ON CONCORDANCE MEASURES FOR DISCRETE DATA AND DEPENDENCE PROPERTIES OF POISSON MODEL

BOUEZMARNI, T., MESFIoui, M. and A. TAJAR

This file can be downloaded from http://www.stat.ucl.ac.be/ISpub
On Concordance Measures for Discrete Data and Dependence Properties of Poisson Model

Taoufik Bouezmarni ∗ Mhamed Mesfioui † Abdelouahid Tajar ‡

October 12, 2007

Abstract

The purpose of this paper is twofold. First, we study Kendall’s tau and Spearman’s rho concordance measures for discrete variables. We mainly propose their best bounds using positive dependence properties. Second, we provide useful dependence properties of the bivariate Poisson distribution and show the relationship between parameters of the Poisson distribution and both tau and rho.

Key words and phrases: Concordance order; Fréchet bounds; Kendall’s τ; Spearman’s ρ; Positive quadrant dependence.

The second author acknowledges the financial support of the Natural Sciences and Engineering Research Council of Canada.

∗HEC Montréal, Institute of Statistics (Université catholique de Louvain).
†Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières
‡ARC Epidemiology Unit, The University of Manchester
1 Introduction

The best known dependence property is "lack of dependence", or what is known as stochastic independence. In many application, independence between two random variables is assumed, this can be a strong assumption in the undertaken analysis. Taking into account the dependence structure between the variables lead to appropriate modeling approaches and correct conclusions. To study stochastic dependence, concordance concept and positive dependence are well used tools. This is because many dependence properties can be described by means of the joint distribution of the variables and these measures and properties are often margins free. In this paper we study two concordance measures Kendall’s tau (Kruskal, 1958) and Spearman’s rho (Lehmann, 1969). These measures have several properties known as Rényi’s axioms, for more details see Rényi (1959). Among these axioms, we focus on the range of the association measure.

Many research has been concerned with the study of tau and rho in the case of continuous variables. Schweizer and Wolff (1981), in one seminal paper, show that the study of concordance measures for continuous random variables can be characterized as the study of copulas (Nelsen 1999). However, for non continuous variables, this interrelationship generally does not hold. There are few papers concerning the discrete version of Kendall’s tau and Spearman’s rho. Conti (1993) gives definitions of two approaches of indifference and links them to concordance and discordance properties of the data. Tajar et al. (2001) propose a copula-type representation for random couples with binary margins. They show that appropriate measures of association for binary random variables do not depend on the marginal distribution of the variables under study. Mesfioui and Tajar (2005) and Denuit and Lambert (2005) have shown independently that the range of tau and rho in the discrete case is not the unit interval as in the continuous case. Neslehova (2006) considers an alternative transformation of an arbitrary random variable to a uniform distribution variable in order to study the rank measures for non continuous random variables.

In this paper, we focus on the range of the concordance measures. Aside from identifying the best bounds of tau and rho in the case of discrete random variables, we present some dependence properties of the bivariate Poisson model and discuss their relationship with the concordance measures tau and rho. The paper is organized as follows. The next section provides a method of constructing the ranges of tau and rho for discrete data. Section 3, develops explicit expressions for the best bounds of tau and rho in the discrete Fréchet space with the same marginal. Section 4, discuss some dependence properties of the bivariate Poisson model.
2 Definitions and properties

Following Hoeffding (1948) and Kruskal (1958) and Lehman (1966), Schweizer and Wolff (1981) express Kendall’s tau and Spearman’s rho for continuous random vector \((X, Y)\) in terms of the joint distribution \(H(x, y)\) of \((X, Y)\) and the margins \(F(x)\) for \(X\) and \(G(y)\) for \(Y\). A general representation for each of \(\tau\) and \(\rho\) has been first proposed by Kowalczyk and Niewiadomska-Bugaj (1998); namely

\[
\tau = E_H[H(X, Y)] + E_H[H(X^-, Y^-)] + E_H[H(X^-, Y)] + E_H[H(X, Y^-)] - 1, \tag{2.1}
\]

and

\[
\rho = 3 \left\{ E_\Pi[H(X^-, Y)] + E_\Pi[H(X, Y^-)] + E_\Pi[H(X^-, Y^-)] + E_\Pi[H(X, Y)] - 1 \right\}, \tag{2.2}
\]

where \(H(x^-, y^-) = P[X < x, Y < y]\).

