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Householder Symposium XIX on Numerical Linear Algebra,
June 8-13, 2014 Spa, Belgium

Householder Symposium XIX on Numerical Linear Algebra is the nineteenth in a series, previ-
ously called the Gatlinburg Symposia. The series of conferences is named after its founder Alston
S. Householder, one of the pioneers in numerical linear algebra.1 The 2014 symposium is organized
in Belgium by the catholic university of Louvain-la-Neuve in collaboration with the Katholieke
Universiteit Leuven and the Université de Namur, and sponsored by Mathworks, NAG, FNRS,
NSF, ILAS, SIAM and the IAP network DYSCO.
The Householder Symposia originated in a series of meetings organized by Alston Householder,
Director of the Mathematics Division of Oak Ridge National Laboratory and Ford Professor at
the University of Tennessee. These international meetings were devoted to matrix computations
and linear algebra and were held in Gatlinburg, Tennessee. They had a profound influence on
the subject. The last “Gatlinburg” conference held at Gatlinburg was in 1969 on the occasion
of Householder’s retirement. At the time, it was decided to continue the meetings but vary the
place. Since then meetings have been held at three-year intervals in a variety of venues and the
series has been renamed in honor of Alston Householder. Table 1 contains a complete list of the
previous symposia. It has become a tradition to select locations which are relatively remote from
possible "distracting activities", and the 2014 selection of Spa makes no exception to this. Even
though Spa used to be called the "café of Europe" in the 18th century and was then very touristic,
it has nowadays become much "quieter" but it remains well-known for its thermal springs and clean
environment.
The meetings, which last for five days, are by invitation only. They are intensive, with plenary talks
in the day and special sessions in the evenings. To encourage people to talk about work in progress,
no proceedings are published, although extended abstracts are available via the web-page of the
symposium. The response of the participants to the meetings has generally been very enthusiastic.
The conferences are run in tandem by a permanent organizing committee and a local arrangements
committee. Although attendance is restricted, anyone - including students - can apply. Selection
is made by the organizing committee, generally by ballot.
At Householder XIII in Pontresina, Switzerland, F.L. (Fritz) Bauer gave an after-banquet talk,
remembering the Symposium’s namesake, and the early history of the meetings. Bauer’s notes for
the talk (posted in NA Digest, July 18, 1996, vol. 96, no. 27) can be found at http://www3.math.
tu-berlin.de/householder_2008/Cleve.html.
The meeting is also the occasion for the award of the Householder prize for the best thesis in
numerical linear algebra. The term numerical linear algebra is intended to describe those parts
of mathematical research that have both linear algebraic aspects and numerical content or impli-
cations. Thus, for example, a dissertation concerned with the numerical solution of differential
equations or the numerical solution of an optimization problem would be eligible if linear algebra
is central to the research contribution. This prize is entirely (and well) supported by contributions
solicited at the Symposium banquet. The Householder Award, given every three years, was es-
tablished at the 1969 Gatlinburg Symposium to recognize the outstanding contributions of Alston
S. Householder, 1904-1993, to numerical analysis and linear algebra. Nominations are assessed by
an international committee. Table 2 contains a complete list of the previous winners.

1Prof. G.W. Stewart, University of Maryland, has an article on Alston S. Householder in SIAM News, Vol. 26,
October 1993.
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Number Year Place Organizers
I 1961 Gatlinburg, U.S.A. A.S. Householder
II 1963 Gatlinburg, U.S.A. A.S. Householder, F.W.J. Olver
III 1964 Gatlinburg, U.S.A. A.S. Householder
IV 1969 Gatlinburg, U.S.A. A.S. Householder
V 1972 Los Alamos, U.S.A. R.S. Varga
VI 1974 Hopfen am See, BRD F.L. Bauer
VII 1977 Asilomar, U.S.A. G.H. Golub
VIII 1981 Oxford, ENGLAND L. Fox, J.H. Wilkinson
IX 1984 Waterloo, CANADA J.A. George
X 1987 Fairfield Glade, U.S.A. R.C. Ward, G.W. Stewart
XI 1990 Tylosand, SWEDEN A. Björck
XII 1993 Lake Arrowhead, U.S.A. T.F. Chan, G.H. Golub
XIII 1996 Pontresina, SWITZERLAND W. Gander, M.H. Gutknecht,

D.P. O’Leary
XIV 1999 Whistler, B.C., CANADA J.M. Varah, G.W. Stewart
XV 2002 Peebles, SCOTLAND P. Knight, A. Ramage,

A. Wathen, N.J. Higham
XVI 2005 Seven Springs, U.S.A. J. Barlow, D. Szyld,

H. Zha, C. Van Loan
XVII 2008 Zeuthen, GERMANY J. Liesen, V. Mehrmann,

R. Nabben, A. Bunse-Gerstner
XVIII 2011 Tahoe City, U.S.A Esmond G. Ng, M. Overton

Table 1: List of previous Householder Symposia.
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Year Names
1971 François. Robert (Grenoble)
1974 Ole Hald (New York University)
1977 Daniel D. Warner (University of California, San Diego)
1981 Eduardo Marques de Sa’ (Coimbra);

Paul Van Dooren (K. U. Leuven) - shared
1984 Ralph Byers (Cornell University);

James M. Demmel (University of California, Berkeley) - shared
1987 Nicholas J. Higham (University of Manchester)
1990 Alan Edelman (Massachusetts Institute of Technology) ;

Maria Beth Ong (University of Washington) - shared
1993 Hong-Guo Xu (Fudan University) ;

Barry Smith (New York University) - shared
1996 Ming Gu (Yale University)
1999 Jörg Liesen (Bielefeld)
2002 Jing-Rebecca Li (Massachusetts Institute of Technology)
2005 Jasper van den Eshof (Utrecht University)
2008 David Bindel (University of California, Berkeley)
2011 Bart Vandereycken (KU Leuven);

Paul Willems (Bergische Universität Wuppertal) - shared

Table 2: Previous Householder Award Winners.
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Householder Committee

Jim Demmel, University of California at Berkeley, USA
Alan Edelman, Massachusetts Institute of Technology, USA
Heike Fassbender, Technical University of Braunschweig, Germany
Ilse Ipsen (chair), North Carolina State University, USA
Volker Mehrmann, Technical University of Berlin
Jim Nagy, Emory University, USA
Yousef Saad, University of Minnesota, USA
Valeria Simoncini, University of Bologna, Italy
Zdenek Strakos, Charles University in Prague, Czech Republic
Andy Wathen, University of Oxford, UK

Local Organizing Committee

Pierre-Antoine Absil, Université catholique de Louvain, Belgium
Annick Sartenaer, Université de Namur, Belgium
Marc Van Barel, Katholieke Universiteit Leuven, Belgium
Sabine Van Huffel, Katholieke Universiteit Leuven, Belgium
Karl Meerbergen, Katholieke Universiteit Leuven, Belgium
Paul Van Dooren (chair), Université catholique de Louvain, Belgium

Householder Prize Committee

Michele Benzi, Emory University, USA
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Volker Mehrmann (chair), Technical University of Berlin, Germany
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Algorithms for the Nearest Correlation Matrix Problem with Factor
Structure

Charlotte Dorcimont and P.-A. Absil

Abstract
We revisit the problem of computing a nearest correlation matrix with factor structure, addressed
by Borsdorf et al. in his communication [BHR11] at the 2011 Householder Symposium; see also the
related paper [BHR10] and the PhD thesis [Bor12].
The k-factor problem is formulated as follows, where Diag(B) stands for B with its off-diagonal
elements set to zero, diag(B) is the column vector formed from the diagonal of B, and 1n denotes
the n-dimensional column vector of all ones: Given A ∈ Rn×n with unit diagonal and a positive
integer k < n,

minimize f(X) := ‖A− (I +XXT −Diag(XXT ))‖2F (1a)
subject to X ∈ Ω := {X ∈ Rn×k : diag(XXT ) ≤ 1n}. (1b)

This problem is motivated by the following factor model, which appears in various financial contexts
(see [BHR10, §1]):

ξ = Xη + Fε,

whereX ∈ Rn×k, F ∈ Rn×n is diagonal, and η ∈ Rk and ε ∈ Rn are vectors of centered unit-variance
independent random variables. The covariance of ξ is

cov(ξ) = E(ξξT ) = XXT + F 2.

Imposing that XXT + F 2 is a correlation matrix (i.e., a symmetric positive-semidefinite matrix
with unit diagonal) yields the constraint (1b), then seeking XXT + F 2 as close as possible to a
given A, in the least squares sense, yields the objective function (1a).
Various numerical methods for solving (1) were considered in [BHR10]. Among these methods,
the nonmonotone spectral projected gradient method (SPGM) of Birgin, Martínez, and Ray-
dan [BMR00] emerged as the preferred method in terms of efficiency combined with reliabil-
ity [BHR10, §6]. The simplicity of the projection onto the feasible set Ω partly explains the
high efficiency of SPGM on (1). We have also observed in our experiments that the nonmonotone
nature of the method plays a crucial role.
In recent work, reported in [Dor13], we have contributed several items to the panoply of methods
available to tackle the k-factor problem (1).
One of the new methods reformulates the iterative method of Anderson, Sidenus, and Basu [BHR10,
(5.3)] as the zero-finding problem

diag(F (y)F (y)T )− y = 0
where F (y) := arg min

X∈Rn×k
‖A−Diag(A)−XXT + Diag(y)‖2F ,

which we address with a quasi-Newton method. Observe that the minimization reduces to a
truncated singular value decomposition. Note that this method, like Anderson’s method, does not
enforce the constraint (1b), with the hope, sometimes but not always fulfilled, that the algorithm
will converge to a feasible point, i.e., a point that satisfies (1b).
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Another method proposed in [Dor13], now with feasible iterates, consists of tackling (1) by opti-
mizing over each row of X in turn while keeping the other rows fixed. Each of these subproblems
is seen to be a minimization of a quadratic convex function on a unit ball, i.e., an instance of the
well-known trust-region subproblem, for which various methods are available. We address those
subproblems using the Moré–Sorensen algorithm [MS83]. A significant speedup can be achieved by
exploiting the fact that the Hessian of the quadratic function undergoes a low-rank update between
successive subproblems.
This row-wise approach has certain features that can be considered advantageous over SPGM: it is
finer grained, there are fewer parameters to tune, and we have observed in preliminary experiments
that it tends to outperform SPGM in python/numpy implementations.
Finally, we point out that problem (1) is in general multimodal, and the methods mentioned above
cannot guarantee more than convergence to a local minimizer. The ability to feed the methods with
a good initial point may thus lead to considerable improvements. In our preliminary experiments,
we have started the methods with the projection onto Ω of the best rank-k approximation of A,
but other techniques, notably along the lines discussed in [BHR10, §5], remain to be investigated.
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Global Convergence of the Restarted Lanczos Method and Jacobi-Davidson
Method for Symmetric Eigenvalue Problems

Kensuke Aishima

Abstract
Suppose one wants to compute one or more extremal eigenvalues and their corresponding eigen-
vectors of a symmetric matrix A. There exist a number of efficient iterative methods for the task.
Among them, the Lanczos method [6] is a classical and powerful technique. The Lanczos method
performs the so-called Rayleigh-Ritz procedure on a Krylov subspace. In order to reduce the com-
putational and memory costs, a restart strategy [8, 9] should be employed from the practical point
of view. However this makes the convergence analysis less straightforward. In this talk, we derive
global convergence theorem of the restarted Lanczos method. Key tools for the proof are certain
convergence properties of the Rayleigh-Ritz procedure due to Crouzeix, Philippe and Sadkane [2].
As well as Lanczos, there are a number of efficient algorithms that use the Rayleigh-Ritz procedure.
Among them, we proved a certain global convergence property of the restarted Jacobi-Davidson
method proposed by Sleĳpen and van der Vorst [7].
Existing studies of the global convergence of the restarted Lanczos method can be summarized
as follows. In 1951, Karush derived global convergence for the restarted strategy to compute one
largest eigenvalue [4], and Knyazev and Skorokhodov gave its convergence proof based on certain
properties of the steepest descent method [5]. To the best of our knowledge, the most general result
about the global convergence is Sorensen’s theorem of the implicitly restarted Lanczos method for
computing the largest more than one eigenvalues [8]. However, in Sorensen’s theorem there is a
technical assumption that the absolute values of the off-diagonal elements of the Lanczos tridiagonal
matrix are larger than a positive constant throughout the iterations.
In this study, we proved global convergence without any such assumption. The only assumption
is that the initial vector is not orthogonal to the exact eigenvectors. In addition, the convergence
theorem is extended to restarted Lanczos for computing both the largest and smallest eigenvalues.
As for the restarted block Lanczos method, a certain convergence property for a restarted strategy
to compute the largest eigenvalues has been already proven by Crouzeix, Philippe and Sadkane [2].
More specifically, the Ritz values converge to exact eigenvalues, although not necessarily to the
largest ones. We extend this result to the restart strategy in [3] for computing both the largest and
smallest eigenvalues.
Regarding the restarted Jacobi-Davidson method, the local asymptotic convergence rate has been
well studied. However, despite many efforts over a decade, the theory for global convergence remains
an open problem. In this talk, we show that the largest Ritz value of the restarted Jacobi-Davidson
converges to an exact eigenvalue, although not necessarily to the largest one.
It is worth noting that, there are a number of improved versions of the Lanczos and Jacobi-
Davidson combined with other effective restarted strategies. However, in this talk, we investigate
global convergence properties of the typical and basic versions. We also note that our results cover
a dynamic restarting procedure [2], where the restarting points are dynamically determined.
The material of this talk is based on the recent technical report [1].
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An Efficient Estimator of the Condition Number of the Matrix Exponential

Awad H. Al-Mohy

Abstract
A new condition number estimator for the matrix exponential is presented. The estimator avoids the
explicit computation of the Fréchet derivative of the matrix exponential, which underlies condition
number estimation in the existing algorithms, so considerable computational savings are possible
since computing Fréchet derivative requires twice the cost of the matrix exponential itself.

Introduction

Condition number of a matrix function measures the sensitivity of the matrix function to pertur-
bations in data. The relative condition number of a matrix function f : Cn×n → Cn×n at a point
X ∈ Cn×n is given by [5, Thm. 3.1]

cond(f,X) =
‖Lf (X)‖ ‖X‖
‖f(X)‖

,

where ‖Lf (X)‖ = maxZ 6=0 ‖Lf (X,Z)‖/‖Z‖ and Lf is a linear operator on Cn×n defined as

f(X + E)− f(X)− Lf (X,E) = o(‖E‖)

and is called Fréchet derivative of the matrix function f at the point X in direction E [5, sec. 3.1].
Here X is fixed but E is variable. Thus Fréchet derivative plays a seminal role in computing the
condition number of matrix functions. Thus many algorithms have been developed for several
matrix function. Al-Mohy and Higham derive an algorithm for simultaneously computing eX and
estimating its condition number [1] and a method to compute the Fréchet derivative of a general
matrix function using complex step approximation [2] and recently Al-Mohy, Higham, and Relton
derive an algorithm for computing the matrix logarithm and its Fréchet derivative with condition
number estimation [3].
Our focuss here is on the matrix exponential. We obtain a new bound relating the condition number
of the matrix exponential to the condition number of the squaring phase of the scaling and squaring
method (SSM) [5, Ch. 10] and use it to obtain a new estimator with lower computational cost.

A new condition number estimator

The key result in our paper is the following theorem

Theorem 1. For any nonnegative integer s and g(X) = X2s we have

cond(exp, X) ≤ ‖2
−sX‖F e‖2

−sX‖2

‖e2−sX‖F
cond(g, e2−sX). � (1)

The matrix function g represents the squaring phase of the SSM that exploits the identity eX =(
e2
−sX

)2s
. Note that ‖Lexp(X)‖ doesn’t appear in the bound. We have seen this bound is reason-

ably sharp in our numerical experiments, however, we found that the quantity

κg(s,X) = ‖2−sX‖F cond(g, e2−sX) (2)

11



gives better estimate of cond(exp, X). Using a collection of test matrices from the matrix exponen-
tial literature, we found that the ratio κg(s,X)/cond(exp, X) lies in the interval [0.97, 4.8] whereas
the bound in (1) overestimates cond(exp, X) within a factor of 46. In addition, we test this ratio for
extreme cases by using the multidirectional search method of Dennis and Torczon [6]. A MATLAB
code of that algorithm is available in [4] under the name mdsmax. We run the maximizer mdsmax
to seek the maximal value of the ratio κg(s,X)/cond(exp, X) and its reciprocal. The maximizer
evaluates this ratio and its reciprocal about 3.7 × 106 times in total towards extreme points using
different starting points, and we obtain

0.83 ≤ κg(s,X)
cond(exp, X)

≤ 16.5,

indicating that our estimator is reliable.
The key point why we want to avoid the calculation of Lexp(X,E) is that we gain a considerable
computational saving when relying on Lg(e2

−sX , E). The algorithm of Al-Mohy and Higham [1,
Alg. 7.4] computes eX and estimates cond(exp, X). Assuming the cost of computing eX is µ,
the authors point out that 8 Fréchet derivative evaluations are required to estimate the condition
number, and the total cost of the algorithm is about 17µ. Since computing Lexp(X,E) costs 2µ [1,
Alg. 4.1] and our estimator does not require Lexp(X,E), saving 16µ is possible. Note that when
s = 0, κg(s,X) = ‖X‖F since cond(g, e2−sX) = 1 obtained for no cost, and for s > 0, Lexp(X,E)
and Lg(e2

−sX , E) require 12 + 2s and 2s matrix multiplications, respectively.
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Model Reduction of Nonlinear Systems in the Loewner Framework

A.C. Antoulas and A.C. Ioniţă

Abstract
The motivation for model order reduction (MOR) stems from an inevitable fact about modern
computing. The need for accurate modeling of physical phenomena often leads to large-scale
dynamical systems that require long simulation times and large data storage. For instance, one
such example is provided by the discretization of partial differential equations over fine grids, which
leads to large-scale systems of ordinary differential equations. In these settings, MOR seeks models
of low dimension that accurately capture the input-output behavior of the large-scale system while
requiring only a fraction of the large-scale simulation time and storage.
A powerful and versatile approach to MOR is provided by the Loewner framework for rational
interpolation. This approach was introduced in [3] and a major advance was made in [6]. It has
since been successfully applied to two main categories of systems: (a) linear systems with multiple
inputs and multiple outputs [6, 5], and (b) linear parametric systems [4, 1, 2]. It is the purpose of
this talk to present the most recent extension of the Loewner framework to classes of non-linear
systems, namely bilinear systems and quadratic non-linear systems.
The Loewner framework is data-driven and starts from empirical data. It employs advanced in-
terpolation techniques, overcoming limitations of standard projection methods The empirical data
may be provided by physical experimentation or by direct numerical simulation.
• A brief overview of the Loewner framework, as it applies to the problem of (tangential)
rational interpolation and rational approximation [3, 6]. Consider data consisting of the right inter-
polation data {(λi, ri,wi) |λi ∈ C, ri ∈ Cm×1,wi ∈ Cp×1, i = 1, . . . , k}, and of the left interpolation
data {(µj , `j ,vj) |µj ∈ C, `j ∈ C1×p,vj ∈ C1×m, j = 1, . . . , q}. The quantities λi, µj , are points
where the underlying function is evaluated, ri, `j are referred to as tangential directions on the
right and on the left, while wi, vj are right and left tangential values.
The rational interpolation problem aims at finding a rational p×m matrix function H(s), expressed
in terms of a (descriptor) realization [E,A,B,C], i.e. H(s) = C(sE−A)−1B, such that the right,
left constraints are satisfied: H(λi)ri = wi, `jH(µj) = vj . The connection of this problem with
model reduction lies in the fact that the rational matrix function H(s), can be considered as the
transfer function of the underlying to-be-reduced linear dynamical system.
The key tool for studying this problem is the q× k Loewner matrix, together with the q× k shifted
Loewner matrix, associated with the empirical data: (L)ij = virj−`iwj

µi−λj , (Lσ)ij = µivirj−`iwjλj
µi−λj ∈ C.

We also define the quantities W = [w1 · · · wk] ∈ Cp×k, and V =
[
v∗1 · · · v∗q

]∗
∈ Cq×m.

The solution to the general tangential interpolation/approximation problem is now as follows.
a. If k = q and (Lσ,L), is a regular pencil, then E = −L, A = −Lσ, B = V, C = W, is a
minimal realization of an interpolant of the data. Thus, the associated transfer function H(s) =
W(Lσ − sL)−1V, satisfies the required interpolation conditions. b. In the more common case
where there are more data than necessary, (Lσ,L) is a singular pencil. Using the basic fact (see
[3]) that the (approximate) rank k of L is equal to the complexity of the underlying system, rank-
revealing SVDs of L and Lσ, yield Y,X ∈ CN×k. The projection then defined by X,Y, leads to a
realization of degree k, of an (approximate) interpolant of the data: E = −Y∗LX, A = −Y∗LσX,
B = Y∗V, C = WX, i.e. `jH(µj) ≈ vj , H(λi)ri ≈ wi.
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• Further developments. Recently the Loewner framework was extended to deal with linear
parameter-dependent systems [4, 1, 2], and even more recently, it has been extended to certain
classes of non-linear systems. It our purpose to discuss this latter case during the meeting. We
conclude this abstract by summarizing the main aspects of the Loewner framework.
• Model reduction in the Loewner framework: Summary of features
1. Given input/output or computed data, we can construct with no computation (i.e. no factor-
izations or matrix solves), a singular high order model in generalized (descriptor) state space form.
The key tool is the Loewner pencil.
2. The philosophy behind this approach is: collect data and extract desired information.
3. In applications the singular pencil must be reduced at some stage. This is a natural way for
constructing full and reduced models because it does not force inversion of E, and moreover it can
deal with many input/output ports.
5. In this framework the singular values of L,Lσ, offer a trade-off between accuracy of fit and
complexity of the reduced system.
6. The approach has been xtended to parametrized systems, to bilinear systems and to quadtaric
nonlinear systems.
7. At this early stage, we intend to demonstrate the numerical properties of our approach by
means of at least the following: reduction of Burgers’ equation, reduction of the FitzHugh-Nagumo
equations, and reduction of the miscible flow problem as described in [8]. We also intend to make
comparisons with the results to [7].
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A Spectral Analysis of a Discrete two-domain Steklov-Poincaré Operator

Mario Arioli and Daniel Loghin

Abstract
Various analyses going back to the 1980s considered the discrete Steklov-Poincaré operator arising
from a regular two-domain decomposition method for linear systems resulting from finite element
or finite difference discretizations of model diffusion or, more generally, scalar elliptic problems [1],
[2], [3], [4], [5].
It is now known that for uniform discretizations of size h, the condition number of the discrete
Steklov-Poincaré operator is of order O(h−1). This result is related to the fact that this operator
is spectrally equivalent to the discrete square-root Laplacian operator.
In this work we investigate the discrete Steklov-Poincaré operator arising from a domain decom-
position method applied to an anisotropic diffusion operator, which also corresponds to the case of
a standard diffusion operator discretized on a uniform mesh. We show that the condition number
of the Steklov-Poincaré operator is related to the anisotropy present in the problem (diffusion or
mesh anisotropy). In turn, this result establishes a spectral equivalence with a fractional (rather
than square-root) power of the discrete Laplacian operator. This result is novel and may pave the
way to an alternative definition of fractional Sobolev spaces, but also to improved algorithms in
domain decomposition technology.
Let Γ ⊂ Ω ⊂ RN be a N−1-dimensional regular manifold. The Steklov-Poincaré operator is defined
from the fractional Sobolev space H1/2

00 (Γ) to its dual H−1/2(Γ) in the continuous framework. After
a finite-element approximation of the Laplace operator in Γ with zero boundary conditions on
∂Γ, the discrete Steklov-Poincaré operator is spectrally equivalent to the square-root of a special
stiffness matrix. For highly anisotropic elliptic operators the trace of the solution on a manifold
Γ is still in H1/2

00 (Γ). However, if an anisotropic operator’s family, depending on a real parameter,
degenerates then the trace could require a different fractional space.
We will discuss the connection between the linear algebra of the fractional power of structured
matrices and the finite-element approximation of highly anisotropic elliptic operators in order to
give the asymptotic behaviour of the condition number of the matrix representing the Steklov-
Poincaré operator approximation.
Let a ∈ R+ and let Ω = (−1, 1)× (−a, a). Consider the finite element solution of{

−∆u = f in Ω,
u = 0 on ∂Ω,

using a partition of Ω into two equal domains separated by a horizontal boundary

Γ = {(x, 0) : −1 ≤ x ≤ 1}

and subdivided uniformly into equal triangles with sides hx = 2/(n + 2), hy = 2a/(n + 2) with
n = 2m+ 1,m ∈ N . Let

Tk := tridiag[−1, 2,−1] ∈ Rk×k

denote a scaled FEM discretisation of −d2/dx2 on a mesh with k interior points and let Ik ∈ Rk×k

denote the identity matrix. With this notation, the 2D discrete Laplacian matrix L ∈ Rn2×n2 is
given by

L = hx
hy
Tn ⊗ In + hy

hx
In ⊗ Tn = 1

a
Tn ⊗ In + aIn ⊗ Tn := La.
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The above expression corresponds also to a uniform discretisation of the anisotropic diffusion prob-
lem {

−(∂xx + a∂yy)u = f in Ω
u = 0 on ∂Ω

where Ω is any square.
We will refer to La above as the discrete anisotropic Laplacian.
Let us consider the Schur complement of La for a general value of a > 0. Let Lm,n denote the
Laplacian corresponding to a discretisation with m interior nodes in the x-direction, respectively,
n in the y-direction. Dropping the subscript a for now, the Laplacian for the original problem is
L = Ln,n where

Ln,n = 1
a

 aLm,n −em ⊗ In
aLm,n −e1 ⊗ In

−eTm ⊗ In −eT1 ⊗ In aT

 ,
with Lm,n = 1

a
Tm ⊗ In + aIm ⊗ Tn and T = 2

a
In + aTn.

Then the Schur complement is (using the block Toeplitz character of Lm,n)

S = T − 1
a2

∑
i∈{1,m}

(eTi ⊗ In)L−1
m,n(ei ⊗ In) = T − 2

a2 (eTm ⊗ In)L−1
m,n(em ⊗ In).

By a careful analysis of the spectral properties of S, we have the following asymptotic values for
the condition number of S when a = O(hθ), θ ∈ R

κ2(S) ∼


O(h−2), θ < −1,
O(hθ−1), θ ∈ [−1, 1],
O(1), θ > 1.

Finally, we will illustrate the implication of the previous result on the choice of the preconditioner for
S on relevant applications. By using the properties of specific interpolation spaces, we will choose
the convenient fractional power of matrices that make the preconditioned problem independent of
h and a.
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Randomized and Quasi-Randomized Algorithms for Low-Rank
Approximation of Gram Matrices

Haim Avron, Michael Mahoney, Vikas Sindhwani and Jiyan Yang

Abstract
We consider the problem of constructing a low-rank approximation to the Gram matrices defined
by a set of points and a kernel function. More specifically, let x1,x2, . . . ,xn ∈ X where X ⊂ Rd,
and let k : X × X → R be a positive definite kernel. The Gram matrix K is defined by

Ki,j = k(xi,xj) .

Since k is a positive definite kernel, K is symmetric positive semi-definite. In many interesting
cases, K is full-rank with a fast decaying spectrum. We are now interested in quickly building a
low-rank approximation

K ≈ ZZT

where Z has s� n columns.

Motivation. Gram matrices occur in various methods in computational science and related fields.
These computations can typically be accelerated using a low-rank approximation, as it replaces
operations on a full-rank square matrix (typically an O(n3) operation) with operations on the
low-rank factors (typically an O(ns2) operation) – at the price of less accurate results.
We now mention a few cases where Gram matrix occur.

• Kernel methods are an important technique in machine learning and related fields of computer
science. These methods, typically operate on the Gram matrix, and can be sped up using a
low-rank approximation. A well known example is kernel support vector machines.

• Radial basis function interpolation involves solving linear equations involving the Gram ma-
trix corresponding to the basis functions used.

• Numerical solution of the Fredholm integral equation using the Nystrom method gives rise
to a linear system involving the Gram matrix. Low rank approximations have been studied
for this problem before [2].

Randomized Approximation. Rahimi and Recht recently proposed an elegant and cheap way
to approximate the Gram matrix when k is shift-invariant (that is, can be written as k(x, y) =
φ(x− y) for some positive definite function φ) [1]. It is based on the celebrated Bochner’s theorem,
which states that a continuous shift-invariant(scaled) kernel function k(x, z) ≡ k(x− z) is positive
definite if and only if it is the Fourier Transform of a probability density p on Rd, i.e., for any
x, z ∈ Rd,

k(x, z) =
∫

Rs
e−i(x−z)Twp(w)dw = Ew∼pe

−i(x−z)Tw
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The integral representation of the kernel may be approximated as follows:

k(x, z) =
∫

Rd
e−i(x−z)Twp(w)dw

≈ 1
s

s∑
j=1

e−i(x−z)Tws

= 〈Ψ̂(x), Ψ̂(z)〉Cs ,

through the map,
Ψ̂(x) = 1√

s

[
e−ix

Tw1 . . . e−ix
Tws

]
∈ Cs .

where w1, . . . ,ws are drawn from p.
Let Z be defined by setting row i to be equal to Ψ̂(xi). It can be shown that ZZT is an entry-wise
approximation to K [1]. Note that the construction just described is complex; there are also real
variants.

Approximations for Semigroup Kernels. While shift-invariant kernels are an important fam-
ily of kernels, there are other families of kernels that are frequently used. We will present a
method to approximate the Gram matrix corresponding to kernels on Rd

+ that are sum-invariant,
i.e k(x,y) = φ(x+y) for some positive definite φ. Such kernels occur frequently in computer vision.

Improved Approximations using Quasi-Randomness. For a good approximation Rahimi
and Recht’s method requires a very large s. The underlying reason is that the method uses aMonte-
Carlo approximation to the integral. We discuss the use of Quasi-Monte Carlo instead: the use
of a deterministic quasi-random (low-discrepancy) sequences instead. We will present a theoretical
characterization of the approximation error, as well as a method to numerically optimize sequences
to produce better low-rank approximation. We will present experimental results using classical low
discrepancy sequences (e.g. Halton and Sobol), and using optimized sequences.
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Variational Principles and Scalable Solvers
for the Linear Response Eigenvalue Problem

Zhaojun Bai, Ren-Cang Li, Dario Rocca and Giulia Galli

Abstract
The linear response eigenvalue problem (LREVP) is of the form[

A B
−B −A

] [
u
v

]
= λ

[
Σ ∆
∆ Σ

] [
u
v

]
,

where A, B and Σ are symmetric matrices and ∆ is a skew-symmetric matrix. Furthermore, A±B
are positive definite and Σ ±∆ are nonsingular. It can be shown that the eigenvalues of LREVP
are real and appear in pairs ±λ. The LREVP is a special eigenvalue problem for so-called doubly
structured matrix pencils [1,2].
As an application in quantum mechanics, the LREVP appears as the computational kernel in the
linear response perturbation analysis in the time-dependent density functional theory (TDDFT)
for excited states calculations [3]. Excited states calculation is a important tool in the study of
collective motion of many particle systems, ranging from silicon nanoparticles to the analysis of
interstellar clouds. There are immense interests in developing efficient numerical algorithms and
simulation techniques for excitation state calculations of molecules and solids for materials design
in energy science.
Due to the nature of the linear response theory, the dimension of the LREVP is typically very
large. For example, a plane-wave based calculation for the excited energies of fullerence C60 in
quantum expresso leads to an LREVP of the order 22 millions [4]. In practice, the first few
smallest positive eigenvalues and the corresponding eigenvectors are of particular interests.
Since the linear response theory was proposed for studying the collective motion of many particles
in the early 1950s, the development of numerical methods for solving the LREVP has been an ac-
tive research subject in computational (quantum) physics and chemistry, and in numerical analysis
community for over five decades. A 2009 survey study compared Lanczos, Arnoldi, Davidson, and
conjugate gradient methods and discussed the limitations of each of these methods for developing
an efficient scalable eigensolver [5]. In the study, severe limitations were experienced for Lanc-
zos, Arnoldi and Davidson methods due to the orthogonality constraints, for the CG methods to
compute several eigenpairs simultaneously, and for incorporating preconditioning techniques.
In the past three years, we have participated a synergistic study of theory, computation and ap-
plications of LREVPs. We uncovered new variational principles to characterize the eigenvalues of
interest and Cauchy-like interlacing inequalities between the eigenvalues of the original and reduced
LREVPs [6,7]. Although the LREVP is a non-Hermitian eigenvalue problem, these theoretical re-
sults mirror the well-known variational principles of the Hermitian eigenvalue problem. With the
help of these new theoretical results, we are able to develop the best (possible) approximations
of few smallest positive eigenvalues via structure-preserving projection, and derive locally optimal
steepest descent (SD) and conjugate gradient (CG) algorithms, based on a novel 4D search idea
instead of the usual line-search [8,9]. Furthermore, the new locally optimal block 4D SD and CG
algorithms allow us to use blocking strategies to perform multiple computation steps of the algo-
rithm for each communication step and to incorporate proper preconditioners for fast convergence.
The new algorithms are memory-efficient, and numerical convergence behavior is less stringent on
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the (orthogonal-like) normalization constraints of projection subspaces. A successful excited state
calculation of the order 22 millions of the LREVP for fullerene C60 by our methods was recently
presented in [4].
We are working on parallel computation and communication strategies under the communication
avoiding algorithmic design paradigm. On modern computer architectures, communication costs in
terms of the performance of an algorithm can be much greater than arithmetic computation costs,
and the gap is only going to widen in future systems [10]. One of our research issues is how to
efficiently computing matrix-vector and matrix-matrix operations by exploiting the matrix (sub)-
structures and sparsity of the LREVP. Another issue is how to hide costly global synchronization
latency in the 4D search SD and SG algorithms. This is in fact a challenging issue for the scalability
of all preconditioned CG and Krylov subspace type eigensolvers.
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Reconstructing Householder Vectors from Tall-Skinny QR
Grey Ballard, James Demmel, Laura Grigori, Mathias Jacquelin,

Hong Diep Nguyen, and Edgar Solomonik

Abstract
Because of the rising costs of communication (i.e., data movement) relative to computation, so-
called communication-avoiding algorithms—ones that perform roughly the same computation as
alternatives but significantly reduce communication—often run with reduced running times on
today’s architectures. In particular, the standard algorithm for computing the QR decomposition
of a tall and skinny matrix (one with many more rows than columns) is often bottlenecked by
communication costs. A more recent algorithm known as Tall-Skinny QR (TSQR) is presented
in [3] and overcomes this bottleneck by reformulating the computation. In fact, the algorithm is
communication optimal, attaining a lower bound for communication costs of QR decomposition
(up to a logarithmic factor in the number of processors) [2]. Not only is communication reduced in
theory, but the algorithm has been demonstrated to perform better on a variety of architectures,
including multicore processors, graphics processing units, and distributed-memory systems.
The standard algorithm for QR decomposition, which is implemented in libraries like LAPACK,
ScaLAPACK, and Elemental, is known as Householder-QR. For tall and skinny matrices, the algo-
rithm works column-by-column, computing a Householder vector and applying the corresponding
transformation for each column in the matrix. When the matrix is distributed across a parallel
machine, this requires one parallel reduction per column. The TSQR algorithm, on the other hand,
performs only one reduction during the entire computation. Therefore, TSQR requires asymptot-
ically less inter-processor synchronization than Householder-QR on parallel machines (TSQR also
achieves asymptotically higher cache reuse on sequential machines).
Computing the QR decomposition of a tall and skinny matrix is an important kernel in many
contexts, including standalone least squares problems, eigenvalue and singular value computations,
and Krylov subspace and other iterative methods. In addition, the tall and skinny factorization is
a standard building block in the computation of the QR decomposition of general (not necessarily
tall and skinny) matrices. In particular, most algorithms work by factoring a tall and skinny panel
of the matrix, applying the orthogonal factor to the trailing matrix, and then continuing on to the
next panel. Although Householder-QR is bottlenecked by communication in the panel factorization,
it can apply the orthogonal factor as an aggregated Householder transformation efficiently, using
matrix multiplication.
The Communication-Avoiding QR (CAQR) [3] algorithm uses TSQR to factor each panel of a
general matrix. One difficulty faced by CAQR is that TSQR computes an orthogonal factor that is
implicitly represented in a different format than that of Householder-QR. While Householder-QR
represents the orthogonal factor as a set of Householder vectors (one per column), TSQR computes
a tree of smaller sets of Householder vectors (though with the same total number of nonzero
parameters). In CAQR, this difference in representation means that the trailing matrix update
must be done using the implicit tree representation rather than matrix multiplication as is possible
with Householder-QR. From a software engineering perspective, this means writing and tuning
more complicated code. Furthermore, from a performance perspective, the update of the trailing
matrix within CAQR is less communication efficient than the update within Householder-QR by a
logarithmic factor in the number of processors.
Building on a method introduced by Yamamoto [4], we show in [1] that the standard Householder
vector representation may be recovered from the implicit TSQR representation for roughly the
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same cost as the TSQR itself. The key idea is that the Householder vectors that represent an
orthonormal matrix can be computed via LU decomposition (without pivoting) of the orthonormal
matrix subtracted from a diagonal sign matrix. That is, given an m× b orthonormal matrix Q, the
Householder-QR algorithm produces a factorization

Q =
([
I
0

]
−
[
Y1
Y2

]
TY T

1

)
S

where Y =
[
Y1
Y2

]
stores the Householder vectors, Y1 is b × b and unit lower triangular, T is b × b

and upper triangular (and can be computed from Y ), and S is a diagonal sign matrix. This implies
that [

S
0

]
−Q =

[
Y1
Y2

] (
TY T

1 S
)
,

which is the unique LU decomposition. In the talk we will explain how this idea leads to a
communication-efficient method for reconstructing the Householder vectors Y from a matrix Q
computed from TSQR. We will sketch the proof that our reconstruction method is as numerically
stable as Householder-QR (independent of the matrix condition number) and validate this proof
with experimental results.
This reconstruction method allows us to get the best of the TSQR algorithm (avoiding synchro-
nization) as well as the best of the Householder-QR algorithm (efficient trailing matrix updates
via matrix multiplication). By obtaining Householder vectors from the TSQR representation, we
can logically decouple the block size of the trailing matrix updates from the number of columns in
each TSQR. This abstraction makes it possible to optimize the panel factorizations and the trailing
matrix updates independently. We will present experimental results to demonstrate that our par-
allel implementation outperforms ScaLAPACK, Elemental, and our own lightly-optimized CAQR
implementation on the Hopper Cray XE6 platform at NERSC. While we do not experimentally
study sequential performance, we expect our algorithm will also be beneficial in this setting, due
to the cache efficiency gained by using TSQR.
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Block Gram-Schmidt Downdating

Jesse L. Barlow

Abstract
The problem of deleting multiple rows from a Q-R factorization is considered. In that context,
suppose X ∈ Rm×n,m > n, has the factorization

X = UR (1)

where U ∈ Rm×n is left orthogonal and R ∈ Rn×n is upper triangular. Suppose X is partitioned

X =
(

p X0
m− p X̄

)
(2)

for some integer p where m ≥ n+ p and that it is desired to efficiently produce the Q-R decompo-
sition

X̄ = Ū R̄. (3)

Obtaining (3) inexpensively from (1), called the block downdating problem, is important in the
context of solving recursive least squares problem where observations are added or deleted over
time.
The problem is solved by choosing a left orthogonal matrix B ∈ Rm×p such that

B =
(

p V
m− p 0

)

where V ∈ Rp×p is orthogonal, producing a triple QB ∈ Rm×p, SB ∈ Rn×p, and RB ∈ Rp×p such
that

B = USB +QBRB (4)
0 = UTQB (5)

where QB is left orthogonal and RB upper triangular. The next step is to find an orthogonal
Z ∈ R(n+p)×(n+p) such that

ZT
(
RB 0
SB R

)
=
(
RV Y0
0 R̄

)
where R̄ remains upper triangular and is the desired upper triangular matrix in (3). The left
orthogonal matrix Ū in (3) is recovered from(

QB U
)
Z.

The matrices V , QB, SB and RB are produced by a block Gram-Schmidt algorithm. However,
difficulties occur when

(
B U

)
is nearly rank deficient. In that case, although the condition (4)

is straightforward to enforce, the condition (5) is not. Developing an algorithm that keeps both
‖B − USB −QBRB‖2 and ‖UTQB‖2 small enough to produce a stable block downdate is the key
issue in this talk.
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Diffusion Models for Covariance

Christopher Beattie

Abstract
The prediction and estimation of spatially varying random processes is an important component
of geologic modeling, weather prediction, and ocean modeling. Both variational data assimilation
and statistical interpolation (kriging) methods depend on knowing the covariance structure of
quantities of interest. Typically, this covariance structure is unknown, yet in principle, it may be
estimated from the same data that is used to predict or estimate the main quantities of interest.
In many cases, especially for nonstationary random processes that commonly occur in geophysical
and atmospheric sciences and oceanography, the available data are too sparse in either space or
time to provide reliable estimates, so additional structural features must be assumed and included
to bridge the gap.
A recent approach to this problem begins with the remarkable observation that two classes of co-
variance kernels commonly used in spatial statistics, the Gauss and the Matérn classes, may be
identified with Green’s functions of differential operators. This interpretation allows for straightfor-
ward modeling of anisotropy and nonhomogeneity through low order parameterization of associated
diffusion coefficients. More importantly, this approach introduces the possibility of leveraging the
versatile strategies developed for the numerical treatment of PDEs into computationally efficient
(implicit) representations of the associated grid-point correlation functions. This is critical for
problems of large dimension where explicit representation of grid-point correlation can lead rapidly
to unmanageable computational bottlenecks.
I will present some background for this modeling paradigm within the context of oceanographic
data assimilation and discuss two open problems that remain: renormalization (estimating the
“diagonal" of the kernel) and treatment of boundary conditions. Preconditioned iterative methods
developed for solving elliptic boundary problems will be seen to inform useful new approaches for
manipulating these correlation models.
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The Riccati Eigenproblem

Peter Benner and Ludwig Kohaupt

Abstract
The stabilization of linear dynamical systems is a central task in control theory. One of the
most successful approaches is based on the linear-quadratic regulator (LQR) design which finds a
stabilizing feedback that at the same time is optimal with respect to a quadratic cost functional.
It has proved its robustness and reliability in many real-world applications since its invention by
Kalman in 1960, not the least important of the real-world applications certainly was the Apollo
11 mission to the Moon in 1969. Mathematically formulated, one has to solve the problem (here
posed in its simplest form, versatile generalizations can be found in the literature):

min
u∈L2[0,∞]

∫ ∞
0

x(t)TQx(t) + u(t)TRu(t) dt (1)

subject to
ẋ(t) = Ax(t) +Bu(t), x(0) = x0. (2)

Here, x(t) ∈ Rn is the state of the linear system with given initial value x0 ∈ Rn, u(t) ∈ Rm is the
sought-after control function minimizing the cost functional (1), and A ∈ Rn×n, B ∈ Rn×m, Q =
QT ∈ Rn×n, R = RT ∈ Rm×m. Assuming Q positive semi-definite, R positive definite, and (A,B)
stabilizable, it is known that the optimal control function solving (1)–(2) is given by the Riccati
feedback

u(t) = −R−1BTX∗x(t), (3)

where X∗ = XT
∗ ∈ Rn×n is the unique positive semidefinite solution of the algebraic Riccati equation

0 = Q+ATX +XA−XBBTX. (4)

The so-obtained optimal feedback is stabilizing in the sense that when inserted into (2), it holds
x(t) → 0 (t →∞) for any initial value x0 ∈ Rn as A− BBTX∗ has all its eigenvalues in the open
left half of the complex plane. Therefor, X∗ is also called stabilizing.
Despite its success in practice, the Riccati feedback approach has drawbacks: it often leads to
oscillatory behavior and overshoot in the transient pase, in particular when applied to mechanical
systems. Inspired by the successful application of the Lyapunov eigenvalue problem to the analysis
of linear systems in [1], we derive the following Riccati eigenproblem

µX = ATX +XA−XBBTX. (5)

Here, µ is a scalar quantity that we interpret as an eigenvalue, with the corresponding eigenmatrix
X. This is a nonlinear eigenvalue problem with nonlinearity in the eigenvector/-matrix.
Assuming a solution (µ,X∗) to (5) with real µ < 0 and 0 6= X# = XT

# positive semidefinite,
the eigenmatrix can now replace X∗ in (3). We will see that the so-obtained feedback solution
stabilizes the system and often exhibits a better transient behavior than the usual Riccati feedback,
avoiding overshoot and oscillations in mechanical systems. We discuss the existence of eigenpairs
solving (5) and having the desired properties, and derive a first numerical algorithm to compute
such eigenpairs. We will point out open problems as well as possible improvements regarding the
numerical algorithm.
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Numerical Analysis of Quantum Graphs

Mario Arioli and Michele Benzi

Abstract
A quantum graph is a graph where we associate with each edge a differential law that models
the interaction between the two corresponding vertices. The use of quantum graphs (as opposed
to more elementary graph models, such as simple unweighted or weighted graphs) opens up the
possibility of modeling the interactions between agents identified by the graph’s vertices in a far
more detailed manner than with standard graphs. Quantum graphs are now being widely used in
physics, chemistry and engineering (nanotechnology) problems but can also be used, in principle,
in the analysis of complex phenomena taking place on large complex networks, including social
and biological networks. Such graphs are characterized by highly skewed degree distributions,
small diameter, high clustering coefficients and have topological and spectral properties that are
quite different from those of the highly regular graphs or lattices arising in physics and chemistry
applications.
The main purpose of this talk is to introduce the audience to the numerical analysis of PDEs posed
on quantum graphs. We propose numerical methods, based on finite elements and an appropriate
ordering of the graph vertices, for the solution of PDEs associated with quantum graphs. We
consider simple elliptic, parabolic, hyperbolic and Schrödinger-type equations and we show how
these can be approximated to yield large-scale systems of algebraic equations (or, in the time-
dependent case, systems of ODEs) which can be solved by preconditioned iterative methods (resp.,
Krylov-based exponential integrators). In particular, we show that the usual graph Laplacian can
be seen as an approximation of a more general Laplace operator acting on a quantum graph.
The long-term goal of the project is to investigate the numerical solution of PDEs posed on quantum
graphs with complex topologies. As a simple example, we consider a simple diffusion model for the
spreading of information on a complex network of interacting agents.
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Can Numerical Linear Algebra make it in Nature?

Paolo Bientinesi, Diego Fabregat and Yurii Aulchenko

Abstract
Among all the scientific journals, the collection “Nature-*” enjoys some of the highest impact
factors. In many disciplines, having a publication in such journals is a prestigious and even career-
defining event. Although their focus is said to be “on research results of outstanding importance for
an interdisciplinary readership”, contributions from computer science and mathematics are hardly
ever published. This work is meant to illustrate how numerical linear algebra, in its supporting—but
critical—role for genome analysis, has a realistic shot at a Nature journal.
Genome-Wide Association Studies (GWAS) are a powerful statistical tool to analyze the relation-
ship between variations in the DNA sequence and complex traits (e.g., diseases). Since the first
appearance of GWAS in 2005 and 2006, the amount of published studies increased steadily, well
exceeding 4000 articles in 2012. (Several GWAS-related paper appeared in one of the Nature
journals.) An effective approach to perform GWAS is based on linear mixed models (LMM), and
relies on the processing of terabytes of data while solving billions, or even trillions, of generalized
least-squares (GLS) problems: b :=

(
XTM−1X

)−1
XTM−1y.

In actual studies, one has to solve a two-dimensional grid of m× t GLS problems of size n, where
m and t are of the order of millions and hundreds of thousands, respectively. The complexity for
the solution of one GLS problem in isolation is O(n3) floating point operations (flops), adding up
to O(mtn3) flops for the entire study. In one of our experiments, we considered m = 106, t = 105,
and n = 103, resulting in roughly 1020 flops to be executed. No matter how optimized a GLS
solver is, such a GWAS would be kept within hours only by using in its entirety one of the fastest
supercomputers in the world; meanwhile, biologists aim at performing GWAS hundreds of times
larger.
Thanks to a close collaboration with computational biologists, we were able to uncover the corre-
lations among successive GLS problems, and the structure underlying each of them. In detail, the
GWAS can be expressed as

bij :=
(
XT
i M

−1
j Xi

)−1
XT
i M

−1
j yj ,

with Xi = [XL|XRi], and Mj = σj(Φ + hjI),

where i = 1, . . . ,m, and j = 1, . . . , t.

Moreover, t is either 1 or ≈ 105. By tackling the GWAS as a whole, i.e. all the m× t problems at
once, by tracking the dependencies between adjacent GLS’, and by exploiting their structure, we
reduced the computational complexity down to O(mtn). This was the first, crucial step towards
making large scale GWAS feasible.
Beyond the computation complexity, GWAS is also challenging because of the size of the datasets.
Any large analysis entails the processing of terabytes of data. Specifically, the aforementioned
analysis (of modest size) involves reading vectors and matrices for 10 GBs, and writing a tensor
of 3.2 TBs. In general, the storage requirements largely exceed even the combined main memory
of current typical clusters, and demand an out-of-core mechanism to efficiently handle datasets
residing on disk.
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In this scenario, data must be partitioned in slabs, and it becomes critical to determine the most
appropriate traversal, as well as the size and shape of each slab. The problem is far from trivial,
because these factors affect the amount of transfers and computation performed, as well as the
necessary extra storage. By modeling all these factors, we found the best traversal direction,
and determined the shape and size of the slabs to achieve a complete overlap of transfers with
computations. As a result, irrespective of the data size, the efficiency of our in-core solver is
sustained.
In summary, by designing parallel algorithms that take full advantage of the properties inherent
to the generalized-least squares problems as they appear within GWAS, we allowed biologists to
perform analysis of arbitrary size, while reducing the computation time by a factor of 1000.
This work is currently under review for publication in Nature Methods.
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Music of the Microspheres: from Eigenvalues Perturbations to Gyroscopes

David Bindel and Erdal Yilmaz

Abstract
In 1890, G. H. Bryan demonstrated that when a ringing wine glass rotates, the shape of the vibration
pattern precesses. Today, this effect is the basis for a family of high-precision solid-wave gyroscopes
widely used in spacecraft. These devices effectively sense rotation by how it perturbs a degenerate
mode pair. In recent miniaturized solid-wave gyroscopes, geometry distortions due to imperfect
fabrication also perturb the dynamics, and this limits sensing accuracy. In this talk, we describe
how geometric imperfections affect the dynamics of solid wave gyroscopes from the perspective of
group theory and eigenvalue perturbation theory.
Free vibrations of an ideal solid-wave gyroscope are described by a finite element model

Mü+ 2ΩBu̇+Ku = 0,

where M and K are symmetric and positive definite matrices representing mass and stiffness, and
B is skew-symmetric matrix corresponding to the Coriolis effect. By using shape functions that are
trigonometric functions in θ, we can put M , B, and K in block diagonal form, where each block
corresponds to a different azimuthal wave number. Under usual operating conditions, the Coriolis
term is a small perturbation, and the vibrations of interest can be written as

u ≈ u1q1(t) + u2q2(t),

where u1 and u2 are a pair of degenerate mode shapes for the structure in an inertial frame in
which Coriolis forces are absent. This leads to the two-degree of freedom model

q̈ + 2βΩJq̇ + ω2
0q = 0.

