omega_\omega \)

\[
\text{pen}(k) \leq \hat{\text{pen}}(k) \leq 30 \cdot \text{pen}(k) \quad \forall \ 1 \leq k \leq M_m.
\]

On \(\Omega_{qp} = \Omega_\omega \cap \Omega_p \), we have \(\hat{k} \leq M_m \). Thus,

\[
\left(\text{pen}(k \vee \hat{k}) + \hat{\text{pen}}(k) - \hat{\text{pen}}(\hat{k}) \right) 1_{\{\Omega_{qp}\}} \leq \left(\text{pen}(k + \hat{k}) + \hat{\text{pen}}(k) - \hat{\text{pen}}(\hat{k}) \right) 1_{\{\Omega_{qp}\}} \leq 31 \cdot \text{pen}(k) \quad \forall \ 1 \leq k \leq M_m.
\] (A.19)

Furthermore, on \(\Omega_\omega \), we obviously have \(\tilde{\Delta}_k \leq m \) for every \(1 \leq k \leq (N_n \wedge M_m) \), which implies \(\delta_k \leq m (\log m)_{\vee 1} \) and consequently \(\hat{\text{pen}}(k) \leq 60 m (\log m)_{\vee 1} \), because \(k/n \leq 1 \). On \(\Omega_\omega \cap \Omega_p \), we have \(\hat{k} \leq N_n \) and hence

\[
(\text{pen}(k \vee \hat{k}) + \hat{\text{pen}}(k) - \hat{\text{pen}}(\hat{k}) 1_{\{\Omega_\omega \cap \Omega_p\}} \leq (\text{pen}(k + \hat{k}) + \hat{\text{pen}}(k) - \hat{\text{pen}}(\hat{k}) 1_{\{\Omega_\omega \cap \Omega_p\}} \leq (\text{pen}(k) + 60 m (\log m)_{\vee 1} 1_{\{\Omega_\omega \cap \Omega_p\}}. \] (A.20)

Now consider the decomposition

\[
\mathbb{E}\|\hat{f}_k - f\|^2 = \mathbb{E}\|\hat{f}_k - f\|^2 1_{\{\Omega_{qp}\}} + \mathbb{E}\|\hat{f}_k - f\|^2 1_{\{\Omega_\omega \cap \Omega_p\}} + \mathbb{E}\|\hat{f}_k - f\|^2 1_{\{\Omega_\omega \}.
\]
Let $\zeta_d := (\log 3d)/(\log 3)$. Below we show that there exist a numerical constant C such that for all $n, m \geq 1$ and all $1 \leq k \leq N_n^l \land M_m^l$ we have

$$
\mathbb{E}[\|\hat{f}^r_k - f\|^2_2 \mathbb{1}_{\Omega_{qp}}] \leq C \left\{ \|f - f_k\|^2_2 + \frac{d \zeta_d \delta_k}{n} + \frac{d \zeta_d \delta_1 + \Sigma(3 \zeta_d^{-1} \|\varphi\|^2 \|f\|^2)}{n} \right\} + r \kappa_m
$$

(A.21)

$$
\mathbb{E}[\|\hat{f}^r_k - f\|^2_2 \mathbb{1}_{\Omega_q^c \land \Omega_p}] \leq C \left\{ \|f - f_k\|^2_2 + \frac{d \zeta_d \delta_k}{n} + \frac{d \zeta_d \delta_1 + \Sigma(3 \zeta_d^{-1} \|\varphi\|^2 \|f\|^2)}{n} \right\} + r \kappa_m + \exp \left(-\frac{1}{72d} \right) \left(\frac{\delta_1}{m} + \frac{1}{m^3} \right),
$$

(A.22)

$$
\mathbb{E}[\|\hat{f}^r_k - f\|^2_2 \mathbb{1}_{\Omega_p^c}] \leq C \exp \left(-\frac{1}{72d} \right) \left\{ \frac{1}{m} + \frac{\|f\|^2_2}{m^2} + \frac{\|f\|^2_2}{m^4} \right\}.
$$

(A.23)

The desired upper bound follows for every $1 \leq k \leq (N_n^l \land M_m^l)$ by virtue of Definition 4.1 and Assumption 4.2.