Several results in this paper are based on the monotonicity property of Kendall’s \(\tau\) and Spearman’s \(\rho\). This property has first been proposed for continuous variables by Yanagimoto and Okamoto (1969) (see also Joe (1997)). Tchen (1980) obtained similar monotonicity property for \(\tau\) and \(\rho\) when the supports of the joint distributions consist in a finite number of atoms. Mesfioui and Tajar (2005) extend various dependence relationships between Kendall’s \(\tau\) and Sperrman’s \(\rho\) in Capéra and Genest (1993) and Nelsen (1999), to the discrete case. One key result of their paper is the generalization to any kind of random variables for continuous and/or discrete variables.

For the remainder of the paper, We recall the property of concordance orderings, defined as follows:

Let \((X_1, Y_1)\) and \((X_2, Y_2)\) be a random vectors with identical marginal and respective cdf \(H_1\) and \(H_2\). The random couple \((X_2, Y_2)\) is said to be more concordant than \((X_1, Y_1)\), denoted as \((X_1, Y_1) \preceq_c (X_2, Y_2)\), if \(H_1(x_1, x_2) \leq H_2(x_1, x_2)\) holds for all \(x_1, x_2 \in \mathbb{R}\).

In the following proposition, we propose an alternative proof of the monotonicity property.

Proposition 1. Let \((X_1, Y_1)\) and \((X_2, Y_2)\) be two random couples with respective distribution function \(H_1\) and \(H_2\) in \(\Gamma(F, G)\), the Fréchet space of all distribution functions with fixed marginal \(F\) and \(G\). Then,

\[
(X_1, Y_1) \preceq_c (X_2, Y_2) \Rightarrow \tau_{H_1} \leq \tau_{H_2}, \tag{2.3}
\]

and

\[
(X_1, Y_1) \preceq_c (X_2, Y_2) \Rightarrow \rho_{H_1} \leq \rho_{H_2}. \tag{2.4}
\]
Proof. Using Fubini’s theorem, we note that

\[
\begin{align*}
E_{H_1} [H_2(X,Y)] &= E_{H_2} [\bar{H}_1(X^-,Y^-)], \\
E_{H_1} [H_2(X^-,Y^)] &= E_{H_2} [H_1(X,Y^)], \\
E_{H_1} [H_2(X,Y^-)] &= E_{H_2} [H_1(X^-,Y)], \\
E_{H_1} [H_2(X^-,Y^-)] &= E_{H_2} [\bar{H}_1(X,Y)].
\end{align*}
\]

where \(\bar{H}_i\) denotes the survival functions associated to \(H_i, i = 1, 2\).

Now without loss of generality if we assume that \(H_1 \leq H_2\), which is equivalent to \(\bar{H}_1 \leq \bar{H}_2\). We then get

\[
\begin{align*}
E_{H_1} [H_1(X,Y)] &\leq E_{H_1} [H_2(X,Y)] \\
&= E_{H_2} [\bar{H}_1(X^-,Y^-)] \\
&\leq E_{H_2} [\bar{H}_2(X^-,Y^-)] \\
&= E_{H_2} [H_2(X,Y)].
\end{align*}
\]

Similarly, we obtain

\[
\begin{align*}
E_{H_1} [H_1(X^-,Y)] &\leq E_{H_2} [H_2(X^-,Y^)] \\
E_{H_1} [H_1(X,Y^-)] &\leq E_{H_2} [H_2(X,Y^-)] \\
E_{H_1} [H_1(X^-,Y^-)] &\leq E_{H_2} [H_2(X^-,Y^-)].
\end{align*}
\]

Combining the later inequalities with (2.1), we then obtain (2.3). It’s easy seen that (2.4) is immediate from (2.2).

Proposition (1) and the Fréchet bounds allow to construct optimal bounds for \(\tau\) and \(\rho\) as stated in the following corollary.

Corollary 1. Let \((X,Y)\) be a random couple with distribution function \(H\) in \(\Gamma(F,G)\). Then,

\[
\tau_{\min} \leq \tau_H \leq \tau_{\max}
\]

and

\[
\rho_{\min} \leq \tau_H \leq \rho_{\max}
\]

where \(\tau_{\min}, \rho_{\min}\) and \(\tau_{\max}, \rho_{\max}\) denote the values of Kendall’s \(\tau\) and Spearman’s \(\rho\) corresponding to the Fréchet lower and upper bounds in \(\Gamma(F,G)\), respectively.
As stated earlier, the main objective in this paper is to examine the bounds of τ and ρ in the Fréchet space $\Gamma(F,G)$ when F and G are discrete. To do that, let (X,Y) be a discrete random couple with cdf $H \in \Gamma(F,G)$. Since Kendall’s τ and Spearman’s ρ are scale invariants they remain unchanged under strictly increasing transformations of the marginal distributions. We can then suppose, without any loss of generality, that X and Y are valued in \mathbb{Z}, the set of all integers. Therefore, we can see from (2.1) and (2.2) that τ and ρ can be written as