In the two-dimensional configuration space, solutions to this equation trace the shape of a precessing
ellipse, where the rate of rotation of the ellipse is βΩ. The imperfections that hurt performance are
those that break the degeneracy of the double eigenvalue ω0, and hence qualitatively change this
configuration space picture.
We write perturbations of an ideal geometry in cylindrical coordinates as (r, z) 7→ (r, z)+εf(r, z, θ),
and we reason about how the frequencies change with ε based on a Fourier series for f . Many of
the geometric distortions due to microfabrication issues are highly structured, and so only involve a
small number of Fourier modes. Mode frequencies at azimuthal wave number m can change at first
order in ε only if the Fourier series for f has a nonzero coefficient at azimuthal number p = 2m.
Past first order, to compute the effect of a p-fold rotationally symmetric perturbation on a mode
with azimuthal number m in the unperturbed geometry, we expand the perturbed motion in a
Fourier series in θ; selection rules guarantee that the expansion terms at wave number n may only
be nonzero if p dividesm±n. Using this approach, we are able to predict qualitative trends, such as
the relative insensitivity of modes with azimuthal number 3 to typical microfabrication issues. We
also describe how this structure leads to fast algorithms for computing the perturbed frequencies
and mode shapes for specific geometric deformations.
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Block-smoothing in Multigrid Methods for Circulant and Toeplitz Matrices

Matthias Bolten

Abstract
Circulant matrices and Toeplitz matrices arise in a variety of applications including signal processing
and partial differential equations. The solution of systems where the system matrix is a (multilevel)
circulant matrix can be obtained with the help of the FFT and thus inO(N logN) operations, where
N is the number of unknowns. The solution of systems where the system matrix is multilevel
Toeplitz is not as easily possible. While iterative methods like the CG method provide a viable
alternative, in many applications the matrices are illconditioned, resulting in a rising number of
iterations when the system size is increased.
For this reason the development of multigrid methods as efficient iterative methods that do not
show this behavior for an important subclass of these matrices have been developed, e.g., in [4]
for Toeplitz matrices and in [5] for multilevel circulant matrices. These developements have been
continued and it was possible to show optimality of these methods at least in the case of certain
matrices from matrix algebras [1]. Our recent work focussed on the choice of grid transfer operators
[2, 3]. Most of the analysis focusses on Richardson iterations as smoother. This is sufficient from
a theoretical viewpoint, nevertheless a different choice of the smoother can significantly speed up
the resulting methods.
Possible choices for smoothers include Gauss-Seidel or SOR, optionally with different colorings,
further line- or plane-smoothers can be used, as well as incomplete factorizations. These methods,
including Richardson, have in common that the amount of work that has to be carried out is
relatively small compared to the number of unknowns and thus compared to the memory transfers
that are necessary. The arithmetical intensity can be increased in different ways, one option being
the use of block smoothers, where small d-dimensional blocks are inverted instead of the relaxation
of single unknowns. The increased arithmetic intensity results in a better utilization of modern
computer architectures, like accelerators or parallel computers. As a side effect the efficiency of
the smoother is improved. As a result, while the number of FLOPS might go up, the total time to
solution can still be better than in the case of block smoothers.
We will present recent results on the usage of block smoothers in multigrid methods for circulant
and Toeplitz matrices. For the theoretical analysis proper decompositions of the matrices are used
that allow for a detailed analysis of the resulting method. The analysis tools fit in the established
framework that is used to analyze multigrid methods for Toeplitz and circulant matrices, allowing
for a rigorous analysis of the resulting methods.
Practical results obtained on recent computer architectures demonstrate the efficacy of the chosen
approach to reduce the time to solution.
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Distance Problems for Hermitian Matrix Pencils

Shreemayee Bora and Ravi Srivastava

Abstract
A matrix pencil L(z) = zA − B is said to be Hermitian if its coefficient matrices A and B are
Hermitian. If L(z) is Hermitian, then a finite real eigenvalue say, λ, of L(z) is said to be of definite
type if x∗Ax is non zero for every non zero eigenvector x corresponding to λ. It is said to be of
mixed type if it is not of definite type. The type of an eigenvalue at ∞ is the type of 0 as an
eigenvalue of −revL(z) := zB −A.
We introduce a definition of eigenvalue type based on the homogeneous form L(α, β) = αA − βB
of the pencil. This is combined with homogeneous Hermitian ε-pseudospectrum ΛHerm

ε (L(α, β)) of
the pencil defined by

ΛHerm
ε (L(α, β)) =

{
(α, β) ∈ C2 \ {(0, 0)} : det(α(A+ ∆1)− β(B + ∆2)) = 0, (∆1)∗ = ∆1,

(∆2)∗ = ∆2, ‖∆1‖2 + ‖∆2‖2 < ε2
}
,

where ‖ · ‖ denotes the 2-norm, to analyze the evolution of real eigenvalues of definite type with
respect to Hermitian perturbations. If all eigenvalues of L(z) are real and of definite type, then
this analysis leads to a method for computing the distance from L(z) to a nearest Hermitian pencil
with at least one eigenvalue of mixed type with respect to the norm ‖L‖ :=

√
‖A‖2 + ‖B‖2 and a

Hermitian pencil that attains this distance.
Definite and definitizable pencils are classes of Hermitian pencils with important applications whose
eigenvalues are all real and of definite type. If L(z) is a definite pencil, then it is characterized
by the property that its Crawford number γ(A,B) := min

‖x‖=1

√
(x∗Ax)2 + (x∗Bx)2 is positive. The

theory and computation of the Crawford number is well researched (see, for example [4, 2] and [3])
and it is known that it gives the distance from L(z) to a nearest Hermitian pencil that is not definite
which respect to the norm specified above. The characterization of definite pencils in terms of the
distribution of their eigenvalues based on type as given in [1] implies that a nearest Hermitian pencil
that is not definite has an eigenvalue of mixed type. Therefore our results lead to an algorithm for
computing the Crawford number and a nearest Hermitian pencil that is not definite. We prove that
such a pencil in fact has a defective eigenvalue. The algorithm is based on the bisection principle and
if the definite pencil is of size n, then each step of the bisection requires the computation of a largest
eigenvalue of a positive definite matrix of size n or a smallest eigenvalue of a negative definite matrix
of size n and associated eigenvector(s). Numerical experiments show that the proposed algorithm
compares favorably with existing methods for computing the Crawford number. The distance from
a definitizable pencil to a nearest Hermitian pencil that is not definitizable may also be computed
in a similar way.
This work is a completion of the research presented in Householder Symposium XVIII that resolves
the conjectures made earlier.
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Preconditioning for Low-Rank Matrix Completion via Trust-Regions over
one Grassmannian

Nicolas Boumal and P.-A. Absil

Abstract
We present an algorithm for low-rank matrix completion (LRMC) based on Riemannian optimiza-
tion (or optimization on manifolds) called RTRMC. We first show how, using a least-squares loss
function, LRMC amounts to estimating the column space (or the row space, whichever is smallest)
of the target matrix. Then, the search space is the space of linear subspaces, which is called the
Grassmann manifold. Although abstract in nature, the Grassmann manifold may be endowed with
a Riemannian geometry, which means all the now well-established tools from Riemannian optimiza-
tion can be applied. In particular, RTRMC uses a Riemannian trust-region method. Its global and
local convergence analyses carry over gracefully.
Unfortunately, a bad condition number for the target matrix seems to translate into a quadratically
worse condition number for the Hessian of the cost function at the solution, which typically slows
down convergence dramatically. We show one efficient way to precondition RTRMC which, exper-
imentally, reduces the condition number drastically. Interestingly, preconditioning trust-regions on
manifolds amounts to changing the Riemannian metric. The proposed preconditioner can then be
seen to be strongly related to the data-induced metrics championed by [5, 6].
RTRMC is described in [3] and [4] without preconditioning. We intend to update the latter reference
with preconditioning in the future. For code, visit http://sites.uclouvain.be/absil/RTRMC/.

Context

LRMC is the task of recovering a matrix X ∈ Rm×n based on knowledge of some of its entries Xij ,
(i, j) ∈ Ω ⊂ {1, . . . ,m} × {1, . . . , n} and knowing that it has rank r � m ≤ n. Noisy versions of
LRMC let the knowledge of Xij be tainted by noise and let X only be approximately of rank r.
Assume that we use a least-squares loss function with, for simplicity of exposition, unit weights
and no regularization. Then, LRMC can be framed as the optimization problem

min
X̂∈Rm×n

∑
(i,j)∈Ω

(X̂ij −Xij)2, such that rank(X̂) = r. (1)

Convex programming approaches have proven remarkably powerful to solve this problem. They
consist for example in replacing the nonconvex rank constraint by a convex, low-rank inducing
regularization term such as the nuclear norm (sum of the singular values). Unfortunately, by
dropping the rank constraint, the search space becomes much larger than the complexity of the
sought object warrants: it increases from a dimension of r(m+ n− r) to mn.
Because mining all of Rm×n in search of an answer may simply be too costly, a number of algorithms
have seen the day which make the sacrifice of convexity (and its nice performance guarantees) in
exchange for computational efficiency. The typical starting point is the observation that the set of
rank-r matrices may be parameterized as X̂ = UW , with U ∈ Rm×r and W ∈ Rr×n:

min
U∈Rm×r,W∈Rr×n

∑
(i,j)∈Ω

((UW )ij −Xij)2, such that U,W are full-rank. (2)
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But factorizations of the form UW are not unique. Indeed, for any invertible matrix M , the pairs
(U,W ) and (UM,M−1W ) are equivalent. Consequently, the search space is still larger than it
needs to be and convergence guarantees for optimization methods (which typically assume isolated
critical points) may be harder to establish.
Riemannian optimization is perfectly tailored to accommodate such invariances while preserving
computational efficiency and convergence guarantees [1]. This motivates numerous investigations
which can be classified in two categories. On one side, significant efforts are devoted to the study
of Riemannian geometries for the set of fixed-rank matrices [1, 7]. On the other side, some authors,
including ourselves, leverage the specific least-squares formulation (at the expense of flexibility in
the choice of loss function) to frame LRMC on one or two Grassmannians.
Clearly, fixing either U or W reduces (2) to an easily solved linear least-squares problem. RTRMC
replaces W explicitly by WU , the optimal value for W obtained by fixing U . Regularization (not
shown) ensures WU is well-defined. The product UWU is only a function of the column space of
U , so that f(U) =

∑
(i,j)∈Ω((UWU )ij − Xij)2 descends as a well-defined cost function over the

Grassmann manifold and we may restrict our attention to orthonormal U ’s, for numerical stability.
As indicated above, the Hessian of f may be ill-conditioned close to a solution U if X ≈ UWU is
badly conditioned itself (where the conditioning of X is evaluated as σ1/σr and σ1 ≥ · · · ≥ σm are
the singular values of X). In an attempt to explain this observation, we simplify the problem and
assume all entries (i, j) are observed. Then, if the noise is small, close to convergence at U it can
be shown that the Hessian is well approximated by the mapping H 7→ H(WUW

T
U ) defined on the

tangent spaces of the Grassmannian. Since U is orthonormal, it follows that

cond(Hess f(U)) ≈ cond(WUW
T
U ) = cond2(X). (3)

This suggests the cheap preconditioner H 7→ H(WUW
T
U )−1, which is observed to be efficient.
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Optimal CUR Matrix Decompositions

Christos Boutsidis and David Woodruff

Abstract
Given as inputs a matrix A ∈ Rm×n and integers c < n and r < m, the CUR factorization of
A finds C ∈ Rm×c with c columns of A, R ∈ Rr×n with r rows of A, and U ∈ Rc×r such that
A = CUR + E. Here, E = A − CUR is the residual error matrix. Compare this to the SVD
factorization (let k < ρ = rank(A)), A = UkSkV

′
k +Aρ−k. The SVD residual error Aρ−k is the best

possible, under some rank constraints. The matrices Uk ∈ Rm×k and Vk ∈ Rn×k contain the top
k left and right singular vectors of A. In CUR, C and R contain actual columns and rows of A, a
property which is desirable for feature selection and data interpretation. This last property makes
CUR attractive in a wide range of applications.
From an algorithmic perspective, the challenge is to construct C,U , and R quickly to minimize the
approximation error ||A− CUR||2F . The definition below states the precise optimization problem:

The CUR Problem. Given A ∈ Rm×n of rank ρ = rank(A), rank parameter k < ρ, and
accuracy parameter ε > 0, construct C ∈ Rm×c with c columns from A, R ∈ Rr×n with r rows
from A, and U ∈ Rc×r, with c, r, and rank(U) being as small as possible, in order to reconstruct A
within relative-error :

||A− CUR||2F ≤ (1 + ε)||A−Ak||2F .

Here, Ak = UkSkV
′
k ∈ Rm×n is the matrix from the best rank k SVD approximation to A.

Despite the significant amount of work and progress on CUR, spanning both the numerical linear
algebra community and the theoretical computer science community, there are several important
questions which still remain unanswered:

• Optimal CUR: Are there any (1+ε)-error algorithms selecting the optimal number of columns/rows?

• Input-sparsity-time CUR: Are there any input-sparsity-time relative-error algorithms for CUR?

• Deterministic CUR: Are there any deterministic, polynomial-time, relative-error CUR algorithms?

• Rank k CUR: Are there any relative-error CUR algorithms constructing U with rank at most k?

We settle all of these questions via presenting a randomized, input-sparsity-time and a deterministic,
polynomial-time algorithm for the CUR problem. Both algorithms achieve a relative-error bound
with c = O(k/ε) columns, r = O(k/ε) rows, and U being a c × r matrix of rank k. Additionally,
a matching lower bound is proven, indicating that both algorithms select the optimal number of
columns and rows - up to constant factors - and the optimal rank(U).
To design our optimal algorithms for CUR we combine existing tools on column subset selection
such as (i) leverage-score sampling, (ii) BSS sampling (i.e., deterministic sampling similar to the
method of Batson, Spielman, and Srivastava, 2009), and (iii) adaptive sampling, with novel tools
for input-sparsity-time column subset selection and deterministic versions of adaptive sampling.
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Stable Discrete Empirical Interpolation Method based Quadrature Schemes
for Nonlinear Model Reduction

Russell L. Carden and Danny C. Sorensen

Abstract
The Discrete Empirical Interpolation Method (DEIM) is a technique for model reduction of non-
linear dynamical systems [1]. It is based upon a modification to proper orthogonal decomposition
designed to reduce the computational complexity for evaluating reduced order nonlinear terms.
The DEIM approach is based upon an interpolatory projection and only requires evaluation of a
few selected components of the original nonlinear term. Although DEIM has been effective on some
very difficult problems, it can under certain conditions introduce instabilities in the reduced order
model. In particular, if the Jacobian of the original nonlinear term is symmetric definite, then the
Jacobian of the corresponding reduced order nonlinear term need not be symmetric nor definite.
This can lead to a reduced model that fails to capture the important features of the full model.
We consider a class of nonlinear dynamical systems that can be derived from a variational principle.
For such problems there is an associated functional, and a solution to the dynamical system is a
critical point of this functional. Rather than apply the DEIM approximation to the nonlinear
terms in the dynamical system, we apply the DEIM approximation to the corresponding terms in
the functional. The DEIM approximation then determines a quadrature rule for approximating
these terms. This approach preserves the symmetry of the Jacobian of the nonlinear terms in the
reduced order model, however it does not preserve the defniteness. In order preserve definiteness,
the DEIM quadrature rule must be stable. By including more DEIM points than DEIM basis
vectors, we show how to construct stable DEIM based quadrature rules. We demonstrate this
approach on a problem for which regular DEIM has difficulties. We show how the weighted least
squares residual method can be used to generalize this approach to systems that are not derived
from a variational principle.
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Improving the Maximum Attainable Accuracy of Communication-Avoiding
Krylov Subspace Methods

Erin Carson and James Demmel

Abstract
Krylov subspace methods (KSMs) are a class of iterative algorithms commonly used for solving
linear systems Ax = b where A is large and sparse. For simplicity, we restrict our discussion to linear
systems where A is real, square, and full rank. In classical KSM implementations, the updates to
the solution xn and updated residual rn in iteration n consist of one or more sparse matrix-vector
multiplications and vector operations. On modern computer architectures, these operations are
communication bound: the movement of data, rather than computation, is the limiting factor in
performance. Recent efforts have thus focused on communication-avoiding Krylov methods (CA-
KSMs), based on s-step formulations, which, under certain assumptions on sparsity structure,
enable implementations that reduce both parallel and sequential communication cost by a factor
of O(s). This can translate into significant speedups in practice [7]. For a thorough overview of
CA-KSMs and related work, see [5].
Although equivalent in exact arithmetic, CA-KSMs and their classical counterparts can have signif-
icantly different behavior in finite precision; relative to the classical implementation, CA-KSMs can
require a greater number of iterations to converge to the same tolerance and/or suffer a decrease
in maximum attainable accuracy, i.e., the accuracy with which the method can solve Ax = b on a
computer with unit round-off ε. Well-conditioned polynomial bases such as Newton and Chebyshev
can be used to alleviate these effects (see, e.g., [8]), although convergence and accuracy eventually
deteriorate for high s. Both theoretical and empirical comparisons with the stability and con-
vergence properties of classical implementations are thus crucial in accessing the practicality of
CA-KSMs for real-world problems.
Studies on the finite precision behavior of CA-KSMs have thus far been empirical in nature; in
this talk, we review our recent work [1], the first quantitative analysis of the maximum attainable
accuracy of finite precision CA-KSMs, specifically communication-avoiding conjugate gradient (CA-
CG) and biconjugate gradient (CA-BICG).
In classical KSMs, errors made in updates to xn and rn in each iteration can accumulate and cause
deviation of the true residual, b − Axn, and the updated residual, rn. Writing the true residual as
b − Axn = rn + (b − Axn − rn), we can bound its norm by ‖b−Axn‖ ≤ ‖rn‖ + ‖b−Axn − rn‖.
When the updated residual rn is much larger than b−Axn− rn, the true residual and the updated
residual will be of similar magnitude. However, as ‖rn‖ → 0, the size of the true residual depends
on ‖b−Axn − rn‖. If this deviation grows large, it can limit the maximum attainable accuracy.
Many have studied the maximum attainable accuracy of classical KSMs; see, e.g., [3, 4, 6, 9, 10].
Residual replacement strategies, in which the updated residual is replaced by the true residual
in certain iterations, have been shown to maintain ‖b−Axn − rn‖ = O(ε)‖A‖‖x‖ for classical
KSMs [10]. The replacement iterations are chosen based on an estimate of ‖b−Axn − rn‖ such
that (1) the size of the deviation of residuals remains small and (2) convergence of the finite precision
Lanczos process is undisturbed [9, 10].
We derive a bound on the deviation of the true and updated residuals in CA-CG and CA-BICG
in finite precision. This bound can be iteratively updated within the method inexpensively, i.e.,
without asymptotically increasing communication or computation costs. Our bound allows insight
into how maximum attainable accuracy is affected by s and choice of polynomial basis.
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Furthermore, following the derivation in [10] for classical KSMs, our bound enables an implicit
residual replacement strategy for maintaining agreement between residuals to within O(ε)‖A‖‖x‖
in CA-CG and CA-BICG. Numerical experiments on a small set of test matrices verify that, for
cases where the updated residual converges, the residual replacement strategy can enable accuracy
of O(ε)‖A‖‖x‖ with a small number of residual replacement steps, reflecting improvements of up
to 7 orders of magnitude.
Much work remains to be done on the analysis of finite precision CA-KSMs. We plan to extend
the analysis and scheme developed here to other CA-KSMs, such as CA-BICGSTAB [2], as well as
preconditioned variants. We briefly mention the broader open problem of developing convergence
and stability theories for CA-KSMs in finite precision.
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Structure-Preserving Model Reduction for Nonlinear Port-Hamiltonian
Systems

Saifon Chaturantabut, Christopher A. Beattie and Serkan Gugercin

Abstract
Port-Hamiltonian systems can be used for modeling port-based network systems, as well as other
physical systems described by the Euler-Lagrange equations. Each of these systems is generally
defined by a power conserving geometric structure that captures the basic interconnection laws,
together with a Hamiltonian function that describes the total stored energy. We consider the
finite-dimensional port-Hamiltonian systems of the form:

ẋ = (J−R)∇xH(x) + Bu(t)

y = BT∇xH(x),
(1)

where x ∈ Rn is the n-dimensional state vector; H : Rn → [0,∞) is the Hamiltonian function;
J = −JT ∈ Rn×n is the structure matrix describing the interconnection of energy storage elements
in the system; R = RT ≥ 0 is the n × n dissipation matrix describing energy loss in the system
and, B ∈ Rn×m is the input/output matrix describing how energy enters and exits the system. It
can be shown that the family of the port-Hamiltonian systems given in (1) is always stable and
passive, i.e.

H(x(t1))−H(x(t0)) ≤
∫ t1

t0
y(t)Tu(t) dt, (2)

which implies that the change in the internal energy of the system, as measured by H, is bounded
by the total work done on the system.
The dimension n of this port-Hamiltonian system (1) can get extremely large as the size of the cor-
responding network model increases. This can result in an intensive computational cost, especially
when the simulation is repeatedly required with different inputs for the same system. Therefore,
our goal is to construct a low dimensional port-Hamiltonian structure-preserving reduced system
that can give accurate output responses for wide-ranging interested inputs.
We extend the earlier work in [1], which proposed a structure and stability preserving model re-
duction approach for large-scale input-output nonlinear port-Hamiltonian systems. This approach
is based on the Petrov-Galerkin projection with a special modification that allows the resulting
reduced system to preserve the original port-Hamiltonian structure. Two techniques for con-
structing reduced-order bases were considered: Proper Orthogonal Decomposition (POD) and a
quasi-optimal H2 model reduction [3]. Although, the resulting low-dimensional reduced systems
constructed from both types of bases were shown to accurately capture the original output behav-
ior, they may still have complexity proportional to the full-order dimension n, particularly in the
case of general nonlinear Hamiltonian functions. Therefore, these reduced systems may not be able
to achieve a significant reduction in actual computation time.
This work incorporates the notion of Discrete Empirical Interpolation Method (DEIM) [2] with
the structure preserving model reduction approach from [1] to handle the nonlinearity of port-
Hamiltonian systems. Since DEIM can completely destroy the port-Hamiltonian structure, a mod-
ification is crucially required before applying it to the nonlinear term. The structure-preserving
DEIM approximation is derived through the minimization of the enforced structure-preserving form
of the nonlinear term at some specially chosen interpolation components, which are corresponding
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to the indices selected by the greedy algorithm as done in [2]. The complexity reduction is therefore
a result of the fact that the interpolation projection will only require evaluation of the nonlinear
term at these few selected components. Each resulting reduced system can be shown to preserve
the port-Hamiltonian structure, and hence it maintains the stability and passivity of the original
system (2). This work also derives the corresponding a-priori error bounds of the state variables
and outputs by using an application of generalized logarithmic norms for unbounded nonlinear
operators. The effectiveness of the proposed approach will be shown through a nonlinear ladder
network and a Toda lattice model with exponential interactions.
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Two Methods for Computing the Matrix Sign Function

Jie Chen and Edmond Chow

Abstract
We are interested in computing

S = sign(A)

for a large, Hermitian matrix A. The matrix sign function plays a key role in electronic-structure
calculations, where A stands for a shifted Hamiltonian. The density matrix is the Heaviside function
of A, which is simply S after a scaling and a shift. Computing such a matrix is challenging in terms
of both floating point operations and storage. One might recall a related argument that the inverse
of a large matrix is rarely needed; in our case, however, the elements of the density matrix are used
in self-consistent field iterations and hence computing the whole S is necessary.
We have developed two methods that offer parallelization benefits over the traditional Newton’s
method and the method of Padé approximations, which requires matrix inversions or a large number
of matrix solves. The first method is an improvement of the Newton-Schulz iteration

Xk+1 = f(Xk), X0 = A, f(x) = 1
2
x(3− x2)

that leads to Xk → S for ‖I − A2‖ < 1. The appealing quadratic convergence of Newton-Schulz
is eclipsed by the slow progress in the initial steps. The central idea of the improvement is to
accelerate the initial convergence by using a better fixed-point polynomial f that minimizes the
condition number of Xk+1. We show that the number of fixed-point iterations for reaching single
or double precision accuracy is half of that of Newton-Schulz in general. This method heavily uses
matrix-matrix multiplications and the parallelization is relatively easy to optimize.
The second method is also based on matrix-matrix multiplications, specifically, A-multiplies. We
use a least squares polynomial gk with degree not exceeding k to approximate the sign function:

gk(A)→ S as k →∞.

Compared with Chebyshev approximations that cannot handle well the singularity of the sign func-
tion, we design an L2 inner product with a special weight function to bypass the singularity and we
show a linear convergence of gk. Preconditioning techniques (such as deflation) can be incorporated
to improve the convergence. This method is favorable when the A-vector multiplication has a cost
lower than quadratic, such as when A is sparse, is Toeplitz, or is a fully dense kernel matrix. This
method can also naturally be extended to computing sign(A)b for any vector b.
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Preconditioned Methods for Sampling Multivariate Gaussian Distributions

Edmond Chow and Yousef Saad

Abstract
In a wide variety of probabilistic simulations, it is necessary to compute sample vectors from a
multivariate Gaussian distribution with zero mean and a given covariance matrix. For large-scale
problems, this task is computationally expensive, and despite the availability of several approaches,
fast methods are still highly desired since such sampling remains a computational bottleneck in these
simulations.
For a symmetric positive definite covariance matrix A, the canonical method of constructing a
Gaussian sample y ∼ N(0, A) is to compute y = Sz, where A = SST and z is a standard normal
vector. With this definition of S, it is clear that the covariance of y will be the matrix A. As a
result, any S that satisfies A = SST can be used, for example, the lower triangular Cholesky factor
or principal square root of A. Use of the Cholesky factor is most common.
Instead of Cholesky factorization, we focus on a category of sampling methods based on matrix
polynomials. Here, sample vectors of the form p(A)z are computed, where p is a polynomial chosen
such that p(A) approximates the principal square root of A. One need not form the matrix p(A)
explicitly. Instead, for each z, p(A)z is computed from a sequence of products with the matrix A.
Two main types of polynomial methods have been used: those that choose p(A) as an expansion
of Chebyshev or other orthogonal polynomials, and those that construct the sample from a Krylov
subspace.
In this talk, we show how these polynomial sampling methods can be preconditioned. Unlike the
linear system case, preconditioning here changes the problem being solved. However, a sample with
the desired covariance can still be recovered.
Consider a factorization GTG that approximates A−1, which we may call a preconditioner. Now
consider using the preconditioned matrix GAGT , rather than A, in a polynomial sampling method,
to produce a sample

w̃ = p(GAGT )z

which is approximately distributed as N(0, GAGT ). Since GAGT is well-conditioned, we expect
that only a small number of terms is required in the polynomial approximation to the square root
of GAGT . To construct a sample with the desired covariance, apply G−1 to each sample w̃,

ỹ = G−1w̃ = G−1p(GAGT )z

which is approximately distributed as N(0, A). Such a sample approximates G−1(GAGT )1/2z. The
matrix S = G−1(GAGT )1/2 satisfies

SST = G−1(GAGT )1/2(GAGT )1/2G−T = A

as desired, but it is not a Cholesky factor or square root of A. The idea leading to the method
described here is that S can be any of an infinite number of quantities that satisfies SST = A.
How well the covariance of ỹ approximates A depends on the accuracy of p and not on G. The
convergence rate depends on the quality of the approximation GTG ≈ A−1. For example, in the
extreme case when we have an exact Cholesky factorization at our disposal, then GTG = A−1, and
we only need to take p(A) = I, i.e., ỹ becomes ỹ = G−1p(GAGT )z = G−1z. This corresponds
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to the standard method based on Cholesky (G−1 is the lower triangular Cholesky factor of A).
However, we now have the option of using an approximate factorization instead of an exact one.
As usual, the preconditioned matrix GAGT is not formed explicitly. Instead, G and GT are applied
to vectors in these methods. To construct the desired sample, however, we must be able to easily
solve with G. (The roles of matrix-vector multiplications and solves are reversed if we define the
preconditioner GGT as an approximation to A.) These requirements are more demanding than the
usual requirements for preconditioners.
In this talk, we will also propose a preconditioner satisfying the above requirements and that are
very suitable for covariance matrices used to model Gaussian processes. These covariance matrices
include those based on piecewise polynomial, exponential, Matérn, and Gaussian radial distribution
functions.
To motivate the choice of preconditioner, first consider that the inverse of a covariance matrix,
known as a precision matrix, measures the conditional independence between data points. For
Gaussian Markov distributions, this precision matrix is sparse. For many other types of Gaussian
distributions, including those just mentioned, the precision matrix shows a strong decay in the size
of its elements. These observations motivate using a preconditioner that is a sparse approximation
to the inverse of the covariance matrix, e.g., factorized sparse approximate inverse preconditioners.
In our experimental tests, we found that preconditioning with this choice of preconditioners can
reduce computation time by at least a factor of 10 on large problems.
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A Framework for Regularization via Operator Approximation
Julianne Chung, Misha Kilmer and Dianne O’Leary

Abstract
Large-scale inverse problems arise in many applications such as astronomy, biomedical imaging,
surveillance, and nondestructive evaluation. We consider large-scale inverse problems of the form

b = Ax + n, (1)

where A ∈ Rm×n, m ≥ n, denotes the forward operator, b ∈ Rm represents the observed data,
n ∈ Rm is additive noise, and x ∈ Rn is the desired solution. Given A and b, the goal of the inverse
problem is to reconstruct x.
Most inverse problems are ill-posed, meaning small perturbations in the observation may lead to
large changes to the solution [5, 8, 10]. To mitigate this difficulty, regularization is often used,
adding constraints that suppress the amplification of noise during the inversion process. Choos-
ing an appropriate regularization method and a good regularization parameter to balance fidelity
to the model with satisfaction of the constraints is key to solving any inverse problem. Regular-
ization approaches based on spectral filtering can be highly effective [6]. However, these methods
require computing the singular value decomposition (SVD) and choosing appropriate regularization
parameters, which can be prohibitively expensive for large-scale problems.
In this talk, we propose a framework for regularization that uses operator approximations to de-
termine the regularization for large-scale problems in which the SVD of A is not available. The
framework consists of three steps:

1. Find a related but simpler operator Â ≈ A, whose SVD is easily computable.

2. Choose a regularization method and find suitable regularization operators/parameters for the
approximate problem,

b = Âx + n . (2)

3. Find the regularized solution of the original problem (1), using the same regularization
method, operators/parameters determined in step 2.

One of the key advantages of our proposed framework is that we apply the regularization to the
original problem (1). The operator approximation is only used to determine the regularization and
regularization parameter in a computationally efficient way. Although a solution to the approximate
problem (2) may provide an estimate of the desired solution for the original problem (1), previous
researchers have observed that the approximate problem can yield poor reconstructions [7, 2].
Instead, we propose to only use the operator approximation in step 2 of our framework, so that
sophisticated regularization and regularization parameter selection methods can be utilized for
problems for which it is too expensive to apply the methods directly.
A variety of regularization approaches can be incorporated into this framework but we focus here
on the recently developed windowed regularization [3], a generalization of Tikhonov regularization
in which different regularization parameters are used in different regions of the spectrum. We derive
bounds on the perturbation to the computed solution and on the error in the computed solution,
resulting from using the regularization determined for the approximate operator. We demonstrate
the effectiveness of our method in computations using operator approximations such as sums of
Kronecker products [9], BCCB (block circulant with circulant blocks) matrices [1], and Krylov
subspace approximations [4].
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Testing Matrix Functions Using Identities

Edvin Deadman and Nicholas J Higham

Abstract
We introduce a new method for testing matrix function algorithms, based on the residuals in func-
tional identities. This work was motivated by a collaboration between the University of Manchester
and NAG, a software company specializing in numerical libraries. During this collaboration, many
of the latest algorithms for computing matrix functions were implemented for the NAG Library.
One of the difficulties encountered was in testing the accuracy and stability of the implementations.
Matrix function algorithms typically involve combinations of scaling, square roots [4], Taylor series
and Padé approximants. Backward rounding error analyses are usually not possible and numerical
experiments are essential to demonstrate the accuracy and stability of the algorithms.
Let Ŷ denote the computed approximation to a matrix function Y = f(X). The normwise relative
forward error is given by ‖Y −Ŷ ‖/‖Y ‖. Suppose that there exists a ∆X such that Ŷ = f(X+∆X).
Then the normwise relative backward error is the smallest possible value of ‖∆X‖/‖X‖.
The relative condition number κf (X) is defined as

κf (X) = lim
ε→0

sup
‖E‖≤ε‖X‖

‖f(X + E)− f(X)‖
ε‖f(X)‖

.

It gives an upper bound on the effect of small changes in X on the solution Y . A useful rule
of thumb [5, §1.6] states that the forward error is approximately bounded by the product of the
condition number and the backward error.
When testing an algorithm, two questions must be considered. First, how can we compute the
forward or backward errors? Second, how small should we expect them to be?
The standard approach used in the matrix functions literature is motivated by the fact that un-
certainties in X (for example due to rounding errors) mean that we cannot reasonably demand
backward errors smaller than the unit roundoff, u. In practice, backward errors within a reason-
ably small factor of u are deemed to be acceptable. However, backward errors themselves are not
usually available when testing an algorithm. Instead, the algorithm is judged to be behaving in a
stable manner if the forward error is smaller than κf (X)u. If this criterion does not hold, then the
backward error must necessarily be greater than u and the algorithm cannot be backward stable.
The forward error is obtained by computing the “exact” solution Y by diagonalizing X in high
precision arithmetic (a tiny random perturbation ensures that X is diagonalizable [3]).
This method has been used very successfully to test new algorithms. However, it has two limitations.

1. At NAG, software is tested on several different computer architectures. High precision arith-
metic is unlikely to be available, so forward errors cannot be computed using the method
above. (Even if high precision arithmetic is available, the increased cost of floating point
operations may limit the sizes of the test matrices that can be used.)

2. Computing the condition number involves maximizing the perturbation in the data over all
directions. Hence κf (A)u represents a worst-case scenario. Even if the forward error is smaller
than κf (A)u it is still that the backward error for that particular computation is larger than
u. Hence a forward error smaller than κf (A)u merely shows that the algorithm is behaving
in a way consistent with backward stability.
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We have approached the problem by using the residuals from matrix function identities to test
matrix function algorithms. By expanding to linear order in the backward error terms, we are
able to generalize the idea of comparing the forward error with κf (A)u by deriving quantities with
which the residuals in the identities should be compared. For identities of the form f(g(A)) = A
(such as elogA = A) the relevant quantity is

resmax = u{1 + κf (g(A))}.

For identities in which the product f(A)g(A) is known (e.g. A1/3A2/3 = A) the relevant quantity is

resmax = u
‖A‖

‖f(A)g(A)‖
max
‖E1‖≤1
‖E2‖≤1

‖Lf (A,E1)g(A) + f(A)Lg(A,E2)‖,

where Lf (A,E1) denotes the Fréchet derivative of f in the direction E1. We are able to show how,
provided that Fréchet derivatives can be computed, this maximum can be reliably estimated in a
manner similar to that used to estimate the 1-norm condition number of a matrix [6, §3.4].
This approach obviates the need to use high precision arithmetic to obtain “exact” solutions, solving
the first of the limitations above.
To deal with the second limitation, we show how a normwise relative backward error estimate
can be obtained directly from the residuals in the matrix function identities. This is done by,
again, expanding to linear order in the backward error terms and solving the resulting least squares
problem to give a backward error estimate.
A matrix function algorithm may give an inaccurate result because the condition number of the
matrix is large. Alternatively, the matrix may be well-conditioned but could have a property that
causes difficulties for the algorithm (for example the Schur-Parlett algorithm [2] struggles with
certain eigenvalue distributions). Numerical experiments show that our new methods work partic-
ularly well in the latter case, successfully distinguishing between algorithms that are performing
stably and algorithms that are not (although the methods are unable to attribute the errors to in-
dividual matrix function evaluations in the identities). For highly ill-conditioned matrices however,
the linearization assumptions made in our analysis may not be valid, and the methods can fail.
Thus care is required in the selection of test problems when using these methods in practice.
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Coupled Matrix/Tensor Decompositions: an Introduction

Laurent Sorber, Mikael Sorensen and Marc Van Barel and Lieven De Lathauwer

Abstract
Decompositions of higher-order tensors are becoming more and more important in signal processing,
data analysis, machine learning, scientific computing, optimization and many other fields. A new
trend is the study of coupled matrix/tensor decompositions (i.e., decompositions of multiple ma-
trices and/or tensors that are linked in one or several ways). Applications can be found in various
fields and include recommender systems, advanced array processing systems, multimodal biomed-
ical data analysis and data completion. We give a short overview and discuss the state-of-the-art
in the generalization of results for tensor decompositions to coupled matrix/tensor decompositions.
We briefly discuss the remarkable uniqueness properties, which make these decompositions impor-
tant tools for signal separation. Factor properties (such as orthogonality and triangularity, but also
nonnegativity, exponential structure, etc.) may be imposed when useful but are not required for
uniqueness per se. Also remarkable, in the exact case the decompositions may under mild condi-
tions be computed using only tools from standard linear algebra. We touch upon the computation
of inexact decompositions via numerical optimization (this is discussed in more detail in the com-
panion talk by M. Van Barel). We illustrate some of the ideas using Tensorlab, a Matlab toolbox
for tensors and tensor computations that we have recently released, and of which version 2 provides
a comprehensive framework for the computation of (possibly constrained) coupled matrix/tensor
decompositions.
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Communication Avoiding Algorithms for Linear Algebra and Beyond

James Demmel

Abstract
Algorithms have two costs: arithmetic and communication, i.e. moving data between levels of a
memory hierarchy or processors over a network. Communication costs (measured in time or energy
per operation) already greatly exceed arithmetic costs, and the gap is growing over time following
technological trends. Thus our goal is to design algorithms that minimize communication. We
present algorithms that attain provable lower bounds on communication, and show large speedups
compared to their conventional counterparts. These algorithms are for direct and iterative linear
algebra, for dense and sparse matrices, as well as direct n-body simulations. Several of these
algorithms exhibit perfect strong scaling, in both time and energy: run time (resp. energy) for
a fixed problem size drops proportionally to the number of processors p (resp. is independent of
p). Finally, we describe extensions to algorithms involving arbitrary loop nests and array accesses,
assuming only that array subscripts are affine functions of the loop indices.
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Model Reduction Techniques for Fast Nonlinear Inversion

Eric de Sturler, Serkan Gugercin, Misha Kilmer, Chris Beattie, Saifon Chaturantabut, and
Meghan O’Connell

Abstract
As many inverse problems are severely underdetermined, it is appropriate to solve for a medium or
image parameterized with a relatively modest number of parameters. Moreover, the parametriza-
tion may provide regularization, as it does for our approach, reducing the inverse problem to a
nonlinear optimization problem. Nevertheless, the computational burden remains very high, be-
cause the nonlinear least squares optimization requires the solution of many large linear systems
per iteration. This is expensive, and the ever-increasing number of measurements enabled through
advances in engineering increases this computational burden further. We show how techniques from
interpolatory model reduction can drastically reduce the cost of inverse problems by reducing the
cost of solving many forward problems.
Specifically, we discuss how reduced order transfer functions and their gradients can approximate
the objective function and the associated Jacobian with little loss of accuracy but significantly
reduced cost. The quality and performance of our method is demonstrated for several synthetic
diffuse optical tomography (DOT) problems. An important and intriguing result is that global
projection bases for reduced models derived from only a few interpolation points for a single recon-
struction can be used, without further expensive linear solves, for very different reconstructions.
We will explain this result and discuss interesting related questions in parametric inversion, model
reduction, optimization, and linear solvers.
For diffuse optical tomography (DOT), we solve the following partial differential equation with
appropriate boundary conditions, posed in the frequency domain,

−∇ · (D(x; p)∇u(x;ω)) +
(
a(x; p) + ıω

ν

)
u(x;ω) = s(x;ω),

where x is position, ω is the frequency modulation of light, ν is the speed of light in the medium,
u(x;ω) is the photon flux, D(x; p) and a(x; p) are respectively the diffusion and absorption field
depending nonlinearly on the parameter vector p, and s(x;ω) is an input light source (here a point
source on or near the surface) [3]. For a given parameter vector p, giving diffusion and absorption
fields, this PDE can be solved for u (the forward problem). The result provides estimates for mea-
surements by a set of detectors. We solve a nonlinear least squares problem for p by minimizing the
difference between actual (noisy) measurements and computed measurements, thereby determining
the diffusion and absorption fields. We use the PaLS parametrization [1], which models the shapes
of anomalies using compactly supported radial basis functions (CSRBFs) and level sets, for D(x; p)
and a(x; p), and we solve the nonlinear least squares problem using the TREGS solver proposed in
[6].
After discretization of the PDE, the computed measurements for frequency ω and parameter vector
p are given by the matrix

C

(
ıω

ν
E +A(p)

)−1
B,

which one readily recognizes as the transfer function of a discrete dynamical system. Here, E is the
identity, except for zeros on the diagonal corresponding to grid points at the sides where sources
and detectors are located, A(p) is the discretization of the diffusion and absorption operators, the
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columns of B correspond to source locations, and the rows of C correspond to detector locations
(or some localized quadrature rule). Hence the evaluation of the objective function for least squares
minimization involves the solution of this system for many sources (all columns of B) and for a
modest number of frequencies ωj . The computation of the Jacobian (with respect to p) of the
objective function can be done using a co-state method, making it roughly as expensive as solving
a similar system for all detector locations. The main cost of the optimization is solving a very large
number of large, sparse, linear systems (discretized 3D PDEs).
Interpolatory model reduction provides the tools to replace this expensive transfer function by a
much smaller (reduced order) transfer function [2] that requires only the solution of small linear
systems but nevertheless provides accurate approximations to both the objective function as well
as the Jacobian. The reduced transfer function is obtained by computing global projection bases
following [4], requiring a modest number of large linear solves. However, after computing those
bases once, the optimization can be done without any further solution of large, linear systems.
Indeed, in our numerical experiments, the same global bases can be used for the reconstruction of
substantially different images in the same ‘experimental setting’ (discretization, number of CSRBFs,
and source and detector locations). Hence, no further off-line costs are incurred for subsequent,
distinct reconstructions. This is an intriguing and potentially important result, as it suggests
that for our method reduction bases can be computed once in an off-line phase and used for
many distinct reconstructions. Potential explanations for this result, based on ‘inexact reduction
bases for interpolatory model reduction’ [5] will be discussed. We will also discuss alternative
approaches, such as a method proposed in [7], which has some nice theoretical results, but requires
the computation of new local reduction bases at every optimization step.
Acknowledgements: This material is based upon work supported by the National Science Foun-
dation under Grants No. NSF-DMS 1025327, NSF DMS 1217156 and 1217161, NSF-DMS 0645347,
and NIH R01-CA154774.
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Backward Error and Conditioning of Fiedler Companion Linearizations.

Fernando De Terán and Françoise Tisseur

Abstract
Given a matrix polynomial P (λ) =

∑k
i=0 λ

iAi, with Ai ∈ Cn×n, the Polynomial Eigenvalue Problem
(PEP) consists of finding pairs (λ0, v), with v 6= 0, such that P (λ0)v = 0. Such pairs are known
as eigenpairs, λ0 ∈ C is a finite eigenvalue and v ∈ Cn×n is an eigenvector associated to the eigen-
value λ0. Infinite eigenvalues of P (λ) are defined as the zero eigenvalues of the reversal polynomial
revP (λ) = λkP (1/k). Classically, the PEP has been solved by linearizing the polynomial P (λ),
namely, by transforming the PEP into a Generalized Eigenvalue Problem (GEP) and then apply-
ing the QZ algorithm to this GEP. More precisely, a linearization of P (λ) is a matrix polynomial
of degree one (or matrix pencil), L(λ), such that E(λ)L(λ)F (λ) = diag(P (λ), I(k−1)n), for some
matrix polynomials E(λ), F (λ) with constant nonzero determinant. Every linearization of P (λ)
has the same eigenvalues as P (λ), though not the same eigenvectors. Nonetheless, in the classical
linearizations (the Frobenius companion linearizations) the eigenvectors of P (λ) can be easily recov-
ered from the ones of the linearization. The Frobenius companion linearizations are the ones used
in MATLAB’s routine polyeig to solve the PEP. However, the Frobenius linearizations present
several drawbacks. For instance, they do not preserve any of the structures that matrix polynomials
arising in applied problems usually have, like symmetry, palindromicity, etc. The introduction of
new families of linearizations opens the possibility of using other linearizations for the PEP. We are
particularly interested in the Fiedler companion linearizations, which include the Frobenius com-
panion linearizations. Fiedler pencils are particular cases of companion forms, namely, templates
which are easily constructible from the coefficients Ai of P (λ), without performing any arithmetic
operation. These companion forms present the following desirable properties:

(a) They are always linearizations, regardless of P (λ) being regular or singular (though, in this
talk, we focus on regular polynomials).

(b) The left and right eigenvectors of P (λ) are easily recovered from those of the companion form.

(c) The leading coefficient of the companion form is block diagonal, thereby reducing the com-
putational cost of the Hessenberg-triangular reduction step of the QZ algorithm.

(d) They can be easily transformed into a block upper-triangular form revealing zero and infinite
eigenvalues, if any.

(e) They are the source of structured linearizations.

In this talk, we analyze some numerical features of Fiedler companion forms. When the PEP is
solved by linearization, it is transformed into a GEP, with different conditioning and backward error
than the PEP. We will first display explicit formulas for the eigenvectors of any Fiedler pencil F (λ)
which, in particular, will show that the eigenvectors of P (λ) can be easily recovered from those
of the Fiedler pencil. Using these formulas, we will compare the backward error of approximate
eigenpairs of F (λ) with the backward error of the corresponding eigenpair of P (λ), and we obtain
bounds for the ratio between these two backward errors. We also compare the conditioning of
eigenvalues in F (λ) and P (λ), and derive bounds for the corresponding ratio as well. We will see,
in particular, that if the matrix polynomial is well scaled (i.e., ‖Ai‖2 ≈ 1, for all i = 0, 1, . . . , k),
then the Fielder companion linearizations have good conditioning and backward stability properties.
Some numerical experiments will be shown to illustrate our theoretical results.
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Parallel Asynchronous Matrix Factorization for Large-Scale Data Analysis

Inderjit S. Dhillon, H. Yun, C.J. Hsieh, H.F. Yu and S.V.N. Vishwanathan

Abstract
In many applications in large-data analysis, the data to be analyzed is not fully known upfront,
but arrives incrementally. For example, ratings of movies by users are being constantly added,
and a social graph keeps evolving. When the data is in the form of a matrix, this corresponds to
matrix entries arriving incrementally. Typical analysis techniques on such data first form “latent
factor” models, which correspond to matrix factorization models, for example, low-rank matrix
completion, non-negative matrix factorization, etc. As the data sets grow in size, there is a critical
need to parallelize the corresponding matrix factorization techniques. Most existing efforts, as in
traditional numerical linear algebra, alternate between computation and communication, requiring
explicit synchronization. In this talk, I will discuss asynchronous parallel algorithms for matrix
factorization techniques used in data analysis. We name our framework NOMAD as portions of
the factors migrate asynchronously from processor to processor depending on where these por-
tions are needed. These algorithms are well-suited to the case where data arrives incrementally
and the factorization needs to be continually updated. As an example, we implement a parallel,
asynchronous low-rank matrix completion algorithm and test it on a HugeWiki data set that has
about 50 million rows, 40 thousand columns and 2.7 billion non-zeros. Our asynchronous algorithm
involves fine-grain parallelism, but still is able to achieve impressive speedups on traditional su-
percomputing hardware (the Stampede cluster at the Texas Advanced Computing Center) as well
as on commodity hardware (Amazon Web Services), and outperforms competing methods. If time
permits, I will discuss a recently initiated effort to try and ease the burden on the programmer for
rapidly prototyping and testing a class of such algorithms.
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Changes of Canonical Structure Information of Matrix Pencils associated
with Generalized State-space Systems.