Proof of (A.21). Following the proof in case of known degree of ill-posedness (Section A.2) line by line, it is easily seen that for $1 \leq k \leq (N_n^l \land M_m^l)$,

$$(1/2)\|\hat{f}^r_k - f\|^2_2 \mathbb{1}_{\Omega_{qp}} \leq (3/2)\|f - f_k\|^2_2 + 10 \sum_{k=1}^{N_n} \left(\sup_{t \in B_k} |\langle t, \hat{\Phi}_\nu \rangle_\omega|^2 - 6 \frac{\delta_k^2}{n} \right) +
$$

$$+ 8 \sup_{t \in B_{N_n^l \land M_m^l}} |\langle t, \hat{\Phi}_g - \tilde{\Phi}_g \rangle_\omega|^2 + \left(\text{pen}(k \lor \tilde{k}) + \tilde{\text{pen}}(k) - \text{pen}(k) \right) \mathbb{1}_{\Omega_{qp}}$$

$$\leq (3/2)\|f - f_k\|^2_2 + 10 \sum_{k=1}^{N_n} \left(\sup_{t \in B_k} |\langle t, \hat{\Phi}_\nu \rangle_\omega|^2 - 6 \frac{\delta_k^2}{n} \right) +
$$

$$+ 8 \sup_{t \in B_{N_n^l \land M_m^l}} |\langle t, \hat{\Phi}_g - \tilde{\Phi}_g \rangle_\omega|^2 + 31 \text{pen}(k),$$

where the last inequality follows from (A.19). The third term is bounded by employing Lemma A.3. In order to control the second term, apply Lemma A.2 with $\delta_k^* = \delta_k^c$ and $\Delta_k^* = \Delta_k^c$. Using (A.17), $\Delta_k^c \leq d \tau_k$, and the definition of Σ, we conclude with Assumption 3.2 that there exists a numerical constant $C > 0$ such that

$$
\sum_{k=1}^{N_n} \mathbb{E} \left(\sup_{t \in B_k} |\langle t, \hat{\Phi}_\nu \rangle_\omega|^2 - 6 \frac{\delta_k^2}{n} \right) \leq \frac{Cd \zeta_d}{n} \left\{ \delta_1 + \Sigma(3 \|\varphi\|^2 \|f\|^2 / \zeta_d) \right\}.
$$

(A.24)

Consequently, combining these estimates proves inequality (A.21).

Proof of (A.22). On $\Omega_q^c \land \Omega_p$, we have $N_n^l \land M_m^l \leq \tilde{N}_n \land \tilde{M}_m \leq N_n \land M_m$. Applying (A.20),
it follows in analogy to proof of Theorem 3.3 that for all $1 \leq k \leq N^l_m \wedge M^l_m$

$$
(1/2)\|\hat{f}_k - f\|_\omega^2 \mathbb{1}\{\Omega_q \cap \Omega_p\} \leq (3/2)\|f - f_k\|_\omega^2 + 10\sum_{k=1}^{N_n} \left(\sup_{t \in B_k} |\langle t, \tilde{\Phi}_\nu \rangle| \right)^2 + 6 \delta^2 \frac{\|f\|_\omega^2}{n} + 8 \sup_{t \in B_{N^l_m \wedge M^l_m}} |\langle t, \tilde{\Phi}_\nu - \tilde{\Phi}_\nu \rangle| \mathbb{1}\{\Omega_q \cap \Omega_p\} + 8 \sup_{t \in B_{N^l_m \wedge M^l_m}} |\langle t, \tilde{\Phi}_g - \tilde{\Phi}_g \rangle| \mathbb{1}\{\Omega_q \cap \Omega_p\}.
$$

$$
\leq (3/2)\|f - f_k\|_\omega^2 + 10\sum_{k=1}^{N_n} \left(\sup_{t \in B_k} |\langle t, \tilde{\Phi}_\nu \rangle| \right)^2 + 6 \delta^2 \frac{\|f\|_\omega^2}{n} + 8 \sup_{t \in B_{N^l_m \wedge M^l_m}} |\langle t, \tilde{\Phi}_\nu - \tilde{\Phi}_\nu \rangle| \mathbb{1}\{\Omega_q \cap \Omega_p\} + 8 \sup_{t \in B_{N^l_m \wedge M^l_m}} |\langle t, \tilde{\Phi}_g - \tilde{\Phi}_g \rangle| \mathbb{1}\{\Omega_q \cap \Omega_p\}.
$$