$$\tau = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} T_{ij} S_{ij} - 1 \quad (2.5)$$

$$\rho = 3 \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} T_{ij} [F(i) - F(i-1)] [G(j) - G(j-1)] - 3 \quad (2.6)$$

where

$$T_{ij} = H(i,j) + H(i-1,j-1) + H(i,j-1) + H(i-1,j) \quad (2.7)$$

$$S_{ij} = H(i,j) - H(i,j-1) - H(i-1,j) + H(i-1,j-1). \quad (2.8)$$

In order to obtain the best bounds τ_{\min}, ρ_{\min} and τ_{\max}, ρ_{\max}, respectively the minimum and maximum values corresponding to lower and upper bound of τ and ρ, we replace H in (2.5) and (2.6) by the Fréchet bounds $H_{\min}(i,j) = \max[F(i) + G(j) - 1, 0]$ and $H_{\max}(i,j) = \min[F(i), G(j)]$, respectively.

For discrete data, the ranges of τ and ρ are different from the usual unit interval $[-1, 1]$. This is a violation of the monotone dependence properties of concordance measures, as stated in Nelsen (1999)). To correct this problem, we propose the corrections.

$$\tau_c = \begin{cases} \frac{\tau}{\tau_{\max}} & \text{if } \tau \geq 0, \\ -\frac{\tau}{\tau_{\min}} & \text{if } \tau < 0 \end{cases} \quad (2.9)$$

and

$$\rho_c = \begin{cases} \frac{\rho}{\rho_{\max}} & \text{if } \rho \geq 0, \\ -\frac{\rho}{\rho_{\min}} & \text{if } \rho < 0. \end{cases} \quad (2.10)$$

The main importance of these corrections is that they allow to interpret the levels of the new measures, τ_c and ρ_c, as percentages. Illustrations of these transformations are proposed in Section 4 with the bivariate Poisson distribution.
3 Explicit bounds of discrete τ and ρ in $\Gamma(F, F)$

The aim of this section is to study the effect of the marginal distributions on the range of τ and ρ for discrete data. Considering the problem in $\Gamma(F, G)$ requires several assumptions on F and G. We will then concentrate on the ranges of τ and ρ in $\Gamma(F, F)$, where F is a discrete distribution function.

The next proposition presents optimal bounds of Spearman’s ρ.

Proposition 2. The best bounds for ρ, in the space, $\Gamma(F, F)$ are given by

$$
\rho_{\text{max}} = 3E \left[1 - F^2(X) - F^2(X - 1) \right]
$$

and

$$
\rho_{\text{min}} = 3E[\psi(X) + \psi(X - 1) - 1],
$$

where

$$
\psi(i) = \sum_{j=\phi(i)}^{\infty} [F(i) + F(j) - 1] [F(j + 1) - F(j - 1)].
$$

Proof. Let $H(i, j) = \min[F(i), F(j)]$. From (2.7), we observe that

$$
T_{ij} = [F(i) + 3F(i - 1)] \mathbb{1}_{[i=j]} + 2[F(i) + F(i - 1)] \mathbb{1}_{[i<j]} + 2[F(j) + F(j - 1)] \mathbb{1}_{[i>j]},
$$

and writing $F(i) - F(i - 1) = p_i$, we get from (2.6) that

$$
\rho_{\text{max}} = 3 \sum_{i=-\infty}^{\infty} [F(i) + 3F(i - 1)] [F(i) - F(i - 1)] p_i
+ 6 \sum_{i=-\infty}^{\infty} [F(i) + F(i - 1)] p_i \sum_{j=i+1}^{\infty} [F(j) - F(j - 1)]
+ 6 \sum_{i=-\infty}^{\infty} p_i \sum_{j=-\infty}^{i-1} [F(j) - F(j - 1)] [F(j) + F(j - 1)] - 3,
$$

which may be simplified as

$$
\rho_{\text{max}} = 3E \{[F(X) + 3F(X - 1)] [F(X) - F(X - 1)]\}
+ 6E \{[F(X) + F(X - 1)] [1 - F(X)]\}
+ 6E \left[F^2(X - 1) \right] - 3.
$$
The result then follows from the fact that $E[F(X) + F(X - 1)] = 1$. Now, choose $H(i, j) = \sup [F(i) + F(j) - 1, 0]$ and put $H^+(i, j) = F(i) + F(j) - 1$. From (2.6), we see that