Andrii Dmytryshyn, Stefan Johansson and Bo Kågström

Abstract
We consider generalized state-space (or descriptor) systems

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(1)

where A,E ∈ Cn×n and E is non-singular, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m, and x(t), y(t), u(t) are
the state, output, and input (control) vectors, respectively. The system characteristics of (1) are typ-
ically ill-posed problems, i.e., small perturbations in the matrices can lead to drastic changes in the
system characteristics. Such problems can be represented and analyzed from the canonical struc-
ture information (elementary divisors, column and row minimal indices) of the block-structured
system pencil:

S(λ) :=
[
A B
C D

]
− λ

[
E 0
0 0

]
, det(E) 6= 0. (2)

Two state-space pencils S ′(λ) and S(λ) are called feedback-injection equivalent if and only if there
exist non-singular matrices

R =
[
R11 R12
0 R22

]
and S =

[
S11 0
S21 S22

]
, (3)

such that S ′(λ) = RS(λ)S.
S(λ) can also be considered under strict equivalence. Then for any non-singular matrices P and
Q the pencil S ′(λ) = PS(λ)Q does not need to be of the form (2). Nevertheless, if it is of the
form (2) then there exist R and S of the form (3) such that S ′(λ) = RS(λ)S. So two state-space
pencils are feedback-injection equivalent if and only if they are strictly equivalent. In particular,
it means that any system pencil (2) has the same canonical structure information under strict and
feedback-injection equivalence, respectively. The canonical structure information (one may also
think about canonical forms here) depends discontinuously on the entries of the matrices involved.
Using versal deformations (i.e., a simple form to which all pencils B(λ) close to S(λ) can be reduced
by the considered transformations that smoothly depend on the entries of B(λ)), we prove that there
exist an arbitrarily small dense perturbation W(λ) (zeros in the λ-part can be perturbed too), and
non-singular P and Q such that[

P11 P12
P21 P22

]([
A B
C D

]
+
[
W1 W3
W2 W4

]
− λ

([
E 0
0 0

]
+
[
W5 W6
W7 W8

]))[
Q11 Q12
Q21 Q22

]
= S ′(λ)

if and only if there exist an arbitrarily small perturbation V(λ) of the form (2) (zeros in the λ-part
are fixed and are not allowed to be perturbed) and non-singular R and S of the form (3) such that[

R11 R12
0 R22

]([
A B
C D

]
+
[
V1 V3
V2 V4

]
− λ

([
E 0
0 0

]
+
[
V5 0
0 0

]))[
S11 0
S21 S22

]
= S ′(λ).
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Note that the sufficiency is obvious.
This reduces the problem of describing the changes of the canonical structure information under
feedback-injection equivalence to the problem of describing these changes under strict equivalence
which is known (e.g., see [1, 2, 3]). We also explain how the closest neighbours (cover relations) in
the closure hierarchy can be obtained.
We present our results by constructing stratifications (i.e., closure hierarchy graphs) [4] of system
pencils (2). The stratifications show the possible changes of the canonical structure information
caused by arbitrarily small perturbations of the original system pencil S(λ).
Altogether, it appears that the stratification graph ∆ of S(λ) is an induced subgraph of the strat-
ification graph Γ of S(λ) considered as a general matrix pencil (i.e., it is a subset of the vertices of
a graph Γ together with any edges whose endpoints are both in this subset).
We also present the special case of the system (1) with no direct feedforward (i.e., the matrix D is
zero).
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The inverse complex eigenvector problem for real tridiagonal matrices

Beresford Parlett, Froilán M. Dopico and Carla Ferreira

Abstract
A classic open problem in Numerical Linear Algebra is “the nonsymmetric tridiagonal eigenvalue
problem”. The statement of this problem is very simple: to find a backward stable algorithm to
compute all eigenvalues (and, optionally, all eigenvectors) of an n × n nonsymmetric tridiagonal
matrix with a cost of O(n2) flops. While it is very simple to state, the solution of this problem is
very hard and the main reason of this difficulty is that backward stable orthogonal similarities, like
those used in the eigenvalue QR algorithm, do not preserve the nonsymmetric tridiagonal struc-
ture and, so, lead to algorithms with O(n3) computational cost. This has motivated to explore
other options and algorithms of dqds-type are perhaps the most natural approach, since they take
full advantage of the tridiagonal structure and have been very successful to solve the symmetric
tridiagonal eigenvalue problem and the bidiagonal singular value problem in a backward stable
way and with O(n2) cost. Several versions of these algorithms have been developed in the last
years by Beresford Parlett and Carla Ferreira. They behave extremely well in practice in terms
of fast performance, exhibit an O(n2) computational cost, and they are much faster than other
algorithms available in the literature for “the nonsymmetric tridiagonal eigenvalue problem”. How-
ever, very rarely, these non-symmetric dqds-algorithms fail to compute backward stable outputs,
and to find a shift-strategy which always guarantees backward stability is still an open problem.
In this context, a sensible idea is to refine simultaneously the eigenvalues computed by dqds and
the eigenvectors obtained from them to get eigenpairs (eigenvalue/right eigenvector) or eigentriples
(eigenvalue/right eigenvector/left eigenvector) with tiny residuals which guarantee that the com-
puted eigenpairs/eigentriples are the exact ones of a nearby tridiagonal matrix, i.e., we would get
backward structured stability. Again, this is very easy to say, but not easy to do, and one of the
reasons that makes this difficult is that some aspects of “the nonsymmetric tridiagonal eigenvalue
problem” are not well understood. In this talk, we investigate one of such aspects.
We will focus on an n × n real nonsymmetric tridiagonal matrix T . It is well known that T may
have complex eigenvalues. Imagine that we have computed a complex eigentriple (λ̂, x̂, ŷ∗) of T and
we want to determine if (λ̂, x̂, ŷ∗) is an exact eigentriple of a nearby real nonsymmetric tridiagonal
matrix T+E. It is easy to see that this leads to 4n real equations for the 3n−2 unknown real entries
of E, which will be inconsistent unless the vectors x̂, ŷ∗ are very particular. In plain words we are
saying that not every complex triple (λ̂, x̂, ŷ∗) is an eigentriple of a real nonsymmetric tridiagonal
matrix. The situation for the condensed representations of real unreduced tridiagonal matrices
in terms of 2n − 1 real parameters which are used in dqds-algorithms is even more complicated,
since for them most complex pairs (λ̂, x̂) cannot be eigenpairs of real nonsymmetric tridiagonals
represented in these ways unless the vector x̂ is very particular.
The purpose of this talk is to present simple necessary and sufficient conditions to determine if a
given complex triple (λ̂, x̂, ŷ∗) is an eigentriple of a real nonsymmetric tridiagonal matrix and if a
complex pair (λ̂, x̂) is an eigenpair of a condensed representation of a real unreduced tridiagonal
matrix. These conditions can be checked with O(n) cost and, in addition, we will provide simple and
efficient algorithms with O(n) cost for computing the corresponding tridiagonal matrices. So, our
results can be used for computing structured backward errors and for discarding (and potentially
improving) computed eigentriples/eigenpairs which cannot be solutions of the original problem.
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Identifying Influential Entries in a Matrix

Petros Drineas and Abhisek Kundu

Abstract
Modern data sets are often represented by large matrices, since a matrix A ∈ Rm×n provides a
natural structure for encoding information about m objects, each of which is represented with
respect to n features. Examples include the bag-of-words representation of document corpora
(where the objects are documents and the features are words), microarray data (where the objects
are genomes and the features are genes), stocks and their temporal resolution, etc. In each of
these application areas, practitioners spend vast amounts of time analyzing the data in order to
understand, interpret, and ultimately use this data for some application-specific task.
We seek to identify a small set of influential entries for a matrix A, in the sense that these entries
capture most of the “information” in A. In order to have a concrete optimization objective in
mind, we will seek a small set of entries of A that can be used to accurately reconstruct A. So, let
Ω = {(it, jt) , t = 1 . . . s} be a set of s index pairs, indicating which s entries of A are chosen. Then
a reconstruction algorithm takes as input the entries of A that correspond to the index pairs in Ω
and outputs a matrix Ã such that Ã is close to A, in the sense that A − Ã is small (as measured
by some matrix norm).
We briefly expand on potential practical uses of identifying influential entries of a matrix. First, the
selected entries can be used for exploratory data analysis tasks: the disproportionate influence that
they exert on the matrix is a starting point for further probing the object-feature combinations that
the entries represent. As a matter of fact, our approach is ideal for such tasks: it is based on the
element-wise leverage scores, essentially a probability distribution over the entries of A. Spikes of
that distribution (entries of high leverage) represent object-feature combinations that correspond
to disproportionately important data elements. Practitioners would be interested to investigate
whether these entries are the result of measurement noise (and thus should be removed as outliers)
or whether they are the manifestation of an underlying structural property of the data generating
process. Second, the selected entries form a succinct representation of the input matrix and can
be used to perform common machine learning tasks, such as clustering and classification, instead
of the full matrix. This succinct representation could result in faster computations (especially in
tasks that take advantage of matrix sparsity) and could potentially improve accuracy by removing
less informative pieces of the data, essentially regularizing the task at hand.
Two lines of research have investigated the selection of influential entries from a matrix in order
to accurately reconstruct it. Achlioptas and McSherry pioneered the selection of entries from a
matrix with probabilities that depend on their magnitude squared and proved that applying, for
example, the Singular Value Decomposition on the selected entries (with the remaining entries of
the matrix set to zero) to get a low-rank approximation, results in a matrix Ã that is provably close
to A. The resulting reconstruction error (with respect to common unitarily invariant norms such
as the spectral and Frobenius norms) scales as a function of the Frobenius norm of A, which, while
useful if one needs only a coarse approximation to the actual input in the context of streaming
applications, might be prohibitively large in fine-grain exploratory data analysis applications.
A second line of research focused on the matrix completion problem. Motivated by recommendation
systems and collaborative filtering, a large body of work focused on the matrix completion problem.
Existing work has almost exclusively focused on the case where the user has no control over the
selection of the matrix entries, but instead entries are revealed uniformly at random. Assuming that
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the input matrix has rank ρ and satisfies the so-called incoherence assumptions, prior work argued
that given a uniform sample Ω consisting of O ((m+ n) ρ ln (m+ n)) elements of A, the solution to
the following nuclear norm minimization problem recovers A exactly, with high probability:

min
Φ∈Rm×n

‖Φ‖∗
subject to Φij = Aij , for all (i, j) ∈ Ω (1)

The incoherence assumptions basically guarantee that no entry of A exerts disproportionate influ-
ence over the matrix and thus a uniform sample is an accurate sketch of the matrix. As we will see
below, our approach identifies influential entries and then uses the framework of matrix completion
to argue that these entries can be used to reconstruct the input matrix.

Our results

Let A ∈ Rm×n be a matrix of rank ρ, with ρ� min {m,n}, and let the Singular Value Decompo-
sition (SVD) of A be A = UΣV T , where U ∈ Rm×ρ is the matrix of the left singular vectors of A,
Σ ∈ Rρ×ρ is the diagonal matrix of singular values of A, and V ∈ Rn×ρ is the matrix of the right
singular vectors of A. We can now define an element-wise probability distribution on the entries of
A (the element-wise leverage scores) as follows.

Definition 1. Given a matrix A = UΣV T ∈ Rm×n of rank ρ � min {m,n}, the element-wise
leverage scores (for all i,j) are

pij = 1
2

∥∥∥U(i)

∥∥∥2

2
+
∥∥∥V(j)

∥∥∥2

2
−
∥∥∥U(i)

∥∥∥2

2

∥∥∥V(j)

∥∥∥2

2
(m+ n) ρ− ρ2 + 1

4
(UV T )2ij

ρ
+ 1

4

∣∣∣(UV T )ij
∣∣∣∑n

i,j=1 |(UV T )ij |
. (2)

U(i) (respectively V(j)) denotes the i-th row of U (respectively j-th row of V ) as a row vector.

Obviously, pij ≥ 0 for all i, j; it is also easy to prove that
∑m,n
i,j=1 pij = 1. Thus, we can use a simple,

element-wise sampling algorithm to sample a set of entries from the matrix A in independent
identically distributed trials, with replacement, with respect to the pij ’s. Our main theorem below
states that if we sample a sufficient number of entries of A (see eqn. (3) for the precise sample size)
with respect to the element-wise leverage scores, then the nuclear norm minimization problem of
eqn. (1) recovers the matrix A with constant probability. To the best of our knowledge, our bounds
are the best known for matrix completion under no incoherence assumptions, and are only a factor
of ρ away from being optimal.

Theorem 1. Given a matrix A = UΣV T ∈ Rm×n of rank ρ� min {m,n}, sample s entries of A
using the element-wise leverage scores of eqn. (2) as the sampling probabilities in s independent,
identically distributing trials, with

s > max
{
360 (m+ n) ρ2 − 360ρ3, 42 (m+ n) ρ ln 20 (m+ n)

}
, (3)

to construct a set of element-wise samples from A. Then, with probability at least 0.8, the nuclear
norm minimization problem of eqn. (1) returns A as the unique minimizer.

We will also present connections of the element-wise leverage scores to so-called leverage scores of
rows and columns of matrices and their use in Randomized Numerical Linear Algebra algorithms,
as well their use in diagnostic data analysis applications1.

1See http://arxiv.org/abs/1310.3556 for more details.
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A new Framework for Polynomial Filtering in Implicitly Restarted Arnoldi
type Algorithms

Zvonimir Bujanović and Zlatko Drmač

Abstract
We explore the theoretical framework of the implicitly restarted Arnoldi [3] and the Krylov-Schur
[4] algorithm for computing only a small number of eigenpairs of A ∈ Cn×n that satisfy some
property (e.g. all eigenvalues contained in a given domain Ω ⊂ C, or certain number of eigenval-
ues closest to the origin or to the imaginary axis etc.). In particular, we focus on the theoretical
possibility for implicit restarting of the Krylov-Schur algorithm with arbitrary polynomial filter –
a functionality lacking in the original algorithm. Our results reveal a very interesting latent con-
nection between implicit restarting with arbitrary polynomial filter and the partial pole placement
(eigenvalue assignment) problem.
The key observation is as follows: Let the Krylov decomposition AX = XG + xg∗ be partitioned
as

A
(
X[1] X[2]

)
=
(
X[1] X[2]

)(G[11] G[12]
0 G[22]

)
+ x

(
gT[1] gT[2]

)
,

where A ∈ Cn×n, X[1] ∈ Cn×k, G[11] ∈ Ck×k, g[1] ∈ Ck, and the columns of X =
(
X[1] X[2]

)
∈

Cn×m, m = k + `, span a Krylov subspace Km(A, v) which is not A-invariant.
Then, AX[1] = X[1]G[11] + xgT[1] is an implicitly restarted Krylov decomposition with the subspace
Im(X[1]) = Kk(A,

∏`
i=1(A− σiI)v) if and only if σ1, . . . , σ` are the eigenvalues of G[22].

It is shown that restarting with arbitrary polynomial filter is possible by reassigning some of the
eigenvalues of the Rayleigh quotient through a rank-one correction, implemented using only the ele-
mentary transformations (translation and similarity) of the Krylov decomposition. This framework
includes the implicitly restarted Arnoldi algorithm (IRA), and the Krylov-Schur algorithm with
implicit harmonic restart as special cases. Further, it reveals that the IRA algorithm can be turned
(without any change in the algorithm) into an eigenvalue assignment method. Since eigenvalue as-
signment is notoriously ill-conditioned procedure, this revealed connection opens many interesting
numerical issues related to implicit restarting. We will discuss some of them.
The new framework is used to tackle the problems of implicit restarting of the second order Arnoldi
algorithm (SOAR) [1], which is challenging task with many open problems.
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Matrix Functions and Their Krylov Approximations for Large Scale Wave
Propagation in Unbounded Domains.

Vladimir Druskin, Alexander Mamonov, Rob Remis and Mikhail Zaslavsky

Abstract
We target large scale hyperbolic problems in unbounded domains. Until now, the method of choice
for such problems is explicit finite-difference time domain (FDTD) method coupled with PML
absorbing boundary condition, which is hindered by the CFL limit. Instead, we want to apply the
Krylov and rational Krylov subspace technique in the matrix function framework, that previously
showed great success for diffusion dominated PDEs and model reduction applications.
We consider wave problems in unbounded domains requiring computations of actions of functions
of selfadjoint nonnegative PDE operators with continuous spectrum on compactly supported initial
conditions, e.g.,

A−1/2 sin(
√
At)b,

where A and b are respectively the operator and the initial condition.
To avoid spurious resonances, the reduced order model should preserve spectral continuity of the
original problem, i.e., it should not contain poles on the main Riemann sheet. That can be achieved
by using (non-Hermitian) complex symmetric discretized operators AN dumped by the perfectly
matched layers and so-called stability-corrected time-domain exponential (SCTDE) matrix function

=
(
A
−1/2
N ei

√
AN t

)
bN ,

where bN is the discretized initial condition [1].
First, we approximate the SCTDE using the Krylov subspace projection algorithm, based on the
re-normalized Lanczos method. With the same cost per step as the FDTD, it over-performs the
latter for large propagation times.
However, convergence of the Krylov subspace approximation of the SCTDE matrix function de-
celerates due to appearance of the square root singularity. The convergence can be improved by
employing extended and rational Krylov subspaces, but they become too expensive for the problems
of the desired size.
To circumvent the above problem, we suggest to compute the rational Krylov subspace (RKS)
implicitly, by partitioning the computational domain and expanding the Schur complements of the
subdomain resolvents via local RKSs. By proper projecting the AN onto these RKSs, we obtain
a reduced size well-conditioned structured matrix H. The preprocessing stage is quite costly, but
can be done “embarrassingly parallel”. Matrix-vector multiplications with H are also well suited
for high performance computing. Such an approach allows us to exactly reproduce the global RKS
and accurately compute the corresponding reduced order model on the partition skeleton with
significantly less cost.
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The Solution of Least-Squares Problems using Preconditioned LSQR

Iain Duff and Mario Arioli

Abstract
We consider the solution of the problem

min
x
||b−Ax||22 (1)

where A is a sparse matrix of rank n and order m× n with m ≥ n.
It is not easy to obtain a good preconditioner for solving (1). In particular, the use of an incomplete
Cholesky decomposition on the normal equations usually requires so much fill-in to be effective that
it is equivalent to using a direct method.
We study a class of preconditioners for the augmented system formulation[

Im A
AT 0

] [
r
x

]
=
[
b
0

]
, (2)

where r is the residual vector equal to b−Ax.
We obtain our preconditioner by partitioning the rows of A into basic and non-basic parts and note
that the reduced and preconditioned system[

Im−n NB−1

B−TNT −In

] [
rN
Bx

]
=
[

bN
−bB

]
, (3)

is a symmetric quasi-definite (SQD) matrix so we can use the generalized LSQR method [1, 3]
to solve it. We extend the theoretical eigenanalysis for our preconditioned system using the CS
decomposition to show that this SQD system is usually well-conditioned and to emphasize that
this has absolutely no relationship to the conditioning of the matrix A. The matrix in equation (3)
has a symmetric spectrum with the smallest eigenvalues of absolute value 1 and largest eigenvalues
equal to

√
1 + ||NB−1||22. It has already been observed [2] that this means that LSQR will require

half the number of iterations of MINRES which we verify in our numerical experiments.
We also show the importance of the selection of the basis matrix B in providing a good precondi-
tioner. We show this on small artificial examples where we demonstrate that it is sometimes not
possible to obtain a good B even for well-conditioned matrices A. We then develop a two-pass
algorithm that uses sparse direct methods for identifying B using threshold rook pivoting with a
very high threshold value before separately factorizing the matrix B using the HSL routine MA48
with a normal default value of threshold. We show, in Table 1, data from using a rook pivoting

id m n nnz κ(A)
√

1 + ||NB−1||22
u=.1 u=.5 u=1.0

well1033 1033 320 4732 1.6 102 1.2 102 2.4 101 1.3 101

illc1033 1033 320 4719 1.8 104 7.5 101 2.4 101 1.4 101

well1850 1850 712 8755 1.1 102 8.3 102 4.7 101 2.4 101

illc1850 1850 712 8636 1.4 104 2.0 103 2.7 101 2.1 101

Table 1: Results from using rook pivoting to precondition SQD matrices for Paige and Saunders examples.
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Test problem class pref
(m,n) Tree height ||NB−1||∞

√
1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl
( 9975, 5000) 6 8 9.0 14.0 46.3 65.3 1597.1
(19965,10000) 6 9 10.0 16.0 56.8 141.2 2275.4

Test problem class smallw
(m,n) Tree height ||NB−1||∞

√
1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl
(10499, 5000) 21 34 42.0 67.0 55.9 91.0 325.0
(20982,10000) 23 35 44.0 69.0 62.4 144.5 465.4

Test problem class kleinberg
(m,n) Tree height ||NB−1||∞

√
1 + ||NB−1||22 κ(A)

(m,n) SPTs SPTl SPTs SPTl SPTs SPTl
(14906, 5000) 12 15 24.0 27.0 73.8 89.1 344.7
(29625,10000) 14 17 28.0 33.0 109.1 111.0 565.7

Table 2: SPTs: root giving tree of least height; SPTl: root for which we have the longest path to a node.

preconditioner on the iconic test matrices from Paige and Saunders.
A common and important class of matrices A are totally unimodular matrices arising in network
problems and mixed finite-element methods. The matrix A is the incidence matrix of an undirected
graph G withm edges and n vertices (we assume thatm > n). Its entries are −1, 0, 1 and in each row
there are two nonzero entries corresponding to the two nodes identifying an edge. Such matrices
have rank n − 1 and removal of any column will give a full rank matrix which is still totally
unimodular. Fixing one of the nodes as a root, we then identify the basis matrix B by generating
the corresponding spanning tree for the graph. The spanning tree will depend on the chosen root
(column). The entries of a row of NB−1 are bounded by the path length to and from root of the
two entries in the row of B, so we can reduce the infinity-norm of NB−1 by choosing the B matrix
associated with the spanning tree with smallest height. The 2-norm of NB−1 will be bounded by
twice the tree height multiplied by

√
m. We show, in Table 2, the height of trees, the infinity-norm

of NB−1, and the condition number for the preconditioned SQD matrix for some test problems
generated from the set in [4]. We do this for both the tree of least height (found exhaustively) and
for the tree of greatest height. The results support our theory and show that the preconditioned
matrix has far better conditioning than the original system. For efficiency, and for computations
on larger matrices, we do not do an exhaustive search but find the least height tree using as roots
the nodes from the ten densest columns. We have found almost no difference between doing this
and doing an exhaustive search.
We will report on experiments that we are currently conducting on larger matrices both for general
least-squares problems and those with A an incidence matrix.
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On the Convergence Curves that can be generated by Restarted GMRES

Jurjen Duintjer Tebbens and Gérard Meurant

Abstract
The GMRES method [7], in particular when it is restarted after a small number of iterations, is
a very frequently used iterative solver for linear systems with nonsingular, non-Hermitian input
matrices. Although its mathematical definition is based on a simple minimization property, con-
vergence analysis is difficult in the sense that there do not seem to exist, in general, clearly defined
characteristics of a given linear system that govern the convergence behavior of the method. With
normal system matrices it is in the first place the eigenvalue distribution, and secondarily also
the projection of the right-hand side vector in the eigenvector basis, that characterize convergence
behavior. As we will explain below, this is not the case for general non-normal input matrices.
Among a large variety of proposed approaches for analysis of convergence one can mention ap-
proaches based on the pseudo-spectrum [9], the field of values [3] or the numerical polynomial
hull [4]. Convergence analysis of restarted GMRES also considers non-stagnation conditions, see,
e.g., [8].
One approach to enhance insight in GMRES convergence behavior is to study matrices with initial
vectors that generate the same residual norm history. This was first done in a 1994 paper by
Greenbaum and Strakoš [6], where one can find several ways to construct the set of all linear
systems with the same convergence curve. Surprisingly, the matrices of the set can have any
nonzero spectrum. Together with the fact that any nonincreasing convergence curve is possible [5],
this resulted in parametrizations of the set of linear systems generating prescribed residual norms
and having prescribed eigenvalues [1]. In [2] it was shown that these parametrizations allow the
additional prescription of Ritz values, that is of the spectra of the Hessenberg matrices generated
in all subsequent iterations. This implies that the eigenvalue approximations in Arnoldi’s method
for eigenproblems can be arbitrarily far from the spectrum of the input matrix.
This type of analysis has been applied to the restarted GMRES method, which is more relevant
for practice, in a 2011 paper by Vecharinsky and Langou [10]. Let GMRES(m) denote GMRES
restarted after every m iterations with the current residual vector and assume that in every restart
cycle, all residual norms are equal except for the very last residual norm of each cycle, which
is strictly less than the previous residual norm. If we denote the last residual norm of the kth
cycle with ‖r(k)m ‖, then Vecharinsky and Langou showed that any decreasing convergence curve
‖r(1)m ‖ > ‖r(2)m ‖ > · · · > ‖r(N)

m ‖ is possible with any nonzero spectrum of the input matrix, where it
is assumed that the total number of inner GMRES iterations Nm is smaller than the system size.
Our work can be seen as an extension of the results in [10]. In the talk we would show that it is
possible to prescribe all the residual norms generated by N cycles of GMRES(m), including the
norms inside cycles, under two conditions: The last residual norm of every cycle does not stagnate,
i.e. ‖r(k)m ‖ > ‖r(k)m−1‖ for k = 1, 2, . . . , N and Nm is smaller than the system size. We show that
this is possible with any nonzero eigenvalues of the system matrix. In addition, all Ritz values
generated inside all cycles, can take arbitrary nonzero values.
If we allow stagnation at the end of cycles, the admissible residual norms and Ritz values satisfy an
additional, interesting restriction. It is known that stagnation in the GMRES process takes place
at and only at iterations where the corresponding Hessenberg matrix is singular, that is, if and
only if there is a zero Ritz value. If at some cycle k, ‖r(k)m−j‖ = · · · = ‖r(k)m ‖ or, equivalently, the
last j iterations generate a zero Ritz value, then we show that there must be stagnation (or a zero
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Ritz value) during the first j iterations of the (k + 1)st cycle. In other words, stagnation at the
end of one cycle is literally mirrored at the beginning of the next cycle and residual norms cannot
be prescribed at the beginning of that cycle.
The mentioned results are based on a construction of linear systems which generate, when the
restarted Arnoldi orthogonalization process is applied and leaving aside the case of stagnation at
the end of cycles, subsequent size (m + 1) × m Hessenberg matrices whose entries can be fully
prescribed. It turns out that the constructed linear systems have a fascinating property: Besides
the fact that they generate Nm prescribed residual norms of GMRES(m), they generate exactly
the same Nm residual norms when full GMRES is applied. Moreover, this property can be used to
modify the linear systems such, that GMRES(m) converges faster than GMRES(m + i) for some
positive integers i. It thus offers some insight in the causes of the very counterintuitive behavior
observed sometimes in practice, where convergence speed decreases when the restart parameter m
is increased.
If time allows it, our talk would also comment on some consequences of our results for restarted
Arnoldi methods to solve non-Hermitian eigenproblems.
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Julia: A Fresh Approach to Technical Computing

Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral Shah and the greater community

Abstract
Julia is a brand new programming language. That sure sounds dull. But something exciting is
happening here. Julia was released only two years ago, and user groups have sprouted up in cities
across the United States and around the world. A few classes at MIT used Julia last year, and now
it is starting to be taught in universities around the world. Julia was unheard of two years ago, and
now it is starting to become widely known around the world. Users of other technical languages
may feel comfortable. We have often observed that MATLAB users love MATLAB, while R-users
are, well frankly, R-users.
Julia is appealing because it not only lets you get the programming job done, but it lets you get
it done happily. It gives you the power of expression that you did not know you even wanted or
needed, but once given a taste, there is no return. You get performance and parallelism, because
they were not afterthoughts. The proper abstractions provide for flexibility, performance, and
power that only users of low level languages thought they could have.
To explain what Julia is, we need to explain the world of computing as it looks today at most
universities and research institutions. There are the “computer scientists” and the “computational
scientists.” The “computer scientist” writes low level code, perhaps in C or C++. He or she
expects performance from the machine. These programmers tend to be fairly skilled at software
development and the best at software abstractions. The “computational scientist” is the catch-
all term to describe scientists, engineers, financial analysts, optimization experts, and “big data”
analysts who might be using MATLAB or R, for example. These computational scientists are more
interested in the human time it takes to build a program. Abstractions show up some times, but
mostly it’s about getting the job done quickly. They may know programs could run faster in C,
but they are not interested in the time it would take to write such a program. Summing up the
tradeoff, the computational scientist writes a technical model in a high level language preferring
quickly at the expense of a slower computer execution, while the computer scientist might prefer
the opposite tradeoff.
Julia has given the world superpowers in many ways. For starters, it brings the world of com-
putational science and computer science together. Developers of technical computing now get
performance at a fraction of the productivity cost. Programmers can get further performance by
adding processors that are available to them anywhere on the internet. Truly transformational is
the Ĳulia experience, built on the Ipython notebook, which allows scientific communication in a
brand new way. Julia webservers allows researchers to publish their models on the web, and anyone
in the world can use, test, and verify the results.
The Julia research experience has not followed the traditional – professor keeps it close until pub-
lication – method of research. Rather, Julia is more than open source, it is optimistically open
source. All of Julia is available to everyone at any time, there is no need to ask anyone permission
to run it, use it, or become a trusted developer. The Julia community is friendly, helpful, welcoming
and this has added to the Julia experience.
In this talk we demonstrate Julia and describe its promise for numerical linear algebra.
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Computing Fréchet Derivatives in Partial Least Squares Regression

Lars Eldén

Abstract
Partial least squares is a common technique for multivariate regression. The procedure is recursive
and in each step basis vectors are computed for the explaining variables and the solution vectors.
A linear model is fitted by projection onto the span of the basis vectors. The procedure is math-
ematically equivalent to Golub-Kahan bidiagonalization, which is a Krylov method, and which is
equivalent to a pair of matrix factorizations. The vectors of regression coefficients and prediction
are non-linear functions of the right hand side. An algorithm for computing the Fréchet derivatives
of these functions is derived, based on perturbation theory for the matrix factorizations. From
the Fréchet derivative of the prediction vector one can compute the number of degrees of freedom,
which can be used as a stopping criterion for the recursion. A few numerical examples are given.
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Efficient Solution of Stochastic Partial Differential Equations Using
Reduced-Order Models

Howard C. Elman, Virginia Forstall and Qifeng Liao

Abstract
Stochastic partial differential equations arise when components of models such as boundary con-
ditions or operator coefficients are not known with certainty but instead are specified as random
fields. There is considerable interest in solving discrete versions of such equations in order to ob-
tain statistical properties such as moments or cumulative distribution functions of the solutions.
However, the number or sizes of the associated algebra problems needed for solution may be large,
which may make the cost of using such approaches prohibitive.
We discuss two connected ways to address this:

1. Reduced-order models [2]. Let the linear algebra problems of interest be denoted Aξu = f ,
where ξ is a vector of parameters associated with the random process. The solution u =
u(ξ) is also a random field depending on ξ. We show that in many cases, it is possible to
generate a small set of realizations {u(ξ(1)),u(ξ(2)), . . . ,u(ξ(n))}, so-called snapshots, such
that solutions for other parameters can be well represented in the space of snapshots, i.e.,
u(ξ) ≈ û(ξ) ≡ Qη(ξ), where Q is a matrix whose columns form a basis for span{u(ξj)}. One
way to find such approximate solutions is to impose a Galerkin condition,

QT (f −Aξû) = 0,

which requires the solution of a reduced problem with coefficient matrix QTAξQ. We give
examples from models of diffusion and incompressible fluid dynamics in which sufficient accu-
racy can be obtained with n� N , i.e., the size of reduced problem is much smaller than N ,
the size of the discrete model. In these cases, we demonstrate that it is possible to produce
accurate statistical analyses at significantly reduced cost [1].

2. Iterative Solution of Reduced-Order Models. The approach discussed above depends on the
idea that if a reduced problem that represents the dynamics of large-scale discrete systems can
be identified, then it will be inexpensive to work with the reduced model. However, when the
parameter space (length of ξ) is large it may be that a reduced model is significantly smaller
than its full-scale counterpart but not so small as to be easily solved by standard (direct
algebraic) methods. We show that in this scenario, iterative methods based on multigrid
can be applied to the reduced model to reduce costs and enable the efficient solution of
moderate-sized reduced-order models.
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The Life Cycle of an Eigenvalue Problem

Mark Embree, Jeffrey Hokanson and Charles Puelz

Abstract
We solve eigenvalue problems to understand physical systems, such as the resonant modes of a
structure, or band-gaps in a crystal, or the instabilities of flowing fluid. The transition from
the motivating physical problem to numerically computed eigenvalues usually requires a series of
approximations:

• physical system → mathematical model;

• mathematical model → linear(ized) differential/integral operator;

• differential/integral operator → large discretization matrix;

• large discretization matrix → smaller projected matrix;

• smaller projected matrix → computed eigenvalues (ideally with high relative accuracy).

While the numerical linear algebra community often focuses on the last two steps (“Given A, find
eigenvalues”), in this talk we will argue through a handful of concrete examples that a broader view
of this process can improve our approach to eigenvalue computations.
First we address the transition from physical system (where eigenvalues correspond to (complex)
frequencies of vibration in measured data) to a linear operator. Data collected from an experimental
monochord in our laboratory allows us to explore the accuracy of different mathematical models of
damping [3]. These models lead to operators with very different asymptotic spectral behavior, which
plays a crucial role in inverse spectral theory and affects the convergence of iterative eigensolvers.
However, experimental data often determines these larger eigenvalues poorly, due both to frequency
(imaginary part), which limits the amount of energy typical initial conditions have in these modes,
and damping (real part), which causes what energy is in these modes to decay quickly. When
computing, we can calibrate our target accuracy by the degree to which the motivating application
determines the eigenvalue.
Discretization itself raises many interesting challenges that can inform our approach to eigenvalue
computations. For example, some discretizations cause spectral pollution, where spurious eigenval-
ues within the limits of the essential spectrum. A shift-invert eigenvalue computation applied to
such a discretization can quickly find these erroneous eigenvalues. This problem can be avoided,
as shown by Davies and Plum [2], by applying the shift-invert transformation before discretization,
turning the true interior of the spectrum to the exterior of the transformed problem, where no
spectral pollution occurs.
Usually we only seek a small subset of the spectrum of the discretization matrix. In contrast,
we present an example from the theory of quasicrystals that demands all eigenvalues of a large
matrix. The spectrum of the Fibonacci model is a Cantor set whose fractal dimension bounds
the rate at which wave-packet solutions to the Schrödinger equation spread (see, e.g., [1]). To
approximate this Cantor set, one approximates the quasiperiodic potential with periodic potentials
of increasingly long period. The spectrum of such approximations (comprising the union of real
intervals) can be found by computing all eigenvalues of two (large) symmetric tridiagonal matrices
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plus perturbations in the off-diagonal corners. We will show how such eigenvalues can be found
expediently, giving insight into the Cantor spectrum [4].
How does discretization affect that performance of iterative eigensolvers? Typically the convergence
rate applied to discretized differential operators slows as the discretization is refined. This behavior
can be understood clearly at the operator level, where one often cannot build a Krylov subspace
span{v,Av, . . . Ak−1v} because Av is not in the domain of the operator A. Such domain consid-
erations can be handled more readily in shift-invert mode, where by applying the Krylov method
directly to the infinite-dimensional operator, one can distinguish the convergence rate governed by
the operator itself from the effects of discretization.
Finally, we shall briefly address the significant concern of high relative accuracy eigenvalue com-
putations. Discretizations of unbounded operators grow rapidly in norm as the discretization is
refined; the difference between a computed eigenvalue and the desired eigenvalue of the opera-
tor depends on both the discretization error and the accuracy of the eigensolver, which typically
degrades like εmachn‖A‖ for conventional algorithms. This perspective can inform the choice of
discretization, where a higher-order method (with less sparsity in A) whose eigenvalues converge
more rapidly might be favored over a method whose slower convergence rate demands a larger value
of n‖A‖.

[1] D. Damanik, M. Embree, and A. Gorodetski. “Spectral properties of Schrödinger operators arising in
the study of quasicrystals.” Rice University CAAM Department Report TR 12-21, 2012.
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On complex J-symmetric eigenproblems

Peter Benner, Heike Faßbender, and Chao Yang

Abstract
In the context of solving the Bethe-Salpeter equations numerically the eigenvalue problem HSx =
λx for complex matrices

HS =
[
A −DH

D −AT

]
∈ C2n×2n, A = AH , D = DT ∈ Cn×n

arises. Typically, n is fairly large, e.g., in the hundreds of thousands, and one is interested in about
25% of the eigenvalues and the corresponding eigenvectors. The matrices HS belong to the slightly
more general class of matrices HC ,

HC =
[
A C
D −AT

]
∈ C2n×2n, A,C = CT , D = DT ∈ Cn×n. (1)

Please note, that here XT denotes transposition, Y = XT , yij = xji, no matter whether X is real
or complex, while XH denotes conjugate transposition, Y = XH , yij = xji.
For

Jn =
[

0 In
−In 0

]
∈ R2n×2n, In ∈ Rn×n

we have
JT = −J = J−1.

Whenever the dimension of Jn is clear from the context, we leave of the subscript for ease of
notation. Clearly, it holds

(HCJ)T = HCJ.

That is, HCJ is complex-symmetric. It is easy to see that (H2
CJ)T = −H2J, that is, H2

CJ is
complex-skewsymmetric.
Matrices like HC have been called complex J-symmetrics in [2], while H2

C is called a complex
J-skew-symmetric matrix. They form a Lie algebra, and a Jordan algebra, resp., the complex
symplectics are the associated automorphism group, the associated skew-symmetric bilinear form
is < x, y >= xTJy. In [2], these (and other) sets of structured matrices are analyzed further. In
particular, results concerning structured square root, structured matrix sign decomposition, struc-
tured polar decomposition and structured SVD(-like) decomposition are discussed. The resulting
matrix of a similarity transformation X−1HCX is complex J-symmetric, if X is complex symplectic
(XTJX = J). For more on structure preserving transformations see [1] where suitable Givens-like,
Householder-like and Gauss-like transformations are discussed.
This resembles the situation in the real case, where any matrix of the form

H =
[
A C
D −AT

]
∈ R2n×2n, A,C = CT , D = DT ∈ Rn×n

is Hamiltonian, that is
(HJ)T = HJ.
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H2 is skew-Hamiltonian, that is (H2J)T = −(H2J). Any matrix S ∈ R2n×2n with STJS = J is
called symplectic. The Hamiltonian matrices form a Lie algebra,the skew-Hamiltonian matrices
a Jordan algebra. The associated automorphism group is the group of symplectic matrices, the
associated scalar product < x, y >= xTJy. Symplectic similarity transformations preserve the
Hamiltonian structure: S−1HS is symplectic again. Eigenvalues of Hamiltonian matrices always
occur in pairs {λ,−λ} if λ is real or purely imaginary, or in quadruples {λ,−λ, λ,−λ} otherwise.
Hence, the spectrum of any Hamiltonian matrix is symmetric with respect to the real and imaginary
axis.
The eigenvalues of HC also display a symmetry [2]: they appear in pairs (λ,−λ). If x is the right
eigenvector corresponding to λ, HCx = λx, than Jx is the left eigenvector corresponding to the
eigenvalue −λ of HC , (Jx)THC = −λ(Jx).
In [3] the Jordan form for complex J-symmetric matrices has been derived. As already observed,
all nonzero eigenvalues come in pairs (λ,−λ). The Jordan block associated with −λ is just minus
the transpose of the Jordan block associated with λ. Moreover, Jordan blocks associated with the
eigenvalue zero either are of even size or appear in pairs.
Any complex J-symmetric matrix X is said to be in structured Schur form if

X =
[
R B
0 −RT

]
, R,B = BT ∈ Cn×n, (2)

where the nonzero eigenvalues of R either have positive real part or zero real part and positive
imaginary part. We will prove that for any complex J-symmetric matrix HC there exists a complex
symplectic and unitary matrix W ∈ C2n×2n

W TJW = J WHW = I,

such that WHHCW is in structured Schur form (2).
The only algorithm we could find in the literature specifically designed for complex J-symmetric
matrices is a Jacobi-like algorithm for computing the structured Schur form [4].
The most popular way to compute the standard Schur form of a general matrix is the QR algorithm.
It is tempting to derive a structured QR algorithm for transforming HC iteratively into structured
Schur form. We will discuss why this is not possible and suggest other methods to compute
eigenvalues and eigenvectors of HC . Moreover, we will discuss the additional structure in HS and
how/whether this can be used in eigenvalue computations.
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New Algorithms for Calculating the H∞-norm and the Real Stability Radius

Melina A. Freitag, Alastair Spence and Paul Van Dooren

Abstract
The H∞-norm of a transfer function matrix is an important property for measuring robust stabil-
ity in classical control theory. We introduce a new fast method for calculating this quantity by
extending an algorithm recently introduced in [5].
Consider the continuous time linear dynamical system

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t),

(1)

where A ∈ Cn×n, B ∈ Cn×p, C ∈ Cm×n and D ∈ Cm×p.
We will focus on continuous time systems, but the idea and method extends to discrete time
problems (as was shown for the distance to instability in the discrete case in [10, Chapter 3]).
Moreover, the method extends to linear time-invariant descriptor systems.
Let A be stable, then the H∞-norm of the transfer matrix G(s) = C(sI −A)−1B +D is defined as

‖G‖∞ := sup
ω∈R

σmax(G(iω)), (2)

where σmax denotes the maximum singular value of the matrix. Note that for B = C = I and
D = 0 the reciprocal of ‖G‖∞ is referred to as the distance to instability [11, 4]. The H∞-norm
is used in several applications, for example, in robust control or as an error measure for model
order reduction. In this talk we introduce a new quadratically convergent method of estimating the
H∞-norm for the continuous time linear dynamical system given by (1). This method builds on two
foundations. First, we use the relation between the singular values of a transfer function matrix
and the eigenvalues of a certain Hamiltonian matrix introduced in [4]. Second, we use the implicit
determinant method which has its roots in bifurcation analysis and has recently been applied to
the problem of finding the stability radius of continuous linear systems [5] (and later extended to
discrete systems [10, Chapter 3]).
The standard and most well-known method to compute the H∞-norm is the Boyd-Balakrishnan-
Bruinsma-Steinbuch algorithm [2, 3] which requires repeated computation of all the eigenvalues of
a Hamiltonian matrix. A new method to compute the H∞-norm was recently suggested in [8] and
[1]. Both approaches are generalisations of the method in [9], the former uses spectral value sets
as generalisations to the matrix pseudospectrum and fast approximations to the spectral value set
abscissa, the latter uses structured pseudospectra and extends the idea to descriptor systems.
We propose an algorithm for computing the H∞-norm based on the implicit determinant method,
discuss its implementation (using the staircase reduction) and give numerical examples that illus-
trate the performance of the method in comparison with other recently developed methods.
If time permits and if there is interest we can show how the above algorithm can be extended to
compute the real stability radius of a matrix [6].
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Convergence of restarted Krylov subspace methods for matrix functions

Andreas Frommer, Stefan Güttel, Marcel Schweitzer

Abstract
When approximating f(A)b, the action of a matrix function on a vector, by a Krylov subspace
method, the maximum possible number of iterations is often dictated by storage limitations which
do not allow to store the full Arnoldi basis, or by the growing computational complexity of eval-
uating f on a Hessenberg matrix of growing size. Therefore, it may sometimes be impossible to
perform the number of iterations needed to reach a prescribed accuracy. To overcome these prob-
lems, a number of restart approaches, similar in spirit to restarted methods for linear systems, have
been proposed in the literature in recent years [2, 3, 6, 8, 9] and there has been substantial algo-
rithmic advancement concerning stability and computational efficiency. However, a question which
remains largely unanswered is under which circumstances convergence of the restarted method can
be guaranteed. So far, the only convergence results either cover the case of entire functions or
restart length m = 1, [1, 3].
In this poster we consider the class of Stieltjes functions, see [7], and a related class, which contain
important functions like the (inverse) square root and the matrix logarithm. The general form of
a restarted Krylov subspace method obtains successive approximations f (k) to f(A)b as

f (k+1) = f (k) + e(k)
m ,

where e(k)
m is a Krylov subspace approximation to e(k)m (A)b(k), e(k)m being the restart function for the

k-th cycle, i.e. we have

f(A)b = f (k) + e(k)m (A)b(k) for all k, f (0) = 0, b(0) = b, e(0)
m = f.

Usually, the Krylov subspace approximation is taken to be the Arnoldi approximation, i.e. with the
customary representation of the Arnoldi process in the k-th cycle as

AV (k)
m = V (k)

m H(k)
m + h

(k)
m+1,mv

k
m+1ê

T
m

one takes (assuming ‖b‖ = 1)

e(k)
m = V (k)

m em(H(k)
m )ê1 and b(k+1) = v

(k)
m+1.

We will present the following three results.

Theorem 1. Let f be a Stieltjes function, A Hermitian and positive definite, κ its condition number
and assume that we take Arnoldi approximations. Then there is a constant C > 0 such that

‖f(A)b− f (k)
m ‖ ≤ C · (αm)k, where αm = 1

cosh(m ln c)
, c =

√
κ− 1√
κ+ 1

.

This means that the restarted Arnoldi method converges at a rate similar to “restarted CG” for any
vector b. Moreover, the 2-norm ‖f(A)b− f (k)

m ‖2 is monotonically decreasing as a function of k.

The last assertion relies on a similar result for the unrestarted method from [4].
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Theorem 2. Let f be a Stieltjes function and A be positive real, i.e. its field of values F(A) is
contained in the right half plane. Let ν denote the distance of the origin to F(A) and µ its distance
to F(A−1). Then, if instead of the Arnoldi approximation we take a Krylov subspace approximation
inspired by the shifted GMRES approach from [5], we have

‖f(A)b− f (k)
m ‖A ≤ C · βmk, where β = (1− µν)1/2,

i.e. the restarted method converges.

The transition to a Krylov subspace extraction different from the Arnoldi approximation is manda-
tory in Theorem 2, since we have

Theorem 3. There are examples of Stieltjes functions f and matrices A with F(A) in the right
half plane for which the restarted Arnoldi process does not converge for any cycle length but the
maximum (full) length.
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50 Years of Time Parallel Time Integration

Martin J. Gander

Abstract
Time parallel time integration methods have received renewed interest over the last decade because
of the advent of massively parallel computers. When solving time dependent partial differential
equations, the time direction is usually not used for parallelization. When parallelization in space
saturates however, the time direction offers itself as a further direction for parallelization. But the
time direction is special, since for evolution problems, there is a causality principle: the solution
later in time is affected (it is even determined) by the solution earlier in time, and not the other way
round. Algorithms trying to use the time direction for parallelization must therefore be special,
and take this very different property of the time dimension into account.
I will show in this talk how time domain decomposition methods were invented, and give an overview
of the existing techniques. I then explain how two classes of very successful iterative methods for
steady problems, namely domain decomposition methods and multigrid methods, can be formulated
for time dependent problems, and made into time parallel solvers. These solvers really do useful
work at later time steps, before the solution at earlier time steps is known accurately, and thus are
truly time parallel. Like in the case of steady state problems however, most of these methods are
very successful for parabolic problems, but have convergence problems when applied to hyperbolic
problems. We thus also discuss possible remedies for this from the more recent literature.
This talk is for people who want to quickly gain an overview of this exciting and rapidly developing
area of research.
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Arnoldi-Tikhonov Methods for Sparse Reconstruction

Silvia Gazzola, James Nagy and Paolo Novati

Abstract
Krylov subspace methods have been shown to be important techniques for the solution of large-scale
linear discrete ill-posed problems

Ax+ e = b , A ∈ RN×N , (1)

whose available right-hand-side vector b is affected by an unknown perturbation e, and the matrix
A is severely ill-conditioned, having singular values that decay to zero without a significant gap
to indicate numerical rank. Arnoldi-Tikhonov (AT) methods aim at approximating the solution of
the Tikhonov-regularized problem

min
x∈RN

{
‖b−Ax‖22 + λ‖L(x− x0)‖22

}
, λ > 0 , (2)

by projecting it into Krylov subspaces of increasing dimensions generated by the Arnoldi algorithm.
Arnoldi-Tikhonov methods were first proposed in [1] for the standard-form Tikhonov regularization
case (L = I), and later generalized in many ways in order to include a generic regularization matrix
L 6= I (cf., [3] and the references therein). Provided that a suitable λ and L have been chosen,
applying a Krylov subspace approach to solve (2) can, for many large scale applications, efficiently
deliver accurate approximations of x. Note also that, if L is nonsingular, then equation (2) can be
converted to standard form

min
x∈RN

{
‖b− Ãx̃‖22 + λ‖x̃− x̃0‖22

}
, λ > 0 , (3)

where Ã = AL−1 and x̃ = Lx. In this formulation, we can interpret L as a right preconditioner, but
the preconditioner is not chosen to accelerate convergence (e.g., by reducing the condition number
of the preconditioned system); instead, L is chosen to enforce a particular regularization on the
solution.
Although Tikhonov regularization can be effective, in some situations more general optimization
problems of the form

min
x∈RN

{J (x) + λR(x)} , (4)

where J (x) is a fit-to-data term and R(x) is a regularization term, can lead to higher quality
reconstructions. More specifically, for many signal and image processing applications, very accurate
reconstructions can be achieved by considering J (x) = ‖b − Ax‖22 (exactly as in (2)) and R(x) =
‖x‖pp, p ≥ 1 (in particular, if p = 1, sparsity is enforced into the reconstructed solution), or
R(x) = TV(x) (the total variation functional). The goal of this talk is to present two new strategies
that, even if we just focus on the cases

min
x∈RN

{
‖b−Ax‖22 + λ‖x‖1

}
, (5)

min
x∈RN

{
‖b−Ax‖22 + λTV(x)

}
, (6)

can be potentially employed to solve problem (4) for a variety of combinations of fit-to-data and
regularization terms.
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The basic idea behind our methods is to incorporate an iteratively reweighted least squares (IRLS)
approach into the Arnoldi-Tikhonov scheme, where the iteratively updated weighting matrices are
used as regularization operators in (2). For example, in the 1-norm case, at the m-th iteration, we
use the diagonal matrix L ≡ Lm = diag(1/

√
|xm−1|), where xm−1 is the approximate solution at

the (m− 1)-th iteration, and division, absolute value, and square-root are done element-wise.
We show how to efficiently implement this updating within the Arnoldi algorithm. Specifically, by
implementing the method using the standard form (3), the “preconditioner", Lm, varies at each
iteration. Therefore, in this situation, we are dealing with flexible Krylov subspace methods, and
the standard Arnoldi algorithm underlying the usual formulation of the AT methods is replaced by
its flexible version [4]. To the best of our knowledge, the use of flexible Krylov subspace methods
for regularization purposes is novel.
In the 1-norm case, the matrices Lm are diagonal, and easy to invert. In the TV case, Lm is
not easily invertible, and an inner-outer iteration scheme based on suitable restarts of the Arnoldi
algorithm is proposed: basically, at the beginning of each inner cycle, the regularization matrix is
updated using the solution obtained at the end of the previous inner cycle. This approach allows
to heuristically enforce some additional constraints into the reconstructed solution; for instance,
nonnegativity can be enforced by imposing the approximate solution at the beginning of each inner
cycle to be nonnegative.
Our IRLS strategy to solve problems (5) and (6) is very close to the one described in [5], the
main difference being the choice of the solution subspaces. More specifically, in [5] the normal
equations associated to problem (2) are solved by a restarted CGLS method; our methods directly
deal with the least squares formulation of problem (2) and, for the 1-norm case, no restarts have
to be performed. Moreover, in order to choose the regularization parameter λ at each step of the
Arnoldi algorithm, as well as to decide when to stop the iterations, we successfully employ an
efficient strategy, based on the discrepancy principle, originally introduced in [3].
The newly proposed methods have proved to be very competitive (in terms of both computational
efficiency and quality of the reconstruction) with other state-of-the-art methods commonly em-
ployed to solve problems (5) and (6). The results of some numerical experiments will be presented;
we refer to [2] for further details.
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High Performance Implementation of Deflated Preconditioned Conjugate
Gradients with Approximate Eigenvectors

Pieter Ghysels, Wim Vanroose and Karl Meerbergen

Abstract
The method of choice for solving symmetric positive definite linear systems is typically precondi-
tioned conjugate gradients (PCG). However, when a number of small eigenvalues are present con-
vergence can be slow. The deflated PCG method has been proposed [1, 2] to improve convergence
in this case by adding to the Krylov subspace, the space spanned by the (approximate) eigenvectors
belonging to the smallest eigenvalues. In particular when the deflation space W contains the eigen-
vectors associated with the k smallest eigenvalues λ1, · · · , λk, the deflated PCG method effectively
solves a linear system with condition number κ = λn/λk+1, with λn the largest eigenvalue. This is
especially beneficial if there is a gap in the spectrum between λk and λk+1. Deflation methods are
closely related to domain decomposition techniques, projection based preconditioning and coarse
grid correction methods, see [3] for a discussion.
The deflated PCG method has been applied with success to a number of engineering applications
like porous media flow [6] and elasticity [8]. Another important application domain is the solution
of a linear system with multiple (dependent) right-hand-sides, in which case spectral information
from the first solve can be used to accelerate the subsequent solves.
A direct computation of the eigenvectors for the smallest eigenvalues is prohibitively expensive, so
typically approximate eigenvectors associated with a number of small eigenvalues are used as the
deflation spaceW . There are a number of ways to obtain approximate eigenvectors, like for instance
the partial spectral factorization [4, 5], which is based on a Chebyshev filtering iteration. In the
case of multiple right-hand-sides, Ritz vectors from the first linear solve can provide approximate
eigenvectors and in some cases a priori knowledge of the problem, like the geometry and the material
parameters, can be used to construct crude approximations to the eigenvectors, see for instance [6]
and [7].
When exact eigenvectors are available, a single oblique projection before the start of the classical
PCG algorithm can be used to construct an initial guess for classical PCG such that PCG converges
as if the corresponding eigenvalues where effectively removed from the spectrum. The resulting
algorithm, called init-PCG [5], has the same computational cost as classical PCG, except for the
single initial projection. However, when only approximate eigenvectors are available, the deflation
step must be performed in every Krylov iteration, which in the case of a large deflation space
can be computationally expensive. A technique like the partial spectral factorization can provide
approximate eigenvectors with a user specified tolerance. In this work, we propose a heuristic to
determine when (or how often) deflation is explicitly required in order to preserve the convergence
of deflated PCG and save on computational cost, when only approximate eigenvectors are available.
In the classical PCG method two dot products need to be computed per iteration, requiring two
global communication phases. The deflation step requires an additional global reduction. These
global communication steps, typically implemented by a call to MPI_Allreduce, often form the
bottleneck for parallel efficiency of Krylov methods. Recently, communication hiding versions
of GMRES [9] and PCG [10] have been proposed that only require a single non-blocking global
communication phase per iteration. In these algorithms, also called pipelined Krylov methods, the
global communication can be overlapped by local work, including the matrix-vector product and
possibly the application of the preconditioner. This overlapping hides both global communication
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latency cost and synchronization cost. These methods show much better scalability towards large
number of cores. In this work we combine deflation with the communication hiding PCG method.
All global reductions, one for projection on the deflation spaceW and two reductions from standard
PCG are combined in a single non-blocking global communication phase. We present parallel scaling
results on a number of applications and a number of large parallel machines.
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Semidefinite Programming Based Preconditioning for More Robust
Near-Separable Nonnegative Matrix Factorization

Nicolas Gillis and Stephen A. Vavasis

Abstract
Nonnegative matrix factorization (NMF) under the separability assumption can be provably solved
efficiently, even in the presence of noise, and has been shown to be a powerful technique in document
classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and
requires that there exists a cone spanned by a small subset of the columns of the input nonnegative
matrix approximately containing all columns. In this paper, we propose a preconditioning based
on semidefinite programming making the input matrix well-conditioned. This in turn can improve
significantly the performance of near-separable NMF algorithms which is illustrated on the popular
successive projection algorithm (SPA). The new preconditioned SPA is provably more robust to
noise, and outperforms SPA on several synthetic data sets. We also show how linear dimensionality
reduction techniques and active-set methods allow us to apply the preconditioning on large-scale
real-world hyperspectral images.