Due to Lemma A.3, A.4, and (A.24), there exists a numerical constant C such that

$$
\mathbb{E}\|\hat{f}_k - f\|_\omega^2 \mathbb{1}\{\Omega_q \cap \Omega_p\} \leq C \left\{ \|f - f_k\|_\omega^2 + \frac{d\zeta_n \delta_k}{n} + \frac{d\zeta_n \delta_1 + \Sigma(3 \zeta_n^{-1} \|\varphi\|_\omega^2 \|f\|_\omega^2) + r\kappa_m}{n} + 8 \delta \left(\mathbb{P}[\Omega_q^c] \right)^{1/2} + \text{pen}(k) + 60 m (\log m) \sqrt{1} \mathbb{1}\{\Omega_q \cap \Omega_p\} \right\}.
$$

Employing Lemma A.5 now proves (A.22).

Proof of (A.23). Let $\hat{f}_k := 1 + \sum_{0 < |j| \leq k} \mathbb{1}\{|\varphi_j| \geq 1/m\} c_j$. It is easy to see that $\|\hat{f}_k - f\|_\omega^2 \leq \|\hat{f}_{k'} - f\|_\omega^2$ for all $k' \leq k$ and $\|\hat{f}_k - f\|_\omega^2 \leq \|f\|_\omega^2$ for all $k \geq 1$. Thus, using that $1 \leq k \leq (N^l_m \wedge m)$, we can write

$$
\mathbb{E}\|\hat{f}_k - f\|_\omega^2 \mathbb{1}\{\Omega_q \cap \Omega_p\} \leq 2 \mathbb{E}\|\hat{f}_k - f\|_\omega^2 \mathbb{1}\{\Omega_q^c \cap \Omega_p\} + \mathbb{E}\|\hat{f}_k - f\|_\omega^2 \mathbb{1}\{\Omega_q \cap \Omega_p\}
$$

$$
\leq 2 \mathbb{E}\|\hat{f}_k(N^\omega \wedge m) - f(N^\omega \wedge m)\|_\omega^2 \mathbb{1}\{\Omega_q^c \cap \Omega_p\} + \mathbb{E}\|f\|_\omega^2 \mathbb{1}\{\Omega_q \cap \Omega_p\}
$$

Moreover, applying Theorem 2.10 in Petrov (1995) we conclude

$$
\mathbb{E}\|\hat{f}_k(N^\omega \wedge m) - f(N^\omega \wedge m)\|_\omega^2 \mathbb{1}\{\Omega_q^c \cap \Omega_p\}
$$

$$
\leq 2m \sum_{0 < |j| \leq (N^\omega \wedge m)} \omega_j \left(\mathbb{E}[|g_j - [\varphi_j] f_j|^2 \mathbb{1}\{\Omega_q^c \cap \Omega_p\} + \mathbb{E}[|\varphi_j| f_j - [\varphi_j] f_j]^2 \mathbb{1}\{\Omega_q^c \cap \Omega_p\} \right)
$$

$$
\leq 2m \left\{ \sum_{0 < |j| \leq (N^\omega \wedge m)} \omega_j \left[\mathbb{E}[|g_j - [\varphi_j] f_j|^4] \right]^{1/2} \mathbb{P}[\Omega_q^c]^{1/2} + \sum_{0 < |j| \leq (N^\omega \wedge m)} \omega_j |f_j|^2 \mathbb{E}[|\varphi_j| - [\varphi_j]|^4]^{1/2} \mathbb{P}[\Omega_q^c]^{1/2} \right\}
$$

$$
\leq 2m \left\{ \left(2m \max_{1 \leq \mu \leq N^\omega} \omega_j (cn^{-1}) + (cm^{-1}) \|f\|_\omega^2 \right) \mathbb{P}[\Omega_q^c]^{1/2},
$$

which implies, using Definition 4.1 (ii),

$$
\mathbb{E}\|\hat{f}_k - f\|_\omega^2 \mathbb{1}\{\Omega_q^c \cap \Omega_p\} \leq C \left\{ \left(m^2 + \|f\|_\omega^2 \right) \mathbb{P}[\Omega_q^c]^{1/2} + \|f\|_\omega^2 \mathbb{P}[\Omega_q^c] \right\}.
$$
Lemma A.6 below together with Definition 3.1 (ii) yields, for some numeric $C > 0$,

$$
\mathbb{E} \| \hat{f}_k - f \|_2^2 \mathbb{1} \{ \Omega_c^n \} \leq C \left\{ \frac{\sqrt{D}}{m} + \frac{\sqrt{D} \| f \|_2^2}{m^3} + \frac{D \| f \|_2^2}{m^6} \right\}
$$

with $D = \exp(-1/(72d))$, which completes the proof.