$$\rho_{\text{min}} = 3 \sum_{i=-\infty}^{\infty} \sum_{j=\phi(i)}^{\infty} H^+(i, j)p_i p_j + 3 \sum_{i=-\infty}^{\infty} \sum_{j=\phi(i)}^{\infty} H^+(i, j)p_{i+1} p_{j+1}$$

$$+ 3 \sum_{i=-\infty}^{\infty} \sum_{j=\phi(i)}^{\infty} H^+(i, j)p_i p_{j+1} + 3 \sum_{i=-\infty}^{\infty} \sum_{j=\phi(i)}^{\infty} H^+(i, j)p_{i+1} p_j - 3.$$

It follows that

$$\rho_{\text{min}} = 3 \sum_{i=-\infty}^{\infty} (p_i + p_{i+1}) \sum_{j=\phi(i)}^{\infty} [F(i) + F(j) - 1] (p_j + p_{j+1}) - 3 \quad (3.4)$$

which may be rewritten as

$$\rho_{\text{min}} = 3 \sum_{i=-\infty}^{\infty} \psi(i) \psi(i - 1) - 1 p_i \quad (3.5)$$

where,

$$\psi(i) = \sum_{j=\phi(i)}^{\infty} [F(i) + F(j) - 1] [F(j + 1) - F(j - 1)]. \quad (3.6)$$

The result is therefore obtained from (3.6) and (3.5). \[\square \]

Using (2.5) with $H(i, j) = \min[F(i), F(j)]$, we notice that the upper bound of Kendall’s τ in the space $\Gamma(F, F)$ can be expressed as

$$\tau_{\text{max}} = 2E[F(X - 1)]. \quad (3.7)$$

Note that (3.7) is equivalent to (15) in Denuit and Lambert (2005) coincides with (3.7) in $\Gamma(F, F)$.

The following proposition gives an explicit form of Kendall’s tau lower bound in $\Gamma(F, F)$.

Proposition 3. The best lower bounds of τ in $\Gamma(F, F)$ is

$$\tau_{\text{min}} = 2E[F(\phi(X - 1))] - 2 \sum_{k=-\infty}^{\infty} \xi(k) - 2, \quad (3.8)$$

where

$$\phi(i) = \min \{j \in \mathbb{Z} : F(i) + F(j) > 1\}, \quad i \in \mathbb{Z},$$

and

$$\xi(k) = [F(k - 1) + F(\phi(k - 1)) - 1] [F(k) + F(\phi(k - 1) - 1) - 1] \mathbb{I}_{\phi(k) < \phi(k - 1)}.$$
Proof. From (2.7) and (2.8), we observe that
\[
S_{ij}T_{ij} = H^2(i, j) + H^2(i - 1, j - 1) - H^2(i - 1, j) - H^2(i, j - 1)
+ 2H(i, j)H(i - 1, j - 1) - 2H(i - 1, j)H(i, j - 1)
\]
and
\[
\sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} [H^2(i, j) + H^2(i - 1, j - 1) - H^2(i - 1, j) - H^2(i, j - 1)] = 1.
\]
Consider now \(H(i, j) = \sup [F(i) + F(j) - 1, 0] \) and write \(H^+(i, j) = F(i) + F(j) - 1 \). From (2.5), we get
\[
\tau_{\min} = 2 \sum_{i=-\infty}^{\infty} \sum_{j=\phi(i-1)+1}^{\infty} H^+(i, j)H^+(i - 1, j - 1)
- 2 \sum_{i=-\infty}^{\infty} \sum_{j=\max[\phi(i-1), \phi(i)+1]}^{\infty} H^+(i - 1, j)H^+(i, j - 1).
\]
Using the fact that
\[
H^+(i, j)H^+(i - 1, j - 1) - H^+(i - 1, j)H^+(i, j - 1) = -p_ip_j,
\]
we have,
\[
\tau_{\min} = -2 \sum_{i=-\infty}^{\infty} p_i \left[\sum_{j=\phi(i-1)+1}^{\infty} p_j \right] \mathbb{I}_{[\phi(i)=\phi(i-1)]} - 2 \sum_{i=-\infty}^{\infty} p_i \left[\sum_{j=\phi(i-1)+1}^{\infty} p_j \right] \mathbb{I}_{[\phi(i)<\phi(i-1)]}
- 2 \sum_{i=-\infty}^{\infty} [F(i - 1) + F(\phi(i - 1)) - 1] [F(i) + F(\phi(i - 1) - 1) - 1] \mathbb{I}_{[\phi(i)<\phi(i-1)]},
\]
which is equivalent to
\[
\tau_{\min} = -2 \sum_{i=-\infty}^{\infty} p_i [1 - F(\phi(i - 1))] - 2 \sum_{i=-\infty}^{\infty} r(i),
\]
with,
\[
r(i) = [F(i - 1) + F(\phi(i - 1)) - 1] [F(i) + F(\phi(i - 1) - 1) - 1] \mathbb{I}_{[\phi(i)<\phi(i-1)]},
\]
which completes the proof. \(\square \)

In the above results are illustrated in the following example using the uniform discrete variables.