Keywords. nonnegative matrix factorization, semidefinite programming, preconditioning, separa-
bility, robustness to noise.
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Preliminary Investigations on Recovery-Restart Strategies for Resilient
Parallel Numerical Linear Algebra Solvers

E. Agullo, L. Giraud, P. Salas Medina and M. Zounon

Abstract
The advent of extreme scale machines will require the use of parallel resources at an unprecedented
scale, probably leading to a high rate of hardware faults. Handling fully these faults at the computer
system level may have a prohibitive cost. High performance computing applications that aim at
exploiting all these resources will thus need to be resilient, i.e., be able to compute a correct solution
in presence of core crashes. In this work, we investigate possible remedies in the framework of
numerical linear algebra problems such as the solution of linear systems or eigen-problems that
are the inner most numerical kernels in many scientific and engineering applications and also ones
of the most time consuming parts. More precisely, we present recovery techniques followed by
restarting strategies. In the framework of Krylov subspace linear solvers the lost entries of the
iterate are interpolated using the available entries on the still alive cores to define a new initial
guess before restarting the Krylov method. In particular, we consider two interpolation policies
that preserve key numerical properties of well-known linear solvers, namely the monotony decrease
of the A-norm of the error of the conjugate gradient or the residual norm decrease of GMRES. We
extend these interpolation ideas in the context of some state of the art eigensolvers where these
recovery approaches are applied to reconstruct a meaningfull search space for restarting. We assess
the impact of the recovery method, the fault rate and the number of processors on the robustness
of the resulting numerical linear solvers. The work on the resilient linear solvers is described in [1]
while the results on resilient eigensolution schemes will be reported in [2].
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Extensions of the Symmetric Tridiagonal Matrix Arising from a Finite
Precision Lanczos Computation

Anne Greenbaum

Abstract
Let TJ be the tridiagonal matrix that arises at some step J of a finite precision Lanczos computation
for a symmetric matrix A. It was shown in [A. Greenbaum, Behavior of Slightly Perturbed Lanczos
and Conjugate-Gradient Recurrences, Lin. Alg. Appl. 113 (1989), pp. 7–63] that TJ can be
extended to a larger symmetric tridiagonal matrix,

TN =



TJ | βJ
−−−−− | − −−− −−−− −−−− −−−−

βJ | αJ+1 βJ+1

| βJ+1
. . . . . .

| . . . . . . βN−1
| βN−1 αN


,

in such a way that the eigenvalues of TN all lie in small intervals about the eigenvalues of A. If
TNSN = SNΘN is an eigendecomposition of TN , then this implies that the tridiagonal matrix TJ
would be generated at step J of exact Lanczos applied to the matrix ΘN with initial vector equal
to the first column of STN . Hence whatever can be said about eigenvalue approximations generated
by exact Lanczos applied to a matrix whose eigenvalues lie in small intervals about the eigenvalues
of A (but where the number and exact location of these eigenvalues is not specified), can also be
said about those generated by the finite precision computation for A.
The proven bound on the interval size in the 1989 paper was far from optimal. However, a procedure
was given for constructing one of the infinitely many extensions to TJ whose eigenvalues would all
be contained in small intervals about the eigenvalues of A. The procedure was to continue the
three-term recurrence making small additional perturbations to orthogonalize new vectors against
each other and against some of the Ritz vectors (the unconverged ones) from the finite precision
computation. In this talk we describe a slight improvement to this construction procedure that
enables us to find an extension with more tightly clustered eigenvalues. We also derive better
bounds on the interval size by using the fact that perturbations to the three-term recurrence used
to extend TJ lie in very special directions. Hence the eigenvalues of TN lie even closer to those of
A than the size of the perturbation terms would suggest.
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Numerical Solution of Indefinite Linear Systems Arising from Interior-Point
Methods

Chen Greif, Erin Moulding and Dominique Orban

Abstract
This talk focuses on the linear systems that form the core of the iterations of primal-dual interior-
point methods, for solving quadratic programming problems with equality and inequality con-
straints. Given a symmetric and positive semidefinite Hessian matrix H ∈ Rn×n, vectors c ∈ Rn

and b ∈ Rm, and a Jacobian matrix J ∈ Rm×n, where m ≤ n, we consider the primal-dual pair of
quadratic programs (QP) in standard form

min
x

cTx+ 1
2
xTHx such that Jx = b, x ≥ 0, (1a)

max
x,y,z

bT y − 1
2x

THx such that JT y + z −Hx = c, z ≥ 0, (1b)

where inequalities are understood elementwise, and y and z are the vectors of Lagrange multipliers
associated with the equality and nonnegativity constraints of (1a), respectively. The case H = 0
corresponds to the linear programming (LP) problem in standard form. The distinctive feature
of the class of primal-dual interior-point methods, which can be used for solving (1), is that they
approximately follow a smooth path lying inside the primal-dual feasible set all the way to an
optimal solution.
The primal-dual interior-point method involves a Newton iteration that requires solving linear
systems of the form  H JT −I

J 0 0
−Z 0 −X


︸ ︷︷ ︸

K

 ∆x
−∆y

∆z

 =

−c−Hx+ JT y + z
b− Jx

XZe− τe

 . (2)

Here τ is a barrier parameter taken to zero throughout the optimization iterations, and X and Z
are diagonal matrices that become increasingly ill-conditioned as we get close to the solution of the
optimization problem, i.e., as τ is reduced.
The diagonality of X and Z can be exploited to reduce the matrix size in (2) using block Gaussian
elimination, and to generate either a typical block 2× 2 saddle-point linear system, or reduce the
system further and obtain positive definite normal equations. However, we claim that in terms of
spectrum and conditioning, it may be beneficial to avoid performing such elimination steps before
applying a linear solver. We use energy estimates in the spirit of [2], and obtain upper and lower
bounds on the eigenvalues of the various matrices that we consider. We also consider regularized
variants of those matrices, which allow for loosening regularity requirements.
The matrix K (and its symmetrized variant, which can be straightforwardly obtained) is nonsingu-
lar during the iterations as long as the Jacobian J is full rank. Furthermore, even at the solution
itself the matrix is nonsingular under mild conditions, namely, that the solution (x, y, z) is strictly
complementary, Null(H) ∩ Null(J) ∩ Null(Z) = {0}, and the active constraints are linearly inde-
pendent. We are able to show that the eigenvalues of K are mostly bounded away from zero, with
the following exceptions:
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• The lower positive bound depend on the smallest eigenvalue of the Hessian and may approach
zero if the Hessian is positive semidefinite;

• we are not able to obtain an effective upper negative bound which is uniformly smaller than
zero.

The two above difficulties can be resolved by a technique of regularization, which proves to be
very effective. We incorporate two regularization parameters, ρ and δ, and yield bounds that are
uniformly bounded away from zero, with the additional benefit that there is no need to impose
any requirement on the rank of the Jacobian. Our bounds lead to an asymptotic estimate of the
condition number of the matrix:

κ2(K) . 1/min(ρ+ λn, δ),

where λn is the smallest eigenvalues of H and ρ and δ are the two regularization parameters.
The dependence of the condition number on the regularization parameters is only linear, which is
computationally advantageous. These results and additional observations appear in [1].
Based on the good spectral properties of the 3×3 block matrix K, we also consider preconditioning
approaches for iterative solvers. Here, we show that it is possible to derive block preconditioners
that are specifically tailored to the problem at hand. In particular, there exists a matrix Q such
that

QKQT =

H + ρI
U

V

 ,
where H + ρI is necessarily positive definite for ρ > 0, and U and V are negative definite. We can
then flip the sign for the latter two matrices, and obtain the following useful result.

Theorem. Consider the block diagonal symmetric positive definite preconditioner

M =

H + ρI
−U

−V

 .
Then, as τ → 0, the eigenvalues of the preconditioned matrix M−1K converge to ±1 and −1±

√
5

2 .
Consequently, in the absence of roundoff errors, as the solution of the optimization is approached,
a minimum residual Krylov subspace solver will converge in four iterations.
The above result allows for exploiting spectral properties and strong clustering of the eigenvalues
to design computationally effective iterative methods for linear systems of the form (2), for solving
the optimization problem (1).
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Direction Preserving Algebraic Preconditioners

Laura Grigori, Remi Lacroix, Frederic Nataf and Long Qu

Abstract
Solving large sparse linear systems of linear equations Ax = b is an operation used in many industrial
and academic simulations. Given the complexity of today’s numerical simulations and the sizes of
the linear systems that need to be solved, the design of linear solvers that have limited memory
requirements and that can scale to a large number of processors is of major interest. However, most
of the existing methods for solving linear systems, as domain decomposition methods with coarse
space corrections or multigrid methods, are not strongly scalable, that is for a given problem size,
the numerical efficiency of the preconditioner and/or its parallel performance degrades when the
number of processors increases.
In this talk I will focus on a class of algebraic preconditioners that are able to preserve several
directions of interest of the input matrix A. That is, given a set of vectors T which represent the
directions to be preserved, the preconditionerM satisfies a right filtering propertyMT = AT . This
is a property which has been exploited in different contexts, as multigrid methods [4], semiseparable
matrices [9], incomplete factorizations [10, 1, 5], or nested factorization [2]. It is well known that
for difficult problems with heterogeneities or multiscale physics, the iterative methods can converge
very slowly, and this is often due to the presence of several low frequency modes. By preserving
the directions corresponding to these low frequency modes in the preconditioner, their effect on the
convergence is alleviated and a much faster convergence is often observed.
In our work we have developed two different direction preserving algebraic preconditioners. The
first one, BFD [5], is based on a block decomposition of the input matrix. The second one, NFF, is
based on a recursive decomposition that requires first to permute the input matrix, which can have
an arbitrary sparsity structure, into a matrix with a nested block arrow structure. This recursive
factorization is a key feature in allowing NFF to have limited memory requirements and also to
be very well suited for hierarchical parallel machines. The construction of both preconditioners
involve the approximation of Schur complements of the form LD−1U that appear at each step of
the recursive decomposition. Different preconditioners can be obtained by using different approxi-
mations, and more details can be found in [6]. The specific approximation used in NFF that allows
to satisfy the right filtering property was introduced in [8] and is similar to the approach used in
BFD [7, 5], but adapted to a recursive computation.
Our talk will focus on introducing the two preconditioners and discussing their numerical properties.
In particular we will show that when the input matrix is symmetric and positive definite, the
preconditioner also remains symmetric and positive definite. We will also discuss the convergence
of NFF on a set of matrices arising from the discretization of a boundary value problem with highly
heterogeneous coefficients on three-dimensional grids. Our results show that on a 400× 400× 400
regular grid, the number of iterations with NFF increases slightly while increasing the number of
subdomains up to 2048. In terms of runtime performance on Curie, a Bullx system formed by
nodes of two eight-core Intel Sandy Bridge processors, our preconditioners scale well up to 1024
cores and it is 2.6 times faster than the domain decomposition preconditioner Restricted Additive
Schwarz (RAS) as implemented in PETSc [3].
The choice of the filtering vectors plays an important role in direction preserving preconditioners.
There are problems for which we have prior knowledge of the near kernel of the input matrix, and
this is indeed the case for some of the problems that we will be presenting in the talk. They can
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also be approximated by using techniques similar to the ones used in deflation, and this aspect will
be also addressed in our talk.
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Rapid Convergence for Finite Rank Approximations of Infinite-dimensional
Lyapunov Equations

Luka Grubišić and Daniel Kressner

Abstract
We analyze the convergence properties of an explicitly constructed sequence of low rank approxi-
mations to the solution of an infinite dimensional operator Lyapunov equation. As an application
of our abstract theory we consider approximations of linear control system in the context of model
reduction by balanced truncation.
In particular we are interested in systems governed by the heat equation with both distributed as
well as boundary control. For such systems in a recent study [7] the authors have presented an ADI-
based algorithm in infinite dimensional setting which was used to construct low rank approximations
of the solutions of a Lyapunov equation. A particular emphasis in [7] was on allowing Lyapunov
equations with all unbounded coefficients.
Let now A and B be unbounded operators. The formal expression AX + XA′ = −BB′, where
A′ and B′ are appropriate operator duals, is called an abstract Lyapunov equation. Following
[5] we analyze the approximation properties of solutions of abstract Lyapunov equations posed in
the setting of a scale of Hilbert spaces associated to an unbounded diagonalizable operator which
satisfies the Kato’s square root theorem [1]. We call an (unbounded) operator A diagonalizable if
there exists a bounded operator Q, with a bounded inverse, such that the (unbounded) operator
Q−1AQ is a normal operator with a compact resolvent. In this setting we assume that −A satisfies
the requirements of [1].
Let further sup(Re(Spec(A))) < 0 and let (−A)−1/2B be bounded, then the abstract Lyapunov
equation has a unique minimal positive and bounded solution operator X. We further assume that
the input space of the linear system is finite dimensional. This amounts to an assumption that B′
has finite rank relatively to this Hilbert space structure.
Under these assumptions an abstract Lyapunov equation can be interpreted as a weak operator
equation from [4]. Subsequently, we combine explicit representation formulas for the solutions of
weak Lyapunov equations with tensor approximation techniques from [3, 6] to obtain a sequence
of rapidly converging low rank approximations to X. We also obtain an explicit estimate for the
exponential decay of the singular values σi(X), i ∈ N (see also [8]).
To this end, we construct a degenerate—of rank (2k + 1) × Ran(B)—approximation X2k to the
operator X and give conditions under which an estimate√√√√ ∞∑

i=2k+2
σ2
i (X) ≤ ‖X −X2k‖HS ≤ O(exp−π

√
2k) , (1)

holds. Here ‖X‖HS =
√

tr (X∗X) denotes the Hilbert-Schmidt norm of X and we note that our
technique allows us to give the constant in the O(·) notation explicitly in terms of the weighted
norms of A, B and Q and an estimate on the spectrum of A.
In the case of a (more strongly) unbounded control operator B, e.g. an operator only bounded
in a weighted Hilbert space, we obtain the same type of convergence estimates in an associated
weighted norm on (the subspace of) the space of compact operators.
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Our numerical experiments are designed to test the sharpness of the estimate (1). We discretize
the infinite dimensional Lyapunov equation by a Galerkin projection using both finite element as
well as spectral element methods. We point out that the fact that −A satisfies the Kato’s square
root theorem from [1] was essential in justifying the use of finite elements with only first order
Sobolev regularity, eg. Lagrange P1 elements for the heat equation, when projecting the Lyapunov
equation. We then use the extended Arnoldi algorithm, see [2, 9], to efficiently compute low rank
approximations to the solution operator X.
Based on our convergence estimates we also discuss ramifications of this analysis for the design of
adaptive finite element methods including the analysis of the influence of linear algebra approxi-
mations on the overall process.
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Perfectly Matched Layers via the Iterated Rational Krylov Algorithm

Vladimir Druskin, Stefan Güttel and Leonid Knizhnerman

Abstract
An important task in science and engineering is the numerical solution of a partial differential
equation (PDE) on an unbounded domain. Complex coordinate stretching is a powerful idea for
constructing computational grids that, in some sense, mimic unbounded domains, with probably
the most popular approach being known as perfectly matched layer (PML, see the influential work
of Berenger [2]). In this talk we will present a new approach for constructing such layers. It is based
on ideas of the eminent mathematicians Y. I. Zolotarev (1847–1878), T. J. Stieltjes (1856–1894),
and M.G. Krein (1907–1989), and modern linear algebra techniques.
To outline the main idea, let us consider the following two-point boundary value problem

∂2

∂x2 u = Au, ∂

∂x
u
∣∣
x=0 = −b, u

∣∣
x=+∞ = 0, (1)

where A ∈ CN×N is nonsingular and {b,u(x)} ⊂ CN . If A is a discretization of a differential
operator on some spatial domain Ω ⊆ R`, then (1) is a semidiscretization of an (`+ 1)-dimensional
PDE on [0,+∞)× Ω. Assuming that problem (1) is well posed, its exact solution can be given in
terms of matrix functions as u(x) = exp(−xA1/2)A−1/2b. In particular, at x = 0 the solution is
given as

u(0) = F (A)b, F (z) = z−1/2. (2)

The relation (2) allows for the exact conversion of Neumann data −b at the boundary x = 0 into
the Dirichlet data u(0), without the need for solving (1) on its unbounded domain.
A difficult, but practically important case is obtained when A in (2) is a Hermitian indefinite matrix.
For example, when solving wave scattering problems one typically deals with a discretization of the
negative shifted Laplacian −∆ − k2 on Ω ⊂ R`, in which case problem (1) is a semidiscretization
of the indefinite Helmholtz equation on [0,+∞)× Ω. It is thus reasonable to assume that

A = L− k2I,

where L ∈ CN×N is Hermitian positive definite, I ∈ RN×N is the identity matrix, and k2 > 0 is not
in the spectrum of L. In a recent work [3] we have presented the construction of a near-optimal
rational approximant Rn(z) to the function F (z) defined in (2) such that Rn(A) ≈ F (A), with
the branch cut of F (z) modified appropriately. Let us assume that the real eigenvalues of A are
ordered such that

λ1 ≤ λ2 ≤ · · · ≤ λi < 0 < λi+1 ≤ · · · ≤ λN .

Our construction in [3] required estimates for the eigenvalues λ1, λi, λi+1, λN , i.e., we needed to know
the endpoints of the negative and positive spectral subintervals Σ1 = [λ1, λi] and Σ2 = [λi+1, λN ]
of A. The rational approximant Rn(z) for F (z) was then constructed by combining two relative best
rational approximants related to Σ1 and Σ2, and it minimizes the relative error |1 − Rn(z)/F (z)|
uniformly on Σ1∪Σ2. While the outer eigenvalues λ1, λN are easily estimated, the inner eigenvalues
λi, λi+1 are typically more difficult to obtain.
In a more recent work we describe a new technique for constructing a different rational approximant
Rn(z) to the function F (z) defined in (2). We will make use of the fact that any type (n − 1, n)
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rational interpolant Rn(z) for F (z) can be represented as

Rn(z) = Pn−1(z)
Qn(z)

= F (z) · Hm(−
√
z)−Hm(

√
z)

Hm(−
√
z) +Hm(

√
z)
,

where Hm is a monic polynomial of degree m = 2n. The m interpolation conditions are satisfied
at points zj for which Hm(σj) = 0, zj = σ2

j (j = 1, . . . ,m). The denominator Qn(z) is determined
from the even part of Hm(z), and the numerator Pn−1(z) from the odd part. In order to compute
optimal interpolation nodes zj we run the iterated rational Krylov algorithm for optimal H2 model
reduction [4] with the matrix S =

√
A. Our algorithm can be sketched as follows:

1. Start with some (distinct) initial shifts σ1, . . . , σm.

2. Compute an orthonormal basis Vm ∈ CN×m of the m-dimensional rational Krylov space

Qm(S,b) = span{(S− σ1I)−1b, . . . , (S− σmI)−1b}.

3. Compute the projection Sm = V∗mSVm ∈ Cm×m and set {σ1, . . . , σm} := −Λ(Sm).

4. Repeat from step 2. until convergence.

5. The required interpolation nodes are zj = σ2
j (j = 1, . . . ,m).

In this algorithm only the actions of shifted and inverted versions of S onto vectors are required,
which themselves can be computed efficiently by rational Krylov techniques [5]. The resulting
interpolant Rn(z) is parameter-free (except for its degree n, of course), so its construction does
not require estimates for the spectral subintervals of A. Moreover, using a result from [1], we can
characterize how the H2 optimality of the shifts σj for S translates into an optimality condition for
the interpolant Rn(z).
The main features of this new interpolant compared to our previous work [3] are that its construction
is entirely based on linear algebra techniques, and that it possesses “spectral awareness”, i.e., it is
optimized for the discrete set of eigenvalues of A and weights given by the vector b. This discrete
optimality can result in significant reduction of n, the degree of the interpolant, for achieving a
given error tolerance. In particular the last advantage is crucial for the construction of perfectly
matched layers from Rn(z) with fewest possible grid points n, thereby reducing significantly the
overall size of the discretization matrices for 3D Helmholtz problems on unbounded domains.
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The Sylvester Equation and Interpolatory Model Reduction of
Linear/Bilinear Dynamical Systems

Garret Flagg and Serkan Gugercin

Abstract
Consider a single-input single-output (SISO) linear dynamical system in the state-space form

ẋ(t) = Ax(t) + bu(t), y(t) = cTx(t) ⇐⇒ G(s) = cT (sI −A)−1b (1)

where x ∈ Rn, u ∈ R and y ∈ R are, respectively, the states, input and output of the underlying
system; A ∈ Rn×n, and b, c ∈ Rn. In (1), G(s) is called the transfer function. We will assume that
the dynamical system is asymptotically stable; i.e., the eigenvalues of A have negative real parts.
For the cases where the system order, i.e., the state dimension n, is very large, one would like to
approximate the full-order model (1) with a reduced model of similar form. Thus, the goal is to
construct a reduced model

ẋr(t) = Arxr(t) + bru(t), yr(t) = cTr xr(t) ⇐⇒ Gr(s) = cTr (sIr −Ar)−1br (2)

where xr ∈ Rr with r < n, Ar ∈ Rr×r, and br, cr ∈ Rr such that the reduced transfer function Gr(s)
is a good approximation to G(s) in an appropriate norm. A commonly used method for obtaining
Gr(s) is rational interpolation. Given the interpolation points {σi}ri=1 ∈ C, the goal is to construct
Gr(s) such that

Gr(σi) = G(σi) and G′r(σi) = G′(σi) for i = 1, 2, . . . , r, (3)

where ′ denotes differentiation with respect to s. Here, we focus on the simple Hermite interpolation;
however the discussion can be generalized to matching the higher-order derivatives as well; see [3] for
a recent survey paper on model reduction by interpolation. We will assume that the interpolation
points lie in the right-half plane.
The Sylvester equation plays a fundamental role in this framework. Given the interpolation points
{σi}ri=1, let V ∈ Cn×r and W ∈ Cn×r solve the following two Sylvester equations:

AV − V Σ = b eT and ATW −WΣ = c eT (4)

where Σ = diag(σ1, . . . , σr) ∈ Cr×r and e ∈ Rr is the vector of ones. Then, the reduced model
Gr(s) = cTr (sIr − Ar)−1br given by Ar = (W T

r Vr)−1W T
r AVr, br = (W T

r Vr)−1W T
r b, and cr = V T

r c
satisfies the interpolation conditions given in (3), see, e.g., [7]. The Sylvester equation has proved
important in optimal model reduction as well. For example, if the goal is to find a reduced model
to minimize the H2 error norm, defined as ‖G − Gr‖H2 =

√
1
2π
∫∞
−∞ |G(ıω)−Gr(ıω)|2dω, one can

solve an iteratively updated sequence of Sylvester equations of the form (4) to construct a locally
optimal H2 approximation ([2]). This framework is equivalent to the Iterative Rational Krylov
Algorithm [6] framework for optimal H2 model reduction as discussed in [2, 6].
Now, consider a SISO bilinear system: ẋ(t) = Ax(t) + Nx(t)u(t) + bu(t), y(t) = cTx(t), where
A,N ∈ Rn×n, and b, c ∈ Rn. The bilinearity is due to the term Nx(t)u(t) in the state equa-
tion. The main question we want to answer in this talk is how to extend the connection be-
tween the Sylvester equation and interpolation to the bilinear setting where the reduced bilinear
model will have the state-space form: ẋr(t) = Arxr(t) + Nrxr(t)u(t) + bru(t), yr(t) = cTr xr(t),
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with A,N ∈ Rr×r, and b, c ∈ Rr. The Volterra series representation of bilinear systems fills
a gap left by the absence of transfer functions. The output y(t) can be expressed as y(t) =∑∞
k=1

∫ t
0
∫ t1
0 . . .

∫ tk−1
0 g̃(t1, . . . , tk)u(t− t1 · · · − tk) · · ·u(t− tk)dtk · · · dt1, assuming the conditions for

the Volterra series to converge. By applying a multivariate Laplace transform to g̃(t1, . . . , tk), one
obtains the kth subsystem transfer function G̃k(s1, s2, . . . , sk−1, sk). Interpolation methods for bi-
linear systems have so far mainly focused on interpolating some of the leading kth transfer functions
(see, e.g., [1, 5]). In this talk, we will show how to interpolate the underlying Volterra series.
Given two sets of interpolation points {σi}ri=1 ∈ C and {µi}ri=1 ∈ C, together with two matrices
U, S ∈ Rr×r, for which convergence of certain infinite series is assumed, let V ∈ Cn×r andW ∈ Cn×r

solve the following two bilinear Sylvester equations

VrΣ−AVr −NVrUT = beT and WrM −ATWr −NTVrS
T = ceT , (5)

where M = diag(µ1, . . . , µr) ∈ Cr×r. Then we will show that the reduced bilinear model con-
structed as Ar = (W T

r Vr)−1W T
r AVr, Nr = (W T

r Vr)−1W T
r NVr, br = (W T

r Vr)−1W T
r b, and cr = V T

r c
interpolates the full Volterra series

∞∑
k=1

r∑
l1

r∑
l2

· · ·
r∑

lk−1

η
l1,l2,...,lk−1,j

G̃k(σl1 , σl2 , . . . , σj)

for every {σj}rj=1 where the weights ηl1,l2,...,lk−1,j
depends on U . Similar result holds for interpolation

at µj . This extends the connection between rational interpolation and the Sylvester equation to
bilinear systems by focusing on interpolating the underlying Volterra series. Benner and Breiten
[4] has recently extended the optimal H2 model reduction to bilinear systems where an iteratively
updated sequence of (bilinear) Sylvester equations of the form (5) are solved. With the new
connection between the Sylvester equation and the Volterra series interpolation, we will also show
that [4] achieves interpolation in the Volterra series at carefully selected interpolation points.
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Performance Enhancement of Doubling Algorithms for a Class of Complex
Nonsymmetric Algebraic Riccati Equations

Chun-Hua Guo, Changli Liu and Jungong Xue

Abstract
We consider the nonsymmetric algebraic Riccati equation (NARE)

XCX −XD −AX +B = 0, (1)

where A,B,C,D are complex matrices of sizes m×m,m×n, n×m,n×n, respectively. Associated
with the NARE (1) is the matrix

Q =
[

D −C
−B A

]
. (2)

The NARE (1) is said to be in class H∗ if the comparison matrix Q̂ of Q, defined by

[Q̂]ij =
{

Re([Q]ii), i = j,
−|[Q]ij |, i 6= j,

is a nonsingular M -matrix. The class H∗ is an extension of the class H+ studied earlier in [2],
where the diagonal entries of Q are required to be real and positive. The NARE in class H∗ arises
in the study of Markov modulated fluid flows; see [5] and the references therein.
The study of the NARE in class H+ or H∗ is through comparison with a NARE (1) for which
the matrix Q in (2) is a nonsingular M -matrix. The later is said to be in class M or called an
M -matrix algebraic Riccati equation, which has been studied extensively (see [1, 3], for example).
Any NARE in class M has a minimal nonnegative solution. In the study of the NARE (1) in class
H∗, we may assume without loss of generality that Q̂1 > 0, where 1 is the vector of ones. We have
the following result of [5], which is a useful generalization of [2, Theorem 8].

Theorem 1. Suppose the NARE (1) is in class H∗ and Q̂1 > 0. Let Φ̃ be the minimal nonnegative
solution of the NARE

XC̃X −XD̃ − ÃX + B̃ = 0,

where
Q̃ =

[
D̃ −C̃
−B̃ Ã

]
,

partitioned as for Q in (2), is a nonsingular M -matrix satisfying Q̃ ≤ Q̂ and Q̃1 > 0. Then the
NARE (1) has a unique solution Φ such that |Φ| ≤ Φ̃. Similarly, the dual equation of (1)

Y BY − Y A−DY + C = 0

has a unique solution Ψ such that |Ψ| ≤ Ψ̃, where Ψ̃ is the minimal nonnegative solution of the
NARE

Y B̃Y − Y Ã− D̃Y + C̃ = 0.

In [5] it is shown that the special solutions Φ and Ψ in Theorem 1 are the solutions required
in applications and that these two solutions can be found simultaneously by existing doubling
algorithms [4, 6] if the parameters in the doubling algorithms are chosen properly. In this talk,
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we show that the performance of the doubling algorithms can often be improved significantly if
a proper preprocessing procedure is used on the given Riccati equation, at a negligible cost. We
also propose new strategies for choosing parameters for doubling algorithms. For some difficult
cases, these strategies can provide significant further improvement after using the preprocessing
procedure.
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Is There a Market for Modified Moments?

Martin H. Gutknecht

Abstract
What the engineers call ‘partial realization’ is known to mathematicians and physicists as (matrix)
Padé approximation at ∞ of the transfer function H(s) = C(sI −A)−1B of a linear time-invariant
system. The approach is also known as moment (or Markov parameter) matching. Traditionally,
this matching has been achieved by solving a Hankel or block Hankel system of linear equations,
typically achieved by fast recursive algorithms. But already in the mid-50s Rutishauser became
aware of the ill-conditioning of this moment matching, which hampered his qd algorithm. So, for
computing the continued fraction of a scalar transfer function H, he suggested to apply the Lanczos
algorithm, and for computing the poles of H he would subsequently apply the progressive form of
his qd algorithm, which is the same as applying his LR algorithm to the tridiagonal matrix of the
Lanczos recurrence coefficients. So, in the scalar case, the computation of Padé approximations
at ∞ was introduced nearly 40 years before Padé-via-Lanczos (PVL) became widely used in the
control community following the publications of Feldmann and Freund (1994, 1995). In the 1970s
and 1980s such applications of the Lanczos algorithm were also much promoted by G.H. Golub and
W.B. Gragg. However, all these algorithms can break down if A is not Hpd.
Another efficient but unstable alternative to solving a Hankel system for moment matching had
been known long before: the Chebyshev algorithm (1859), which, in fact, can also be viewed as
a fast Hankel solver providing the recursions of the corresponding orthogonal polynomials. In the
1960s Gautschi linked the instability of the Chebyshev algorithm to the ill-conditioning of the
moment matching, and he also showed that the so-called modified Chebyshev algorithm of Sack
and Donovan (1972) and Wheeler (1974) may behave much better. However, also the modified
Chebyshev algorithm can break down in the same way the nonsymmetric Lanczos algorithm can
break down, because it produces the same continued fraction and the same Padé approximants.
In 1990, Golub and Gutknecht came up with a version of this modified Chebyshev algorithm that
could overcome breakdowns in exact arithmetic. However, unlike the look-ahead Lanczos algorithm
this ‘reliable’ or ‘non-generic’ modified Chebyshev algorithm does not remain stable in the case of
a near-breakdowns in finite-precision arithmetic, and its extension to a look-ahead algorithm is
not at all straightforward. The first aim of our renewed interest in this area was to fill this long-
standing gap. Achieving it turned out to be a bit tricky, but simpler than expected. The resulting
look-ahead modified Chebyshev algorithm generates (in the scalar, SISO case) the same sequence of
block tridiagonal upper Hessenberg matrices as the look-ahead Lanczos algorithm. These matrices
are Petrov–Galerkin projections of A.
Other challenges remain: what about the MIMO case? What about rational interpolation instead of
Padé approximation at ∞? Moreover: what about applications? Golub’s main intention, realized
in the PhD thesis of Mark Kent (1989), was to use the modified Chebyshev algorithm for first
approximating the extremal eigenvalues of an spd matrix A and then to use this information for
determining the parameters of the Chebyshev iteration, a classical Krylov solver for matrices with
positive real spectrum. Today, computing approximate eigenvalues with the modified Chebyshev
algorithm may still be competitive, in particular since the algorithm is naturally communication-
avoiding and not restricted to the Hermitian case. Can it be made more stable than Lanczos? As
we indicated, this modified Chebyshev algorithm can also be applied for model reduction by partial
realization. Yet other applications may get into the focus. For example, using the resulting spectral
information for the augmentation and deflation of Krylov subspaces.
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Fast Nonstationary Preconditioned Iterative Methods for Image Deblurring

Marco Donatelli and Martin Hanke

Abstract
For large-scale discrete linear ill-posed problems

Tx = y , (1)

as they arise, for example, in image deblurring applications, iterative regularization methods provide
a welcome alternative to, say, Tikhonov regularization, because iterative methods are comparatively
cheap to implement and regularize the problem “on the fly”. The regularization parameter of these
methods is the stopping index, that means, regularization is achieved by early stopping of the
iteration. This avoids the cumbersome trial and error process known from Tikhonov regularization,
where large linear systems have to be solved for a set of conceivable regularization parameters before
the final output is determined.
While the basic Landweber iteration (i.e., the fixed point iteration for the normal equation system)
is far too slow to be useful, the conjugate gradient iteration (cgls) is a much more valuable option
for this purpose. But even cgls may take a few tens of iterations to achieve good accuracy, and in
the end this may tip the scales towards cheaper Fourier based methods with inferior quality.
Because of that it has been suggested in the 90’s to utilize Fourier techniques to design precon-
ditioners to speed up the iteration, cf., e.g., [3, 4, 5]. When doing so, care has to be taken that
the preconditioner does not spoil the benefits of the iterative process: if the preconditioner comes
without any regularization then its action will inevitably introduce disastrous noise propagation
into the iterates; on the other hand, excessive regularization or filtering prevents the reconstruction
of relevant signal components.
Another issue of the implementation of the cgls iteration (be it preconditioned or not) is the proper
choice of the stopping index (i.e., the regularization parameter). This choice has to be based on
metadata, such as the norm of the residual and good a priori knowledge about the noise level, or
on human interaction and excellent pertinent experience. A bad choice of the stopping index will
have the same effect as a careless implementation of the preconditioner described above.
Because of these difficulties preconditioned iterative regularization methods for image deblurring
problems still suffer under a lack of robustness. In this work, cf. [1], we therefore suggest a new
iterative method that avoids the conjugate gradient iteration, by utilizing a very powerful nonsta-
tionary (Fourier based) preconditioning scheme for the Landweber iteration instead. The method
shares similarities to nonstationary iterated Tikhonov regularization without the corresponding
expensive system solves.
To be specific the algorithm has the following form. Let C be a suitable approximation (see below)
of the system matrix T , and x0 be an initial guess of the exact solution. Then, for n = 0, 1, 2, . . . ,
compute

xn+1 = xn + hn , (2)

where hn is given by
hn = C∗(CC∗ + αnI)−1(y − Txn) . (3)

Here, {αn} is a sequence of positive regularization parameters, to be determined adaptively by
stipulating

‖rn − Chn‖ = qn‖rn‖ , (4)
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where rn = y − Txn is the residual, and qn is taken to be a given parameter (qn = 0.8, say)
in the beginning of the iteration, and increasing towards one in the final steps of the iteration.
Take note that the approximation C comes without any regularization; instead, the corresponding
regularization is incorporated explicitly via the parameters αn. Also note that the need for efficient
means for solving (3), (4) provides severe restrictions on suitable choices for C; as mentioned before,
we use Fourier based approximations of T in our examples, and then the dominating work load of
a single step of the iteration is the computation of the residual rn.
The overall process (2)–(4) has the spirit of an inexact Newton scheme – despite the fact that
the underlying system (1) is linear. In fact, our theoretical analysis of this iteration employs
techniques that have been developed for an analysis of a regularizing Levenberg-Marquardt iteration
for nonlinear ill-posed problems [2]. The key ingredient of this analysis is a closeness assumption
on C, namely that

‖(C − T )z‖ ≤ ρ ‖Tz‖ (5)

for some 0 < ρ < 1/2 and all z.
Our theoretical results include a linear rate of convergence for the case that the data are given
exactly, and a proof that the discrepancy principle provides a regularizing stopping rule for the
case of perturbed data.
Numerical examples (cf. [1]) show that the method is superior to cgls and also to its preconditioned
variant from [3] for space invariant deblurring problems, when using the same approximation C to
set up the preconditioner in either case. Our results apply to different types of boundary conditions
alike, including Dirichlet, reflective, and antireflective boundary conditions.
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Rotational Image Deblurring with Sparse Matrices

Per Christian Hansen, James G. Nagy and Konstantinos Tigkos

Abstract
Image deblurring is an important image restoration problem in its own right, as well as a component
in navigation systems, robotics, etc. A common cause of blurring is motion of either the recording
device or the object. Examples include movement of the heart during cardiac imaging processes,
movement of a low flying aircraft in aerial imaging, and people or vehicle movement in surveillance
imaging. Linear motion with constant speed and direction is well understood, but less work has
been done in the development of mathematical models and efficient algorithms for restoration of
images degraded by nonlinear and nonuniform motion blur where the blurring is spatially variant.
This work focuses on a particular type of motion blur where the object or scene is rotated during
the recording of the image, leading to spatially variant blur. An important special case is when
the rotation axis of the scene points towards the camera, and in this case, if the rotation also has
constant velocity, then it is possible to transform the blurring to polar coordinates, which results in
a shift-invariant operator. Although this is mathematically convenient, it is not possible to obtain
a purely shift-invariant operator for more complicated, nonuniform motion blur. In addition, the
transformation between rectangular and polar coordinates can introduce severe interpolation errors
in the reconstruction.
We develop algorithms that avoid such transformations and thus are able to handle rotational blur
along an arbitrary axis. Our algorithms are based on iterative algorithms [BN] that incorporate
nonnegativity constraints, namely, the projected Landweber method and the modified residual
norm steepest descent (MRNSD) method. Both algorithms exhibit semi-convergence, i.e., the
early iterations produce iteration vectors that converge towards the desired noise-free solution,
while later iterations produce noisy vectors that diverge from from this solution.
Algorithms for general motion blur typically use a matrix-free approach based on summing a
sequence of rotated and/or translated images [TTB]. We develop an alternative approach in which
we explicitly form a sparse matrix that represents the spatially variant rotational blur [HNT]. The
matrix needs only be constructed once, its store requirements are moderate, and we can easily
incorporate suitable boundary conditions into the matrix in order to reduce artifacts from the
edges. The advantages are fast execution, at the expense of storage requirements for the sparse
matrix, and flexible treatment of boundary conditions.
The performance of our algorithms is illustrated with numerical examples. We illustrate why motion
deblurring tents to introduce replicas of sharp edges in the reconstruction. We we study the use
of several stopping rules and conclude that the Monte-Carlo GCV method is the most robust one.
And we demonstrate that the correct handling of boundary conditions is essential for achieving
good reconstructions.

[BN] J. M. Bardsley and J. G. Nagy, Covariance-preconditioned iterative methods for nonnegatively
constrained astronomical imaging, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1184–1197.

[HNT] P. C. Hansen, J. G. Nagy, and K. Tigkos, Rotational image deblurring with sparse matrices,
submitted to BIT.

[TTB] Y. W. Tai, B. Tan, and M. Brown, Richardson-Lucy deblurring for scenes under a projective
motion path, IEEE Trans. Pattern Analysis and Machine Intelligence, 33 (2011), pp. 1603–
1618.
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How and Why to Estimate Condition Numbers for Matrix Functions

Nicholas J. Higham, Lĳing Lin and Samuel Relton

Abstract
The condition number of a matrix with respect to inversion was introduced by Turing in 1948.
Since then various condition numbers have been defined in numerical linear algebra, with investiga-
tions focusing on characterizing when a problem is ill conditioned, efficiently estimating condition
numbers, obtaining condition number bounds, and relating the level-2 condition number (the con-
dition number of the condition number) to the original (level-1) condition number. In this talk we
consider all these aspects for general matrix functions.
Consider a matrix function f : Cn×n → Cn×n and assume that it is Fréchet differentiable. The
Fréchet derivative is a linear mapping Lf : Cn×n → Cn×n such that for all E ∈ Cn×n

f(A+ E)− f(A)− Lf (A,E) = o(‖E‖).

The Fréchet derivative describes the first-order sensitivity of f to perturbations. Since Lf is a
linear operator,

vec(Lf (A,E)) = Kf (A)vec(E)

where Kf (A) ∈ Cn2×n2 is the Kronecker matrix and vec stacks the columns of its argument into
one long vector. We will explain how the Kronecker matrix contains a wealth of information about
sensitivity measured both normwise and componentwise.

Componentwise Sensitivity

First, we show that the ((s− 1)n+ r, (j − 1)n+ i) element of Kf is the absolute condition number
of f(A)rs subject to perturbations in aij . Hence a norm of row (s − 1)n + r of Kf (A) is an
absolute condition number of f(A)rs subject to perturbations in A; equivalently, it is the norm of
the gradient of the map from A to f(A)rs. Similarly, a norm of column (j − 1)n + i of Kf (A) is
an absolute condition number of f(A) subject to perturbations in aij . In practice we may wish to
know the k � n elements of f(A) that are most sensitive to perturbations in (all the elements of)
A or the k elements of A to which f(A) is (overall) most sensitive to perturbations. We will show
how the block 1-norm estimator of [5] can be used to estimate these elements and the corresponding
sensitivities efficiently without explicitly forming the n2 × n2 matrix Kf (A).

Normwise Sensitivity

For a matrix function f : Cn×n → Cn×n, the theory of Rice leads to absolute and relative normwise
condition numbers characterized in terms of the norm of the Fréchet derivative of f . Estimating
the condition number reduces to estimating the norm of the Kronecker matrix, We review how this
can be done using the block 1-norm estimator. The estimator requires the evaluation of matrix–
vector products involving the Kronecker matrix and its conjugate transpose. Obtaining the latter
products is nontrivial in general. We show that these reduce to products with the Kronecker matrix
for the function f̃(z) := f(z) provided that f̃(A)∗ = f̃(A∗) for all A ∈ Cn×n and that in most cases
of interest f̃ ≡ f and the latter condition holds.
We survey methods for computing or approximating the Fréchet derivative, including the complex
step method for general f and methods specialized to particular f .
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We then turn to the two questions:

Q1 What is the level-2 condition number of a matrix function and how does it relate to the (level-1)
condition number?

Q2 What is the condition number of the Fréchet derivative and how can it be estimated?

Q1 was first raised in the context of problems including matrix inversion, and the eigenvalue
problem by Demmel [1], who showed that for the problems in question the level-1 and level-2
condition numbers are equivalent. We briefly outline how to bound the level-2 condition number
and describe several cases in which explicit relations between the level-1 and level-2 condition
numbers can be obtained. More details are given in the separate abstract by Relton.
Q2 is important for understanding the behaviour of algorithms for computing the Fréchet derivative,
as it tells us how large the relative error can be expected to be for a backward stable algorithm.
We give an appropriate definition of condition number of the Fréchet derivative and show how to
bound it and how to estimate the bound.
We conclude with a brief discussion of available software, including the Python package SciPy,
which contains in version 0.13.0 several codes to compute Fréchet derivatives of matrix functions.
This talk is based on [2], [3], [4].
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Noise Approximation in Discrete Ill-posed Problems

Iveta Hnětynková, Marie Michenková and Martin Plešinger

Abstract
In many fields of application, e.g. signal and image processing, geophysics, seismology, radiology,
etc., there is a need to solve linear inverse problems Ax ≈ b, where the matrix A represents a
discretized smoothing operator, and b is an observation vector contaminated by unknown noise.
By the nature of these problems they are typically ill-posed. A small perturbation in the data
may result in significant errors in computed approximate solution; a naive solution is dominated
by amplified noise. Thus it is necessary to use regularization methods for finding reliable numerical
approximations to the solution. A knowledge of the noise level in the data is a great advantage as
it allows to apply the Morozov’s discrepancy principle [4].
In [2] it was shown, how noise contaminated in b propagates in the left bidiagonalization vectors
of the Golub-Kahan iterative bidiagonalization. Analysis was based on quadrature approximations
of the Rieman-Stieltjes distribution function associated with the given data. This allowed to esti-
mate the usually unknown noise level at a negligible cost. The estimate required monitoring near
stagnation of the absolute value of the first component of the left singular vector of the projected
(bidiagonal) matrix corresponding to its smallest singular value. A possibility of approximating the
high frequency part of the unknown noise was also mentioned. These results were presented at the
previous Householder symposium in 2011.
In [2] the results were illustrated on examples from the Regularization Toolbox [1], and in order
to maintain orthogonality among the bidiagonalization vectors close to the machine precision level,
full (double) reorthogonalization was used. For real problems, the full reorthogonalization is too
costly and the noise can be far from the artificially constructed “white” noise. We show that even
if no reorthogonalization is used, the noise revealing effect is still present. However, we can observe
appearance of multiple approximations for large singular values of A throughout the bidiagonaliza-
tion. This causes reappearance of some smooth components in the left bidiagonalization vectors,
with the propagation of noise delayed and sometimes irregular.
In [2], white noise was considered. If noise is high-frequency dominated, the revealing technique
is by its nature expected to perform well. However, realistic noise can have more complicated
properties. We investigate the behavior of the proposed noise revealing technique under various
circumstances which could be met in real world applications.
Finally, we turn to approximation of the high frequency part of the unknown noise vector; see also
[3]. We demonstrate that by subtracting such approximation from b the high frequency part of
noise in the data is significantly reduced, but the corresponding part of the signal is also affected.
Determining approximate noise in a reliable way requires further investigation; we hope for getting
applicable results in the near future.
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Field of Values type Eigenvalue Inclusion Regions for Large Matrices

Michiel Hochstenbach and Ian N. Zwaan

Abstract
We will discuss several recent contributions in the development of tight and very fast spectral
inclusion regions for large sparse matrices, based on the field of values

W (A) = {x∗Ax : ‖x‖2 = 1 }

and generalizations.

• For some matrices, such as matrices of the tolosa family, the field of values turns out to be
much larger than the spectrum. We will propose various (Krylov) scaling techniques for
this situation, showing that scaling of a matrix may be a very helpful technique for generating
tight spectral inclusion regions based on a field of values.
In fact, we believe that the combination of matrix scaling and a field of values based on an
Arnoldi decomposition gives an eigenvalue inclusion region that is very hard to beat both in
quality and efficiency.

• We will discuss adapted fields of values for the situation that the matrix has some outlier
eigenvalues. In this case, the field of values would be a spectral inclusion region that would
be much larger than necessary for the bulk of the eigenvalues.

• Finally, we will also discuss eigenvalue inclusion regions based on the field of values for
the generalized eigenvalue problem (matrix pencils) and the quadratic eigenvalue
problem.