Lemma A.6 Consider the event Ω_p defined in (A.18). Then we have

$$
P(\Omega_p^n) \leq 6 m^{-6} \exp \left(-1/(72d) \right) \quad \forall \, n, m \geq 1.
$$

Proof. Let $\Omega_I := \{ (N_n^l \wedge M_n^l) > (\hat{N}_n \wedge \hat{M}_n) \}$ and $\Omega_{II} := \{ (\hat{N}_n \wedge \hat{M}_n) > (N_n \wedge M_n) \}$. Then we have $\Omega_p^n = \Omega_I \cup \Omega_{II}$. Consider $\Omega_I = \{ \hat{N}_n < (N_n^l \wedge M_n^l) \} \cup \{ \hat{M}_n < (N_n^l \wedge M_n^l) \}$ first. By definition of N_n^l, we have that $\min_{1 \leq |j| \leq N_n^l} \| \hat{\phi} \|_{|j| \wedge 1} \geq 4(\log n)/n$, which implies

$$
\{ \hat{N}_n < (N_n^l \wedge M_n^l) \} \subset \left\{ \exists 1 \leq |j| \leq (N_n^l \wedge M_n^l) : \frac{\| \hat{\phi} \|_j^2}{|j|(|\omega_j|)_1} \leq \frac{\log n}{n} \right\}
$$

$$
\subset \bigcup_{1 \leq |j| \leq N_n^l \wedge M_n^l} \left\{ \frac{\| \hat{\phi} \|_j}{|\omega_j|} \leq 1/2 \right\} \subset \bigcup_{1 \leq |j| \leq N_n^l \wedge M_n^l} \left\{ \frac{\| \hat{\phi} \|_j}{|\phi|}_j - 1 \geq 1/2 \right\}.
$$

One can see that from $\min_{1 \leq |j| \leq M_n} \| \hat{\phi} \|_j^2 \geq 4(\log m)^2/m$ it follows in the same way that

$$
\{ \hat{M}_n < (N_n^l \wedge M_n^l) \} \subset \bigcup_{1 \leq |j| \leq N_n^l \wedge M_n^l} \left\{ \frac{\| \hat{\phi} \|_j}{|\phi|}_j - 1 \geq 1/2 \right\}.
$$

Therefore, $\Omega_I \subset \bigcup_{1 \leq |j| \leq M_n} \left\{ \frac{\| \hat{\phi} \|_j}{|\phi|}_j - 1 \geq 1/2 \right\}$, since $M_n^l \leq M_n$. Hence, as in (A.15) applying Hoeffding’s inequality together with the definition of M_n gives

$$
P[\Omega_I] \leq \sum_{1 \leq |j| \leq M_n} 2 \exp \left(- \frac{m \| \hat{\phi} \|_j^2}{72} \right) \leq 4 m^{-6} \exp \left(-1/(72d) \right). \quad \text{(A.25)}
$$

Consider $\Omega_{II} = \{ \hat{N}_n > (N_n \wedge M_n) \} \cap \{ \hat{M}_n > (N_n \wedge M_n) \}$. In case $(N_n \wedge M_n) = N_n$, use $\frac{\log n}{4m} \geq \max_{|j| \geq N_n} \frac{\| \phi \|_j^2}{|j|(|\omega_j|)_1}$ due to Assumption 4.2, such that

$$
\Omega_{II} \subset \{ \hat{N}_n > N_n \} \subset \left\{ \forall 1 \leq |j| \leq N_n : \frac{\| \hat{\phi} \|_j^2}{|j|(|\omega_j|)_1} \geq \frac{\log n}{n} \right\}
$$

$$
\subset \left\{ \frac{\| \hat{\phi} \|_{N_n}}{|\phi|_{N_n}} \geq 2 \right\} \subset \left\{ \frac{\| \hat{\phi} \|_{N_n}}{|\phi|_{N_n}} - 1 \geq 1 \right\}.
$$

In case $(N_n \wedge M_n) = M_n$, it follows analogously from $\frac{(\log m)^2}{4m} \geq \max_{|j| \geq M_n} \| \phi \|_j^2$ that

$$
\Omega_{II} \subset \{ \hat{M}_n > M_n \} \subset \left\{ \frac{\| \hat{\phi} \|_{M_n}}{|\phi|_{M_n}} - 1 \geq 1 \right\}.
$$