Example 2. Let \(X_n \) be a uniform discrete random variable with \(n \) atoms and cdf \(F_n \). In the Fréchet space \(\Gamma(F_n, F_n) \), we obtain that \(F_n(i) = i/n, \phi(i) = n - i + 1, \xi(i) = 1/n^2, \psi(i) = i^2/n^2 \),
\[
E(X_n) = \frac{(n + 1)}{2}, \quad E(X_n^2) = \frac{(n + 1)(2n + 1)}{6}, \quad E[(X_n - 1)^2] = \frac{(n - 1)(2n - 1)}{6},
\]
\[E[\psi(X_n)] = \frac{(n+1)(2n+1)}{6n^2} \quad \text{and} \quad E[\psi(X_n - 1)] = \frac{(n-1)(2n-1)}{6n^2}. \]

Therefore, proposition 2 and proposition 3 together with (3.7) imply

\[[\tau_{\min}, \tau_{\max}] = \left[-\frac{n-1}{n}, \frac{n-1}{n} \right] \quad \text{and} \quad [\rho_{\min}, \rho_{\max}] = \left[-\frac{n^2-1}{n^2}, \frac{n^2-1}{n^2} \right]. \]

Remark 1. Let \(F_{n,p} \) be a binomial distribution with parameters \(n \) and \(p \), and denote the extreme values of \(\tau \) and \(\rho \) in \(\Gamma(F_{n,p}, F_{n,p}) \) by \(\tau_{\max}(n,p) \) and \(\rho_{\max}(n,p) \). One can show the following symmetry properties, namely:

\[\tau_{\max}(n,p) = \tau_{\max}(n, 1 - p) \quad \text{and} \quad \rho_{\max}(n,p) = \rho_{\max}(n, 1 - p). \]

Indeed, since \(F_{n,p}(k) = F_{n,1-p}(n - k) \), then from (3.7), we have

\[
\tau_{\max}(n,p) = 2 \sum_{k=0}^{n} F_{n,p}(k-1) [F_{n,p}(k) - F_{n,p}(k-1)]
\]
\[
= 2 \sum_{k=0}^{n} F_{n,1-p}(k-1) [F_{n,1-p}(k) - F_{n,1-p}(k-1)]
\]
\[
= \tau_{\max}(n, 1 - p).
\]

Similar arguments provide \(\rho_{\max}(n,p) = \rho_{\max}(n, 1 - p) \).

4 Understanding dependence structure of the bivariate Poisson distribution

Our purpose in this section is to study dependence properties of the bivariate Poisson distribution \(H \) of a random couple \((X, Y)\) and the relationship between \(\tau \) and \(\rho \) and the parameters of \(H \). Several bivariate Poisson distributions have been proposed in the statistical literature, for example, Kocherlakota and Kocherlakota (1992). In applied statistics, however, the focus is on the trivariate reduction method described by Johnson et al. (1997) who construct the Bivariate Poisson distribution using three independent random variables \(X_1, X_2 \) and \(Z \) all distributed as Poisson with parameters \(\lambda_1, \lambda_2 \) and \(\alpha \), respectively

\[X = X_1 + Z \quad \text{and} \quad Y = X_2 + Z. \]

The cumulative distribution of \((X, Y)\) is given by

\[
H_{\alpha, \lambda_1, \lambda_2}(i, j) = \sum_{k=0}^{i\wedge j} F_{\lambda_1}(i - k) F_{\lambda_2}(j - k) \frac{e^{-\alpha} \alpha^k}{k!} \quad (4.1)
\]
where F_{λ_i} denotes the cdf of X_i, $i = 1, 2$. We notice that X and Y are Poisson model with means $\lambda_1 + \alpha$ and $\lambda_2 + \alpha$, respectively. Note that the covariance and the correlation between X and Y are expressed by

\[
\text{cov}(X,Y) = \alpha \quad \text{and} \quad \text{corr}(X,Y) = \frac{\alpha}{\sqrt{(\lambda_1 + \alpha)(\lambda_2 + \alpha)}}
\]

which are positive and non-decreasing functions of α.