Indeed, we would like to stress the almost astonishing result that quality eigenvalue inclusion
regions for large sparse matrices may be obtained with just a dozen matrix-vector products. This
is surprising since finding just one eigenvalue accurately may cost hundreds or even thousands of
matrix-vector products.
Part of this presentation is described in [2, 5]. Some earlier relevant work was done in [1, 3, 4].
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A Schur Logarithmic Algorithm for Fractional Powers of Matrices

Bruno Iannazzo and Carlo Manasse

Abstract
A fractional power of a square matrix A is any solution of the matrix equation Xp = Aq, where p
and q are positive integers.
Fractional powers can be classified either primary or nonprimary, whether or not they can be
written as a polynomial of A. Perhaps surprising, in the generic case, every fractional power is
primary. More precisely, for a nonsingular matrix A, nonprimary powers arise if only if A has at
least two Jordan blocks for the same eigenvalue in its Jordan canonical form; these nonprimary
powers are non-isolated points in the space of matrices and are ill-conditioned, for this reason,
numerical algorithms focus just on primary powers.
For matrices having no nonpositive real eigenvalues, the fractional power exp

( q
p log(A)

)
is said to

be principal and it is the one usually required in applications.
In fact, the problem of computing fractional powers of matrices arises in several applications, of
which we cite just a couple. In finance, credit rating agencies produce transition matrices whose
entries are the probabilities to skip from a rate to another in a fixed period. If one is interested in
these probabilities, but over a shorter period, then a fractional power may be helpful [6]. As usual
in applied mathematics, the same model can be used for a very different problem: in the study
of chronic degenerative diseases, the entries of the transition matrix represent the probability of
transition from a state of the disease to another one; fractional powers are useful to describe the
transition over a short period, given the transition observed in a long period [1].
Notice that a stochastic matrix whose principal pth root is not stochastic may still have a primary
stochastic pth root [3] and thus one might be interested also in computing non-principal fractional
powers.
We present an algorithm for computing all primary fractional powers of a nonsingular matrix [5].
The algorithm belongs to the category of Schur recurrence algorithms, which compute a root of
a matrix using a suitable recurrence on the Schur form of A. The nice feature of the proposed
algorithm is that, in terms of p and the size n of the matrix A, it requires O(n3 log p) arithmetic
operations, which reduces the cost with respect to the previous Schur recurrence algorithms [2, 7].
The algorithm works completely in real arithmetic for real data and shows excellent numerical
behavior, in the case q = 1. Moreover, for moderate values of p its computational cost is competitive
with existing algorithms for the principal fractional powers [4].
We consider also the related problem of computing Fréchet derivatives of fractional powers func-
tions, which are useful to get the condition number of the fractional power in which we are inter-
ested. In fact, a primary fractional powers of a nonsingular matrix A can be uniquely extended in
a neighborhood of A to a differentiable function f(Z) verifying the equation (f(Z))p = Zq, for any
Z in the mentioned neighborhood.
Finally, we consider some implementation issues related to the possibility to use the modern parallel
architectures to increase the performance of the proposed algorithms.
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Randomized Algorithms for Numerical Linear Algebra

Ilse Ipsen

Abstract
Randomized algorithms for matrix computations are starting to gain ground for computations with
massive datasets in application areas like nuclear engineering, population genomics, and astronomy.
These computations include matrix multiplication; least squares and regression problems; low rank
approximation and dimensionality reduction (PCA, CUR, subset selection); and preconditioning
methods. We will analyze the error due to randomization and the sensitivity to perturbations; and
present a Matlab toolbox designed for evaluating randomized sampling methods and probabilistic
bounds.
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The Infinite Arnoldi Method for the Waveguide Eigenvalue Problem

Elias Jarlebring and Olof Runborg

Abstract
Consider the propagation of (time-harmonic) waves in a periodic medium with certain properties.
The wave modes can in this situation be described with the quadratic PDE eigenvalue problem on
an infinite strip,

∆u+ 2λuz + (λ2 + κ2)u = 0, (x, z) ∈ R× (0, 1),
u(x, 0) = u(x, 1) x ∈ R,

lim
|x|→∞

u(x, z) = 0, z ∈ [0, 1],

where κ = κ(x, z) is a given function and λ ∈ C is the eigenvalue. We present a new approach
for this PDE eigenvalue problem. The application of certain discretization techniques leads to
a nonlinear eigenvalue problem with a particular structure. A new algorithm is derived which
exploits the structure of the nonlinearity as well as the matrices arising in the discretization. This
PDE eigenvalue problem is common in the study of waveguides. See [1] and references therein for
literature on waveguides.
More precisely, we first transform the problem to a finite domain [x−, x+]× [0, 1] by using artificial
boundary conditions, in particular so-called Dirichlet-to-Neumann maps. These artificial bound-
ary conditions depend on the eigenvalue and a discretization consequently leads to a nonlinear
eigenvalue problem: Find (λ, v) ∈ C× Cn\{0} such that

M(λ)v = 0, (1)

whereM is a holomorphic function. See, e.g., [2, 3, 4] for literature on nonlinear eigenvalue problems
of this type. In our situation, we have explicitly

M(λ) :=
(
A0 +A1λ+A2λ

2 C1
CT2 αI +RHΛ(λ)R

)
(2)

and A0, A1, A2 are large and sparse matrices corresponding to the discretization of the interior do-
main. The matrix Λ(λ) ∈ Cnx×nx is a diagonal matrix with entries ±i

√
−4π2k2 + 4iπkλ+ λ2 + κ2

±
for integer k and κ± ∈ R+. The matrix R is a Vandermonde matrix, which never will be formed
explicitly since the action can be computed with the fast Fourier transform (FFT).
We adapt the algorithm called the infinite Arnoldi method [5] for this problem. The infinite Arnoldi
method is an algorithm based on an infinite-dimensional operator, whose (reciprocal) eigenvalues
are equivalent to the solutions of (1) whenM is holomorphic. The method is equivalent to Arnoldi’s
method applied to the infinite-dimensional operator, where the structure of the operator is exploited
such that it can be carried out with finite-dimensional operations. We specialize the infinite Arnoldi
method as follows.

• The matrix M has branch-point singularities. They are unfortunately close to several of the
eigenvalues of interest and limit the convergence and reliability of the direct application of the
infinite Arnoldi method. We characterize these points and resolve the issue by carrying out
a Cayley transformation γ = (λ− λ0)/(λ+ λ0) and restating a nonlinear eigenvalue problem
in γ. The reformulated nonlinear eigenvalue problem has branch points at more favorable
locations.
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• The infinite Arnoldi method requires that certain quantities associated with M can be ac-
curately and efficiently computed. We show how these quantities can be computed for the
Cayley transformed problem. It turns out that we can explicitly compute the quantities by
using functions of matrices (the matrix square root). We also use that the action of R and
RH can be formed with FFT and inverse FFT.

• After explicitly taking the structure of M into account, the computationally dominating
part of the infinite Arnoldi method applied to this problem is the orthogonalization. Due to a
growth in the basis matrix, the computational cost associated with the orthogonalization when
carrying out k steps of the infinite Arnoldi method is O(k3). We show that the basis matrix
has a particular structure which can be exploited by representing it in a factorized form using
tensors. The orthogonalization can be carried out on the factorized representation directly
and reduces the complexity of the orthogonalization cost to O(k2). The tensor-representation
technique is general and should be useful also for other large-scale sparse nonlinear eigenvalue
problems.

We illustrate the properties of the algorithm with simulations. In particular, the efficiency and
reliability of the algorithm is illustrated with a model of a waveguide. We show that the algorithm
accurately and efficiently solves the waveguide eigenvalue problem for a periodic medium with
complicated geometry, which cannot be easily treated with alternative methods.
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The Geometric Matrix Mean: an Adaptation for Structured Matrices

Dario A. Bini, Bruno Iannazzo, Ben Jeuris and Raf Vandebril

Abstract
Positive definite matrices can be encountered in a widespread collection of applications, such as
signal processing, bio-informatics, and radar technology. As a consequence, these matrices and
their geometry has been well researched, resulting in a natural and optimal geometry.
In many applications, not one, but multiple positive definite matrices are provided through mea-
surements. It is desired to find an average representation of the matrices, which best describes the
corresponding measurement. To this end, the geometric matrix mean is often used, because it has
interesting properties with regard to positive definite matrices, such as invariance under inversion,
invariance under congruence, etc. Of the various instances for the geometric mean, the Karcher
mean appears the most natural through its definition as the barycenter of the matrices under
the positive definite geometry. Computationally, the barycenter is located using matrix manifold
optimization techniques.
Often positive definiteness is not the only structural property present in the measured matrices.
Additional structures can be, e. g., Toeplitz or Hankel structure, low displament rank, etc. These
structures are usually linked to some physical interpretation in the application, so it is desirable
for the result to preserve the structure and hence the interpretation. Unfortunately, the Karcher
mean is typically not structure preserving.
We present an adaptation of the Karcher mean which preserves desired structures by computing
an optimizer of the barycenter problem over a restricted search space. The interesting properties
of the geometric mean are generalized to take the additional structure into account.
To compute the new barycenter, two preconditioned gradient descent methods are investigated for
linear submanifolds of the positive definite matrix manifold. The preconditioners are derived using
differential geometry, where the natural positive definite geometry results in a more involved, but
also more efficient preconditioner.
In a second approach, we focus on the set of positive definite Toeplitz matrices. An application-
inspired transformation maps such a matrix to the product space of the positive scalars and a
multiple of the complex unit circle. Separately, these sets are naturally endowed with the geom-
etry of positive scalars (the one-dimensional equivalent of the positive definite geometry) and the
hyperbolic geometry, respectively. Combined, this allows the definition of a new barycenter.
Finally, we test a generalization of the previous barycenter to the set of Block-Toeplitz Toeplitz-
block (positive definite) matrices. The new blockwise transformation generalises the positive scalars
to positive definite matrices and provides a natural extension of the hyperbolic unit circle to the
matrix setting. The final algorithms are again designed to maintain the original structure of the
matrices.
The performance of all mentioned algorithms is tested in numerical experiments, both in a the-
oretical environment and in real-world applications. The unstructured Karcher mean is applied
in an experiment in bio-informatics where correlation between human genes and physical traits is
combined over several independent measurements. For the structured versions, an application is
found in radar detection, where positive definite Toeplitz matrices need to be averaged.
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Stratification of some Structured Matrix pencil Problems: how Canonical
Forms Change under Perturbations

B. Kågström

Abstract
In this presentation, we will review and highlight some of our recent results concerning the strat-
ification of orbits (and bundles) of structured matrix pencil problems, focusing on (i) companion
form linearizations of full normal-rank polynomial matrices and (ii) general skew-symmetric matrix
pencils.
The stratification theory for matrix pencils provides the complete picture of nearby canonical
structures and how structure transitions take place under perturbations. More formally, it reveals
the qualitative information that the closure hierarchy of orbits and bundles provides (e.g., see
[4, 5, 6, 8] and references therein). For example, the equivalence orbit of a matrix pencil A − λB
consists of all pencils with the same eigenvalues and the same canonical form under strict equivalence
transformations U−1(A − λB)V , where U and V are non-singular. A bundle is the union of all
orbits with the same canonical form but with unspecified eigenvalues. The closure hierarchy is
determined by the closure and cover relations among orbits (or bundles), where a cover relation
guarantees that two orbits (or bundles) are nearest neighbours in the hierarchy. In a stratification,
an orbit can never be covered by a less or equally generic orbit. This means that orbits (canonical
forms) within the closure hierarchy can be ordered by their dimension (or codimension) [1].
Polynomial matrices play an important role in the study of dynamical systems described by sets of
differential-algebraic equations (DAEs) with constant coefficient matrices. Here, we consider full
rank polynomial matrices

P (s) := Pds
d + . . .+ P1s+ P0, s ∈ C,

where the leading coefficient matrix Pd is nonzero so that the highest degree is indeed d (we say it
has exact degree d). The eigenstructure elements of a polynomial matrix are defined via the Smith
normal form under unimodular transformations. The classical approach to analyze and determine
the structural elements of P (s) is to study linearizations. In [7], we show that perturbations of
polynomial matrices of full normal-rank can be analyzed via the study of perturbations of companion
form linearizations of such polynomial matrices. It is proved that a full normal-rank polynomial
matrix has the same structural elements as its right (or left) linearization. Furthermore, the
linearized pencil has a special block matrix structure that can be taken into account when studying
its stratification. This yields constraints on the set of achievable eigenstructures, which allowed us
to derive necessary and sufficient conditions for cover relations between two orbits or bundles of
the linearization of full normal-rank polynomial matrices. Besides, reviewing these results, we will
illustrate the stratification rules applied to a half-car passive suspension system with four degrees
of freedom.
In the second part, we address skew-symmetric matrix pencils A − λB, where AT = −A and
BT = −B, by studying how small perturbations may change their canonical forms under structure-
preserving congruence transformations V T (A − λB)V with V non-singular. In general, reduction
of a complex skew-symmetric matrix pencil A− λB to any canonical form under congruence is an
unstable operation: both the canonical form and the reduction transformation depend discontinu-
ously on the entries of A−λB. Thus it is important to know the canonical forms of all such pencils
that are arbitrarily close to A−λB. We solve this problem by deriving the closure hierarchy graphs
(i.e., stratifications) of orbits and bundles of skew-symmetric matrix pencils [2, 3].
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The set of all matrix pencils strictly equivalent to a skew-symmetric matrix pencil A − λB as
well as the set of matrix pencils congruent to A − λB are the orbits of A − λB under the actions
of strict equivalence (OeA−λB) and congruence (OcA−λB), respectively. Note that OeA−λB contains
non-skew-symmetric pencils too. We prove that for two skew-symmetric matrix pencils A − λB
and C − λD the equivalence orbit inclusion OeC−λD ⊃ OeA−λB is equivalent to the congruence orbit
inclusion OcC−λD ⊃ OcA−λB. In other words, we generalize the fact that two skew-symmetric matrix
pencils are strictly equivalent if and only if they are congruent, proving that a skew-symmetric
matrix pencil A − λB can be approximated by pencils strictly equivalent to a skew-symmetric
matrix pencil C − λD if and only if A− λB can be approximated by pencils congruent to C − λD.
The results presented are collaborative efforts together with several people including Andrii Dmytryshyn,
Stefan Johansson, Vladimir Sergeichuk, and Paul Van Dooren.
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Fast Generation of Random Orthogonal Matrices

Nicholas J. Higham, Amal Khabou and Françoise Tisseur

Abstract
Random orthogonal matrices have a wide variety of applications. They are used in the genera-
tion of various kinds of random matrices and random matrix polynomials [1], [2], [3], [7]. They
are used to randomize integration methods for n-dimensional integrals over spherically symmetric
integration regions [5]. The random orthogonal matrix (ROM) simulation [8] method uses random
orthogonal matrices to generate multivariate random samples with the same mean and covariance
as an observed sample.
The natural distribution over the space of orthogonal matrices is the Haar distribution. One way
to generate a random orthogonal matrix from the Haar distribution is to generate a random matrix
A with elements from the standard normal distribution and compute its QR factorization A = QR,
where R is chosen to have nonnegative diagonal elements; the orthogonal factor Q is then the
required matrix [6].
Stewart [10] develops a more efficient algorithm that directly generates an n×n orthogonal matrix
from the Haar distribution as a product of Householder transformations built from Householder
vectors of dimensions 1, 2, . . . , n− 1 chosen from the standard normal distribution. This algorithm
is implemented in the LAPACK test software [3] and in MATLAB as gallery(’qmult’). The
LAPACK test software and the MATLAB function call gallery(’randsvd’) both generate m×n
matrices of the form A = UΣV ∗ where U (m×m) and V (n×n) are from the Haar distribution and
Σ is a diagonal matrix containing a specified set of singular values. Stewart’s algorithm requires
m3 + n3 flops to form A.
The goal of this work is to design an algorithm that significantly reduces the computational cost
of Stewart’s algorithm by giving up the property that Q is exactly Haar distributed.
We generate orthogonal random Q of the form Q = HDH∗, where H = H1H2 . . . Hk is a product
of Householder transformations based on full vectors with elements from the standard normal
distribution and D is block diagonal with 2× 2 and 1× 1 real diagonal blocks. The diagonal blocks
are real and are chosen to have eigenvalues with phases uniformly distributed on the unit circle,
since this is a property of the Haar distribution [4], [9].
We will argue that for the purpose of test matrix generation we can take k much less than the
matrix dimension and still obtain an acceptable matrix. Because each Hj is a full matrix the
product defining Q can be computed more efficiently (per flop) than with Stewart’s algorithm, in
which most operations are effectively on matrices of dimension less than n.
We will give performance results on a variety of architectures to show the benefits of the new
algorithm.
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Model Correction using a Nuclear Norm Constraint

Ning Hao, Lior Horesh and Misha E. Kilmer

Abstract
Let F : Rn → Rm be a comprehensive observation operator which transforms input x ∈ Rn into
the observable space. Let d ∈ Rm be an observation obtained through the following relation:

d = F(x) + ε (1)

where ε stands for measurement noise.
In many real world applications, it is often the case that our ability to prescribe F fully is limited.
For example, in partial blind deconvolution, we may only know an approximation to the blurring
operator. In other applications, we may only have access to (or can afford to run) simulations with
a low resolution or low fidelity simulator. Thus, F is only partially specified, and hence the model
which assumes this inaccurate operator is misspecified. Our goal is to formulate and solve a model
correction optimization problem that will allow us to recover the true observation operator,
assuming we are given a set of simulation model input parameters and a corresponding set of high
fidelity output data. Such data can be obtained in various ways, such as through experimentation
with known input models, analytic derivation, or alternatively through the use of a computationally
intensive high-fidelity simulation.
Specifically, we formulate the model correction problem as a constrained stochastic optimization
problem [5], where the objective function to be optimized includes a measure of discrepancy between
the expected output of the current (low-fidelity) model along with the unknown correction against
the data.
In this talk, we will assume an additive model of the form

F(x) = A(x) +B(x), (2)

where A is known, B needs to be estimated, and A and B are maps that take x to the data space.
The model specification, or correction, problem is to recover B. We will need to set additional
constraints on B to try to obtain a well-posed optimization problem.
We propose a Sample Average Approximation approach (SAA) [1]. Our general framework is to
solve

B̂ = arg min
B

1
nxnε

nx,nε∑
i=1,j=1

D (A(xi) +B(xi), di,j) ,

subject to a structural constraint on B, and D defines our metric.
In this talk, we will limit our discussion to the case where B is linear (though A may not be linear)
and the objective function is quadratic in B. We focus on the case where the desired structural
constraint we wish to impose on B is that it be low rank. One motivation for such a constraint is
in the context of recovering part of the signal subspace in a discrete ill-posed problem when only a
rank-deficient operator is known (i.e. A is linear and rank deficient such that its range contains only
the smoothest modes of the forward operator). We will attempt to enforce the low rank condition
by using a nuclear norm constraint. We show that to solve this formulation of the problem, we can
leverage Jaggi and Sulovskỳ’s [2] scaling strategy applied to Hazan’s algorithm [3] to incorporate
minimization of the nuclear norm. This algorithm exhibits the nice property of requiring only an
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(inexact) approximation to the largest eigenpair of a (symmetric) matrix that is derived from first
order derivatives corresponding to the original D. The algorithm also features a mechanism for
keeping control over the rank of the recovered B. We give examples from partially-blind image
deconvolution that demonstrate the potential of our approach.
We extend our model correction framework and algorithm to the case that A and B represent
abstractions of operators. Specifically, we consider the case that B is a tensor representation of
a desired correction, and focus on adapting our optimization problem to handle a tensor nuclear
norm [4] constraint.
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Numerical Linear Algebra and Matrix Theory in Action

Andrew Knyazev

Abstract
Numerical linear algebra and matrix theory often play central roles in computations involving
optimization, differential equations, signal and image processing, and control. In this talk, we
present such examples of recent projects at http://www.merl.com/ covering these application areas.
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Computing Linear Combinations of ϕ Functions

Antti Koskela and Alexander Ostermann

Abstract
We consider a new Krylov subspace algorithm for computing expressions of the form

p∑
`=0

h`ϕ`(hA)w`, (1)

where A ∈ Cn×n, w` ∈ Cn. The functions ϕ`, defined by

ϕ`(z) =
∞∑
j=0

zj

(j + `)!
= 1

2πi

∫
Γ

eλ

λ`
1

λ− z
dλ,

where Γ encircles z and 0, are related to the exponential function. Computational problems of this
form appear when applying exponential integrators to large dimensional ODEs in semilinear form
u′(t) = Au(t) + g(u(t)) (see [2, 4]).
The sum (1) can be computed using a single product of the exponential of an augmented matrix
and a vector (see [1]). As an alternative, we present a Krylov iteration, which is based on the
observation that (1) can be expressed as a Taylor series

u(h) =
∞∑
ν=0

hν

ν!
mν (2)

with moments mν =
∑min(ν,p)
`=0 Aν−`w` that satisfy the recursions

m0 = w0,

mν = Amν−1 + wν , for 1 ≤ ν ≤ p,
mν = Amν−1, for ν > p.

From (2) one can see that
u(h) ∈ span{m0,m1, . . .}.

We perform an Arnoldi-like iteration to obtain an orthonormal basis Qk ∈ Cn×k for the subspace

span{m0,m1, . . . ,mk−1}

and approximate u(h) by using the projection of A onto to this subspace

Fk = Q∗kAQk.

Setting
W = [wp, . . . , w1], V = [vp, . . . , v1] = Q∗kW, and v0 = Q∗kw0,

the approximation uk(h) ≈ u(h) is given by

uk(h) = Qkvk(h),

where

vk(h) =
p∑
`=0

h`ϕ`(hFk)v`.
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By using the QR decomposition

[m0,m1, . . . ,mk−1] = QkRk,

we construct the matrix Fk ∈ Ck×k such that the following Arnoldi-like relation holds

AQk = QkFk − (I −QkQ∗k) Ŵ R−1
k + fk+1,kqk+1e

T
k ,

where Ŵ =
[
w1 . . . wj 0

]
∈ Cn×k, with j = min(k, p). This results in an algorithm for updating

the basis Qk.
Using Cauchy’s integral formula we derive an a priori error bound which gives insight into the
convergence behaviour of the algorithm. Also an efficient a posteriori error estimate is derived.

One interesting application for ϕ functions comes from classical electromagnetism. We consider
the equations of motion for a single particle given by

d

dt
q = p/m,

d

dt
p = E(q) + Ω(q)p,

where E(q) represents an external magnetic field, and Ω(q) is a skew-symmetric 3 × 3 matrix
representing the Lorentz forces from an external magnetic field. For example, in case of a constant
magnetic field Ω(q) ≡ Ω, an exponential version of the velocity Verlet algorithm is given by

q1 = q0 + h

m
ϕ1(hΩ)p0 + h2

m
ϕ2(hΩ)E(q0),

p1 = exp(hΩ)p0 + hϕ1(hΩ)(E(q1) + E(q0))/2.

Here, exp(hΩ) and the ϕ functions are easily computed with the help of the Rodrigues’ formula. By
using splitting strategies we construct integrators that preserve well the structure of the equation
(energy, symmetry, volume).
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On the Convergence of the Residual Inverse Iteration for Nonlinear
Eigenvalue Problems

Cedric Effenberger and Daniel Kressner

Abstract
We consider nonlinear eigenvalue problems of the form

T (λ)x = 0, x 6= 0, (1)

where T : D → Cn×n is a continuously differentiable matrix-valued function on some open interval
D ⊂ R.
In the following, T (λ) is supposed to be Hermitian for every λ ∈ D. Moreover, we assume that the
scalar nonlinear equation

x∗T (λ)x = 0 (2)

admits a unique solution λ ∈ D for every vector x in an open set Dρ ⊂ Cn. The resulting function
ρ : Dρ → D, which maps x to the solution λ of (2), is called Rayleigh functional, for which we
additionally assume that

x∗T ′(ρ(x))x > 0 ∀x ∈ Dρ.

The existence of such a Rayleigh functional entails a number of important properties for the eigen-
value problem (1), see [4, Sec. 115.2] for an overview. In particular, the eigenvalues in D are
characterized by a min-max principle and thus admit a natural ordering. Specifically, if

λ1 := inf
x∈Dρ

ρ(x) ∈ D

then λ1 is the first eigenvalue of T .
In this paper, we study the convergence of Neumaier’s residual inverse iteration [3] for computing
the eigenvalue λ1 of T and an associated eigenvector x1. In the Hermitian case, this iteration takes
the form

vk+1 = γk(vk + P−1T (ρ(vk))vk), k = 0, 1, . . . , (3)

with normalization coefficients γk ∈ C, an initial guess v0 ∈ Cn, and a Hermitian preconditioner
P ∈ Cn×n. Usually, P = −T (σ) for some shift σ not too far away from λ1 but the general
formulation (3) allows for more flexibility, such as the use of multigrid preconditioners.
In [3, Sec. 3], it was shown that (3) with P = T (σ) converges linearly to an eigenvector belonging
to a simple eigenvalue, provided that σ is sufficiently close to that eigenvalue. Jarlebring and
Michiels [2] derived explicit expressions for the convergence rate by viewing (3) as a fixed point
iteration and considering the spectral radius of the fixed point iteration matrix.
Our new convergence analysis is tailored to the particular situation of having a Rayleigh functional,
and differs significantly from [2, 3]. Our major motivation for reconsidering this question was to
establish mesh-independent convergence rates when applying (3) with a multigrid preconditioner to
the finite element discretization of a nonlinear PDE eigenvalue problem. The analyses in [2, 3] do
not seem to admit such a conclusion, at least it is not obvious. On the other hand, such results are
well known for the linear case T (λ) = λI−A, for which (3) comes down to the preconditioned inverse
iteration (PINVIT). In particular, the seminal work by Neymeyr establishes tight expressions for the
convergence of the eigenvalue and eigenvector approximations produced by PINVIT. Unfortunately,
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the elegance of Neymeyr’s mini-dimensional analysis of the Rayleigh-quotient is strongly tied to
linear eigenvalue problems; there seems little hope to carry it over to the general nonlinear case.
Our approach proceeds by directly analysing the convergence of the eigenvector. Although leading
to weaker bounds than Neymeyr’s analysis in the linear case, the obtained results still allow to
establish mesh-independent convergence rates.
In the first step, we show that

tanφP (vk+1, x1) ≤ γ · tanφP (vk, x1) +O(ε2),

where x1 is an eigenvector belonging to λ1 and φP denotes the angle in the geometry induced by
P . In the second step, we show that γ < 1 (independent of h) for a multigrid preconditioner of
T (σ) with σ sufficiently close to λ1.
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Preconditioning for Inexact Inner-Outer Methods for the Two-sided,
Non-Hermitian Eigenvalue Problem

Melina Freitag and Patrick Kürschner

Abstract
We discuss the numerical solution of large-scale, two-sided, non-Hermitian eigenvalue problems

Ax = λMx and yHA = λyHM

by iterative methods such as two-sided inverse, and Rayleigh quotient iteration [3] as well as two-
sided Jacobi-Davidson [4]. The left eigenvectors y are required in some applications, e.g. eigenvalue
and eigenvector based model order reduction of large dynamical systems. Their incorporation can
also be beneficial for the performance of eigenvalue methods for non-normal problems.
In these two-sided eigenvalue iterations, adjoint linear systems of the form

(A− θkM)uk+1 = Muk and (A− θkM)Hvk+1 = MHvk (1)

have to be solved in each iteration, where it is often sufficient to solve them inexactly, e.g. by
employing Krylov subspace methods for linear systems. The iterations of this linear solver are
commonly referred to as inner iterations in contrast to the outer iterations of the method for the
eigenvalue computation.
In this presentation we focus on specially tailored preconditioning strategies for these inexact inner
solves. It is known that [2], when a preconditioner P satisfies, e.g. Puk = Muk for the first linear
system in (1), the number of necessary inner iterations to obtain an approximation to uk+1 of a
certain accuracy is significantly reduced. This leads to the concept of so called tuned preconditioners.
A special property of (1) is that the coefficient matrices are adjoint to each other and hence, both
linear systems can be dealt with simultaneously by iterative methods such as BiCG and QMR, but
also GLSQR and the unsymmetric MINRES. The tuned preconditioners are adapted and tailored
to the work in these inner solvers [1]. It turns out that this allows to draw novel connections
between the aforementioned eigenvalue iterations.
If time permits some perspectives for tuned preconditioners for similar and related inner-outer
methods, such as solvers for nonlinear eigenvalue problems and the dominant pole algorithm [5],
are discussed. For instance, the dominant pole algorithms computes eigenvectors corresponding to
certain eigenvalues for carrying out model order reduction of large dynamical systems. It has the
special property that the right hand sides of the adjoint linear systems do not vary in the course
of the iteration. This introduces additional complications for inexact solves.
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Hierarchical QR Factorization Algorithms for Multi-Core Cluster Systems

Julien Langou

Abstract
In this presentation, we present our continuing research on tiled algorithms for QR factorization.
Given an initial matrix, the tile QR factorization algorithm breaks down the matrix into tiles and
then perform a QR factorization by performing sequential LAPACK-like kernels on the tiles [1,2,3].
Tile algorithms will naturally enables good data locality for the sequential kernels executed by the
cores (high sequential performance), low number of messages in a parallel distributed setting (small
latency term), and fine granularity (high parallelism). Each tile algorithm is uniquely character-
ized by its sequence of reduction trees. By changing the sequence of reduction trees, we can design
algorithms with much less communication than LAPACK algorithms in two-level memory sys-
tems, algorithms with much less communication in parallel distributed systems than ScaLAPACK
algorithms, algorithms with small granularity enabling large parallelism.
The general question is, given a set of resources, which data distribution and which sequence of
trees are best to use. The goal is to maximize the parallelism of the factorization while minimizing
the communication.
In essence, the tile algorithm is very similar to the Givens’ rotation QR factorization algorithm; with
the difference that, instead of operating on scalars (Givens’ rotations), one operates on tiles. As far
as Givens’ rotations go, for square matrices, in 1978, Sameh and Kuck [4] gave an asymptotically
optimal algorithm in term of shortest critical path length when no communications are considered.
In 1986, Cosnard and Robert [5] gave an optimal algorithm for matrices of any shapes. In 2011,
we [6] extended these results from Givens’ rotations to tile algorithms. We proved that a Greedy
schedule of the tasks related to the last column results in a shortest critical path length algorithm
for matrices of any shapes. We demonstrated through experiments that this provides us with an
efficient algorithm for current multicore platform.
We note that, in the multicore case, since our unit tasks operate on tiles, the ratio communication
to computation per task has a surface to volume effect and so, one can neglect communications in a
first approach design. The next step is to take into account communication, either in the multicore
context where this is a plus, or, in the parallel distributed where this is a must.
This presentation [7] will describe a tile QR factorization algorithm which is especially designed
for massively parallel platforms combining parallel distributed multi-core nodes. (These platforms
represent the present and the foreseeable future of high-performance computing.) In the context
of a cluster of multicores, in order to reduce the number of inter-processor communications, it is
natural to consider hierarchical trees composed of an “inter-cluster” tree which acts on top of “intra-
cluster” trees. At the intra-cluster level, we propose a hierarchical tree made of three levels: (0) “TS
level” for cache-friendliness, (1) “low level” for decoupled highly parallel inter-node reductions, (2)
“coupling level” to efficiently resolve interactions between local reductions and global reductions.
Our hierarchical algorithm and its implementation are flexible and modular, and can accommodate
several kernel types, different distribution layouts, and a variety of reduction trees at all levels,
both inter-cluster and intra-cluster. Numerical experiments on a cluster of multicore nodes (i)
confirm that each of the four levels of our hierarchical tree contributes to increase performance and
(ii) build insights on how these levels influence performance and interact within each other. Our
implementation of the new algorithm with the DAGuE scheduling tool [8] significantly outperforms
currently available QR factorization softwares for all matrix shapes.
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Beside experimental validation, we compare the performance model of our new algorithm to (1)
ScaLAPACK algorithms and to (2) theoretical lower bounds. We show that our algorithm is asymp-
totically optimal in term of communication and computation and is much better than ScaLAPACK
algorithms.
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Hierarchical Preconditioners for Higher Order FEM

Sabine Le Borne

Abstract
The finite element discretization of a partial differential equation requires the selection of a suitable
finite element space as well as a basis for this space. While higher order finite elements (HOFEMs)
lead to finite element solutions of higher accuracy, their associated discrete linear systems of equa-
tions are often more difficult/costly to set up and to solve than those of lower order elements.
In this talk, we present efficient hierarchical preconditioners for the solution of linear systems of
equations associated with HOFEMs. More specifically, we will develop “hybrid blackbox” precon-
ditioners: The setup of the preconditioner will occur in a “blackbox” fashion, i.e., only the stiffness
matrix is needed as input. However, the “hybrid” part implies that certain knowledge of the origin
of the system is available and will possibly be exploited. Such knowledge could include a certain
sparsity structure (e.g. produced through particular types of finite elements) or even a certain
block structure (e.g. in mixed finite elements).
As a model problem, we consider the three-dimensional convection-diffusion problem with some non-
constant, circulating convection. We use a regularly refined quadrilateral grid with the finite element
space Qp of continuous, piecewise polynomial elements of order p in each coordinate direction. As
a basis, we will consider both a Lagrange (tensor) basis as well as a (p-) hierarchical basis. In
either case, the resulting degrees of freedom can be classified into vertex, edge, face or interior
(cell/bubble) nodes. While we restrict our attention here to this model problem, our approach and
considerations in general are applicable to a much wider class of problems which will be pursued
in future work. Here, we only make a note that we are not restricted to a certain type of model
equation, structured grid or finite element space.
The preconditioners to be analysed and compared in this talk can be divided into the following
four categories:

• approximate LU factorization of the entire matrix;

• block Gauß-Seidel method with approximate LU factorization of diagonal blocks;

• approximate LU factorization of the remaining matrix after static condensation of bubble
dofs;

• block Gauß-Seidel method with approximate LU factorization of diagonal blocks after static
condensation of bubble dofs.

The tool to be used for the efficient approximate LU factorizations required in all four categories
is the technique of hierarchical (H-) matrices. H-matrices provide a powerful technique to com-
pute and store approximations to dense matrices in a data-sparse format. The basic idea is the
approximation of matrix data in hierarchically structured subblocks by low rank representations.
Such low rank approximations can only be expected to be successful after suitable row and column
permutations of the matrix. These permutations are typically determined in a blackbox fashion
based on the underlying matrix graph of the (sparse) stiffness matrix.
In the past, H-matrices have proven to be successful for the computation of approximate inverses as
well as LU factors of stiffness matrices resulting from continuous, piecewise linear finite elements.
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Here, we will analyze whether the H-matrix technique is also successful in the context of higher
order finite element discretizations.
As an introductory motivation, we turn to a simple one-dimensional model problem: the Laplace
equation. Its discretization using p-th order finite elements leads to a stiffness matrix of bandwidth
2p + 1 that has a dense inverse. We will analyse H-matrix representations of these exact inverses
as well as their approximations.
Returning to our three-dimensional model convection-diffusion problem, we will consider H-LU
factorizations for decreasing grid width h (and fixed polynomial degree p) as well as for increasing
polynomial degree p (and fixed h), both for varying convection dominance in our model problem.
An important aspect is the treatment of dense subblocks corresponding to the bubble functions
associated with a finite element. Starting with a cube subdivided into eight subcubes, the final
stiffness matrix will contain 8` dense blocks each of size (p − 1)3 × (p − 1)3 (where ` denotes the
number of refinements). Such subblocks can be identified in a blackbox manner even if the stiffness
matrix is not (yet) sorted accordingly. While these blocks are unproblematic for smaller p, one needs
to think about an efficient treatment of these blocks as p increases, say beyond p = 6. This holds
particularly true in the case of static condensation of these blocks: While their elimination from
the system does not lead to any additional fill-in, it can become quite costly and a bottleneck in the
overall computational setup time. One possible remedy would be the approximation and subsequent
elimination of these blocks in the H-matrix format. The challenge here is the determination of a
suitable row and column permutation prior to the H-approximation since the underlying matrix
graph is complete.
While the construction of an H-LU approximation as a preconditioner is considered to be efficient
if its work complexity is almost linear (up to logarithmic factors), it can still be costly in practice
due to high constants involved in these complexity bounds. Thus, we also pursue block Jacobi
and block Gauß-Seidel approaches in which only blocks on the diagonal are factorized instead of
the entire matrix. As a drawback, we no longer obtain an (almost) exact LU-factorization - and
therefore an exact/direct solver - as we increase the accuracy of the H-arithmetic by allowing higher
ranks in the subblocks. The benefit, however, are reduced setup times, and oftentimes these savings
in setup times are much larger than the increase in the iteration times, leading to overall faster
solution methods. The blocks to be used for such a block Jacobi or Gauß-Seidel method can be
determined by the classification of the degrees of freedom through their association with vertices,
edges, faces or cells, which is detectable from the sparsity structure of the matrix. Especially in
the case of a hierarchical basis, such an approach promises to be successful since the linear basis
functions are the ones associated with vertices, and the quadratic basis functions are included in
those associated with edges. Basis functions of order higher than two, however, will be difficult to
separate.
We will analyze this “trade-off” between setup times and iteration times both for increasing poly-
nomial finite element degree p and decreasing grid width h.
All the introduced preconditioners will be illustrated with supporting numerical results. We will
show setup times, storage requirements and iteration steps/times to reach an iterative solution
within a desired accuracy.
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Matrix Iterations and Pták’s Method of Nondiscrete Induction

Jörg Liesen

Abstract
In the late 1960s, Vlastimil Pták (1925–1999) invented the method of nondiscrete induction, which
is a method for estimating the convergence of iterative processes. Pták described the motivation
for this method in his paper “What should be a rate of convergence?” [5] as follows:

“It seems therefore reasonable to look for another method of estimating the convergence
of iterative processes, one which would satisfy the following requirements.

1◦ it should relate quantities which may be measured or estimated during the actual
process

2◦ it should describe accurately in particular the initial stage of the process, not only
its asymptotic behaviour since, after all, we are interested in keeping the number
of steps necessary to obtain a good estimate as low as possible.”

This seems to be almost too much to ask for. Yet, for some iterations the method of nondiscrete in-
duction indeed leads to analytical convergence estimates which satisfy both of Pták’s requirements.
To briefly describe the idea, suppose that a sequence of iterates xk converges to the solution x∗ of
a given problem. Instead of a “classical” convergence bound of the form

‖x∗ − xk+1‖ ≤ c ‖x∗ − xk‖p,

where c > 0 is some constant and the number p > 1 is the “convergence rate” (e.g. “quadratic
convergence” if p = 2), the method of nondiscrete induction gives easily computable bounds of the
form

‖x∗ − xk+1‖ ≤ σ(‖xk+1 − xk‖),
where σ is a scalar function. For a few examples, including Newton’s method [3] and an iteration
for solving a certain algebraic eigenvalue problem [4], Pták derived such a function σ by comparing
consecutive increments of the iteration. His joint monograph with Potra [2] summarizes the most
important results.
A footnote in [4] says that Pták “intended” to present the method of nondiscrete induction at
the Symposium on Numerical Algebra, Gatlinburg VI, held in December 1974 in Hopfen am See,
Bavaria, Germany. Later Pták referred to [4] as his “Gatlinburg Lecture”. According to some
participants, however, Pták did not attend Gatlinburg VI and thus he missed that particular
chance to present his method to the numerical linear algebra community. Apparently, the method
of nondiscrete induction did not become widely known in this community, and even in the literature
on Newton methods for nonlinear problems the method is often mentioned only marginally, if at
all. Part of the reason for this neglect of the method may be the rather theoretical nature of the
original publications, which are formulated in general (Banach space) settings, as well as their lack
of numerical examples.
Based on [1], the goals of this talk are, first, to explain on an example how the method of nondiscrete
induction can be applied to a matrix iteration in numerical linear algebra. For this purpose we will
use the Newton iteration for the matrix square root, and possibly present other applications, if time
allows. Second, it will be illustrated numerically that the method can be quite effective, at least in
some cases. The talk will thus reveal the essential ideas of the method, the main requirements for
its applicability in the context of matrix iterations, and its strengths and weaknesses.
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Covariance Structure Regularization via Entropy Loss Function

Lĳing Lin, Nicholas J. Higham and Jianxin Pan

Abstract
The need to estimate structured covariance matrices arises in a variety of applications such as
signal processing [5], networks [6], and automatic control [4], and the problem is widely studied in
statistics. A conventional way, known as the “Burg technique", is to find the maximum likelihood
estimation for a covariance matrix that has a specific/regularized structure using random samples
drawn from a stochastic process [1]. However, this method has some drawbacks: (a) it is based
on the presumption that the stochastic process is multivariate normal; (b) the structure of the
covariance must be prespecified; (c) the sample covariance matrix must be available; moreover,
deducing the underlying covariance structure from the sample covariance matrix can be difficult
due to random noise and the large dimension of that matrix.
To overcome these difficulties, we propose a new method for regularizing the underlying structure
of a given covariance matrix. Our method is based on the entropy loss function [2]

L(A,B) = trace(A−1B)− log(det(A−1B))−m, (1)

defined on two matrices A and B of size m ×m and, to ensure that L(A,B) is nonnegative, we
assume that A and B are symmetric positive definite. The entropy loss function, also known as the
Kullback-Leibler divergence, is a well-accepted nonsymmetric measure of the discrepancy between
two probability distributions. The problem of interest here is, given a covariance matrix A whose
underlying structure is blurred due to random noise, particularly when the dimension m is high,
to identify the underlying structure of A from a class of candidate covariance structures.
Assume that we have a class of k candidate structures {s1, s2, . . . , sk} and that the given covariance
matrix A is positive definite. Let Si be the set of all positive definite covariance matrices with
structure si. We define the discrepancy between A and Si as

D(A,Si) = min
B∈Si

L(A,B), (2)

where L(A,B) is the entropy loss function in (1). The idea is to find the set S∗ ∈ {S1,S2, . . . ,Sk}
that is “closest" to A:

S∗ = arg min
1≤i≤k

D(A,Si),

and take the corresponding structure of S∗ as the most likely underlying structure of A. We then
refer to the replacement of A by a matrix B ∈ S∗ achieving the minimum in (2) as the process of
regularization.
In this talk we consider a range of four candidate covariance structures that are commonly used in
practice, for example, in longitudinal and spatial studies.

(1) The order-1 moving average structure,
MA(1), has a tridiagonal Toeplitz co-
variance matrix

B = σ2


1 c · · · 0

c 1 . . . ...
... . . . 1 c
0 · · · c 1

 .

(2) The covariance of compound symmetry (CS)
structure assumes the same correlation coeffi-
cient for every pair of observations:

B = σ2


1 c · · · c
c 1 · · · c
... . . . . . . ...
c · · · c 1

 .
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(3) Autoregression of order 1, AR(1), has
a covariance where the correlation be-
tween any pair of observations decays
exponentially towards zero as the dis-
tance between them increases:

B = σ2


1 c c2 · · · cm−1

c 1 c · · · cm−2

c2 c 1 · · · cm−3

... . . . . . . . . . ...
cm−1 cm−2 · · · c 1

 .

(4) More generally, banded Toeplitz covariance
matrices have constant subdiagonals, i.e., con-
stants at lag 1 , lag 2, . . . , and lag p:

B = σ2



1 c1 · · · cp · · · 0

c1 1 c1
. . . . . . ...

... . . . . . . . . . . . . cp

cp
. . . . . . . . . . . . ...

... . . . . . . . . . 1 c1
0 · · · cp · · · c1 1


.

The main task now is to calculate the discrepancy D(A,S) for each of the candidate covariance
structures: MA(1), CS, AR(1), and banded Toeplitz. We show that for the first three structures
local or global minimizers of the discrepancy can be computed by one-dimensional optimization,
while for the fourth structure Newton’s method enables efficient computation of the global min-
imizer. Simulation studies are conducted, showing that the proposed new approach provides a
reliable way to regularize covariance structures. The approach is also applied to real data analysis,
demonstrating the usefulness of the proposed approach in practice.
This talk is based on [3].
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The Hyperbolic Quadratic Eigenvalue Problem

Ren-Cang Li and Xin Liang

Abstract
The hyperbolic quadratic eigenvalue problem (HQEP) was shown to admit the Courant-Fischer
type min-max principles in 1955 by Duffin [1] and Cauchy type interlacing inequalities in 2010 by
Veselić [4]. It can be regarded as the closest analogue (among all kinds of quadratic eigenvalue
problems) of the standard Hermitian eigenvalue problem (among all kinds of standard eigenvalue
problems) [2]. In this talk, we will present our recent study on HQEP both theoretically and
numerically [3]. In the theoretic front, we generalize Wiedlandt-Lidskii type min-max principles
and, as a special case, Ky Fan type trace min/max principles and establish Weyl type and Mirsky
type perturbation results when an HQEP is perturbed to another HQEP. In the numerical front,
we justify the natural generalization of the Rayleigh-Ritz procedure with the existing and our
new optimization principles and, as consequences of these principles, we extend various current
optimization approaches – steepest descent/ascent and nonlinear conjugate gradient type methods
for the Hermitian eigenvalue problem – to calculate few extreme quadratic eigenvalues (of both pos-
and neg-type). A detailed convergent analysis is given on the steepest descent/ascent methods. The
analysis reveals the intrinsic quantities that control convergence rates and consequently yields ways
of constructing effective preconditioners. Numerical examples are presented to demonstrate the
proposed theory and algorithms.
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Improved Divide-and-Conquer Algorithms for the Eigenvalue and Singular
Value Problems

Shengguo Li, Ming Gu, Lizhi Cheng and Xuebin Chi

Abstract
Efficient and reliable rank-structured matrix computations have been an intensive focus of recent
research. Rank-structured matrices includes semiseparable, quasiseparable, sequentially semisepa-
rable(SSS), hierarchically semiseparable(HSS), H, H2 matrices, and etc. They have been used for
solving Toeplitz linear equations, integral equations, computing the zeros of polynomials, develop-
ing structured sparse solvers and so on. In this talk, we present an algorithm of using HSS matrices
to accelerate the computation of bidiagonal SVD and tridiagoanl eigenvalue problems. Since these
two problems are quite related, we mainly talk about the bidiagonal case.
The main cost of divide-and-conquer (DC) algorithm for the bidiagonal SVD problems lies to the
computation of singular vectors, which needs two matrix-matrix multiplications. Recall that the
DC algorithm [2] needs to compute the SVD of a sequences of broken arrow matrices. An important
fact we found is that the singular vector matrices of a broken arrow matrix are Cauchy-like matrices
and have off-diagonal low-rank property. To exploit these two properties, we first use a structured
low-rank approximation method to construct an HSS approximation to each Cauchy-like matrix,
which costs O(K2r) flops with O(K) memory, where K is the size of matrix and r is the maximum
rank of its off-diagonal blocks, which is a medium constant, say around 20-50. Then the singular
vectors are updated via fast HSS matrix-matrix multiplications, which also costs O(K2r) flops [3].
The approximation error of the HSS construction algorithm is analyzed, when uses the structured
low-rank approximation algorithm for Cauchy-like matrices. That structured approximation algo-
rithm is proved to be backward stable. To further show its stability, we tested it by using the
matrices in LAPACK tester stetester [4]. The implementation details are included. Numerous
experiments are done on a laptop with 4GB memory and Intel(R) Core(TM) i7-2640M CPU, and
the codes are compiled by Intel fortran compiler (ifort) with optimization flag -O2. When com-
paring with highly optimized BLAS libraries such as Intel MK, our algorithm can be more than 3x
faster for some large matrices with few deflation. Since HSS construction [1] and HSS multiplication
algorithms [3] are naturally parallelizable, we further implement these two algorithms in parallel
by using OpenMP. The numerical results show that we can get good speedups.
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Hierarchically Low-Rank Structured Sparse Factorization with Reduced
Communication and Synchronization

Pieter Ghysels, Xiaoye S. Li, Artem Napov, François-Henry Rouet and Jianlin Xia

Abstract
We have been developing a new class of sparse LU factorization algorithms and codes with low
arithmetic and communication complexity, which are targeted at broad classes of PDEs at extreme
scale, taking advantage of data sparseness in the discretized matrices. It was long discovered that
for structured matrices, such as Hilbert matrix, Toeplitz matrix and the matrices from the BEM
methods for integral equations, the off-diagonal blocks are numerically rank deficient. Several
compression techniques using hierarchically truncated SVD representation have been develoeped.
These compact forms can be used to design asymptotically faster and low-memory linear algebra
algorithms [1, 3]. In recent years, these structured matrix ideas were introduced in the sparse
solvers for solving discretized PDEs [2, 10]. In particular, we have pioneered the work of using
hierarchically semi-separable (HSS) structure to develop scalable superfast sparse direct solver. We
developed parallel algorithms for the key HSS operations, including construction, ULV factorization
and solution [8]. Moreover, we integrated these parallel HSS kernels into a parallel geometric sparse
multifrontal method, and demonstrated that our HSS-embedded sparse direct solver can solve the
discretized Helmholtz equations with 6.4 billion unknowns using 16,000+ processing cores [7]. This
is beyond reach of the traditional direct solvers as well as many other types of solvers.
Despite the initial success, we encountered one major road block: the compression kernel based
on the traditional rank-revealing QR (RRQR) method is difficult to scale up. Worse yet, it leads
to non-compatible HSS structures from different branches of the elimination tree, which prevents
fast assembling of Schur complement updates at each step of Gaussian elimination (i.e., extend-add
of the children’s update matrices into the parent frontal matrix.) We found that the randomized
sampling (RS) method can replace RRQR to obtain the desired truncated SVD compression. The
following procedure computes an orthonormal basis (ON-basis) U for an m×n matrix B such that
‖B − UU∗B‖ is small with high probability.

1. Choose a Gaussian random matrix Ωn×(r+p), where r is the expected rank and p is a small
over-sampling constant of O(1).

2. Form the sample matrix S = B Ω whose columns span the column space of B.
3. Construct an ON-basis U for S using a strong RRQR.