27
Therefore, $\Omega_{II} \subset \left\{ \left| \varphi \right|_{N_n \wedge M_m} / \left| \varphi \right|_{N_n \wedge M_m} - 1 \right| \geq 1 \right\}$ and hence as in (A.15) applying Hoeffding’s inequality together with the definition of M_m gives

$$
P(\Omega_{II}) \leq 2 \exp \left(- \frac{m \left| \varphi \right|_{N_n \wedge M_m}^2}{72} \right) \leq 2 m^{-7} \exp \left(- 1/(72 d) \right).$$

(A.26)

Combining (A.25) and (A.26) implies the result. \qed

Illustration: estimation of derivatives

Proof of Proposition 4.4. We start our proof with the observation that in both cases the sequences δ, Δ, N and M are the same as in Proposition 3.4 and it is easily verified that the additional Assumption 4.2 is satisfied. Moreover in case [os] we have $N_n^l \sim (n/\log n)^{1/(2a+2p+1)}$ and $M_m^l \sim (m/\log m)^{1/(2a+2p+1)}$. Let $k_n^* := n^{1/(2a+2p+1)}$ and note that still $k_n^* \lesssim N_n^l$. In case [ss] we have $N_n^l \sim \{ \log(n/\log n)^{(2p+2a+1)/(2a)} \}^{1/(2a)} = (\log n)^{1/(2a)}(1 + o(1))$ and $M_m^l \sim \{ \log(m/\log m)^{2a} \}^{1/(2a)} = (\log m)^{1/(2a)}(1 + o(1))$. The rest of the proof in both cases is almost identical to the one of proposition 3.4 but uses N_n^l and M_m^l rather than N_n and M_m, and we omit the details. \qed

References

Recent Titles

0908. CHEN, S. X. and I. VAN KEILEGOM, A review on empirical likelihood methods for regression
0909. BÖHM, H., OMBAO, H., von SACHS, R. and J. SANES, Classification of multivariate non-stationary signals: the SLEX-shrinkage approach
0910. MOLANES LÓPEZ, E. M., CAO, R. and I. VAN KEILEGOM, Smoothed empirical likelihood confidence intervals for the relative distribution with left truncated and right censored data
0911. LAURENT, S. and C. LEGRAND, A Bayesian framework for the ratio of two Poisson rates in the context of vaccine efficacy trials
0912. HEUCHENNE, C. and I. VAN KEILEGOM, Goodness-of-fit tests for the error distribution in nonparametric regression
0913. SCHWARZ, M. and S. VAN BELLEGEM, Consistent density deconvolution under partially known error distribution
0914. LAURENT, S., On standardness and I-cosiness
0915. LAURENT, S., On Vershikian and I-cosy random variables and filtrations
0916. ROUEFF, F. and R. VON SACHS, Locally stationary long memory estimation
0917. MANNER, H. and O. REZNIKOVA, Time-varying copulas: a survey
0918. LAURENT, S., Further comments on the representation problem for stationary processes
0919. WUNSCH, G., RUSSO F. and M. MOUCHART, Do we necessarily need longitudinal data to infer causal relations?
0920. CHEN, S.X. and I. VAN KEILEGOM, Rejoinder on: a review on empirical likelihood methods for regression
0921. SCHUBERT, T. and L. SIMAR, Testing restrictions in production analysis: some new tests based on subsampling and application to the German mechanical engineering sector
0922. DAOUIA, A., FLORENS, J.-P. and L. SIMAR, Regularization of nonparametric frontier estimators
0923. GUDENDORF, G. and J. SEGERS, Nonparametric estimation of an extreme-value copula in arbitrary dimensions
0924. HUNT, J., Equivalent local martingale measures and market incompleteness in a continuous time semi-Markov regime switching model
0926. GUDENDORF, G. and J. SEGERS, Extreme-value copulas
0929. MEYER, N., LEGRAND, C., and G. GIACCONNE, Sample size in randomized clinical trials in oncology: useful basic statistical knowledge for the clinician
0930. GUILLOTTE, S., PERRON, F., and J. SEGERS, Nonparametric Bayesian inference on bivariate extremes
0931. JOHANNES, J. and M. SCHWARZ, Adaptive circular deconvolution by model selection under unknown error distribution

See also http://www.stat.ucl.ac.be/ISpub.html