The next result shows the effect of the parameters λ_1, λ_2 and α on the cdf and the survival function of the bivariate Poisson model.

Proposition 4. Let (X,Y) be a bivariate Poisson random vector with cdf and survival function $H_{\alpha,\lambda_1,\lambda_2}(i,j)$ and $\bar{H}_{\alpha,\lambda_1,\lambda_2}(i,j)$, respectively,

1. For fixed λ_1 and λ_2, we have

\[
\alpha_1 \leq \alpha_2 \Rightarrow H_{\alpha_1,\lambda_1,\lambda_2}(i,j) \geq H_{\alpha_2,\lambda_1,\lambda_2}(i,j) \quad (4.2)
\]

and

\[
\alpha_1 \leq \alpha_2 \Rightarrow \bar{H}_{\alpha_1,\lambda_1,\lambda_2}(i,j) \leq \bar{H}_{\alpha_2,\lambda_1,\lambda_2}(i,j). \quad (4.3)
\]

2. For fixed α, we have

\[
\lambda_1 \leq \hat{\lambda}_1 \quad \text{or} \quad \lambda_2 \leq \hat{\lambda}_2 \Rightarrow H_{\alpha,\lambda_1,\lambda_2}(i,j) \geq H_{\alpha,\hat{\lambda}_1,\hat{\lambda}_2}(i,j) \quad (4.4)
\]

and

\[
\lambda_1 \leq \hat{\lambda}_1 \quad \text{or} \quad \lambda_2 \leq \hat{\lambda}_2 \Rightarrow \bar{H}_{\alpha,\lambda_1,\lambda_2}(i,j) \leq \bar{H}_{\alpha,\hat{\lambda}_1,\hat{\lambda}_2}(i,j). \quad (4.5)
\]

Proof. Let $H(i,j) = F_{\lambda_1}(i)F_{\lambda_2}(j)$ be a cdf of the vector (X,Y). We have

\[
\frac{\partial H_{\alpha,\lambda_1,\lambda_2}(i,j)}{\partial \alpha} = \sum_{k=1}^{i+j} H(i-k,j-k) \left[\frac{\alpha^{k-1} e^{-\alpha}}{(k-1)!} - \frac{\alpha^k e^{-\alpha}}{k!} \right]
\]

which may be rewritten as

\[
\frac{\partial H_{\alpha,\lambda_1,\lambda_2}(i,j)}{\partial \alpha} = \sum_{k=0}^{i+j} \frac{\alpha^k e^{-\alpha}}{k!} [H(i-k-1,j-k-1) - H(i-k,j-k)]
\]

\[
= H_{\alpha,\lambda_1,\lambda_2}(i-1,j-1) - H_{\alpha,\lambda_1,\lambda_2}(i,j) \leq 0
\]

so that (4.2) is true. Similar arguments provide

\[
\frac{\partial \bar{H}_{\alpha}(i,j)}{\partial \alpha} = \bar{H}_{\alpha,\lambda_1,\lambda_2}(i-1,j-1) - \bar{H}_{\alpha,\lambda_1,\lambda_2}(i,j) \geq 0
\]
so that, (4.3) is verified as well. To show (4.4) and (4.5), it is sufficient to note that
\[
\frac{\partial H_{\alpha,\lambda_1,\lambda_2}(i,j)}{\partial \lambda_1} = - \sum_{k=0}^{i\wedge j} \frac{\lambda_1^{i-k} e^{-\lambda_1}}{(i-k)!} F_{\lambda_2}(j-k) \frac{\alpha^k e^{-\alpha}}{k!}
\]
\[
= H_{\alpha,\lambda_1,\lambda_2}(i-1,j) - H_{\alpha,\lambda_1,\lambda_2}(i,j) \leq 0
\]
and
\[
\frac{\partial \bar{H}_{\alpha,\lambda_1,\lambda_2}(i,j)}{\partial \lambda_1} = \bar{H}_{\alpha,\lambda_1,\lambda_2}(i-1,j) - \bar{H}_{\alpha,\lambda_1,\lambda_2}(i,j) \geq 0.
\]

Remark 2. Let \(\tau_{\alpha,\lambda_1,\lambda_2}\) and \(\rho_{\alpha,\lambda_1,\lambda_2}\) be Kendall’s tau and Spearman’s rho associated with the cdf \(H_{\alpha,\lambda_1,\lambda_2}\). Note that we can not conclude from (4.2) and proposition 1 that \(\tau_{\alpha,\lambda_1,\lambda_2}\) and \(\rho_{\alpha,\lambda_1,\lambda_2}\) are decreasing functions of \(\alpha\), because \(H_{\alpha_1,\lambda_1,\lambda_2}(i,j)\) and \(H_{\alpha_2,\lambda_1,\lambda_2}(i,j)\) don’t have the same marginals when \(\alpha_1 \neq \alpha_2\). However, numerical calculations show that these parameters are rather non-decreasing functions of \(\alpha\).