It can be shown that U is a good ON-basis for B’s column space [4]. The major saving comes from
the fact that the column dimension of the sampling matrix S is significantly smaller. This procedure
can be used in each step of the HSS-embedded multifrontal factorization as follows: 1) using the
RS procedure to construt HSS forms for the frontal and update matrices [5]; 2) form a sample
update matrix by multiplying the update matrix with a random matrix; 3) perform extend-add of
the sampled update matrix to the parent. The advantages are:
• Extend-add involves tall-skinny dense sample matrices of the same shape, instead of the
non-compatible HSS structures.
• The main kernel operation is dense matrix-matrix multiplication, which is well studied for
good scalability and resilience at large scale.
• It is especially attractive when the matrix from the application admits FMM structure which
leads to very fast matrix-vector product, or when the application cannot afford to store
the matrix but only has matrix-vector operator; then we can develop the matrix-free sparse
factorization algorithms.
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This randomized sparse factorization framework can be used to construct nearly linear-time sparse
direct solver and preconditioner [9], sparse eigensolver, selected inversion, among others. Although
this type of solver/preconditioner is not as black-box as a direct solver, it is applicable to broad
classes of PDEs, including some of those for which multigrid does not work [6].
In this talk, we will present the following new results: 1) New adaptive algorithm to accommodate
rank variations at different parts of the matrix: 2) New scalable HSS-embedded sparse factorization
method that employs hierarchical parallelism both at the algorithm level and at the architectural
level (e.g., multicore/manycore-awareness); 3) Analysis and demonstration of reduced memory ac-
cess and communication complexity of the new algorithm compared to the traditional factorization
methods; and 4) Parallel performance of the algorithm on modern HPC machines, when it is used
both as a direct solver and as a preconditioner.
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Quasi-Canonical Forms for Quadratic Matrix Polynomials

D. Steven Mackey, F. De Terán, F. Dopico, Vasilĳe Perović and Francoise Tisseur

Abstract
The Weierstrass and Kronecker canonical forms for matrix pencils [2] are indispensable tools for
obtaining insight into both the theoretical and computational behavior of pencils and their cor-
responding eigenproblems. The absence of any analogous result for matrix polynomials of higher
degree has made it difficult to achieve the same depth of understanding for general matrix polyno-
mials as we have for pencils. In this talk I will describe recent progress towards canonical forms for
quadratic matrix polynomials, both for general quadratics (square and rectangular) as well as for
polynomials in various important structure classes such as Hermitian and palindromic quadratic
matrix polynomials.
As a first step towards resolving the quadratic canonical form question, it is convenient to consider a
given list L of elementary divisors (finite and/or infinite) together with (left and/or right) minimal
indices as the initial data. Then the quadratic realizability problem (QRP) consists of two basic
issues:
• Characterize those lists L that comprise the complete spectral and singular structure of some

quadratic matrix polynomial.

• For each such list L, show how to concretely construct a quadratic matrix polynomial that
realizes the list L. It is also desirable for this concrete realization to be as simple and canonical
as possible.

Structured versions of the QRP can also be formulated — given a class S of structured matrix
polynomials, characterize (and constructively realize) those lists L that comprise the complete
spectral and singular structure of some quadratic matrix polynomial in S. Thus we have the
palindromic QRP, the alternating QRP, the Hermitian QRP, ..., etc.
Solutions to many of these QRPs have recently been obtained by developing quasi-canonical forms
for both structured and unstructured quadratic matrix polynomials. These quasi-canonical forms
are direct sums of canonical Kronecker-like quadratic blocks, each of which realizes a “minimal”
list of elementary divisors and minimal indices.
The development of these quasi-canonical forms has revealed several new phenomena that occur
for quadratic polynomials, but not for matrix pencils.

(a) Although any list L can be realized by a matrix pencil (simply build a Kronecker block
for each individual elementary divisor and for each minimal index), this is not true in the
quadratic case. There are necessary conditions on L for quadratic realizability arising from the
Index Sum Theorem [1]; for structured quadratic realizability there are additional necessary
conditions arising from the restricted Smith forms of these structure classes [3, 4, 5].

(b) There exist nontrivial quadratically irreducible lists L , i.e., quadratically realizable lists L
with at least two elements that cannot be partitioned into quadratically realizable sublists.
Clearly each quadratically irreducible list must be realized by its own individual block; the
existence of such lists thus constitutes an important reason why the QRP is significantly more
complicated than the corresponding realizability problem for pencils. Identifying all of the
qualitatively distinct types of quadratically irreducible lists is one of the main contributions
of this work.
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(c) There exist nontrivial quadratically irrreducible lists L that contain a mixture of both ele-
mentary divisors and minimal indices. The existence of such lists shows that it is not always
possible to cleanly separate a quadratic matrix polynomial into a “regular part” and a “sin-
gular part”, as can always be done for pencils.

(d) The canonical blocks in the classical Weierstrass and Kronecker forms for pencils are all
bidiagonal. In the quadratic case, though, it can be shown that bidiagonal blocks do not
suffice; i.e., there are quadratically irreducible lists L that are not realizable by any bidiagonal
quadratic matrix polynomial. Thus the canonical blocks in any quadratic canonical form must
necessarily be more complicated than those in the canonical forms for pencils.

The condensed quadratic realizations developed in this work are built as direct sums of quadratic
blocks, each of which is canonical for some quadratically irreducible sublist of the given list L of
elementary divisors and minimal indices. However, the quadratic condensed form as a whole is not
always unique; there exist quadratically realizable lists L that can be partitioned into quadratically
irreducible sublists in more than one way, leading to qualitatively distinct quadratic realizations.
For this reason (and others to be discussed in the talk), the quadratic condensed forms presented
here cannot be regarded as canonical forms in the usual sense of the term. Hence we refer to
these condensed forms only as quasi-canonical forms, since they possess only some of the properties
associated with a true canonical form.
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Recent Results in Randomized Numerical Linear Algebra

Michael W. Mahoney

Abstract
Matrix algorithms and numerical linear algebra provide the foundation for many methods in scien-
tific computing, engineering, machine learning, and data analysis, and in recent years randomization
has proven to be a powerful if unexpected resource in the development of qualitatively improved
matrix algorithms that are designed to address increasingly-common large-scale statistical data
analysis problems. Here, we will review several recent developments in this area of Randomized
Numerical Linear Algebra: first, an algorithm to compute a low-precision solution to an arbitrary
over-constrained least-squares problem in time that is proportional to the number of nonzero ele-
ments in the input, plus lower order terms, as well as extensions of this to low-rank and leverage
score approximation; second, recent improvements in Nystrom-based approximation of symmetric
positive semidefinite matrices; and third, a framework to begin to address the statistical proper-
ties of random sampling and random projection algorithms. In each case, we will see that these
developments depend crucially on understanding and exploiting the complementary algorithmic
and statistical properties of the empirical statistical leverage scores of the input matrices. Exten-
sions of the ideas underlying leverage-based randomized algorithms to address problems beyond
the traditional purview of Randomized Numerical Linear Algebra may also be briefly described.
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Structured Low-Rank Approximation with Missing Data

Ivan Markovsky and Konstantin Usevich

Abstract
We consider the problem of approximating an affinely structured matrix with missing elements by
a low-rank matrix with the same structure. The method proposed is based on reformulation of
the problem as inner and outer minimization. The inner minimization is a singular linear least-
norm problem with analytic solution. The outer problem is a nonlinear least squares problem
and is solved by local optimization methods. The method is generalized to weighted low-rank
approximation with missing values and is illustrated on approximate low-rank matrix completion,
system identification, and model-free control problems.

Problem formulation Given a data vector p ∈ (R ∪ { NaN })np (NaN denotes missing values),
matrix structure—an affine function S : Rnp → Rm×n from the structure parameter space Rnp to
the set of matrices Rm×n, and a bound r < m ≤ n on the rank

minimize over p̂ ∈ Rnp
∑
{ i | pi 6=NaN } (pi − p̂i)2

subject to rank
(
S(p̂)

)
≤ r.

(SLRA)

Solution approach Using the kernel representation of the rank constraint

rank
(
S(p̂)

)
≤ r ⇐⇒ there is R ∈ R(m−r)×m, such that RS(p̂) = 0 and R has full row rank,

the following equivalent problem to (SLRA) is obtained:

minimize over R ∈ R(m−r)×m M(R)
subject to R has full row rank,

(OUTER)

where
M(R) := min

p̂∈Rnp

∑
{ i | pi 6=NaN } (pi − p̂i)2 subject to RS(p̂) = 0. (INNER)

The evaluation of the cost functionM of (OUTER), i.e., solving (INNER) for a given value of R, is
refered to as the inner minimization problem. This problem is a generalized least norm problem and
is solved analytically (see Lemma 1). The problem of minimizingM over R is refered to as the outer
minimization problem. It is a nonlinear least-squares problem with a full rank constraint of the
parameter matrix R, i.e., an optimization problem on a Stiefel manifold [1]. The full rank constraint
makes the method proposed for solving (SLRA) a non-standard variable projection method [2].

Lemma 1 (Generalized least norm problem). Consider the generalized linear least norm problem

minimize over x ∈ Rnx and y ∈ Rny ‖x‖22
subject to Ax+By = c,

(GLN)

with A ∈ Rm×nx, B ∈ Rm×ny , and c ∈ Rm. Under the following assumptions:

1. B is full column rank,

2. 1 ≤ m− ny ≤ nx, and
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3. Ā := B⊥A is full row rank,

problem (GLN) has a unique solution

x = Ā>
(
ĀĀ>

)−1
B⊥c and y = B+(c−Ax).

The minimum is
f = c>(B⊥)>

(
ĀĀ>

)−1
B⊥c.

There is a link between the generalized least norm problem (GLN) and the weighted least norm
problems

min
z

z>Wz subject to Dz = c,

with a singular weight matrix W .

Applications In the case of unstructured matrix, (SLRA) is an approximate matrix completion
problems. In the case of Hankel structured matrix, (SLRA) is a system identification problem for
data with missing input and output measurements. The inner minimization problem (INNER) is
in this case a Kalman smoothing problem. Efficient O(n) computation is possible by exploiting
the matrix structure. The algorithm can be viewed as a generalization of the classical Kalman
smoother for the case of missing data.
Another application of (SLRA) is model-free control, i.e., computation of a (feed-foreword) control
signal for a dynamical system that is specified implicitly by a noisy trajectory. The classical
approach to solve the control problem is to identify a model of the system from the data (system
identification problem) and use the model in a second step (model-based control problem) for the
construction of the control signal. The model-free (SLRA) approach computes the control signal
directly from data, bypassing the explicit model identification step.

More information A paper [3] and software for structured low-rank approximation with missing
data are available from http://slra.github.io
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On Solving KKT Linear Systems arising in Model Predictive Control via
Recursive Anti–Triangular Factorization

Nicola Mastronardi, Paul Van Dooren and Raf Vandebril

Abstract
The solution of Model Predictive Control problems [2, 3, 4] is often computed in an iterative fashion,
requiring to solve, at each iteration, a quadratic optimization problem. The most expensive part
of the latter problem is the solution of symmetric indefinite KKT systems, where the involved
matrices are highly structured.
Recently, an algorithm for computing a block anti–triangular factorization of symmetric indefinite
matrices, based on orthogonal transformations, has been proposed [1]. The aim of this talk is to
show that such a factorization, implemented in a recursive way, can be efficiently used for solving
the above mentioned KKT linear systems.
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Tensor Padé Krylov Methods for Parametric Model Order Reduction

Karl Meerbergen

Abstract
Consider the linear parametric single-input single-output system

dx(t, γ)
dt

+A(γ)x(t, γ) = fu(t) , x(0, γ) ≡ 0 (1)

y(t, γ) = c∗x(t)

where x, f and c are n-vectors with n large, A is large and sparse and depends on parameters γ ∈ Rp.
Such problems arise in parametric studies of, e.g., electrical circuits, acoustics and vibrations [1].
When γ is a vector of stochastic parameters, we may be interested in the stochastic moments of
the output y. The mean (which is the 0-th moment), e.g., is

z(t) =
∫
Γ
y(t, γ)dγ. (2)

The integration is performed over the entire range of the parameters Γ. The traditional methods
for computing z rely on Monte Carlo and Quasi Monte Carlo methods, where y(t, γ) is sampled for
a sequence of points in the parameter space.
Interpolatory parametric model order reduction techniques build a reduced model for (1) by inter-
polation in specific well chosen points in the parameter space. The advantage of such an approach
is that (nonparametric) model reduction can be used in each of these points. The obtained reduced
models are then joined in a parametric model or are glued together through interpolation [2] [4] [5]
[3]. Other techniques are based on multivariate moment matching [11][9][10][7].
In this talk, the parameters are discretized by a Cartesian grid containing points γ1, . . . , γN . We
build a parameter-free model for z obtained from Gaussian quadrature for (2). This leads to another
single-input single-output system, but now with large block diagonal matrices whose diagonal blocks
are A(γj), j = 1, . . . , N . The state vector of this system is represented by a tensor, stored in a
low rank format, such as Tensor Trains or Hierarchical Tucker Tensors. We expect the explosion of
unknowns due to the Cartesian grid to be compensated by the low rank structure of these tensors.
We then apply a two-sided moment matching method on this large system, using Padé via Lanczos
[6] or the two-sided Arnoldi method. For moment matching at zero, we have to solve a large block
diagonal linear system on each iteration. This is performed using a tensor Krylov method [8]. We
thus have an inner-outer iteration scheme. We consider three scenarios for moment matching at
zero: first, when the (inner) tensor Krylov iterations are preconditioned with A(γ0)−1 for a fixed
parameter γ0 ∈ Γ, then we show a connection with multivariate Padé approximation [9][10][7].
Interesting approximation properties can be proven for interpolation points selected from Gauss
quadrature rules. In the second scenario, we perform many inner tensor Krylov iterations so that
the obtained moments are interpolated accurately in the grid points in Γ. This then leads to an
interpolatory reduced model. In the third scenario, we use an approximate inversion of A(γ0)
instead of an exact inversion.
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Generic Rank-One Perturbations: Structure Defeats Sensitivity

Christian Mehl, Volker Mehrmann, Andre Ran and Leiba Rodman

Abstract
The behaviour of eigenvalues of matrices under perturbations is a frequently study topic in Numer-
ical Linear Algebra. In particular, the study of low rank perturbations is well established and well
understood by now. For example, in [1] it was shown that if A ∈ Cn×n is a defective matrix having
the eigenvalue λ with partial multiplicities n1 ≥ · · · ≥ nk, i.e., having k Jordan blocks associated
with λ with sizes n1, . . . , nk, then applying a generic rank one perturbation results in a matrix
having the eigenvalue λ with partial multiplicities n2 ≥ · · · ≥ nk. As simple arguments show that
the geometric multiplicity can only decrease by one if a rank-one perturbation is applied, we find
that it is the largest Jordan block that is the most sensitive one to generic rank-one perturbations.
The picture changes drastically if structured matrices are considered and if the class of perturbation
matrices is restricted to perturbations that preserve the original structure of the matrix. For
example, consider Hamiltonian matrices, i.e., matrices H ∈ C2n×2n satisfying HTJ + JH = 0,
where

J =
[

0 In
−In 0

]
.

If we consider the Hamiltonian matrix H = 0 ∈ C2×2, then a generic rank-one perturbation would
result in a 2× 2 matrix having the eigenvalue 0 and a nonzero eigenvalue - an observation that is
in accordance with the theory from [1] that (one of) the largest Jordan block(s) is destroyed, but
the other Jordan block(s) will remains. On the other hand, a rank-one perturbation that is itself
Hamiltonian necessarily has the form

∆H = uuTJ =
[
−u1u2 u2

1
−u2

2 u1u2

]

for some vector u = (u1, u2)T ∈ C2. It follows that H + ∆H = ∆H is nilpotent for any choice of
u and thus it has a Jordan block associated with λ = 0 of size two unless u = 0. Thus, incontrast
to the unstructured case, a generic Hamiltonian rank-one perturbation results in a matrix, where
the largest Jordan block has increased in size. From this point of view structure defeats sensitivity
because the behaviour under perturbations of the largest (and most sensitive) Jordan block changes
if structure-preservation is enforced.
The effects of structured rank-one perturbations become even more surprising when H-orthogonal
matrices are considered. If H ∈ Cn×n is a nonsingular symmetric matrix, then a matrix U ∈ Cn×n

is called H-orthogonal if UTHU = H. Considering the example

U =
[
λ 0
0 −λ

]
, H =

[
0 1
1 0

]

for some λ ∈ C \ {0} it follows that UTHU = H, i.e., U is H-orthogonal. According to [1] a
generic unstructured rank-one perturbation would result in a matrix having two arbitrary complex
eigenvalues. On the other hand, a straightforward calculation shows that any H-orthogonal rank-
one perturbation of U has the form

U

(
I2 − 2 2

uTHu
uuTH

)
= U

(
I2 −

1
u1u2

[
u1u2 u2

1
u2

2 u1u2

])
=
[

0 u1
u2
λ−1

u2
u1
λ 0

]
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which has the eigenvalues +1 and −1. Thus, all H-orthogonal rank-one perturbation of the original
matrix have identical spectrum which is a rather surprising behaviour. Another surprising example
is given by the H-orthogonal matrix

U =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , H =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .
One can show that any H-orthogonal rank-one perturbation of U has the Jordan canonical form

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 −1

 .
Again, all H-orthogonal rank-one perturbations of U have identical spectrum.
In the talk we will investigate the effects of structure-preserving rank-one perturbations of ma-
trices that are structured with respect to an indefinite inner products with special emphasis on
H-orthogonal and Hamiltonian matrices. We will present some general results on rank-one per-
turbations of structured matrices and by the help of those explain the surprising behaviour of
structure-preserving perturbations of H-orthogonal and Hamiltonian matrices.
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Numerical Solution of Large Scale Parametric Eigenvalue Problems arising
in the Analysis of Brake Squeal

Volker Mehrmann, Sarosh Quraishi and Christian Schröder

Abstract
We discuss model order reduction methods in the context of the simulation and accurate prediction
of disc brake squeal. Brake squeal is a common problem in automobiles which occurs when the
brakes are suddenly applied in a moving automobile and it is a significant problems in modern
brake design. Physically, brake squeal can be interpreted as a self-excited vibration caused by
fluctuations in the friction forces at the pad-rotor interface. This friction-induced self-excitation of
a brake system is usually investigated based on the eigenvalues of linearized models. Even though
the number of degrees of freedom and computational effort has constantly increased, there is still
a lack of correspondence between experimental investigations and simulations. This work gives an
overview of the finite element modeling (FEM) and analyzes the commonly used solution procedures
for the high dimensional eigenvalue problem in the context of parametric model order reduction.
Solving high dimensional linear differential equations is a common problem within FEM. Usually
in structural analysis, the unforced systems are considered in the form

Mq̈ +Dq̇ +Kq = 0,

where M, D, K ∈ Rn,n are mass, damping and stiffness matrices, respectively, which are usually
symmetric and positive semi-definite or definite. The vector valued function q : R → Rn con-
tains the position variables associated with the degrees of freedom, arising from the finite element
discretization.
In the analysis and simulation of brake squeal, however, the matrices D and K are typically non-
symmetric and dependent on parameters such as the rotational speed of the brake disc, the braking
pressure, the friction coefficient and other parameters. The non-symmetry arises from the fact that
gyroscopic as well as circulatory forces have to be included as well as special parameter dependent
damping models.
To be able to determine the stability behavior of a finite element (FE) model of the brake, right half
plane eigenvalues of non-symmetric quadratic eigenvalue problems have to be calculated for many
choices of parameters. We will discuss a new parameter dependent subspace projection approach,
where the subspaces are determined from non-symmetric problems evaluated at many different
parameter values and we will demonstrate that this approach is more accurate than traditionally
used algorithms in industry.
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Computing the Exponential of a Large Block Triangular Block Toeplitz
Matrix

D.A. Bini, S. Dendievel, G. Latouche and B. Meini

Abstract
The Erlangian approximation of Markovian fluid queues leads to the problem of computing the
exponential of an upper block triangular, block Toeplitz matrix [2]

U =


U0 U1 . . . U`−1

U0
. . . ...
. . . U1

0 U0

 ,
where Ui, i = 0, . . . , `− 1, are m×m matrices. The block size ` of U may be huge, since a larger
` leads to a better Erlangian approximation, while the size m of the blocks is generally small. The
matrix U is a subgenerator, i.e., it has negative diagonal entries, nonnegative off-diagonal entries,
and the sum of the entries on each row in nonpositive. The matrix exponential A = eU is still
an upper block triangular, block Toeplitz matrix; in particular, the diagonal blocks of A are the
matrices eU0 . The matrix A is nonnegative and substochastic.
We propose some numerical methods for computing the exponential of the matrix U , that exploit
the block triangular block Toeplitz structure. Unlike the general methods, our algorithms allow to
deal with very large sizes.
Two numerical methods rely on the property that a block z-circulant matrix can be block diag-
onalized by means of Fast Fourier Transforms [1]. Therefore the computation of the exponential
of an n × n z-block circulant matrix with m ×m blocks can be reduced to the computation of n
exponentials of m×m matrices.
The idea of the first method is to approximate A = eU by the exponential of the block ε-circulant
matrix

Uε =


U0 U1 . . . U`−1

εU`−1 U0
. . . ...

... . . . . . . U1
εU1 . . . εU`−1 U0

 ,
where ε ∈ C and |ε| is sufficiently small. An error analysis is performed, that allows to choose
the value of ε. The computation of eUε is reduced to the computation of ` exponentials of m ×m
matrices.
In the second approach the matrix U is embedded into a K ×K block circulant matrix CK , where
K is sufficiently large, and an approximation of eU is obtained from a suitable submatrix of eCK .
The computation of eCK is reduced to the computation of K exponentials of m × m matrices.
In practical computations, we start with K = 2`, and the value of K is doubled until a certain
condition is satisfied.
Another numerical method consists in specializing the shifting and Taylor series method of [3]. The
block triangular Toeplitz structure is exploited in the FFT-based matrix multiplications involved
in the algorithm, leading to a reduction of the computational cost.
Theoretical and numerical comparisons among the three numerical methods are presented.
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Numerical Optimization of Eigenvalues of Hermitian Matrix-Valued
Functions

Emre Mengi, Emre Alper Yildirim and Mustafa Kilic

Abstract
Optimizing a prescribed eigenvalue of a differential operator or a matrix-valued function depending
on parameters has a long history dating back to Euler. The prescribed eigenvalue of interest typi-
cally exhibits not only Lipschitz continuity, but also remarkable analyticity properties. We present
a numerical approach [3], based on these analytical properties, for unconstrained optimization of
a prescribed eigenvalue of a Hermitian matrix-valued function depending on a few parameters
analytically. In the second part, we present a numerical approach [4] for optimization problems
with linear objectives and an eigenvalue constraint on the matrix-valued function. The common
theme for numerical approaches is the use of global under-estimators, called support functions, for
eigenvalue functions, that are built on the variational properties of eigenvalues over the space of
Hermitian matrices.
The unconstrained eigenvalue optimization problem is

min
ω∈Rd,ω∈Bd

λj(A(ω))

where A(ω) : Rd → Cn×n is a Hermitian and an analytic function of ω, λj denotes the jth largest
eigenvalue, and Bd is a given box in Rd. Due to the classical results by Rellich [1], the eigenvalues
of A(ω) has a particular ordering λ̃1(ω), . . . , λ̃n(ω) so that each eigenvalue λ̃`(ω) is analytic along
every line in Rd. Applications of Taylor’s theorem combined with Rellich’s results yield the support
function

s(ω;ωk) := λj(A(ωk)) +
(
min`=1,...,n∇λ̃`(ωk)T (ω − ωk)

)
+ γ

2
‖ω − ωk‖2.

about a given ωk satisfying s(ω;ωk) ≤ λj(A(ω)) for all ω, and s(ωk;ωk) = λj(A(ωk)). Here γ is any
real scalar such that λmin

(
∇2λ̃`(ω)

)
≥ γ, ∀ω ∈ Bd, ` = 1, . . . , n. For the maximal eigenvalue

function λ1(A(ω)) this support function takes the more plausible quadratic form

s(ω;ωk) := λ(ωk) +∇λ1(A(ωk))T (ω − ωk) + γ

2
‖ω − ωk‖2

about any ωk such that λ1(A(ωk)) is simple. In this case γ is any lower bound for λmin
(
∇2λ1(A(ω))

)
for all ω ∈ Bd such that λ1(A(ω)) is simple. The numerical scheme is based on the approximation
of the eigenvalue function with the model s(ω) := maxk=0,...,p s(ω;ωk) in terms of the support
functions about ω0, . . . , ωp. The point ωp+1 is defined to be any global minimizer of s(ω), and the
model s(ω) is refined with the incorporation of s(ω;ωp+1). This leads us to a globally convergent
algorithm, i.e., every convergent subsequence of {ωk} converges to a global minimizer of λj(A(ω)).
The rate of convergence appears linear in practice. The practicality of the algorithm relies on
two issues: (1) numerical computation of a global minimizer of s(ω) - support function ideas have
already been pursued by the global optimization community, here we benefit from existing schemes
especially the one due to Breiman and Cutler [2]; (2) analytical or numerical deduction of γ - we
show that analytical deduction of γ is possible in various occasions for the maximal eigenvalue
function (more generally the sum of the j largest eigenvalues), in some other cases it is possible to
deduce γ numerically.
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The constrained eigenvalue optimization problem is

max
ω∈Rd

cTω subject to λn(A(ω)) ≤ 0

where A(ω) is as in the unconstrained eigenvalue optimization problem, c ∈ Rd is given, and we
assume the feasible set is bounded. For instance all of the pseudospectral functions, e.g., those con-
cerning the standard, polynomial eigenvalue problems and those occurring from the delay systems,
fit into this framework. In this setting, given any γ that is an upper bound for λmax

(
∇2λn(A(ω))

)
for all ω, the use of the (upper) support function

s(ω;ωk) := λ(ωk) +∇λn(A(ωk))T (ω − ωk) + γ

2
‖ω − ωk‖2

about ωk such that λn(A(ωk)) is simple, satisfying s(ω;ωk) ≥ λn(A(ω)) for all ω and s(ωk;ωk) =
λn(A(ωk)), yields the convex program

max
ω∈Rd

cTω subject to s(ω;ωk) ≤ 0.

The feasible set for this convex program is a subset of that of the constrained eigenvalue optimization
problem. Consequently, starting from a feasible point ω0 for the original problem, we generate a
feasible sequence {ωk} where ωk+1 is the unique local maximizer of the convex program above,
which can be determined analytically. The algorithm can be viewed as a fixed-point iteration.
Unlike the unconstrained counterpart, this algorithm converges locally, but can be neatly analyzed.
For instance, we prove its linear rate of convergence; indeed the main factor affecting the speed of
convergence is the eigenvalue distribution of a projected Hessian at the converged local maximizer, in
particular the closer are the eigenvalues of the projected Hessian to γ, the faster is the convergence.
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On the convergence of QOR and QMR Krylov methods for solving linear
systems

Jurjen Duintjer Tebbens and Gerard Meurant

Abstract
We consider the problem of solving linear systems Ax = b where A is a square nonsingular matrix
of order n with real or complex entries and b is a vector of length n. The most popular iterative
methods for solving such a possibly nonsymmetric linear system are Krylov methods. In [6] it is
shown that most Krylov methods can be described as quasi-orthogonal (QOR) or quasi-minimum
residual (QMR) methods.
Many numerical methods that can be classified as QOR or QMR methods have been proposed
over the years. Generally they come into QOR/QMR pairs. Probably the most famous ones are
the FOM (Saad) and GMRES (Saad and Schultz) algorithms (which are in fact true OR and
MR methods since the matrix V representing the basis of the Krylov subspace is computed to be
orthonormal). The matrices V and the upper Hessenberg matrix H = V ∗AV are computed using
the Arnoldi process.
Another famous pair is BiCG/QMR. BiCG and QMR (Freund and Nachtigal) use a basis repre-
sented by V that is bi-orthogonal to a basis W for the Krylov subspace constructed on (A∗, b).
QMR minimizes the quasi-residual norm. Note that in this presentation we will use the acronym
QMR in two different ways. The first one is to denote the general class of quasi-minimum resid-
ual methods and the second one is related to the particular method introduced by Freund and
Nachtigal.
A third pair of methods is Hessenberg/CMRH. CMRH, introduced by Sadok, is a QMR method
which uses the Hessenberg basis computed with an LU factorization with partial pivoting of the
Krylov matrix; see [10]. The Hessenberg method is the corresponding QOR method.
Other examples include truncated methods and some restarted methods as long as they build and
use a basis of the Krylov subspace.
In this talk we are interested in extending the results obtained in [7, 1, 8], [2, 3], [5], [4], [9]
for FOM/GMRES to other Krylov methods with non-orthonormal bases. Rather than doing this
method by method we will adopt the general framework of [6] and we will not consider particular
implementations. In [7, 1, 8] and later on in [2, 3] parametrizations of the classes of matrices (with
a prescribed spectrum) and right-hand sides giving prescribed GMRES residual norms were given
as well as practical ways of constructing such matrices and right-hand sides; see also [9]. In [5]
and [4] closed-form expressions of the GMRES residual norms as functions of the eigenvalues and
eigenvectors as well as the right-hand side were provided. Our aim is to show that most of these
results known for FOM/GMRES can be extended to general QOR/QMR methods.
The contents of the presentation are the following:

- We first describe the general framework for QOR and QMR Krylov methods using basis vec-
tors which are the columns of a non-orthonormal nonsingular matrix V . We show expressions
for principal submatrices of the upper Hessenberg matrix H as functions of entries of the
change of basis upper triangular matrix U defined by K = V U , K being the Krylov matrix.

- We show that the QOR residual norms can be read from the first row of U−1 and we give an
expression for the QMR quasi-residual norms as a function of the entries of the matrix U∗U .
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- Two parametrizations (or factorizations) of the matrix A and of the right-hand side b are
provided corresponding to those in [1] and [2].

- We consider the problem of constructing a matrix (with a prescribed spectrum) and a right-
hand side yielding prescribed QOR residual norm or QMR quasi-residual norm convergence
curves for a given QOR or QMR method. Depending on the method this amounts to construct
a matrix H with a particular non-zero structure. We restrict ourselves to a banded structure
in the upper part of H.

- We give expressions for the QMR quasi-residual norms as a function of the eigenvalues and
eigenvectors of A, the right-hand side b and the matrix V of the basis vectors. It is a
generalization of the result in [4].

- We study some relationships between general QOR/QMR methods and FOM/GMRES.

- Finally we describe two numerical experiments in which we construct matrices with a given
spectrum and with a prescribed residual norm convergence curve for BiCG and for the Hes-
senberg method.

Hence the situation for these QOR/QMRmethods is the same as for FOM/GMRES. One can obtain
the same convergence curves with matrices having arbitrary prescribed spectra and the (quasi-)
residual norms depend in an intricate way on the eigenvalues, the eigenvectors, the right-hand side
and the basis vectors.
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A Posteriori Error Estimates for hp-Adaptive Approximations of
Non-selfadjoint PDE Eigenvalue Problems

Stefano Giani, Luka Grubišić, Agnieszka Międlar and Jeffrey S. Ovall

Abstract
Let us consider the following problem in bounded, polygonal domain Ω ⊂ R2:
Find (λ, ψ) ∈ C×H1

0 (Ω) such that

Aψ := −∇ ·A∇ψ + b · ∇ψ + cψ = λψ , (1)

with real-valued A ∈
[
L∞(Ω)

]2×2, b ∈
[
L∞(Ω)

]2 with ∇ · b ∈ L∞(Ω), and c ∈ L∞(Ω).
We introduce new residual a posteriori eigenvalue/eigenvector error estimates based on Kato’s
square root theorem [6] for spectral approximations of diagonalizable non-selfadjoint differential
operators of convection-diffusion-reaction type with real spectrum. Problem (1) provides an exam-
ple of a more general class of non-selfadjoint eigenvalue problems in Hilbert space for which a Riesz
basis can be constructed from associated eigenvectors [3, 5]. Under, the so called Condition S, i.e.,

Definition 1 (Condition S). The operator A satisfies the condition S, where S stands for the
square root, if it is of the form (1) and is diagonalizable, i.e., A = XHX−1 with the normal operator
H being selfadjoint and positive definite.

For operators which satisfy condition S, we define the square root operator

A1/2 = XH1/2X−1,

which domain is the same as the domain of the abstract bilinear form B(·, ·) defining the operator
A [1, 2]. This guarantees the existence of constants cK , c∗K , CK and C∗K such that

cK‖φ‖1 ≤ ‖A1/2φ‖ ≤ CK‖φ‖1, φ ∈ H1
0 (Ω),

c∗K‖φ‖1 ≤ ‖A∗1/2φ‖ ≤ C∗K‖φ‖1, φ ∈ H1
0 (Ω) .

Exploiting aforementioned results and residual eigenvector/eigenvalue error estimates, we obtain
the following Bauer–Fike type estimate:

Theorem 1 (Bauer–Fike Estimate). Let µ̂ > 0 and ψ̂ ∈ H1
0 (Ω), ‖ψ̂‖ = 1 be given and let A satisfy

the condition S. Then

min
ξ∈Spec(A)

|µ̂− ξ|√
µ̂ξ
≤ κ(X )

c∗K

‖r(µ̂)[ψ̂, ·]‖−1√
µ̂

.

Moreover, we present an hp-adaptive finite element algorithm with residual a posteriori hp-finite
element error estimates which are of higher order in the residual norm ‖r(λ̂)[ψ̂, ·]‖−1.

Theorem 2. Let (λ̂, ψ̂, ψ̂?) ∈ R×V p
h ×V

p
h be an eigentriple of discretized eigenproblem (1). There

is a constant C depending only on shape-regularity parameter γ for which

‖r(λ̂)[ψ̂, ·]‖−1 ≤ Cλ̂η(ψ̂) and ‖r(λ̂)[·, ψ̂?]‖−1 ≤ Cλ̂η?(ψ̂?) .
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This result together with Theorem 1 allow to formulate the following key a posteriori error estima-
tion results:

Theorem 3. Let the operator A defined by the variational form B(·, ·) satisfy condition S and let
(λ̂, ψ̂, ψ̂?) ∈ R× V p

h × V
p
h be an eigentriple of discretized eigenproblem such that (ψ̂, ψ̂?) 6= 0. Then

there exists an eigenvalue λ of A such that

|λ̂− λ|
λ̂

≤ Cλ̂η(ψ̂)η?(ψ̂?) + o
(
λ̂η(ψ̂)η?(ψ̂?)

)
.

Furthermore, the flowing estimates hold

‖ψ − ψ̂‖1 ≤ Cλ̂ η(ψ̂), ‖ψ? − ψ̂?‖1 ≤ Cλ̂ η?(ψ̂?) .

We notice that Theorem 3 is the second order eigenvalue estimate which requires some additional
assumptions on the convergence of Galerkin eigenvalue approximations, however, we can guarantee
the first order convergence of the eigenvalues, namely:
For each ν, there exists an eigenvalue λ such that

|λ̂ν − λ| ≤
κ(X )
c∗K

C
√
λ λ̂νη(ψ̂ν) .

For detailed analysis we refer the reader to [4].
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Resurrecting the Symmetric Generalized Matrix Eigenvalue Problem

Cleve Moler

Abstract
I want to try to stimulate renewed investigation of the eigenvalue problem

Ax = λBx

for symmetric dense matrices A and B of modest order. Here B is positive definite, but nearly
singular. I believe that we do not yet have completely satisfactory algorithms for this problem.
LAPACK and MATLAB offer the choice between the inversion of the ill-conditioned Cholesky
factors of B and the QZ algorithm that destroys symmetry. I recently found an unfinished paper
that I was working on with Jim Wilkinson in 1986 that proposes a new algorithm involving double
diagonalization using square root free Givens-like transformations. The resulting program may not
be competitive with modern codes in speed, but does offer advantages in accuracy.
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A Multigrid Arnoldi Method for Eigenvalues

Ron Morgan

Abstract

Introduction

We consider Krylov subspace methods for computing eigenvalues and eigenvectors of large, possibly
nonsymmetric matrices. Sorensen’s Implicitly Restarted Arnoldi Method [3] (IRAM) was a leap
forward for finding several eigenvalues. However, many eigenvalue problems are still challenging.
For problems coming from discretization of differential equations, fine discretizations lead to large
matrices, wide spectra and difficult computations. It is possible that the next leap will involve
multigrid. An approach is proposed here. First we give an example illustrating slow convergence.
Example 1. We consider a matrix from finite difference discretization of the 2-D convection-diffusion
equation −uxx − uyy + 10ux = λu on the unit square. We let h = 1

702 , leading to a matrix of
dimension n = 491, 401. Eigenvalues range from 9.0 ∗ 10−5 to 8 with difficult near-multiplicity. A
restarted Arnoldi method equivalent to IRAM is run with the goal of finding the eight smallest
eigenpairs to residual norms below 10−8. We use subspaces of maximum size 30 and restart with
15 Ritz vectors (denoted by Arn(30,15)). This method takes 1594 cycles or 23,925 mat-vecs.
To see a version of this abstract with graphs:
https://bearspace.baylor.edu/Ronald_Morgan/www/MorganHH14.pdf

Multigrid Arnoldi

We wish to improve convergence by taking advantage of coarse grids. Multigrid has been pro-
posed for eigenvalue problems in a number of different ways, but there does not seem to be an
established method. Some eigenvalue multigrid methods only compute one eigenvalue at a time.
Also, generally the methods proposed are subject to the same limitations as multigrid for linear
equations: multigrid does not converge for convection-diffusion with too much convection and for
many indefinite problems.
We propose a Krylov multigrid method that can compute many eigenvalues simultaneously and can
solve problems for which standard multigrid fails. Most significantly, it has potential to dramatically
improve computation of eigenvalues and eigenvectors. We present the method here on two grids.

Two-grid Arnoldi
1. Run restarted Arnoldi on coarse grid.

2. Use coarse grid eigenvectors to create approximate eigenvectors on fine grid (splines).

3. Improve approximate eigenvectors on fine grid with the Arnoldi-E [1] method.

The Arnoldi-E method mentioned in Step 3 builds a Krylov subspace and then appends approximate
eigenvectors at the end of the cycle. This allows for approximate eigenvectors to be input at the
beginning of the method.
Example 1 (cont.). We apply the Two-grid Arnoldi approach to the eigenvalue problem in Example
1. For the coarse grid, we use discretization size of 1

351 , so the number of grid points and dimension
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of the matrix is 3502 = 122, 500. This is about one-fourth of the dimension of the fine grid matrix.
Only 447 cycles of Arn(30,15) are required to find the smallest eight eigenvalues to accuracy of
residual norm below 10−8. This is under a third of the cycles for the larger problem. However, the
cost is actually much less than this, because with a smaller matrix and shorter vectors, the cost
per cycle is about one-fourth as much. In this experiment, we run 500 cycles on the coarse grid,
then move the coarse grid eigenvectors to the fine grid and improve them there. The Arnoldi-E
method needs only 34 cycles on the fine grid for the eigenvectors to reach the desired level. To
better compare this two-grid approach, we multiply the number of coarse grid cycles by one-fourth
and add this to the number of fine grid cycles. This gives 159 fine-grid-equivalent cycles compared
to the 1594 for regular Arnoldi.
We note that results for the new Two-grid Arnoldi may not be as impressive relative to regular
Arnoldi when the coarse grid does not give accurate approximations for the fine grid. This is
particulary likely if even the fine grid is fairly coarse. Also note that it is possible to use more than
two grids.

Fine Grid Convergence Theory

Arnoldi-E does not always work well at improving approximate eigenvectors. There is something
special about the approximate eigenvectors that come from the coarse grid. We give an example
with symmetric matrix of size n = 2047 from a 1-D diffusion equation. We compare Arnoldi-E for
improving approximate eigenvectors that come from a coarse grid with n = 511 versus from random
perturbation of the true fine grid eigenvectors. The eventual convergence rate is roughly four times
faster for improving the coarse grid vectors. We will discuss this convergence in the context of
Krylov properties of restarted Arnoldi [1, 2], however here we will have near-Krylov subspaces [4].

Deflating Linear Equations

If time permits, we will discuss a two-grid approach for solving linear equations. Approximate
eigenvectors from the coarse grid can be used to deflate eigenvalues for the linear equations. This
can potentially apply the power of multigrid to problems for which regular multigrid methods fail.
There is also potential for combining eigenvalue deflation with multigrid preconditioning.
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Multilevel Krylov Methods

Yogi A. Erlangga and Reinhard Nabben

Abstract
Preconditioned Krylov subspace methods are among the most efficient tools for solving large linear
systems. But beside the traditional preconditioner there are also other techniques to accelerate the
speed of convergence of a Krylov subspace method, namely deflation or augmentation techniques.
Here we explain these techniques in detail with the help of projections. Surprisingly, similar pro-
jection techniques are known in the fields of domain decomposition and multigrid methods.
Based on our detailed analysis of deflation methods we develop a new multilevel deflation method or
a multilevel Krylov method (MK-method). The basic idea of this type of method is to precondition
a flexible Krylov subspace method with a preconditioner that shift some eigenvalues to an a priori
fixed constant. The shifting of the eigenvalues is similar to projection type or deflation type methods
and uses the solution of subspace or coarse level systems.
In contrast to multigrid methods or Krylov methods preconditioned by multigrid, the subspace
systems are solved approximatively by a few steps of the flexible Krylov method again. In contrast
to most deflation and augmentation methods no approximate eigenvectors are used.
The concept of our MK-methods yields to a new family of multilevel methods that consists of sev-
eral ingredients that can be chosen independently: a traditional preconditioner; a flexible Krylov
method; the multilevel structure, subspace (coarse gird) systems; restrictions, prolongations, defla-
tion vectors.
Several theoretical and numerical results show the high potential of our multilevel Krylov methods.
We have done several numerical examples with the flexible GMRES method. It turns out that
these MK methods work very well for convection diffusion equations and the Helmholtz equation.
The convergence can be made almost independent of grid size h and also only mildly dependent of
the wavenumber k for the Helmholtz equation.
Numerical results for an MK method using the flexible CG method (MK-CG method) for symmetric
positive definite systems are given also. For the MK-CG method we establish a convergence bound.
Recently, we were able to prove some more theoretical results. With the help of Fourier analysis
we are able to derive formulas for the eigenvalues of the MK operator applied to the 1D Helmholtz
equation (joint work with Luis Garcia Ramos). These formulas show the extremely nice clustering
of the eigenvalues. For MK-methods using the flexible GMRES method we proved convergence
as long as the subsystems are solved up to a certain tolerance (joint work with R. Kehl and D.B.
Szyld).
We also combine the multilevel Krylov idea with the algebraic way of choosing the subspace systems
and the restriction and prolongation operators. The resulting method is called algebraic multilevel
Krylov method or AMK method. We present different AMK methods that differ in the choice
of the algebraic components. First, we use the classical Ruge and Stüben approach. Then, we
present a agglomeration-based technique. Both methods are tested for various matrices arising
from discretization of 2D diffusion and convection-diffusion equation as well as for several matrices
taken from the matrix-market collections. The numerical results show that the AMK methods work
as well as the geometric MK methods. For the convection-diffusion equations the AMK methods
lead to better convergence rates than the original AMG method by Ruge and Stüben.
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A Numerical Linear Algebraic Approach to Compact Multi-Frame Blind
Deconvolution

James G. Nagy, Stuart Jefferies and Helen Schomburg

Abstract
We consider a multi-frame blind deconvolution (MFBD) problem that requires solving a large-scale
nonlinear least squares problem of the form

min
x,yj

J∑
j=1
‖A(yj)x− bj‖22 , (1)

where bj , j = 1, 2, . . . , N , are observed images of an unknown object x. The unknown yj defines
the linear image formation process, which depends on the conditions in which the data frame bj was
obtained. The term blind refers to the fact that the parameters yj defining the matricesAj = A(yj)
are unknown.
Standard algorithms to solve this problem usually rely on obtaining many frames of data, but they
do not exploit the fact that there is likely to be substantial redundant information in the measured
images. Recently, Hope and Jefferies [1] argued that ratios of the Fourier spectra of various images
can be used to model the inherent correlations in the data, and they proposed to reduce the MFBD
problem (1) to one that involves only a small number (K � J) of control frames. The reduced
problem is referred to as compact multi-frame blind deconvolution (CMFBD).
We recast this application into a numerical linear algebra framework, which helps in the develop-
ment of efficient solvers, and it opens the door to a wider class of problems on which the technique
can be applied. Specifically, the application requires solving two problems. The first is a structured
subset selection problem where we need to find a small subset of images from b1, b2, . . . , bJ that
contains all relevant information from the full dataset. The second problem involves reducing the
MFBD problem (1) to a weighted nonlinear least squares problem

min
x,yk

K∑
k=1

∥∥∥WA(yk)x− b̃k
∥∥∥2

2
. (2)

We show that this can be done very efficiently by exploiting structure of the matrices A(yj), and
through the judicious use of Givens rotations.
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Using Zolotarev’s high-order Rational Approximations for Computing the
Polar, Symmetric Eigenvalue and Singular Value Decompositions

Yuji Nakatsukasa and Roland W. Freund

Abstract
The spectral divide-and-conquer algorithms for computing the symmetric eigenvalue decomposition
and the SVD developed in [4] are near-optimal in both arithmetic and communication costs, and
are crucially built on computing the polar decomposition A = UpH. For the polar decomposition
the QDWH iteration [3] is used, which requires at most six iterations to converge for any practical
matrix in double precision arithmetic and uses the building blocks of just matrix multiplication
and QR and Cholesky factorizations.
Following this framework we propose an algorithm for the polar decomposition, which is a higher-
order variant of QDWH. The underlying theory is rational approximation to the scalar sign function
on a union of intervals [−1,−ε] ∪ [ε, 1], since denoting by A = UΣV ∗ the SVD of a full column
rank A, the unitary polar factor is Up = UV ∗ = Usign(Σ)V ∗. The key idea is to use the best
rational approximation due to Zolotarev in 1877 [1]. We form the type (m,m − 1) best rational
approximant r1(x) ∈ Rm,m−1 on [−1,−ε]∪ [ε, 1], and then form another best rational approximant
r2(x) ∈ Rm,m−1 on a smaller interval [−1,−ε̃] ∪ [ε̃, 1] where ε̃(> ε) is determined from ε and
m. We run k iterations of this process to obtain ri(x) ∈ Rm,m−1 for i = 1, . . . , k. Then the
composed function r(x) = rk(rk−1(· · · (r1(x)) is of type (mk,mk − 1), an exponentially growing
degree. Crucially, r(x) happens to be Zolotarev’s best rational approximant on the initial interval
[−1,−ε]∪[ε, 1] of this type. This optimality can be verified by counting the number of equioscillation
points, a unique characterization of best rational approximants.
We are thereby able to form a very high degree (mk) best rational approximant via composing
k low degree (m) rational functions, which is attractive both for speed, because evaluating the
latter needs O(mkn3) flops whereas the former requires O(mkn3) flops, and for stability, because
low-degree Zolotarev functions can be computed accurately at a matrix argument.
Some of the previously proposed algorithms are special cases of this framework: the QDWH algo-
rithm usesm = 3, and the scaled Newton iteration with the scaling by Byers and Xu [2] usesm = 2.
Previous experiments have suggested that the number of iterations needed by these algorithms for
numerical convergence is bounded: six iterations for QDWH, which is a type (36, 36−1) = (729, 728)
Zolotarev best approximant, and nine iterations for scaled Newton, a type (29, 29− 1) = (512, 511)
Zolotarev. This observation can be explained by the fact that a Zolotarev approximant of type
(d, d− 1) with d ≥ 350 has approximation error smaller than 10−15 for any ε > 10−15.
The algorithm we propose chooses m = 19 or smaller, where 19 is the smallest integer whose square
is larger than 350. This lets the algorithm converge in just two iterations. The asymptotic rate
of convergence is a whopping m = 19 (that of QDWH is cubic and scaled Newton is quadratic),
although this is too high to observe numerically.
An important advantage of usingm = 2k+1 with k > 1 is that each iteration is highly parallelizable.
Specifically, each iteration requires computing the matrix rational function rj(X) of type (m,m−1),
which can be implemented using the partial fraction form by computing the following for i =
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Here ai, bi, ci are scalar parameters determined by the Zolotarev approximants. The k matrices Yi
can be computed completely independently from each other. Furthermore, as in QDWH, each Yi is
formed using a QR factorization and a matrix multiplication, both of which have been successfully
implemented in parallel. Hence each iteration is highly parallelizable with two levels of parallelism.
The resulting algorithms for the polar, symmetric eigenvalue and singular value decompositions
require slightly higher arithmetic cost than the QDWH-based algorithms but are better suited for
parallel computing. Indeed, assuming that the computation of (1) is done independently for each i,
the arithmetic cost along the critical path is much smaller than QDWH, and comparable with the
standard algorithms based on reduction to tridiagonal or bidiagonal forms. Numerical experiments
demonstrate its excellent numerical stability comparable to QDWH, and typically better than those
of standard algorithms.
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Revisiting Greedy Ordering Heuristics for Sparse Matrix Factorizations

Esmond G. Ng and Barry W. Peyton

Abstract
It is well known that sparse matrix factorizations suffer fill. That is, some of the zero entries in a
sparse matrix will become nonzero during factorization. To reduce factorization time and storage,
it is important to arrange the computation so that the amount of fill is kept small. It is also
well known that the amount of fill is affected in part by how the rows and columns of the sparse
matrix are permuted (or ordered). For simplicity, we focus on the Cholesky factorization of a sparse
symmetric positive definite matrix, in which case the fill depends solely on the sparsity of the given
matrix and on the choice of permutation (or ordering).
We use the following notation. Let A be an n × n symmetric positive definite matrix and P be
an n × n permutation matrix. We denote the factorization of PAP T by LLT , where L is lower
triangular. We use L∗k to denote the k-th column of L. The number of nonzero entries in a vector
v is represented by nnz(v).
It is well known that finding an ordering to minimize fill in sparse Cholesky factorization is an
NP-complete problem [9]. Thus, we rely on heuristics. In this talk, we consider greedy heuristics.
The minimum degree (MD) algorithm, introduced by Tinney and Walker [7], is probably the most
well-known greedy heuristic. It reduces fill by finding a permutation P so that nnz(L∗k) is minimized
locally at step k of the factorization. The MD algorithm is the symmetric variant of a method first
proposed by Markowitz [4]. A great deal of work has been done on reducing the runtime of the
MD algorithm.
In [7], Tinney and Walker also introduced another greedy heuristic, commonly known as the min-
imum local fill (MF) or minimum deficiency algorithm. In the MF algorithm, the permutation is
chosen so that the number of zero entries in the reduced matrix that become nonzero is as small
as possible at each step of the factorization. Interestingly enough, the MD algorithm minimizes
locally the number of operations in computing the factorization (since the operation count at step
k, in the right-looking formulation, is proportional to the square of nnz(L∗k)). On the other hand,
the MF algorithm minimizes locally the amount of fill introduced into the matrix.
However, the MF algorithm has not been as popular as the MD algorithm. There are several reasons
why this is the case. The metric nnz(L∗k) is easy to obtain. On the other hand, to determine the
amount of fill that will be introduced at each step, some sort of look-ahead is needed, which may be
expensive. Consequently, the general belief has been that the MF algorithm is much more expensive
than the MD algorithm. In [6], the authors said that “while many of the enhancements described
above for minimum degree are applicable to minimum local fill (particularly supernodes), runtimes
are still prohibitive”, while in [5], it was reported that a true implementation of the MF algorithm
was on the average slower by two orders of magnitude than one of the well-known implementations
of the MD algorithm. Another reason for the lack of popularity of the MF algorithm is the belief
that the MF orderings are often just marginally better than the MD orderings [1].
In an early version of [5], Ng and Raghavan reported that their MF orderings, on average, resulted
in 9% less fill and 21% fewer operations than their MD orderings. Furthermore, Ng and Luce have
recently solved the following open problem [3]: an ordering that minimizes fill does not necessarily
minimize the number of operations, and vice versa. Thus, there is a need to revisit greedy ordering
heuristics.
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As noted above, the MF algorithm requires the determination of the amount of fill that will be
introduced when a column is eliminated (known as the column’s deficiency). Some of the deficiencies
will change and need to be recomputed as the algorithm proceeds. However, recomputing the
deficiency of a column from scratch is expensive.
In [8], Wing and Huang described an elegant way for updating the deficiencies rather than recomput-
ing them from scratch. Their updating scheme was mentioned a few times in the circuit simulation
literature, but it apparently was not widely used and it certainly was not adopted by the sparse
matrix community. We will describe in this talk our recent work on the Wing-Huang updating
scheme. In particular, we will show that the worst-case time complexity of the MF algorithm with
Wing-Huang updates is the same as that of the MD algorithm. We will also demonstrate that
techniques for reducing the runtime of the MD algorithm (such as quotient graph representations,
mass eliminations, etc.) are equally applicable in the efficient implementation of the MF algorithm
with Wing-Huang updates.
Results from our preliminary implementation of the MF algorithm with Wing-Huang updates are
encouraging. Over a collection of 48 sparse matrices from the Florida Sparse Matrix Collection,
our MF algorithm with Wing-Huang updates is just 4.9 times more expensive than the minimum
degree algorithm with multiple eliminations (MMD) [2] on average. Our MF orderings, on the
average, produce 17% less fill and require 31% fewer operations than the MMD algorithm. On one
large test matrix (3dtube), MF produces 29% less fill and requires 55% fewer operations.
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Conditioning and Preconditioning of the Weakly-Constrained Optimal State
Estimation Problem

N.K. Nichols, A. El-Said, A.S. Lawless and R.J. Stappers

Abstract
Data assimilation is a technique for determining an ’optimal’ estimate of the current and future
states of a dynamical system from a prior estimate, or model forecast, together with observations
of the system. Applications arise in very large environmental problems where the number of state
variables is O(107 − 108) and the number of observations is O(104 − 106). The errors in the prior
estimate and in the observations are assumed to be random with known distributions and the
solution to the optimal estimation problem is taken to be the maximum a posteriori likelihood
estimate. With the aid of Bayes Theorem, the problem reduces to a very large nonlinear least
squares problem, subject to the dynamical system equations. The problem is treated in practice
using an approximate Gauss-Newton iterative method, where a linearized least squares problem is
solved at each step of the procedure by an ‘inner’ gradient iteration procedure.
The conditioning of the linearized least squares problem depends on the covariances of the errors in
the states and in the observations. The problem is generally ill-conditioned and regularization of the
problem is required. Previously we have examined how different components of the assimilation
system influence the conditioning of the least squares problem in the case where the dynamical
system equations are assumed to be exact, that is, the system equations form an equality constraint
on the objective function. We have derived theoretical bounds on the condition number of the
problem and have demonstrated how the conditioning is affected by the observation accuracy and
by the specified length-scales in the error covariance of the prior estimate. A commonly used
preconditioning technique, in which the prior states are transformed to uncorrelated variables, has
also been analysed. We have shown that the problem becomes more ill-conditioned with increasingly
dense and accurate observations (eg. Haben et al, Tellus, 2011).
Here we extend these results to a ‘weak-constraint’ variational formulation of the data assimilation
problem, where it is assumed that the dynamical system equations contain random errors with
known distributions and are not exact. Two different forms of the problem can be established. We
investigate the conditioning of these two forms as a function of the covariances of the errors in
the prior, the model states and the observations and as a function of the observational frequency.
We study different preconditioning techniques for the two forms of the problem and determine
theoretical bounds on the conditioning of the assimilation schemes. Numerical experiments are
presented illustrating the results.
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New Properties of Vector Spaces of (Quasi) Linearizations

Froilán M. Dopico, Yuji Nakatsukasa and Vanni Noferini

Abstract
A matrix polynomial P is structured if there are algebraic properties of its coefficients that induce
some symmetries in the spectrum. Several such structures, such as symmetry or palindromicity,
often arise in practice. In the last decade, the development of structure-preserving linearizations of
a structured matrix polynomial P that are easy to construct given the coefficients of P has received
a lot of attention in the literature. The interest in achieving this task stems from its applications to
designing structure preserving algorithms for structured polynomial eigenvalue problems. For many
structures, the problem was solved for odd degree matrix polynomials, but a complete solution when
P has even degree is not currently available. Yet, some partial solutions exist. For instance, there
are structured pencils that are linearizations if P is a structured regular matrix polynomial, but
not if P is singular. In this context, obtaining more knowledge about the singular case is important
both as a theoretical result and in order to assess the numerical reliability of these linearizations
when they are applied to regular polynomials that are very close to singular ones.
In this talk we investigate some new properties of the pencils belonging to one of the most relevant
families of structured pencils: the vector space of pencils DL(P ), introduced by Mackey, Mackey,
Mehl and Mehrmann in [2] and further investigated by Higham, Mackey, Mackey and Tisseur [1]. It
is well known that pencils in DL(P ) are linearizations of the regular polynomial P if and only if no
eigenvalue of P is also a root of the associated scalar ansatz polynomial v. Moreover, they are never
linearizations if P is singular. We investigate the properties of the pencils of DL(P ) when they are
not linearizations of P and show that, even in this case, they allow us to recover partial spectral
information of regular matrix polynomials and more importantly, under some generic conditions,
the whole spectral information and all the minimal indices of singular matrix polynomials.
More specifically, we study the Kronecker canonical form of a pencil L ∈ DL(P ) in two important
cases where the result is not trivial. When P is regular, we determine the Kronecker canonical form
of L when there is a root of the ansatz scalar polynomial v which is also an eigenvalue of P : we find
that some spectral information of P can still be extracted from L in this case. When P is singular,
we assume that the spectra of P and v are disjoint and we prove that the partial multiplicities of
P are the same as the partial multiplicities of L, and the minimal indices of P are just the ones of
L after discarding a certain number of zeros.
Applications to both singular and near-singular structured polynomial eigenvalue problems will be
discussed. In particular we emphasize that as a consequence of the results in this talk the pencils
of DL(P ) are, to the best of our knowledge, the first example of structured pencils that allow to
recover all the spectral information and minimal indices of a symmetric or palindromic P when it
is singular and has even degree.
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Investigation of Crouzeix’s Conjecture via Optimization

Anne Greenbaum, Adrian S. Lewis, Michael L. Overton and Lloyd N. Trefethen

Abstract
Crouzeix’s conjecture is a fascinating open problem in matrix theory. We present a new approach
to its investigation using optimization. Let p be a polynomial of any degree and let A be a square
matrix of any order. Crouzeix’s conjecture is the inequality

‖p(A)‖ ≤ 2‖p‖W (A).