To study further the relationships between \(\alpha\) and each of \(\tau\) and \(\rho\) for the bivariate Poisson model, we propose an alternative parametrization which consist to fix the marginal parameters \(\alpha + \lambda_1 = m_1\) and \(\alpha + \lambda_2 = m_2\). In this context, the cdf (4.1) becomes
\[
H_{\alpha}(i,j) = \sum_{k=0}^{i\wedge j} F_{m_1-\alpha}(i-k) F_{m_2-\alpha}(j-k) \frac{\alpha^k e^{-\alpha}}{k!}.
\]
(4.6)

As a consequence of the above representation, we can see \(\{H_{\alpha}\}\) as a family of bivariate Poisson models with fixed marginals which are univariate Poisson models with parameters \(m_1\) and \(m_2\), respectively. This means that the set \(\{H_{\alpha}\}\), \(0 \leq \alpha \leq m_1 \wedge m_2\) is included in the particular Fréchet space \(\Gamma(F_{m_1},F_{m_2})\), where \(F_{m_i}\) denotes the cdf of a Poisson model with mean \(m_i\), \(i = 1, 2\). The advantage of the parametrization (4.6) rather than (4.1), is that the coefficient \(\alpha\) may be interpreted as a dependence parameter in the family \(\{H_{\alpha}\}\).

Now, let \(\tau_{\alpha}\) and \(\rho_{\alpha}\) be Kendall’s \(\tau\) and Spearman’s \(\rho\) associated with the distribution \(H_{\alpha}\). The result below provides the monotonicity of \(\tau_{\alpha}\) and \(\rho_{\alpha}\) as functions of \(\alpha\).

Proposition 5. Let \(H_{\alpha_1}\) and \(H_{\alpha_2}\) be two cdf of the set \(\{H_{\alpha}\}\). Then,
\[
\alpha_1 \leq \alpha_2 \Rightarrow H_{\alpha_1} \leq H_{\alpha_2}
\]
and consequently,
\[
\alpha_1 \leq \alpha_2 \Rightarrow \tau_{\alpha_1} \leq \tau_{\alpha_2} \text{ and } \rho_{\alpha_1} \leq \rho_{\alpha_2}.
\]
Proof. From (4.6),
\[
\frac{\partial H_\alpha(i, j)}{\partial \alpha} = \sum_{k=0}^{i \land j} \partial F_{m_1 - \alpha}(i - k) \frac{F_{m_2 - \alpha}(j - k) \alpha^k e^{-\alpha}}{k!} + \sum_{k=0}^{i \land j} F_{m_1 - \alpha}(i - k) \partial F_{m_2 - \alpha}(j - k) \frac{\alpha^k e^{-\alpha}}{k!} + \sum_{k=0}^{i \land j} F_{m_1 - \alpha}(i - k) F_{m_2 - \alpha}(j - k) \left[\frac{\alpha^{k-1} e^{-\alpha}}{(k-1)!} - \frac{\alpha^{k} e^{-\alpha}}{k!} \right],
\]
and using the fact that
\[
\frac{\partial F_{m_1 - \alpha}(i - k)}{\partial \alpha} = F_{m_1 - \alpha}(i - k) - F_{m_1 - \alpha}(i - k - 1)
\]
and
\[
\frac{\partial F_{m_2 - \alpha}(j - k)}{\partial \alpha} = F_{m_2 - \alpha}(j - k) - F_{m_2 - \alpha}(j - k - 1),
\]
(4.9) becomes, upon simplifications,
\[
\frac{\partial H_\alpha(i, j)}{\partial \alpha} = \sum_{k=0}^{i \land j} \frac{(m_1 - \alpha)^{i-k} e^{-(m_1 - \alpha)} (m_2 - \alpha)^{j-k} e^{-(m_2 - \alpha)}}{(i-k)! (j-k)!} \frac{\alpha^k e^{-\alpha}}{k!} \geq 0.
\]
Therefore (4.10) together with proposition 1 provide (4.7) and (4.8).