Here the left-hand side is the 2-norm of the matrix p(A), while the norm on the right-hand side is
the maximum of |p(z)| over z ∈ W (A), the field of values (or numerical range) of A. It is known
that the conjecture holds if 2 is replaced by 11.08 (Crouzeix 2007). The conjecture is known to hold
for certain restricted classes of polynomials p or matrices A, including the following cases, where
m denotes the degree of p and n denotes the order of A: (a) p(z) = zm (power inequality, Berger
and Pearcy 1966), (b) n = 2, (c) W (A) is a disk (Badea 2004 based on work of von Neumann 1951
and Okubo and Ando 1975), (d) n = 3 and A3 = 0 (Crouzeix 2012), (e) A is a diagonal scaling of a
lower Jordan block with a perturbation in the top right corner (Choi and Greenbaum 2012), (f) A
is diagonalizable with an eigenvector matrix having condition number less than or equal to 2 and
(g) A is normal (in which case the constant 2 can be improved to 1).
Let us define the Crouzeix ratio

f(p,A) =
‖p‖W (A)
‖p(A)‖

.

The conjecture states that f(p,A) is bounded below by 1/2 independently of m and n. Note that
f(p,A) is unbounded above because if p is the minimal polynomial of A then the denominator is
zero but the numerator is not (unless A is just a scalar multiple of the identity). We can think of
f as a real valued map on Cm × Cn×n by associating p with its vector of coefficients c ∈ Cm using
the monomial basis. The function f is nonconvex and nonsmooth (by the latter we mean it is not
differentiable everywhere). It is not defined if p(A) = 0, but at all other points it is continuous. In
fact, except at points where p(A) = 0, f is both locally Lipschitz and semialgebraic, because the
norm in the numerator is attained on the boundary of W (A) which can be parameterized by

z(θ) = v(θ)∗Av(θ), θ ∈ [0, 2π)

where v(θ) is a normalized eigenvector corresponding to the largest eigenvalue of the Hermitian
matrix

H = 1
2
(eiθA+ e−iθA∗).

If W (A) is just a line segment, we interpret the boundary to be the whole set.
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a remarkably effective method for
minimizing nonsmooth, nonconvex functions and in practice it reliably generates sequences con-
verging to locally minimal values, although its convergence theory is quite limited. The ratio f
can be computed for a given p and A using the Chebfun toolbox, which provides an extremely
convenient way to compute with functions that are represented to machine precision accuracy us-
ing Chebshev polynomial interpolation. In fact, fov is a built-in Chebfun function for computing
the boundary of W (A), exploiting its characterization given above. This allows us to compute the
Crouzeix ratio f in a single line of Matlab:
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max(abs(polyval(c, fov(A))))/norm(polyvalm(c, A))

Here c is the vector of p’s coefficients while max, abs and polyval are overloaded versions of
standard Matlab functions that are applicable to chebfuns. The main cost is the construction of
the chebfun defining the field of values. The BFGS method also requires the gradient of f with
respect to c and A; deriving the formulas is a rather lengthy exercise (“the chain rule on steroids")
but the resulting code provides the gradient for essentially no extra cost.
We will report on extensive experiments searching for minima of f for fixed m and n. So far, our
experiments strongly support the truth of Crouzeix’ conjecture. We have found it to be especially
interesting to optimize over A while keeping p fixed, which has led to questions such as the following.
Questions. Let p with real coefficients and degree m be fixed.

1. Under what conditions on p does there exist a real matrix A with f(p,A) = 1/2? The only
cases we know are p(z) = (z−γ)m for some γ ∈ R and m = 1 or m = 2. Then, set n = m+1
and A = γI +N , where N has nonzeros only on its first subdiagonal, each of whose entries is
set to ±ξ, for some ξ 6= 0: then p(A) = ±ξmeneT1 , W (A) is a disk centered at γ with radius
|ξ| cos(π/(n+ 1)) = |ξ|/21/m and so ‖p‖W (A) = |ξ|m/2 = ‖p(A)‖/2.

2. Is it the case that the value 1/2 for the ratio f can be arbitrarily well approximated by a real
bounded sequence of matrices A if and only if p has a real root? Suppose m = 2 and p has two
real roots γ and β: set n = 2 and A = γI+ξe2e

T
1 or βI+ξe2e

T
1 . Then p(A) = ±(γ−β)ξe2eT1 ,

W (A) is a disk centered at γ or β with radius |ξ|/2 and so

‖p‖W (A) = |ξ|
2

(
|γ − β|+ |ξ|

2

)
=
(1

2
+ |ξ|

4|γ − β|

)
‖p(A)‖,

so the ratio converges to 1/2 as ξ → 0. The value 1/2 is not attained since when ξ = 0 both
the numerator and denominator of f are 0. Furthermore, if we consider the more general
sequence f(p, γI + ∆A) as ∆A → 0, any limiting value in [1/2, 1] can be approximated by
suitable choice of the sequence ∆A.

3. If the answer to the previous question is yes, is it the case that for any fixed n, and all
φ sufficiently close to, but greater than, 1/2, each real root of p corresponds to a different
nonempty connected component of the sublevel set of matrices {A ∈ Rn×n : f(p,A) ≤ φ}?

4. Diagonal real matrices, whose fields of values are line segments, are stationary points of
f(p, ·) in Rn×n, that is, ∇Af is zero at diagonal matrices, but they are not necessarily local
minimizers. Is it the case that if p has only real roots, then 1/2 and 1 are the only stationary
or locally minimal values of f? If p has complex roots do there always exist local minima
with values strictly between 0.5 and 1?

5. Finally, let p be fixed with complex coefficients and degree m. When does there exist a
complex matrix A such that f(p,A) = 1/2? Is it the case that it is always possible to find a
bounded sequence of complex matrices A so that f(p,A) approximates 1/2 to any accuracy?

The ultimate goal is to prove Crouzeix’s conjecture. Whether the experiments and resulting new
questions will help remains to be seen, but we will report on the latest developments in this direction.
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Augmented error analyses of Vector Orthogonalization and related
Algorithms

Chris Paige, Ivo Panayotov, Wolfgang Wülling and Jens-Peter Zemke

Abstract
Any matrix Vk = [v1, . . . , vk] of k unit 2-norm n-vectors can be augmented to give (n+k) × k

Q
(k)
1 =

[
Sk

Vk(I−Sk)

]
such that Q(k)H

1 Q
(k)
1 = Ik. Here Sk = (I + Uk)−1Uk where Uk is the strictly

upper triangular part of V T
k Vk = UTk + Ik + Uk. Modified Gram Schmidt (MGS) for a given n× k

matrix A ideally produces n×k Vk and k×k upper triangular Rk such that A = VkRk, V T
k Vk = Ik.

In 1992 Björck & Paige used the above augmentation to show that finite precision MGS leads to a
backward stable augmented system

[
E1

A+E2

]
= Q

(k)
1 Rk, Q

(k)
1 as above, ‖Ei‖2 ≤ O(ε)‖A‖2.

This approach showed that we obtain backward stable solutions of linear least squares and some
related problems using MGS (Björck & Paige, 1992, 1994), and of Ax = b using MGS-GMRES
(Paige, Rozložník, & Strakoš, 2006). Later this approach was used in [1] to show that the Lanczos
process for producing a symmetric tridiagonal matrix Tk from a symmetric matrix A, which ideally
gives AVk = Vk+1Tk+1,k, V T

k+1Vk+1 = I, computationally satisfies a strange backward stable
Lanczos process. That is, with Q(k)

1 above, the computed Tk+1,k satisfies([
Tk 0
0 A

]
+H(k)

)
Q

(k)
1 = [Q(k)

1 , qk+1]Tk+1,k, H(k) = H(k)T , ‖H(k)‖2 ≤ O(ε)‖A‖2.

Let Q̃(k)
1 be Q(k)

1 less its zero k-th row. Then this formulation will, by eliminating the kth column

of
[
Tk 0
0 A

]
(and of H(k) to give H̃(k)) and the k-th row of Q(k)

1 , be rewritten below to show how

Tk,k−1 → Tk+1,k & Q̃
(k)
1 → Q̃

(k+1)
1

k × (k−1) (k+1)× k (n+k−1)× k (n+k)× (k+1).([
Tk,k−1 0

0 A

]
+ H̃(k)

)
Q̃

(k)
1 = Q̃

(k+1)
1 Tk+1,k, ‖H̃(k)‖2 ≤ O(ε)‖A‖2, (1)

Q̃
(k)
1 =

[
[Sk−1, sk]
Vk(I−Sk)

]
, where Sk =

[
Sk−1 sk

0 0

]
,

Q̃
(k+1)T
1 Q̃

(k+1)
1 = [Q(k)

1 | qk+1]T [Q(k)
1 | qk+1] = Ik+1.

This shows that the new {k, k} and {k+1, k} elements αk and βk+1 of the tridiagonal matrix Tk+1,k
depend on the whole of Tk,k−1 as well as on A. The above augmented Lanczos process indicates
why the computational process can produce Tk having many repeats of eigenvalues of A.
These algorithms can be called vector orthogonalization algorithms, and in some of these, the
supposedly orthonormal vectors ṽj produced by the finite precision processes can quickly lose or-
thogonality, but are all nearly unit 2-norm vectors. When each ṽj is normalized to the corresponding
vj having unit norm, this gives Vk = [v1, . . . , vk] above. It can be shown that ‖Sk‖2 ≤ 1, and the
number of unit singular values of Sk is exactly the rank deficiency of Vk, and so of Ṽk ≡ [ṽ1, . . . , ṽk],
see [1, Corollary 2.2]. Thus Sk contains all we need to know about the loss of orthogonality and rank
of Ṽk. The above augmented systems also contain Sk, and so not only describe the development of
the desired computed elements, but the development of the loss of orthogonality matrix Sk.
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While this approach has led to successful rounding error analyses of the underlying methods based
on MGS which orthogonalize against all previous vectors, the analysis for methods like the Lanczos
process based on implicit orthogonalization appears to be far more complicated, as (1) suggests.
This indicates that a deeper understanding of the orthogonal matrix Q(k)

1 is required, see [3].
Such analyses could help in understanding all vector orthogonalization algorithms, and we illustrate
some of the insights so far gained. First we will give a simpler development of these augmented
results than previously—a development we suspect is quite general. Then we will show that the
approach can also be applied to bi-orthogonalization processes, see [2]. Finally we will discuss some
properties of the orthogonal matrix Q(k)

1 given in [3], along with our more recent findings.
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The Fiedler Companion Matrix

Beresford N. Parlett

Abstract
This matrix has the same entries as the standard companion matrix for a given polynomial but
arranged in a special way as a pentadiagonal matrix. It, and its LR transforms, have properties in
common with several different classes: banded matrices with banded inverses (G. Strang), CMV
matrices, and quasiseparable matrices. It is easy to reduce the Fiedler matrix (balanced) to upper
Hessenberg form and it is then a rival to the traditional companion matrix as input to the QR
algorithm to determine its spectrum. However the LR and qd transforms preserve the original
nonzero structure and so reduce the arithmetic effort compared to QR.
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The Development of Preconditioned Iterative Solvers for PDE-Constrained
Optimization Problems

John W. Pearson, Martin Stoll and Andrew J. Wathen

Abstract
In past decades one of the main application areas of numerical linear algebra has been in developing
iterative methods to accurately solve partial differential equations (PDEs). Typically such iterative
methods incorporate preconditioning strategies to accelerate the convergence of these schemes.
Such approaches are now very well understood for a vast number of PDEs, and have been utilized
to tackle a wide range of industrial applications.
Of late, a related field that has been widely considered in scientific computing and applied sciences
is that of PDE-constrained optimization, that is a problem where a functional is sought to be
minimized with one or more PDEs acting as constraints. Such problems have applications in many
areas, including flow control, medical imaging, option pricing, biological and chemical processes and
electromagnetic inverse problems, to name but a few. Often, solving these problems numerically
(in our case using a finite element method) involves solving a large and sparse matrix system that
is of saddle point structure – the preconditioning strategies developed for forward PDEs therefore
have considerable applicability to related PDE-constrained optimization problems.
In this presentation, we outline a framework for devising iterative methods for a range of matrix
systems resulting from PDE-constrained optimization, which are of various structures, and arise
from different application areas. We approach the solution of these matrix systems by exploiting
their saddle point structure, and creating effective approximations of the (1, 1)-block and Schur
complement of the matrices involved. We employ many different techniques to achieve this, includ-
ing mass matrix approximation, various Schur complement factorizations, commutator arguments
to approximate matrices arising in problems from fluid dynamics, and techniques to deal with
time-dependent and nonlinear terms within the problem statement. If good approximations may
be obtained using approaches such as these, then it is possible to create powerful iterative solvers
based around Krylov subspace methods such as Minres, non-standard Conjugate Gradients, Gm-
res and BiCG. The aim when creating our solvers is that they are feasible, reliable, and robust with
respect to the dimension of the matrix system as well as the parameters involved in the problem.
We discover that our strategies lead to methods with these properties for a wide range of PDE-
constrained optimization problems. We discuss a number of such problems within this presentation,
commencing with the fundamental Poisson control [1, 2] and convection-diffusion control [3] prob-
lems, before extending our methods for these simpler formulations to develop strategies for Stokes
[4] and Navier-Stokes control setups [5], which are motivated by fluid dynamic processes. We also
discuss how these methods may be adapted to solve time-dependent PDE-constrained optimization
problems [6], for which the matrix systems are of very high dimension even in comparison to those
for related time-independent problems. Additionally, we examine reaction-diffusion control prob-
lems resulting from the modelling of chemical processes [7], which include both time-dependent and
nonlinear terms within the problem setup. For each problem we examine, we motivate the precon-
ditioning strategies used, stating eigenvalue bounds for the preconditioned systems where relevant,
and present results from numerical experiments to demonstrate the potency of our approaches.
We also aim to provide an outlook of the field, and highlight possible areas of future research into
preconditioned iterative methods for matrix systems arising from PDE-constrained optimization.
In particular, we discuss the potential for parallelization of a number of the methods described

176



here, and present further applications which could be tackled by strategies similar to those applied
in this talk.
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GMRES Convergence Bounds that Depend on the Right-Hand Side Vector

David Titley-Peloquin, Jennifer Pestana and Andrew Wathen

Abstract
GMRES [7] remains one of the most popular methods for solving large, sparse linear systems
Ax = b, A ∈ Cn×n, b ∈ Cn. The k-th GMRES iterate xk, with corresponding residual vector
rk ≡ b−Axk, is defined by

‖rk‖2 = min
q∈Πk
q(0)=1

‖q(A)r0‖2, (1)

where Πk denotes the set of polynomials of degree at most k.
Despite the widespread use of GMRES, obtaining generally descriptive convergence bounds remains
a difficult problem. A typical first step is to separate A and r0 to obtain the ideal GMRES
problem [2]

‖rk‖2
‖r0‖2

≤ min
q∈Πk
q(0)=1

‖q(A)‖2. (2)

For a diagonalizable A, with diagonalization A = ZΛZ−1, Λ = diag(λi), we then arrive at the
textbook bound

‖rk‖2
‖r0‖2

≤ ‖Z‖2‖Z−1‖2 min
q∈Πk
q(0)=1

‖q(Λ)‖2. (3)

Although simpler, (2) and (3) are worst-case bounds that hold for every r0 ∈ Cn. Usually, however,
one has a specific r0 that may be far from the worst case and for which (2) and (3) may not be
descriptive. To rectify this, bounds that explicitly include the right-hand side vector have been
considered for specific examples such as Jordan blocks [3] and tridiagonal Toeplitz matrices [4, 6],
as well as for more general matrices [5].
In this talk, which is based on work in [9], we present simple right-hand side dependent bounds for
GMRES applied to a linear system with diagonalizable matrix A. The bounds capture interactions
between r0 and A through w = Z−1r0/‖r0‖2, a vector that contains the co-ordinates of r0 in the
eigenvector basis. The first formulates convergence in terms of the least-squares approximation

‖rk‖2
‖r0‖2

≤ ‖Z‖2 min
q∈Πk
q(0)=1

‖Wq(Λ)e‖2, (4)

where W = diag(wi) and e = [1, . . . , 1]T . It shows that the GMRES relative residual is bounded
above by the product of ‖Z‖2 and the residual of a weighted polynomial least-squares approximation
problem on the spectrum of A. Further, all nonnormality can be fully contained in the weight
matrix W . We characterize situations in which (4) is descriptive and prove that it can never be
worse than (3).
A second GMRES bound, that is based on an ideal GMRES problem for a rank-1 perturbation of
the diagonal matrix of eigenvalues Λ, will also be discussed. The perturbation involves both the
eigenvalues and w, so that again the right-hand side, and its interaction with A, are incorporated.
Numerical experiments show that our bounds can be quantitatively descriptive of GMRES conver-
gence for unpreconditioned and preconditioned problems, including those for which bounds based
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on the standard ideal GMRES problem (2) fail. As a particular example, we show that our bounds
can be applied to ill-posed problems and that in this case they, similarly to the analysis in [1],
explain the semi-convergence typically observed.
We then consider how to modify the linear system to reduce problematic nonnormality. We apply an
unusual form of “preconditioning” that preserves eigenvalues but that modifies both the right-hand
side vector and the eigenvectors to reduce the size of components of w.
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The Core Problem within a Linear Approximation Problem with Multiple
Right-Hand Sides

Iveta Hnětynková, Martin Plešinger and Diana M. Sima

Abstract
Consider a linear (orthogonally invariant) approximation problem with multiple right-hand sides

AX ≈ B, where A ∈ Rm×n, X ∈ Rn×d, B ∈ Rm×d.

The total least squares (TLS) formulation seeks for a solution X of

(A+ E)X = B +G such that min ‖[G,E]‖F .

A question of existence and uniqueness of this TLS solution has been studied for decades. Golub
and Van Loan in the paper [1] showed that even with d = 1 the TLS solution may not exist, and
when it exists, it may not be unique. The book [5] by Van Huffel and Vandewalle introduced the
nongeneric approach, extended the Golub–Van Loan’s analysis to two special cases with d ≥ 1,
and gave the so-called classical TLS algorithm. Wei further analyzed problems with nonunique
solutions in [6, 7]. At Householder Symposium XVIII, 2011, we presented necessary and sufficient
condition for existence of TLS solution in the general case (with d ≥ 1). Our analysis, based on
[1, 5], resulted in a new classification of TLS problems; see [2].
The single right-hand side case (d = 1) was revisited by Paige and Strakoš in [4]. They introduced
a minimally dimensioned subproblem of Ax ≈ b called a core problem always having the unique
TLS solution. At Householder Symposium XVIII, we extended the core problem concept to the
general case d ≥ 1. Definition and detailed analysis of this core problem can be found in the recent
paper [3].
In this contribution we concentrate on solvability of the core problem for d > 1. Using the properties
of the right singular vector subspaces of the corresponding extended core problem matrix [B1, A11],
it will be shown that the core problem with multiple right-hand sides may not have a TLS solution.
We show that core problems with multiple right-hand sides can have internal structure which allows
to interpret the original problem as a direct sum of two (or more) uncorrelated components. In such
case we call the core problem reducible. It will be shown that existence of a TLS solution of a
reducible core problem depends on existence of a TLS solution of its components, but also on the
relations among singular values of these components. Finally we show that also an irreducible core
problem with multiple right-hand sides may not have a TLS solution.
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Computing all Values λ such that A+ λB has a Multiple Eigenvalue

Andrej Muhič and Bor Plestenjak

Abstract
For a given pair of n × n complex matrices A and B we want to compute all values λ such that
the matrix A+ λB has a multiple eigenvalue. We give construction of matrices ∆1 and ∆0 of size
3n2 × 3n2, such that the regular finite eigenvalues of the singular pencil ∆1 − λ∆0 are exactly the
values λ, such that A+ λB has a multiple eigenvalue. This provides new insight into the problem
and allows us to compute the values numerically from ∆1 and ∆0 by the staircase algorithm, using
standard eigenvalue computation tools.
The problem was introduced in 2011 by E. Jarlebring, S. Kvaal, and W. Michiels. They provide
a method of fixed relative distance (MFRD), which works as follows. If A + λ0B has a double
eigenvalue, then, for λ close to λ0, the matrix A + λB has eigenvalues µ and (1 + ε)µ, where ε is
small. We can write this as a two-parameter eigenvalue problem

(A+ λB − µI)x = 0
(A+ λB − µ(1 + ε)I)y = 0,

which is nonsingular for a given ε 6= 0. The solutions of the above two-parameter eigenvalue problem
are used as initial approximations for Newton’s method that computes the final solutions.
We show that the 3n2 × 3n2 matrices

∆0 = B ⊗R+ I ⊗Q

∆1 = −I ⊗ P −A⊗R,

where

P =

A2 AB +BA −2A
0 I 0
0 0 I

 , Q =

 0 B2 −B
−I 0 0
0 0 0

 , R =

 0 −B I
0 0 0
−I 0 0


form a singular pencil ∆1 − λ∆0 with a property that its finite regular eigenvalues agree with the
values λ, such that A+ λB has a multiple eigenvalue. In particular, for the generic solution, when
µ0 is a double eigenvalue of A+ λ0B, we show that

a) a semisimple µ0 contributes four linearly independent vectors to the null space and the rank
of the pencil ∆1 − λ∆0 drops by two at λ = λ0,

b) a non-semisimple µ0 contributes three linearly independent vectors to the null space and the
rank of the pencil ∆1 − λ∆0 drops by one at λ = λ0.

This is an example of a problem where one has to compute all or some of the finite regular eigen-
values of a singular matrix pencil. The staircase algorithm does the job, but, due to its large
sensitivity, can only be applied to small matrix pencils. When dealing with singular matrix pen-
cils, one is usually satisfied with modest approximations of the finite regular eigenvalues. We will
present some heuristics that could be used for this task.
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Triplet Representations for Solving Matrix Equations in Queuing Theory

Giang T. Nguyen and Federico Poloni

Abstract
Let Z ∈ Rn×n be a matrix with Zij ≤ 0 whenever i 6= j. A triplet representation for Z is a
triple (offdiag(Z), u, v) ∈ Rn2−n

60 ×Rn
>0×Rn

>0, where offdiag(Z) 6 0 is a vector containing (in some
specified order) the offdiagonal elements of Z, and u > 0 and v > 0 are vectors such that Zu = v.
Here, inequalities are intended in the componentwise sense.
Matrices for which a triplet representation exists are known as M-matrices, and several classi-
cal alternative characterizations for them exist. A triplet representation allows one to uniquely
reconstruct Z.
For M-matrices, there exists a variant of Gaussian elimination that can be computed starting
from a triplet representation and is subtraction-free, i.e., it requires multiplications, divisions and
additions of nonnegative numbers only [2]. In particular, one can bound the rounding error for each
of these operations with the machine precision. Hence several operations with M -matrices, such
as solving linear systems with a nonnegative right-hand side b ≥ 0 or computing one-dimensional
kernels, are perfectly forward stable (irrespective of their condition number) when one has a triplet
representation available. Moreover, they are stable with respect to componentwise error

cwerr(X̂,X) = max
(∣∣∣X̂ −X∣∣∣ ./ |X|) ,

where ./ denotes component-by-component division and we agree that 0./0 = 0.
The catch here is that computing a triplet representation from the entries of the matrix itself is ill-

conditioned. As an example, consider Z =
[

1 −1
−1 1 + ε

]
: its LU factorization is

[
1 0
−1 1

] [
1 −1
0 ε

]
,

and for it to be correct Z22 needs to be known with high accuracy. However, the triplet represen-

tation
(

offdiag(M) =
[
−1
−1

]
, u =

[
1
1

]
, v =

[
0
ε

])
is less sensitive to relative perturbations of each

entry since it contains ε explicitly, and allows to compute the factorization more accurately.
For several applications in applied probability, triplet representations are known a priori and are
crucial to guarantee high componentwise accuracy. This kind of error bounds is particularly wel-
come there, since the probabilities of interest are quantities that may span over many orders of
magnitudes.
We focus here on solving matrix equations from so-called fluid queue models [5]. These are proba-
bilistic models for the expected quantity of “fluid” in a “bucket”, where the in- and out-flow vary
according to the state of a continuous time Markov chain (modelling the environment). They are
popular in modelling computer networks and buffers, and are formally similar to some boundary-
value problems appearing in control theory, although the involved matrix structures are completely
different. Computing the solution of interest is equivalent to finding a special invariant subspace
of the matrix polynomial

λ2V − λD +QT = 0, (1)

where Q is the generator of the Markov chain (hence −Q is a singular M-matrix), V > 0 is diagonal
with nonnegative entries, and D is diagonal with mixed signs.
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The case in which V = 0 (first-order models) has been studied more extensively; it is equivalent to
solving a nonsymmetric algebraic Riccati equation with special sign structure. The paper [4] pro-
vides a detailed componentwise error analysis and suggests using triplet representations to devise a
componentwise stable method based on the structured doubling algorithm (SDA). Several matrices
have to be inverted along the algorithm; the suggestion there is computing triplet representations
for them from scratch at each step. This is potentially dangerous, as triplet representations are an
ill-conditioned function of the matrix entries whenever the matrix is close to singular. We show
here that the triplet representation can be updated along the algorithm instead, together with the
other matrices, with subtraction-free formulas, and thus there is no need to recompute them. This
modification to the algorithm leads to a significant increase in stability with respect to the available
methods, as shown by our numerical experiments. The ideas used to obtain these triplet repre-
sentations are related to a novel probabilistic interpretation of SDA for this model: the computed
quantities can be interpreted explicitly as transition probabilities in a discretized version of the
problem.
The quadratic case with V 6= 0 (second-order models) has not been considered in similar detail in
literature, up to our knowledge. Algorithms for solving it have been proposed, but they are based
either on computing eigenvectors explicitly or on generalized Schur decompositions [1]; thus they
are backward stable in the normwise sense, but the smallest entries of these vectors will typically
be computed with poor relative accuracy.
We focus here on Cyclic Reduction (CR), a classical algorithm for several problems that are re-
lated to quadratic matrix polynomials and quadratic matrix equations. Cyclic Reduction has been
applied to several probabilistic problems; under suitable conditions the matrices appearing along
the algorithm keep the same sign structure (some are nonnegative, some are M-matrices). Its use
has been suggested recently [3] to solve models associated with (1), too, but the sign structures are
not preserved in this case and it is not apparent how to obtain a subtraction-free variant.
We show that one can apply a suitable nonlinear transformation to the associated matrix polynomial
(1) to correct the signs and obtain a subtraction-free version of CR for this problem as well. This
transformation is related to shifting techniques, and is an extension to the quadratic case of the
known relations between CR and SDA. Together with this formulation that preserves the sign
structure, we show that explicit (subtraction-free) formulas to update triplet representations are
available for Cyclic Reduction, too; hence the whole computation can be carried on with high
componentwise accuracy guarantees.
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Efficient Computation of the Posterior Covariance Matrix in Large-Scale
Variational Data Assimilation Problems

Kirsty Brown, Igor Gejadze and Alison Ramage

Abstract
For a large-scale variational data assimilation problem, the Posterior Covariance Matrix (PCM)
can be used to obtain important information, such as confidence intervals for the optimal solution.
However, due to memory limitations, in practice it is often impossible to assemble, store or ma-
nipulate the PCM explicitly for a realistic model. One alternative approach is to approximate the
PCM by the inverse Hessian of the auxiliary control problem based on the tangent linear model
constraints. In many practical data assimilation problems, the majority of eigenvalues of the inverse
Hessian are clustered in a narrow band above the unity, with only a relatively small percentage of
the eigenvalues being distinct from this. A limited-memory representation of the inverse Hessian
can therefore be built on the basis of a small (compared to the dimension of the state vector)
number of ‘leading’ Ritz pairs of the projected Hessian, computed by the Lanczos method.
Although this approach is useful, taking into account the size of the state vectors used in modern
realistic data assimilation applications (for example, 109 to 1012 unknowns), using even a small
percentage of the spectrum could still involve a significant number of eigenvalues, which may be far
beyond the available storage capacity. In such cases, it is usually necessary to enhance the limited-
memory algorithm by using an appropriate preconditioner. Within this framework, it is standard
to apply first-level preconditioning in the form of the square root of the background covariance
matrix. However, if the impact of sensor information on the optimal solution is significant, this
is not sufficient and an additional preconditioning step is required. In this talk, we will discuss
using a multilevel approach as a second-level preconditioner and investigate its usefulness in terms
of reducing memory requirements and increasing computational efficiency,
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Preconditioning Linear Systems arising in Constrained Optimization
Problems

Tyrone Rees

Abstract
One of the major bottlenecks in modern optimization codes is the requirement to solve multiple
so-called saddle point systems of the form(

A BT

B 0

)(
x
y

)
=
(
f
g

)
.

For example, primal-dual interior point methods apply variants of Newton’s method to a non-linear
system to find a minimum of constrained quadratic program. This method requires the solution of
a sequence of saddle point systems of the form above – called the augmented system in this context
– at each step of the Newton iteration.
In many situations – especially for large scale optimization problems – we would like to solve the
saddle point system iteratively, as computing the factorizations at each Newton step to employ a
direct solver would be prohibitively expensive. However, it is important to choose the iterative
solver so that the errors are sympathetic to the outer Newton iteration. For this reason Krylov
subspace methods with constraint preconditioners, i.e., preconditioners of the form

Pcon =
(
G BT

B 0

)
,

have been popular in the optimization community, as they are known to preserve the constraints,
and this fact can be used to prove convergence of the inexact Newton method. However, applying
such a preconditioner can be costly, and ensuring that the solution remains on the constraint
manifold in the presence of rounding errors can be delicate.
Block diagonal preconditioners of the form

Pbd =
(
A 0
0 S

)

have proved successful in, e.g., the field of computational fluid dynamics, due to their ease of
application and effectiveness. As the solution moves away from the constraint manifold, such
preconditioners fall outside of the scope of the known theory of the convergence of the outer
(Newton) iteration. However, I will describe how – as the outer iteration progresses – the iterates
returned by Schur complement preconditioners do converge to a feasible point lying on the constraint
manifold.
I will also describe a method which uses one application of a particular constraint preconditioner
– which is independent of the Newton iteration – to project the approximate solution onto the
constraint manifold while not destroying the progress that has been made by any iterative solver.
Applying this technique removes all restrictions on the types of iterative methods which can be
used safely in constrained optimization problems, and we hope will lead to the development of more
high-quality preconditioners tailored to this important field.
I will illustrate the theoretical results with computations involving large-scale example problems
taken from the CUTEst optimization testing environment.
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Rational Orthogonal Functions and Rational Gauss Quadrature with
Applications in Linear Algebra

Carl Jagels, Miroslav Pranić and Lothar Reichel

Abstract
It is well known that polynomials that are orthogonal with respect to a nonnegative measure on
an interval on the real axis satisfy a three-term recurrence relation. This property of orthogonal
polynomials is the basis for many popular and efficient algorithms in numerical linear algebra, in-
cluding the symmetric Lanczos process for partial tridiagonalization of a large symmetric matrix
and Golub–Kahan bidiagonalization for partial reduction of a large nonsymmetric matrix to bidi-
agonal form. These methods are important for the computation of a few eigenvalues and associated
eigenvectors of a large symmetric matrix, for the computation of a few singular values and associ-
ated singular vectors of a large matrix, and for the approximation of matrix functions. Properties
of the symmetric Lanczos process and Golub–Kahan bidiagonalization can be described in terms
of suitable Krylov subspaces. These methods therefore are related to polynomial approximation.
In some contexts, such as when one would like to compute a few eigenvalues in a specified interval
and associated eigenvectors of a large symmetric matrix, the application of a rational Lanczos
method can yield the desired eigenpairs with less computational effort than the standard Lanczos
method. The reason for this is that rational Lanczos methods use rational Krylov subspaces, which
for a suitable choice of poles can yield much faster convergence than standard Krylov methods.
Rational Krylov subspace methods also can be attractive to use for the approximation of matrix
functions.
Similarly as orthogonal polynomials, orthogonal rational functions with specified poles can satisfy
short recurrence relations. The recursion relations are more complicated for orthogonal rational
functions than for orthogonal polynoials, because they depend on the number of distinct poles and
the order in which they are used. The fact that orthogonal rational functions with poles at zero and
infinity, and whose numerator and denominator degrees are increased alternatingly, satisfy short
recursion relations has been known for some time; see Njåstad and Thron [5] as well as the review
Jones and Njåstad [4]. This result was rediscovered by Simoncini fairly recently in a linear algebra
context in a paper that contains many interesting ideas [7].
It is interesting to allow the numerator degree of the orthogonal rational functions with poles at zero
and infinity to grow faster than the denominator degree, because in the rational Lanczos method
each increase in the numerator degree requires the evaluation of a matrix-vector product with a
large symmetric matrix A, while each increase of the denominator degree demands the solution of
a linear system of equations with this matrix. The latter task can be much more time consuming
than the former. The recursion formulas for this kind of rational Lanczos process have been studied
in [2]. In particular, it is shown that short recursion formulas are valid also in this situation. The
recursion formulas depend not only on the measure defined by the matrix A and the initial vector
b, but also on how frequently the denominator degree is increased.
Also when the rational Lanczos process is determined by several (finite or infinite) real or complex
conjugate poles, the recursion relations for the rational Lanczos process can be short. The number
of terms in the recursion relations depends on the number of distinct poles and their ordering.
Recursion relations for this kind of orthogonal rational functions have recently been investigated in
[6]. These orthogonal rational functions are well suited for the approximation of matrix functions of
the form f(A)v, where A is a large symmetric matrix and v is a vector. We will review properties
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of the recursion relations for orthogonal rational functions and discuss the application of these
functions to the approximation of matrix functions.
Orthogonal polynomials are related to Gauss quadrature rules, and orthogonal rational functions
are related to rational Gauss quadrature rules in a similar way. The latter rules are exact for certain
classes of rational functions with prescribed poles. The zeros of orthogonal rational functions are
nodes of rational Gauss rules. They can be computed as the eigenvalues of the symmetric banded
matrix determined by the recursion relations. The square of the first components of suitably scaled
eigenvectors of this matrix give the weights of the quadrature rules. These relations appear to
be new. It follows that the nodes and weights of rational Gauss rules can be computed by a
Golub–Welsch-type algorithm. We will describe this algorithm.
Rational Gauss–Radau rules, which are rational Gauss rules with one preselected node, also can be
computed by a Golub–Welsch-type algorithm. Under suitable conditions, pairs of rational Gauss
and Gauss–Radau rules provide upper and lower bounds for matrix functions of the form vT f(A)v,
where v is a vector. These results generalize techniques for (standard) Gauss and Gauss–Radau
rules, described, e.g., by Golub and Meurant [1], to rational analogues. Some results can be found
in [3], more will be presented together with applications.
Orthogonal rational functions with respect to a measure in the complex plane also satisfy certain
recursion relations that find application in numerical linear algebra. Time permitting, we will
discuss their properties and some applications.
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Resolution Arguments for the Estimation of Regularization Parameters in
the Solution of Ill-Posed Problems

Jakob Hansen, Michael Horst and Rosemary Renaut

Abstract
The solution of the ill-posed linear system of equations, Ax = b, where A is of size m × n is
considered. Tikhonov regularization is a standard technique for finding an acceptable solution with
given certain smoothness properties through seeking the solution of the system augmented with
the constraint ‖Lx‖2 ≤ δ for a chosen matrix L of size p×n and a noise dependent δ. We consider
the general formulation

x = arg min{‖Ax− b‖22 + λ2‖L(x− x0)‖22}, (1)

which includes the prior information x0 and the unknown regularization parameter λ. Our focus
is on the estimation of the parameter λ when the system is obtained by downsampling of a given
model where m and n are large. In particular we replace (1) by the sequence of problems

xk = arg min{‖Akx− bk‖22 + λk
2‖Lk(x− (xk)0)‖22}, (2)

where the subscript denotes the downsampled system(s), measurements and prior information.
Parameter estimation techniques for λ have been extensively studied e.g. [4, 5] and include standard
approaches such as the L-curve, Generalized Cross Validation (GCV), Unbiased Predictive Risk
(UPRE) and more recently analysis of the residual or augmented residual through the use of the
residual periodogram and χ2 distribution, respectively. For all approaches, other than the χ2

distribution, the algorithm relies on the solution of (1) for a possibly large range of values for λ,
and it is therefore essential that the solution is found efficiently. The χ2 discrepancy, based on the
χ2 distribution for the functional, on the other hand, leads immediately to a Newton root finding
algorithm for λ which is typically solved in about 10 steps, dependent on the knowledge of noise in
the measurements b. For a large system of equations, for example with image restoration, or three
dimensional image reconstruction, even the use of 10 solves may be too many. Here we will discuss
an alternative direction through the solution of the downsampled problems (2). The analysis relies
on demonstrating the convergence of λk

k−→ λn when λn is obtained through the χ2 technique, and
that information on the covariance of the noise in the measurements is available.
We present the results of our analysis for two cases. The first when A is obtained from the
discretization of an integral equation with a square integrable kernel. In this case we appeal
to results of Hansen [5, 3] on the relationship of the continuous singular value expansion to the
singular value decomposition. Because the χ2 discrepancy result can be applied using the SVD,
when L = I, an explicit formulation arises that yields the necessary convergence. While one may
have the impression that the SVD is of limited use for large scale problems, we note that recent
advances on the development of randomized SVDs reassert the relevance of solutions that can take
advantage of this framework [2, 9], noting also that the χ2 result still applies with appropriate
modification in the context of a truncated SVD [7]. The second case is specifically for kernels that
permit implementation using a discrete Fourier or cosine transform (DFT, DCT) , as for example
with image deblurring and periodic or reflexive boundary conditions, in which cases standard
convergence results for the DFT are employed. Further, if L also admits an appropriate kernel,
the approach goes beyond the case L = I, and hence has application for other standard smoothing
norms.
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In providing these results for the χ2 discrepancy for finding λ in (2), we note that it is very
specifically the existence of a unique estimate for λk which permits the downsampling approach.
On the other hand, parameters obtained by techniques such as GCV and UPRE, which are better
known for parameter estimation, are less well characterized numerically and do not appear to lend
themselves to the downsampling. Still, within this work we present an analysis which shows that
a minimum of the UPRE functional is provided by the parameter obtained via the χ2 algorithm,
and in this sense can also see the result as satisfying the principle of unbiased risk for the solution.
Supporting numerical results will be provided, demonstrating that one can achieve satisfactory
solutions. This work contrasts with approaches that seek to find the solution of a large scale
problem by projection to a smaller subspace, directly from the large scale formulation, as for
example in the use of the iterative LSQR with generalized cross validation regularization on the
subproblem, e.g. [1] or other hybrid techniques, [6, 8]. Discussion of the relevance of the analysis
for the underdetermined case will also be provided.
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Numerical Behavior of Indefinite Orthogonalization

Miro Rozložník, Felicja Okulicka-Dłużewska and Alicja Smoktunowicz

Abstract
For a real symmetric nonsingular matrix B ∈ Rm,m and for a full column rank matrix A ∈ Rm,n
(m ≥ n) we look for the decomposition A = QR, where the columns of Q ∈ Rm,n are mutually
orthogonal with respect to the bilinear form induced by the matrix B so that QTBQ = Ω =
diag(±1) and where R ∈ Rn,n is upper triangular with positive diagonal elements. Such problems
appear explicitly or implicitly in many applications such as eigenvalue problems, matrix pencils
and structure-preserving algorithms, interior-point methods or indefinite least squares problems.
It is clear that for B = I or B = −I we get the standard QR decomposition of the matrix A. If
B is positive and diagonal then the problem is equivalent to the standard decomposition of the
row-scaled matrix diag1/2(B)A. For a general but still symmetric positive definite B, the factors
can be obtained from the QR factorization in the form B1/2A = (B1/2Q)R. The indefinite case of
B ∈ diag(±1) has been studied extensively by several authors. It appears that under assumption
on nonzero principal minors of ATBA each nonsingular square A can be decomposed into a product
A = QR with QTBQ ∈ diag(±1) and R being upper triangular. These concepts can be extended
also to the case of a full column rank A and a general indefinite (but nonsingular) matrix B.
Although all orthogonalization schemes are mathematically equivalent, their numerical behavior
can be significantly different. The numerical behavior of orthogonalization techniques with the
standard inner product B = I has been studied extensively over last several decades including the
Householder, Givens QR and modified Gram-Schmidt. The classical Gram-Schmidt (CGS) and
its reorthogonalized version have been studied much later in [1, 4, 5]. It is also known that the
weighted Gram-Schmidt with diagonal B is numerically similar to the standard process applied
to the row-scaled matrix diag1/2(B)A. Several orthogonalization schemes with a non-standard
inner product have been studied including the analysis of the effect of conditioning of B on the
factorization error and on the loss of B-orthogonality between the computed vectors [2].
In this contribution we consider the case of symmetric indefinite B and assume that ATBA is
strongly nonsingular (i.e. that each principal submatrix ATj BAj is nonsingular for j = 1, . . . , n,
where Aj denotes the matrix with the first j columns of A). Then the Cholesky-like decomposition
of indefinite ATBA exists and the triangular factor R can be recovered from ATBA = RTΩR.
We first analyze the conditioning of factors Q and R. It is clear that if B is positive definite
then ‖R‖ = ‖B1/2A‖, ‖R−1‖ = 1/σmin(B1/2A) and ‖Q‖ ≤ ‖B−1‖1/2 , σmin(Q) ≥ 1/‖B‖1/2.
Therefore κ(R) = κ(B1/2A) = κ1/2(ATBA) and κ(Q) ≤ κ1/2(B). However, for B indefinite we
have only ‖ATBA‖ ≤ ‖Ω‖‖R‖2 and ‖(ATBA)−1‖ ≤ ‖Ω−1‖‖R−1‖2 and so the square root of the
condition number of ATBA is just a lower bound for the condition number of the factor R, i.e.
κ1/2(ATBA) ≤ κ(R). The upper bound for κ(R) seems more difficult to obtain. One must look at
its principal submatrices Rj and derive bounds for the norm of their inverses ‖R−1

j ‖ considering

(RTj Rj)−1 =
(

(RTj−1Rj−1)−1 0
0 0

)
+ ωj

[
(ATj BAj)−1 −

(
(ATj−1BAj−1)−1 0

0 0

)]
.

This identity provides the basic insight into relation between the minimum singular value of the
factor R and the minimum singular values of some principal submatrices of ATj BAj . Observe that
its recursive use leads to the expansion of the matrix (RTR)−1 in terms of (ATBA)−1 and in terms
of only those inverses of principal submatrices (ATj BAj)−1 where there is a change of the sign in
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the factor Ω = diag(ω1, . . . , ωn), i.e. for such j = 1, . . . , n − 1 where ωj+1 6= ωj . It follows then
that |ωj+1 − ωj | = 2 and therefore we have the bound

‖R−1‖2 ≤ ‖(ATBA)−1‖+ 2
∑

j; ωj+1 6=ωj

‖(ATj BAj)−1‖. (1)

The norm of the factor R can be either bounded as ‖R‖ ≤ ‖ATBA‖‖R−T ‖ or one can consider sim-
ilar identity for RTR and get the bound for ‖R‖ in terms of the Schur complements corresponding
only to those principal submatrices ATj BAj (subject to ATBA) where ωj+1 6= ωj , i.e.