Many statistical research have focused on studying concepts of positive dependence for bivariate distributions, example right tail increasing and positive quadrant dependence which are widely used in actuarial literature (Dhaene and Govaerts (1996). There are natural relationships between dependence properties and measures of concordance. An interesting property of positive dependence is the concept of positive quadrant dependence (PQD) defined as follows: let \((X,Y)\) be a random couple valued in \(\mathbb{R} \times \mathbb{R}\) with joint \(cdf \ H\), and marginals \(F\) and \(G\). These random variables are said to be positively quadrant dependent if, and only if, for all \((x,y)\) \(\in \mathbb{R}^2\)
\[
H(x,y) \geq F(x)G(y).
\]
The following corollary is a direct consequence of the previous result.

Corollary 3. The family \(\{H_\alpha\}\) is positively quadrant dependent.

Proof. Since \(H_\alpha\) is a non-decreasing function of \(\alpha\), then \(H_0 \leq H_\alpha\) for all \(0 \leq \alpha \leq m_1 \land m_2\). Now, from (4.6), \(H_0(i, j) = F_{m_1}(i)F_{m_2}(j)\) for all \(i, j\). Therefore the family \(\{H_\alpha\}\) is PQD. Consequently, \(\tau_\alpha \geq 0, \rho_\alpha \geq 0\) and \(3\tau_\alpha \geq \rho_\alpha\) for all \(0 \leq \alpha \leq m_1 \land m_2\).
Remark 3. When $m_1 = m_2 = m$, the upper bound of the family $\{H_\alpha\}$ is given by the cdf H_m, and using (4.6), we then obtain that $H_m(i, j) = F_m(i \wedge j) = \min[F_m(i), F_m(j)]$, for all i, j, which is the upper Fréchet bound.

In order to appreciate the corrections of τ and ρ given by (2.9) and (2.10), we consider the family of Poisson model $\{H_\alpha\}$ with marginal parameters $m_1 = m_2 = 2$. Using (3.1) and (3.7) with F_m instead of F, we obtain that $\rho_{\text{max}} = 0.951$ and $\tau_{\text{max}} = 0.792$. The table below provides τ_α and ρ_α with their corrections $\tau_{\alpha,c}$ and $\rho_{\alpha,c}$ for chosen values of α.

<table>
<thead>
<tr>
<th>α</th>
<th>τ_α</th>
<th>$\tau_{\alpha,c}$</th>
<th>ρ_α</th>
<th>$\rho_{\alpha,c}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.059</td>
<td>0.075</td>
<td>0.089</td>
<td>0.094</td>
</tr>
<tr>
<td>0.4</td>
<td>0.120</td>
<td>0.152</td>
<td>0.180</td>
<td>0.189</td>
</tr>
<tr>
<td>0.6</td>
<td>0.183</td>
<td>0.231</td>
<td>0.272</td>
<td>0.286</td>
</tr>
<tr>
<td>0.8</td>
<td>0.248</td>
<td>0.313</td>
<td>0.365</td>
<td>0.383</td>
</tr>
<tr>
<td>1.0</td>
<td>0.316</td>
<td>0.398</td>
<td>0.459</td>
<td>0.482</td>
</tr>
<tr>
<td>1.2</td>
<td>0.388</td>
<td>0.490</td>
<td>0.554</td>
<td>0.582</td>
</tr>
<tr>
<td>1.4</td>
<td>0.467</td>
<td>0.589</td>
<td>0.651</td>
<td>0.684</td>
</tr>
<tr>
<td>1.6</td>
<td>0.556</td>
<td>0.701</td>
<td>0.749</td>
<td>0.787</td>
</tr>
<tr>
<td>1.8</td>
<td>0.660</td>
<td>0.832</td>
<td>0.849</td>
<td>0.892</td>
</tr>
</tbody>
</table>

Table 4.1: τ_α, ρ_α, $\tau_{\alpha,c}$ and $\rho_{\alpha,c}$ for the Poisson model.

From table (4.1), we note that the differences $D_{\tau,\alpha} = \tau_{\alpha,c} - \tau_\alpha$ and $D_{\rho,\alpha} = \rho_{\alpha,c} - \rho_\alpha$ are increasing as function of the dependence parameter α. This constatation is true in general because $D_{\tau,\alpha}$ and $D_{\rho,\alpha}$ can be expressed as

$$D_{\tau,\alpha} = \frac{(1 - \tau_{\text{max}})\tau_\alpha}{\tau_{\text{max}}} \quad \text{and} \quad D_{\rho,\alpha} = \frac{(1 - \rho_{\text{max}})\rho_\alpha}{\rho_{\text{max}}},$$

which shows that these parameters are in fact increasing with α.

13
References