‖R‖2 ≤ ‖ATBA‖+ 2
∑

j; ωj+1 6=ωj

‖(ATBA)\(ATj BAj)‖. (2)

The bounds (1) and (2) can be reformulated also for quasi-definite matrices ATBA, where the
factor Ω has a particular structure Ω = diag(I;−I) with appropriate dimensions. The only nonzero
term in the sum over principal submatrices corresponds to the biggest positive definite principal
submatrix of ATBA. The singular values of the factor Q can be bounded from Q = AR−1.
Here we analyze two types of important schemes used for orthogonalization with respect to the
bilinear form induced by B. We give the worst-case bounds for quantities computed in finite preci-
sion arithmetic and formulate our results on the loss of orthogonality and on the factorization error
(measured by ‖Q̄TBQ̄− I‖ and ‖A− Q̄R̄‖) in terms of quantities proportional to the roundoff unit
u, in terms of ‖A‖ and ‖B‖ and in terms of the extremal singular values of factors Q̄ and R̄. Based
on previous discussion the latter depend on the extremal singular values of the matrix ATBA and
principal submatrices ATj BAj with the change of the sign ω̄j+1 6= ω̄j during the orthogonalization.
First we analyze the QR implementation based on the Cholesky-like decomposition of indefinite
ATBA. We show that assuming O(u)κ(ATBA)‖A‖2‖B‖maxj, ω̄j+1 6=ω̄j ‖(ATj BAj)−1‖ < 1 such de-
composition runs to completion and the computed factors R̄ and Ω̄ satisfy ATBA+ ∆B = R̄T Ω̄R̄
with ‖∆B‖ ≤ O(u)[‖R̄‖2 + ‖B‖‖A‖2]. For the computed orthogonal factor Q̄ it follows then that
‖Q̄TBQ̄ − Ω̄‖ ≤ O(u)κ(R̄)

[
κ(R̄) + 2‖BQ̄‖‖Q̄‖

]
. The accuracy of these factors can be improved

by one step of iterative refinement when we apply the same decomposition to the actual Q̄TAQ̄
and get the bound ‖Q̄TBQ̄ − Ω̄‖ ≤ O(u)‖B‖‖Q̄‖2. We consider also the B-CGS algorithm and
its version with reorthogonalization and show that their behavior is similar to Cholesky-like QR
decomposition and its variant with refinement, respectively. The details can be found in [3].
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The Two Sided Arnoldi Algorithm

Axel Ruhe

Abstract
At the Matrix Pencil Conference in Piteå1982, I described a two sided Arnoldi algorithm to compute
approximative left and right eigenvectors, y′ and x, of a large nonsymmetric matrix B, [2]. After
that, I moved to Göteborg and forgot all about left eigenvectors, until I did send the paper [3] by
Wu, Wei, Jia, Ling and Zhang to print for BIT, and noted that it contained a perturbation analysis
for the same nonsymmetric eigenproblem in the spirit of the Kahan, Parlett and Jiang paper [1].
In the talk, I will report on some tests of this algorithm, [2],using tools that were not available 30
years ago. The aim is to compare the two sided Arnoldi algorithm to the well studied, but little
used, nonsymmetric Lanczos algorithm, and the obvious choice of doing two runs of the widely
implemented standard Arnoldi algorithm, first on B and then on B′.
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Wilkinson-Type Error Bounds Revisited

Claude-Pierre Jeannerod and Siegfried M. Rump

Abstract
Wilkinson’s standard error bounds for floating-point summation and dot products involve a factor
γk := ku/(1− ku), where u denotes the relative rounding error unit. Here the denominator covers
higher order terms.
Surprisingly this factor can be replaced by ku [4, 2]. It applies to standard floating-point arithmetic
(in base β, precision p) and barring underflow and overflow. The estimates are valid no matter
what the order of evaluation and without restriction on k.
Moreover, the famous Lemma 8.4 in Higham’s ASNA [1] bounds the error of Gaussian elimination
of an n×n matrix by factors γk for k = n or k = n−1, depending on whether division occurs or not.
These factors can be replaced by ku as well [3]. A similar remark applies to Cholesky factorization
and solving triangular systems by substitution. Again, all estimates are true no matter what the
order of evaluation and without restriction on k.
One might hope to replace γk generally by ku for floating-point error bounds of arithmetic expres-
sion trees of depth k. However, this is not true, as for example for binary summation - at least for
huge exponent range and huge k.
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Using Partial Spectral Information for Block Diagonal Preconditioning of
Saddle-Point Systems

Daniel Ruiz, Annick Sartenaer and Charlotte Tannier

Abstract
We consider the solution by an iterative solver of the (possibly large and sparse) saddle-point linear
system

Au = b ≡
[

A B
BT 0

] [
x
y

]
=
[
f
g

]
, (1)

where A ∈ Rn×n and B ∈ Rn×m, with n ≥ m. We assume that A is symmetric and positive
definite and that B has full column rank. Such kind of systems typically arise in constrained
nonlinear optimization, as the result for first-order optimality conditions, where A is known as
the Karush-Kuhn-Tucker (KKT) matrix. The assumption of positive-definiteness of A is met, in
particular, when solving strictly convex quadratic optimization problems. On the application side,
systems structured as (1) where A is naturally symmetric and positive definite arise in CFD or in
magnetostatics for instance, from the numerical solution of PDEs or in PDE-constrained optimal
control.
We also assume that A and B are possibly ill-conditioned, but that some form of first-level of
preconditioning has been applied so that the spectrum of A as well as the singular value distribution
of B are both condensed, with relatively few very small eigenvalues and singular values, respectively.
Our goal is then to complete this first-level of preconditioning applied separately on A and B in
an appropriate manner, so that efficient iterative solutions of the system (1) is ensured despite
these trailing sets of extreme eigenvalues/singular values. To this aim, and following our approach,
we consider that some good approximation of the spectral information associated to the smallest
eigenvalues in A and to the smallest singular values in B is available. In this talk, we will focus
on the case where only some good approximation of the spectral information associated to the
smallest eigenvalues in A is used (this can be achieved with techniques like those proposed in [1],
for instance).
It is well understood from previous studies that it not sufficient to be able to solve independently
the subproblems associated to the (1, 1) block and to the constraints normal equations BTB to
build efficient preconditioners P for matrix A in (1), and that it is important to combine A with B
in some way. We shall show how it is possible to combine the spectral information extracted from
A to construct a cheap preconditioner P that ensures fast convergence in MINRES for the solution
of system (1). The approach we propose is based on the study by Murphy, Golub and Wathen (see
[2]), where the authors show that the “ideal” block diagonal preconditioner

P =
[
A 0
0 S

]
, (2)

in which the exact Schur complement, S = BTA−1B, is incorporated, yields a preconditioned
matrix P−1A with exactly three distinct eigenvalues (under the assumption of positive-definiteness
for A). This property is of practical use when inexpensive approximations of the inverse of A and
S are available. We will propose two variants for the block diagonal preconditioning matrix P
in (2) based on a Schur complement approximation derived from the prior spectral information
extracted from A directly, i.e., using some good approximation of the subspace associated to the
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smallest eigenvalues in A. Based on the results provided by Rusten and Winter (see [3]), we study
the spectral properties of the preconditioned matrix in both cases and give evidence how one can
recombine appropriately the available spectral information from the (1,1) block, through the Schur
complement approximation, to build an efficient block diagonal preconditioner with little extra
cost. We then illustrate through some numerical experiments the benefits of this approach when
solving system (1) with the preconditioned MINRES iterative method.
These considerations will lead us, in a second part of the talk, to highlight some aspects of the
interaction between A and B when solving systems of the form (1). Indeed, it is commonly observed
that despite their possible ill-conditioning, some sort of recombination of A and B occur that either
spoil the convergence of Krylov subspace methods like MINRES, either not, but no clear insight on
how and why this occurs exists, to our knowledge. We will give some insight, through the study of
the Schur complement approximation based on the few very small eigenvalues, on how and in which
circumstances the bad conditioning contained in these eigenvalues effectively spoils the convergence
of MINRES.
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Computing the Rank and Nullspace of Rectangular Sparse Matrices
Nick Henderson, Ding Ma, Michael Saunders and Yuekai Sun

Abstract
To model biochemical networks, systems biologists are generating increasingly large stoichiometric
matrices S, whose rows and columns correspond to chemical species and chemical reactions. An
important step toward evaluating drug targets and analyzing transient behavior of the network is
called conservation analysis, which reduces to finding the rank of S and the nullspace of ST. SVD
is not practical, but with care, sparse QR or LU factors can serve both purposes.
In general, rank-revealing factorizations of a matrix A must ensure that all factors except one are
well-conditioned. The rank of the remaining factor then reflects the rank of the original matrix.
SVD is the ideal example: A = UDV T with U and V orthogonal (perfectly conditioned). The rank
of D accurately reflects the rank of A.
The SuiteSparseQR package of Davis [1, 2] with its Matlab interface SPQR provides multithreaded
multifrontal rank-revealing QR factors of a rectangular sparse matrix. For some large stoichiometric
examples A, SPQR has proved remarkably efficient at computing factors AP = QR, where P
is a sparsity-preserving column ordering chosen in advance, Q is stored as a product of sparse
Householder matrices, and R is a sparse trapezoidal matrix. With P and Q perfectly conditioned,
the rank of R must reflect the rank of A. The product form of Q provides an ideal basis for the
nullspace of AT . However, the storage requirements are sometimes rather high for QR factors,
especially if A contains some rather dense rows. We therefore consider sparse LU factors.
LUSOL [3, 4] and its Matlab interface [5] provide LU factors of a rectangular sparse matrix.
The normal threshold partial pivoting option finds row and column permutations P1, P2 such that
P1AP2 = LU , where L has unit diagonals and bounded off-diagonals and is therefore likely to be
well-conditioned. The rank of U is not immediately obvious, but it reflects the rank of A.
LUSOL’s threshold rook pivoting factorization is best thought of as P1AP2 = LDU , where both L
and U have unit diagonals and bounded off-diagonals and are likely to be well-conditioned. The
rank of D then reflects the rank of A. This option is reliable and the factors can be significantly
more sparse than those from SPQR. Unfortunately, the LDU factors can be significantly more
expensive to compute. We therefore study two alternative ways to use LUSOL. Starting with
threshold partial pivoting factors P1AP2 = LU (with L well-conditioned),

either: apply threshold rook pivoting to U ,
or: apply threshold partial pivoting to UT.

[1] T. A. Davis, SuiteSparseQR: multithreaded multifrontal sparse QR factorization, http://
www.cise.ufl.edu/research/sparse/SPQR/.

[2] T. A. Davis, SuiteSparseQR: Algorithm 9xx: SuiteSparseQR, a multifrontal multithreaded
sparse QR factorization package, submitted to ACM TOMS.

[3] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Rev. 47(1), 99–131 (2005).

[4] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Maintaining LU factors of a general
sparse matrix, Linear Alg. Appl. 88/89, 239–270 (1987).

[5] N. W. Henderson, Matlab interface to LUSOL, https://github.com/nwh/lusol.
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Computing the Nearest Pencil A− λAT without Unimodular Eigenvalues

Federico Poloni and Christian Schröder

Abstract
Real palindromic matrix pencils, i.e., pencils of the form A − λAT , arise in applications such as
parameter estimation of econometric time series [2], or passive linear dynamical systems [3]. In
both cases, the pencil is not allowed to have unimodular eigenvalues (i.e., ones on the unit circle)
in order to be meaningful. In this case we will call the matrix A admissible. For example, in the
mentioned applications the presence of unimodular eigenvalues indicates an unsolvable subproblem
or the loss of passivity.
However, due to inexactness in the derivation of the pencil like linearization errors, modeling errors,
omitting higher order terms, etc., it is well possible to end up with a (slightly) in-admissible A when
it really should be admissible due to outer conditions (e.g., the physical system to be modeled is
known to be passive, i.e., it cannot generate energy). In these cases, a regularization procedure
is necessary that computes a perturbation E such that A + E becomes admissible. Often this
perturbation is restricted to lie in some linear subspace, i.e., to be of the form

E =
m∑
i=1

δiEi

for some given matrices Ei, i = 1, 2, . . . ,m (e.g., E could be required to have a certain nonzero
pattern [3]). The task is to determine the vector δ = [δ1, . . . , δm]T of smallest 2-norm such that
A+ E is admissible.
Note that eigenvalues of real palindromic pencils must come in quadruples (λ, λ, λ−1, λ

−1). Here, λ
denotes the complex conjugate of λ. These quadruples reduce to pairs on the real axis and on the
unit circle. As a consequence, a simple unimodular eigenvalue cannot leave the unit circle under
small perturbations unless it merges with another unimodular eigenvalue (much like a simple real
eigenvalue of a real matrix cannot leave the real axis under small real perturbations unless it merges
with another real eigenvalue).
A basic algorithm that makes the unimodular eigenvalues merge to then split off the unit circle was
introduced in [4] and developed further in [2, 3]. It is based on first order eigenvalue perturbation
theory.
The method to be presented in my talk is an enhanced version that

1. avoids dealing directly with close-to-each-other eigenvalues, treating instead their average,
which is known to behave much less sensitive to small perturbations [1]

2. additionally aims to prevent the non-unimodular eigenvalues from entering the unit circle

3. looks for the smallest admissible perturbation of A, instead of just some small perturbation.

This results is an algorithm that, compared to the state of the art, is more stable, needs less
iterations, and yields a smaller perturbation.
It should also be mentioned that it is straight forward to adapt the algorithm to quadratic palin-
dromic eigenvalue problems, or to remove imaginary eigenvalues of a symmetric/skew-symmetric
pencil – which are what [2, 3] are actually about.
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Memory-Efficient Incomplete Factorizations for Sparse Symmetric Systems

Jennifer Scott and Miroslav T �uma

Abstract
An important class of preconditioners for large sparse symmetric linear systems of equations is
represented by incomplete Cholesky (IC) factorizations, that is, factorizations of the form LLT

in which some of the fill entries that would occur in a complete factorization are ignored. More
generally, incomplete LDLT factorizations, with D block diagonal, are used. Over the last fifty
years, many different algorithms for computing incomplete factorizations have been proposed and
used to solve problems from a wide range of application areas.

Our aim is to design and develop a new robust and efficient general-purpose incomplete factorization
package that uses a limited memory approach. The initial focus is on the positive-definite case. Our
IC software package, HSL_MI28 [3, 2], exploits ideas from the positive semidefinite Tismenetsky-
Kaporin modification scheme [1, 5] and is based on a matrix decomposition of the form

A = (L+R)(L+R)T − E,

where L is a lower triangular matrix with positive diagonal entries that is used for preconditioning,
R is a strictly lower triangular matrix with small entries that is used to stabilize the factorization
process, and the error matrix E has the structure

E = RRT .

Through the incorporation of the intermediate matrix R, HSL_MI28 offers a generalisation of the
widely-used and well-known ICFS algorithm of Lin and Moré [2]. We allow both the sparsity density
of the incomplete factor and the amount of memory used in its computation to be controlled by
the user. Factorization breakdown is circumvented by the use of a global shift strategy. Using
extensive numerical experiments involving a large set of test problems arising from a wide range of
real-world applications, we demonstrate the significant advantage of employing a modest amount of
intermediate memory and show that, with limited memory, high quality yet sparse general-purpose
preconditioners are obtained.

We are also interested in the more challenging case of indefinite linear systems and, in particular, we
want to use incomplete factorizations to assist in efficiently solving saddle-point systems Kx = b,
where K is of the form

K =
(
A BT

B −C

)
.

Here A is n × n symmetric positive definite, B is rectangular and of full rank, and C is m × m
(m ≤ n) symmetric positive semi-definite. We propose extending our limited memory approach
in a number different of ways. We first show that, with minor modifications, HSL_MI28 can be
used to compute a signed incomplete Cholesky factorization of the form LDLT , where the D has
entries ±1. Again, we incorporate a global shift strategy to avoid breakdown. Numerical results
are presented for practical problems for which C = 0 or C = −δI, with δ small (the latter arise
from interior-point methods). Again, we examine the effects of employing intermediate memory in
the computation of the incomplete factorization.
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To try and improve performance (by reducing the amount of fill in L and/or the number of itera-
tions required to achieve the requested accuracy), we next consider the incorporation of numerical
pivoting into the incomplete factorization. Again, using a limited memory approach, we modify
our software to compute an incomplete factorization LDLT , where D has diagonal blocks of order
1 and 2. The use of global shifts is obviated by the pivoting; the penalty is a more complicated
code. Comparisons are made with our signed IC approach and also with the recent SYM-ILDL
code of Chen and Liu (http://www.cs.ubc.ca/~inutard/). The effects of orderings and scalings
on the preconditioner quality are investigated.

This work was partially supported by the projects P201/13-06684S and 108/11/0853 of the Grant
Agency of the Czech Republic and by EPSRC grant EP/I013067/1.
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The Finite Section Method for Computing Exponentials of Doubly-Infinite
Skew-Hermitian Matrices

Meiyue Shao

Abstract
In a number of scientific applications, especially in quantum mechanics, it is desirable to compute
exp(iA) where A is a self-adjoint operator. In practice, the operator A is often given in discretized
form, i.e., a doubly-infinite Hermitian matrix under a certain basis, and a finite diagonal block
of exp(iA) is of interest. Suppose the (−m : m,−m : m) block of exp(iA) is desired. A simple
way to solve this problem is to compute the exponential of the (−w : w,−w : w) block of A,
where w is chosen somewhat larger than m, and then use its central (2m+ 1)× (2m+ 1) block to
approximate the desired solution. In reference to similar methods for solving linear systems, we call
this approach finite section method. The diagonal blocks (−m : m,−m : m) and (−w : w,−w : w)
are called the desired window and the computational window, respectively.
Despite the simplicity of the finite section method, it is crucial to understand how large the com-
putational window needs to be, and whether this truncation produces sufficiently accurate approx-
imation to the true solution. These questions are relatively easy to answer for bounded banded
matrices, where standard polynomial approximation technique can be applied. But it turns out
that the finite section method can also be applied to certain unbounded banded matrices, and
still produces reliable solutions. In this work we explain this phenomenon and establish the finite
section method with error estimates for several classes of doubly-infinite Hermitian matrices.
In the first part of this work, we discuss the case when A is bounded and banded. By the Benzi-
Golub theorem [1], the off-diagonal entries of exp(iA) decay exponentially with respect to the
distance to the main diagonal, i.e., there exist constants K > 0 and ρ ∈ (0, 1) such that∣∣∣[exp(iA)

]
ij

∣∣∣ ≤ Kρ|i−j|, (∀i, j).

Making use of this decay property, as well as the identity

exp[t(X + ∆X)]− exp(tX) =
∫ t

0
exp[(1− s)X]∆X exp[s(X + ∆X)] ds,

we show that the error in the finite section method are localized around the corners of the compu-
tational window. Therefore, by choosing a suitably large computational window based on our error
estimate, the solution can be computed with guaranteed accuracy. Moreover, the distance w −m
stays constant when m increases.
In the second part of this work, we analyze the decay property of exp(iA) and the error of the
finite section method for several classes of unbounded matrices. Since A is unbounded, the decay
bound of

∣∣∣[exp(iA(−w:w,−w:w))
]
ij

∣∣∣ provided by the Benzi-Golub theorem always deteriorate as w
increases. To overcome this difficulty, we use a technique from [2] to identify localized eigenvectors
of A(−w:w,−w:w) and then establish an error estimate for the finite section method. As a byproduct
of the finite section method, we show that under certain assumptions, the doubly-infinite matrix
exp(iA) has the same decay property as the finite matrices exp(iA(−w:w,−w:w)). We also propose an
adaptive strategy for estimating the size of the computational window. This strategy works well
even when a priori error estimates are too pessimistic or not easy to compute.
Finally, we present several numerical experiments to demonstrate the effectiveness of the finite
section method.
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A preprint of this work is available as [3].
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Randomized Methods for Computing Null Spaces, with Applications to
Rank-deficient Linear Systems

Josef Sifuentes, Zydrunas Gimbutas and Leslie Greengard

Abstract
A variety of problems in numerical linear algebra involve rank-deficient matrices. One example
is computing the null space, denoted N (A), of a matrix A ∈ Cn×n or the eigenspace of a given
eigenvalue λ, given by

N (A− λI).

Another example is the solution of rank-deficient linear systems

Ax = b,

where A is rank k-deficient but b is in the range of A. A third category consists of problems like
that above, but for which a set of k additional constraints are known of the form: C∗x = f , where
C ∈ Cn×k and [A∗ C]∗ is full-rank, and f ∈ Ck.
In this talk, we describe a very simple, deterministic framework for solving such problems, using
randomized schemes. It is also worth noting that, in recent years, the use of randomization together
with numerical rank-based ideas has proven to be a powerful combination for a variety of problems
in linear algebra (see, for example, [1, 2, 3]).
The basic idea is remarkably simple and illustrated by the following example. Suppose we are given
a rank-1 deficient matrix A and that we carry out the following procedure:

1. Choose a random vector x ∈ Cn and compute b = Ax.

2. Choose random vectors p, q ∈ Cn and solve

(A+ pq∗)y = b

3. Then the difference x− y is in the nullspace of A with probability 1.

In order for A+pq∗ to be invertible, we must have that p /∈ R(A) and q /∈ R(A∗). Since p and q are
random, this must occur with probability 1. Consider the affine space, Sb = x′ +N (A) consisting
of solutions to Az = b, where, x′ ∈ R(A∗) is the solution of minimal norm. Then the difference of
any two vectors in Sb lies in the nullspace of A. If A+ pq∗ is nonsingular, y is the unique vector in
Sb orthogonal to q, implying that x− y ∈ N (A).
This talk gives a rigorous framework for using this idea to compute null spaces as well as solve
rank-deficient linear systems with or without additional constraints that would make the solution
unique. Furthermore we will demonstrate that if A is well conditioned on a particular subspace of
Cn×n, then the perturbed nonsingular matrix A+PQ′ is also well conditioned, allowing for the use
of Krylov subspace based iterative methods to solve (A+PQ′)y = b when A is sparse or allows for
fast matrix vector multiplications.
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Fast Algorithms for Symmetric Tensor Contractions

Edgar Solomonik, Devin Matthews and James Demmel

Abstract
We give an algorithm that contracts symmetric tensors with a total of ω different indices in ω! fewer
multiplications than a naive nonsymmetric algorithm. The cost of our algorithm is significantly
lower than previously known methods, and yields some slightly faster symmetric matrix algorithms
as arbitrarily faster contraction algorithms of general partially symmetric tensors.
We say that a tensor A is symmetric or "fully symmetric" if its value remains the same under any
interchange of its indices Ai...j... = Aj...i.... We distinguish partially symmetric tensors, whose value
remains the same under the interchange of only a subset or subsets of its indices. Pictorially, a
symmetric tensor of dimension d and edges (rows, columns, etc.) of length n may be represented
as a weighted hypergraph with n vertices and

(n
d

)
hyperedges, each containing d vertices.

Given any n-tuple p = (i1 . . . in) we let χk(p) be the set of all pairs of a k-tuple and a (n− k)-tuple
which are an ordered partition of p (e.g. ((i1, i3 . . .), (i2, i4 . . .)) ∈ χk(p)). A contraction between
symmetric tensors A, B, and C, C = A� B may be written in the form

Ci1...is+t =
∑

((j1...js),(l1...lt))∈χs(i1...is+t)

 ∑
k1...kv

Ak1...kv
j1...js

·Bl1...lt
k1...kv

 ,
for some s, t, v ≥= 0, we also denote ω = s + t + v. We note that the symmetric contraction
operator � is commutative. Typically, such symmetric contractions are performed by (implicitly)
forming the partially symmetric intermediate

C̄ l1...ltj1...js
=

∑
k1...kv

Ak1...kv
j1...js

·Bl1...lt
k1...kv

.

C may subsequently be obtained from C̄ by symmetrization of the l and j index groups. However,
forming the C̄ intermediate requires nω

s!t!v! multiplications, since symmetry is preserved within each
of three groups of indices in this representation.
Our main result is an algorithm that performs any such contraction using only

(n
ω

)
multiplications

to leading order. The new algorithm is based on the idea of forming a fully symmetric intermediate
quantity and typically requires slightly more additions. It assumes the element-wise multiplications
are commutative. The algorithm forms three fully symmetric intermediate quantities, the latter
two of which can be computed with low-order cost,

Zi1...iω =

 ∑
((j1...js),(k1...kv))∈χs(i1...iω)

Ak1...kv
j1...js

 ·
 ∑

((l1...lt),(k1...kv))∈χt(i1...iω)
Bl1...lt
k1...kv


Wi1...iω−1 =

 ∑
((j1...js),(k1...kv))∈χs(i1...iω−1)

Ak1...kv
j1...js

 ·
 ∑

((l1...lt),(k1...kv))∈χt(i1...iω−1)
Bl1...lt
k1...kv


Vi1...iω−1 =

 ∑
((j1...js),(k1...kv−1))∈χs(i1...iω−1)

∑
kv

Ak1...kv
j1...js

 ·
 ∑

((l1...lt),(k1...kv−1))∈χt(i1...iω−1)

∑
kv

Bl1...lt
k1...kv


Ci1...is+t =

∑
k1...kv

Zi1...is+t,k1...kv − n ·
∑

k1...kv−1

Wi1...is+t,k1...kv−1 −
∑

k1...kv−1

Vi1...,is+t,k1...kv−1 .
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We first note some special cases of our result. For the multiplication of a symmetric matrix by
a vector or a matrix (Basic Linear Algebra Subroutines (BLAS) symv and symm) we can use the
symmetric contraction algorithm with s = 1, t = 0, and v = 1 to yield an algorithm that requires
half the number of multiplications with respect to the standard method used in BLAS. For the
symmetric rank-2k outer-product A ·BT +B ·AT , which corresponds to BLAS routines syr2 and
syr2k, our symmetric contraction algorithm (with s = 1, t = 1, and v = 0) also reduces the number
of necessary multiplications by a factor of two. For the routines symm and syr2k our algorithm
requires as many extra scalar additions as the number of scalar multiplications reduced. Therefore,
when multiplications are more expensive than adds, the new algorithms are faster, which is the case
in for instance, complex arithmetic, where each multiplication requires 6 operations and addition
2 operations.1 For Hermitian matrix LAPACK routines hemm, her2k, and heevd, our symmetric
contraction algorithm reduces the computational cost by about 1.4X over current methods. We
note, however, that the algorithm has different numerical properties due to forming a different
intermediate quantity. The numerical error bounds are asymptotically the same, but somewhat
higher floating point error is accumulated for certain inputs.
Our construction also yields faster contraction algorithms for arbitrary partially-symmetric tensors.
The extension is direct from nested use of the mathematical definition of a symmetric tensor
contraction, which is possible because symmetric contractions are a commutative operator and
each element-wise operation is assumed to be commutative by our algorithm. Note that when
ω = 1, the symmetric tensor contraction reduces to a nonsymmetric 1-dimensional contraction over
an index which is shared by two tensors. Therefore, we can express any contraction of nonsymmetric
tensors as nested symmetric contractions over a single index (with ω = 1). Further, any tensor
contraction where each tensor has partial-symmetry can be defined as a series of nested fully
symmetric contractions. Since the symmetric tensor contractions each level is commutative, our
fast symmetric algorithm can be used at each level in a nested fashion, yielding a potential benefit
if any permutational index symmetry exists in the contraction.
As an example, consider the following contraction of partially symmetric tensors A, B, and C (with
all edge lengths still set to n),

Cmnij =
∑
kl

Aklij ·Bmn
kl +Aklmj ·Bin

kl ,

where each tensor has a single partial symmetry: Aklij = Ailkj , Bmn
kl = Bkn

ml, Cmnij = Cinmj . We can
write this as a nested symmetric tensor contraction Cij =

∑
k Aik ⊗ Bkj , where the operator ⊗

is defined to be three nested symmetric 1-dimensional contractions for each nonsymmetric index
j, l, and n. These three nested symmetric contractions are a (commutative) representation of
nonsymmetric matrix multiplication which gives the operator ⊗ a cost of O(n3), while matrix
addition (+) costs O(n2). Therefore, the reduction in the number of multiplications in the top
level symmetric contraction over the lower indices would reduce the total number of operations for
this tensor contraction by (s+t+v)!

s!t!v! = 6 (since s = t = v = 1 for the contraction of fully symmetric
matrices).
Anti-symmetric (skew-symmetric) contractions have similar properties and all techniques presented
here are extensible to this important case. In particular, tensors in highly accurate electronic
structure calculation methods such as Coupled Cluster (used in the field of quantum chemistry)
make extensive use of tensor contractions amongst partially anti-symmetric tensors.

1We note that Gauss’s trick can be used to reduce the number of scalar multiplications from 4 to 3 for the complex
multiplication, but does not reduce the number of total operations due to requiring more addition operations.
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Minimum Residual Methods for Shifted Linear Systems with General
Preconditioning

Kirk M. Soodhalter

Abstract
We present here an technique for solving a family (or a sequence of families) of linear systems
in which the coefficient matrices differ only by a scalar multiple of the identity (shifted systems).
The goal is to develop minimum residual methods for shifted systems compatible with general
preconditioning
We parameterize the family by index i, i.e., the systems are of the form

Ax = b and (A+ σiI)x(σi) = b, i = 1, 2, . . . , L, (1)

with A ∈ Cn×n and {σ1, . . . , σL} ⊂ C. Such problems arise in many applications such as lat-
tice quantum chromodynamics (QCD), Tikhonov-Phillips regularization, and Newton trust region
methods. We can add an additional parameter j, indexing a sequence of matrices {Aj} ⊂ Rn×n

and for each j we solve a family of systems

Ajx = bj and (Aj + σi,jI)x(σi,j) = bj , i = 1, 2, . . . , Lj , (2)

where {σi,j}
Lj
j=1 ⊂ C.

For sequences of "nearby" linear systems, subspace recycling techniques have been proposed, allow-
ing important spectral information generated while solving Ajx = bj to be "recycled" and used to
accelerate the convergence of the Krylov subspace iterative method used to solve Aj+1x = bj+1;
see, e.g., [Parks et al, SISC’05] and [Wang et al, ĲNME’07].
Many methods have been proposed for solving (1), and they mostly are built upon the invariance
of Krylov subspace under a shift of the coefficient matrix by a multiple of the identity, i.e.,

Kj(A, r0) = Kj(A+ σI, r0(σ)), (3)

as long as the collinearity condition

r0(σ) = β0(σ)r0 for some β0(σ) ∈ C. (4)

This relationship allows us to build Krylov subspace methods which simultaneously generate ap-
proximate solution corrections for all linear systems in (1) from the common Krylov subspace. These
methods can be quite effective and allow for great savings in both storage and computational costs.
In [Soodhalter et al, Submitted 2013], we explored incorporating techniques for solving (1) into the
framework of subspace recycling (for nonsymmetric matrices), specifically that of recycled GMRES
(rGMRES) described in [Parks et al, 2005], in order to simultaneously solve systems in the family
(2) for each parameter j while accelerating convergence by recycling spectral information. In the
framework of recycled GMRES, we showed that it is in general not possible to maintain collinearity
of the residuals for each system, a requirement which must hold each time we restart.
This highlights a downside of building methods for shifted systems upon the shift invariance prop-
erty (3); we must maintain the residual collinearity. Furthermore, a more general difficulty is that
methods built upon (3) are not compatible with arbitrary preconditioning, since in general

Kj(M−1
1 AM−1

2 ,M−1
1 r0) 6= Kj(M−1

1 (A+ σI)M−1
2 ,M−1

1 r0(σ)). (5)
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Therefore, we explore the possibility of solving either (1) or (2) by exploiting the shifted system
structure without using the shift invariance (3). In the case of (2), we also seek a method which is
compatible with the subspace recycling framework. By eliminating reliance on (3), we will be able
to use general preconditioning.
Consider a nested sequence of search subspaces, S1 ⊂ · · · ⊂ Sm ⊂ · · · generated by a minimum
residual iterative method (e.g., GMRES) applied to the unshifted system. For each shifted system,
we apply the minimum residual Petrov-Gallerkin condition to compute all corrections from the
same search subspace, i.e., at iteration m,

xm(σ) = x0(σ) + tm(σ)

where tm(σ) ∈ Sj but each residual is orthogonal to a different constraint space, i.e.,

rm(σ) = b− (A+ σI)xm(σ) ⊥ (A+ σI)Sj . (6)

For appropriate choices of Sj , this can be accomplished inexpensively by exploiting the relationship
between coefficient matrices of the shifted systems. In the case of solving a single family of shifted
systems (1), Sm is simply themth Krylov subspace, and we apply cycles of restarted GMRES to the
unshifted system and inexpensively project the residuals for the shifted systems. In the case that
we are solving a sequence of families of shifted systems (2), for each j, Sm is the mth augmented
Krylov subspace and we are applying rGMRES to the unshifted system and again inexpensively
projecting the shifted systems.
While producing approximations of improved quality for the shifted systems, this projection tech-
nique may not lead to convergence for the shifted system iterations. Upon convergence of the
iteration for the unshifted system, this method can be called recursively for any remaining uncon-
verged systems. This procedure does not require any collinearity relationship between the residuals.
Thus it is completely compatible with general preconditioning. Incorporating preconditioning into
this method is straightforward, though it does require some additional applications of the precon-
ditioner.
Two methods can be derived from this strategy, one based on GMRES for solving (1) and one
based on rGMRES for solving (2). We show how one can exploit the relationship of the shifted
systems to perform these projections of the shifted system residuals inexpensively. Numerical results
are presented demonstrating the effectiveness of this technique in both the unpreconditioned and
preconditioned cases.
The strategy of solving one system by a Krylov subspace method and projecting residuals of other
systems is related to the Lanczos-Gallerkin projection techniques discussed, for example, in [Parlett,
LAA’80], [Saad, MC’87] and [Chan and Wan, SISC’97]. Building upon analysis of such techniques,
we show that the effectiveness of the projections of a shifted residual associated to shift σ depends
upon how large |σ| is, and this analysis is backed up by numerical experiments.
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A DEIM Induced CUR Factorization

Danny C. Sorensen, and Mark Embree

Abstract
I will present a CUR matrix factorization based upon the Discrete Empirical Interpolation Method
(DEIM). A CUR factorization provides a low rank approximate factorization of a given matrix A
of the form A ≈ CUR where C is a subset of the columns of A and R is a subset of the rows of A.
The matrix U is constructed so that CUR is a good approximation to A. Assuming a low rank
SVD A ≈ VSWT is available, the DEIM points for V and W are used to select the matrices C
and R respectively. This approximate factorization will satisfy ‖A−CUR‖2 = O(σk+1), the first
neglected singular value of A for a certain construction of U.
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An Efficient Algorithm for Computing the Generalized Null Space
Decomposition

Nicola Guglielmi , Michael L. Overton and G. W. Stewart

Abstract
In an important paper on computing the Jordan form of a matrix Gene Golub and James Wilkinson
[1] introduced a variant of the following decomposition of a matrix A of order n (for predecessors
see [2, 3]). Specifically, if A is of index ν—i.e., if ν is the smallest integer for which null(Aν) =
null(Aν+1)— then there is a unitary matrix V such that (for ν = 4)

V ∗AV = B =


0 B12 B13 B14 B15
0 0 B23 B24 B25
0 0 0 B34 B35
0 0 0 0 B45
0 0 0 0 B55

 , (1)

where

1. The leading diagonal blocks of B are square.

2. B12, B23, and B34 are of full column rank (which implies that, excluding B55, the orders of
the diagonal blocks of B are nonincreasing).

3. B55 is nonsingular (if it is not a 0× 0 matrix).

If V = (V1 · · · V5) , where the partitioning is conformal to that of B, then for j = 1, · · · , 4 the
column space of Vj is {x : Ajx = 0 and Aj−1x 6= 0}, which we shall call the generalized null space of
A of degree j. We will also call the decomposition the generalized null space decomposition (GNSD).
The dimensions of these subspaces completely determine the structure of the Jordan blocks for a
zero eigenvalue of A.
Golub and Wilkinson gave a constructive proof of the existence of the decomposition. It begins
with an orthonormal basis V1 for the null space of A and uses it to deflate A into form(

0 X
0 A′

)
. (2)

The reduction continues by similarly deflating A′—and so on until the current matrix has no
nontrivial null space. Golub and Wilkinson suggested using the SVD to determine the required
null spaces. However, the number of SVD computations is the index ν. Hence if ν is near n (it
equals n if A has a single Jordan block of order n), then the algorithm requires O(n4) operations.
In this talk we will describe an O(n3) algorithm for computing a GNSD. The procedure begins with
a QR factorization and in its first step produces a QR factorization of A′ in (2) by successively
deflating approximate null vectors computed using a condition estimator. The tricky part is to do
this in such a way that the estimator does not compute a generalized null vector of degree higher
than one after the first deflation. The step concludes by applying a standard downdating algorithm
to produce the QR factorization A′ = Q′R′.1 The algorithm proceeds as above by similarly reducing
Q′R′. The procedure can be stably implemented using plane rotations.

1Note that although the downdating of an R factor alone is generally unstable, the simultaneous downdating of
both Q and R factors is stable.
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In either approach to computing the GNSD, the user must furnish a tolerance to determine when
a computed singular value is zero or when an approximate null vector is satisfactory. Nonetheless,
the computed GNSD can be shown to be the exact decomposition of a perturbation of A whose
norm can be explicitly computed.
However, this property is not as useful as it appears. For if A is perturbed by rounding error, the
result will in general be nonsingular and ν will be zero. Thus the proper question to ask about any
algorithm for computing a GNSD is whether it can recover the generalized null space structure from
the perturbed matrix. This is an open research problem, and we will discuss some of its aspects in
the talk.
Finally, we will show how the GNSD of a matrix can be used to compute its Drazin generalized
inverse. The advantage of this algorithm is that, aside from orthogonal transformations, it consists
of solving a single Sylvester equation, which can be done efficiently using the output of our algorithm
for computing the GNSD.
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Fast Iterative Solvers for Fractional Differential Equations

Tobias Breiten∗, Valeria Simoncini† and Martin Stoll‡

Abstract
The study of fractional order differential equations is an old topic in mathematics going back to
the likes of Euler and Leibniz. Despite its long history in mathematics it was not until recently
that this topic has gained mainstream interest outside the mathematical community. This surging
interest is mainly due to the inadequateness of traditional models to describe many real world
phenomena. The well-known anomalous diffusion process is one typical such example. Other
applications of fractional calculus are viscoelasticity, electrical circuits, electro-analytical chemistry
or image processing.
In this talk we focus on a family of model problems that contain both the standard derivative as
well as fractional derivatives of Caputo or Riemann-Liouville-type.
Consider a function f(t) defined on an interval [a, b]. Assuming that f(t) satisfies all requirements
of a Caputo differentiable function of real order α with (n − 1 ≤ α < n), we obtain the Caputo
derivative as

C
aD

α
t f(t) = 1

Γ(n− α)

∫ t

a

f (n)(s)ds
(t− s)α−n+1 . (1)

Based on the discussion in [2] the Caputo derivative is frequently used for the derivative with respect
to time. Additionally, we need to define the Riemann-Liouville derivative and again assuming that
f(t) satisfies the requirements for a left-sided fractional derivative of real order α with (n − 1 ≤
α < n),

RL
a Dα

t f(t) = 1
Γ(n− α)

(
d

dt

)n ∫ t

a

f(s)ds
(t− s)α−n+1 (2)

for a < t < b. Additionally, one is often very interested in evaluating right-side Riemann-Liouville
fractional derivatives, which are given by

RL
t Dα

b f(t) = (−1)n

Γ(n− α)

(
d

dt

)n ∫ b

t

f(s)ds
(s− t)α−n+1 (3)

for a < t < b. Additionally, we define the symmetric Riesz derivative

dαf(t)
d |t|α

=t D
α
Rf(t) = 1

2

(
RL
a Dα

t f(t) + RL
t Dα

b f(t)
)
. (4)

A common way of discretizing differential equations of fractional order such as

du(x, t)
dt

− xD
β1
R u(x, t) = f(x, t), (5)

where the fractional symmetric Riesz derivative is used, is to employ a Grünwald-Letnikov finite
difference approximation. The resulting system matrix is then of Toeplitz form. This rather simple
∗Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstr. 36, A-8010 Graz, Austria,

(tobias.breiten@uni-graz.at)
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setup then requires the solution of a large scale linear system in Toeplitz form. Here, we introduce
a suitable preconditioner of circulant-type that can be used within an iterative solver.
In the case that the equation now also contains a fractional Caputo time-derivative combined with
the spatial Riesz derivative, i.e.,

C
0 D

α
t u(x, t)− xD

β
Ru(x, t) = f(x, t), (6)

the individual discrete operators are again Toeplitz matrices but the overall structure of the linear
system is of more involved form. In particular, using a space-time formulation a large-scale Sylvester
equation needs to be solved. For this purpose, we here focus on two methods. The first method
we discuss is the recently introduced KPIK method [3] and the second one is inspired by recent
developments in the study of low-rank iterative methods for matrix equations [1, 4]. Namely, we
focus on the use of a low-rank Krylov solver in combination with a preconditioner.
A similar structure within the linear systems is obtained when two- and three-dimensional problems
are considered where each spatial and potentially the temporal domain is equipped with a fractional
derivative. The resulting structured matrix equations are again solved using low-rank techniques
or in case of a tensor structure we employ recently proposed tensor schemes.
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From PDEs through Functional Analysis to Iterative Methods, or there and
back again

Josef Málek and Zdeněk Strakoš

Abstract
Consider the partial differential equation (PDE) problems described in the form of functional
equation using the Hilbert space V and its dual V #

Ax = b, A : V → V #, x ∈ V, b ∈ V #,

where the linear operator A is self-adjoint (with respect to the duality pairing 〈·, ·〉), bounded
and coercive. In solving PDE boundary-value problems (BVP), the state-of-the-art literature on
using the conjugate gradient method (CG) (as well as of using other Krylov subspace methods)
proceeds in most cases in the following way. First the linear algebraic system Ax = b is formed
by discretization, which is typically based on the bilinear form representation (so called weak
formulation) and the sophisticated mathematical technology of the finite element method (FEM).
Then the standard unpreconditioned CG is considered. Since in almost all cases this would result
in a slow convergence of xn to the algebraic solution x, preconditioning of the discretized algebraic
problem is introduced to accelerate the convergence behavior and save the game. Preconditioned CG
is thus derived algebraically by preconditioning the discretized algebraic system and subsequently
reformulating the computational algorithm in order to produce the approximation vectors and
residuals corresponding to the original system. The solution process can be illustrated by the
following schema:

a(·, ·), 〈b, ·〉 → Ah,bh → algebraic preconditioner → PCG applied to Ahxh = bh ,

where h stands for a discretization parameter. In this way, preconditioning is considered without
being a part of the discretization of the infinite dimensional problem. The whole computational
process for solving the original infinite dimensional problem, construction of efficient algorithms
and their analysis is then broken into (more or less artificially separated) pieces, with a posteri-
ori analysis of the discretization error in most times separated from considering inexact algebraic
computations and evaluation of the algebraic error. This contradicts the basic principle of us-
ing iterative methods where the main advantage is stopping the iteration process whenever the
appropriate accuracy has been reached.
If, however, the algebraic preconditioning is motivated by the so called operator preconditioning,
then the solution process can be illustrated by the following schema:

{A, τ} → {Ah, τ} → {Ah,Mh} → PCG applied to Ahxh = bh ,

where Mh is linked with the choice of the inner product (·, ·), i.e., it corresponds to the discrete
representation of the Riesz map τ : V # → V which transforms the original problem into

τAx = τb, τA : V → V, x ∈ V, τb ∈ V .

In this way, the operator formulation naturally leads to the infinite dimensional CG where the
Riesz map τ represents preconditioning, and discretization immediately gives PCG. It should be
noted that within this straightforward and elegant approach, unpreconditioned CG corresponds
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to the very particular case where the discretization basis functions are mutually orthogonal with
respect to the inner product (·, ·).
Operator preconditioning deals with operators and PDEs, and algebraic preconditioning deals with
matrices. Discretization can be considered as a tool for getting from the infinite dimensional op-
erator setting to the finite dimensional matrix algebraic setting (efficient algebraic preconditioning
associated with the infinite dimensional operator preconditioning can be derived in some cases in
a purely algebraic way). Following the practice in solving challenging problems, preconditioning
and discretization should be linked together as much as possible. In particular, preconditioning
can be interpreted as transformation of the discretization basis, which is a well known from, e.g.,
hierarchical basis preconditioning and some techniques in domain decomposition.
After recalling some previously published results and historical origin of operator preconditioning,
we present simple general transformation formulas within the framework of the CG method and
discuss possible implications.
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Reduced Basis Method for Parameterized Lyapunov Equations

Nguyen Thanh Son and Tatjana Stykel

Abstract
Consider a parameter-dependent Lyapunov equation

A(p)X(p)ET (p) + E(p)X(p)AT (p) = −B(p)BT(p), (1)

where the matrices E(p), A(p) ∈ Rn×n, B(p) ∈ Rn×m and the sought-after solution matrix
X(p) ∈ Rn×n depend on a parameter vector p ∈ P ⊂ Rd. It is assumed that E(p) is symmet-
ric, positive definite and A(p) is symmetric, negative definite for all p ∈ P. In this case, the
Lyapunov equation (1) has a unique symmetric, positive semidefinite solution. Our goal is to solve
the Lyapunov equation (1) on the whole parameter domain P. Such a problem arises in balanced
truncation model reduction of parametric linear control systems

E(p)ẋ(t, p) = A(p)x(t, p) +B(p)u(t)
y(t, p) = C(p)x(t, p)

resulting, for example, from the finite element discretization of parameter-dependent parabolic
PDEs, where parameters describe the geometry of a spatial domain and material properties.
In this talk, we discuss the numerical solution of the parametric Lyapunov equation (1) using
a reduced basis method. This method was first proposed for model reduction of parametrically co-
ercive linear elliptic PDEs and then extended to general noncoercive nonlinear parabolic problems,
e.g., [1]. It has been proven to be the efficient and reliable solution method in a broad range of
applications.
It is well known that the Lyapunov equation (1) can be written as a linear system

L(p)x(p) = b(p), (2)

with L(p) = −E(p)⊗A(p)−A(p)⊗E(p) ∈ Rn2×n2 , x(p) = vec(X(p)) and b(p) = vec(B(p)BT(p)),
where ⊗ denotes a Kronecker product and vec(·) is a vector of length n2 obtaining from the corre-
sponding matrix by stacking its columns. The reduced basis method when applied to system (2)
includes the following steps:

• snapshot collection: for selected parameters p1, . . . , pk ∈ P, construct a reduced basis matrix
V k = [x(p1), . . . , x(pk) ] ∈ Rn2×k, where x(pj) is the solution of (2) with p = pj , j = 1, . . . , k;

• Galerkin projection: for any p ∈ P, compute an approximate solution x(p) ≈ V k x̃(p), where
x̃(p) solves the reduced system L̃(p)x̃(p) = b̃(p) with L̃(p) = V T

k L(p)V k and b̃(p) = V T
k b(p).

This seemingly simple procedure raises several issues that will be addressed in this talk: optimal
choice of the sample parameters p1, . . . , pk providing good reduced basis spaces that guarantee
a rapid convergence of the reduced basis approximation V k x̃(p) to x(p) over the entire parameter
domain; conditioning of the reduced basis linear systems; error estimation for the approximate
solution; computational cost and storage requirement.
If we assume that the solution of the Lyapunov equation (1) with the low-rank right-hand side
B(p)BT(p) can be well approximated by a low-rank matrix, we can keep all operations in terms
of n × n matrices and vectors of length n. Then the reduced basis method for the Lyapunov
equation (1) is formulated as follows:
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• snapshot collection: for selected parameters p1, . . . , pk ∈ P, construct a reduced basis matrix
Vk = [R1, . . . , Rk ], where Rj is the low-rank Cholesky factor of the solution of (1) with
p = pj , j = 1, . . . , k;

• Galerkin projection: for any p ∈ P, compute an approximate solution X(p) ≈ VkX̃(p)V T
k ,

where X̃(p) solves the reduced Lyapunov equation

Ã(p)X̃(p)ẼT (p) + Ẽ(p)X̃(p)ÃT (p) = −B̃(p)B̃T(p) (3)

with Ẽ(p) = V T
k E(p)Vk, Ã(p) = V T

k A(p)Vk and B̃(p) = V T
k B(p).

For the construction of the reduced basis, we employ a Greedy algorithm that assures a small
approximation error in the solution while keeping the dimension of the reduced basis as small
as possible. For the success of this algorithm, a sharp and rigorous error estimate is required.
Assuming an affine parameter dependence in the system matrices

E(p) =
nE∑
j=1

θEj (p)Ej , A(p) =
nA∑
j=1

θAj (p)Aj , B(p) =
nB∑
j=1

θBj (p)Bj , (4)

where Ej , Aj and Bj are parameter-independent, and θEj , θ
A
j , θ

B
j : P → R, we use a min-θ ap-

proach [1] to derive an a posteriori error estimate for the approximate solution. This estimate is
based on an error-residual relationship and can be computed efficiently using the affine decom-
position (4). This decomposition can also be exploited to split the computation of the solution
of (1) into an offline stage (computationally expensive), in which the reduced basis matrix Vk is
constructed and the parameter-independent matrices V T

k EjVk, V T
k AjVk and V T

k Bj are computed,
and an online stage (computationally inexpensive), in which the reduced Lyapunov equation (3) is
solved for any parameter p ∈ P.
We also discuss the application of the reduced basis method for Lyapunov equations to parametric
model order reduction by balanced truncation and present some results of numerical experiments.
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Classical Iterative Methods for the Solution of
Generalized Matrix Equations

Daniel B. Szyld

Abstract
There has been a flurry of activity in recent years in the area of solution of matrix equations. In
particular, a good understanding has been reached on how to approach the solution of large scale
(linear) Lyapunov equations and (nonlinear) Riccati equations; see, e.g., [1]–[5].
An effective way to solve both Lyapunov equations of the form ATX +XA + CTC = 0, where A
and X are n × n, or Riccati equations of the form ATX + XA −XBBTX + CTC = 0, is to use
Galerkin projection with appropriate extended or rational Krylov subspaces. These methods work
in part because the solution is known to be symmetric positive definite with rapidly decreasing
singular values, and therefore it can be approximated by a low rank matrix Xk = ZkZ

T
k . Thus the

computations are performed usually with storage which is lower rank, i.e., lower than order of n2.
Generalized Lyapunov or Riccati equations have additional terms. In this paper, we concentrate
on equations of the following form

ATX +XA+
m∑
j=1

NjXN
T
j + CTC = 0,

ATX +XA−XBBTX +
m∑
j=1

NjXN
T
j + CTC = 0.

Such equations arise for example in stochastic control [6]. It has been proposed, e.g., in [7], to use
approximations to conjugate gradients or to BiCGStab, appropriately preconditioned, where the
basis vectors (matrices) and iterates are “truncated" throughout the algorithm to keep all these
elements represented by low-rank matrices.
In the present work, we propose a return to classical iterative methods, and consider instead simple
iterations, where the iterate Xk+1 = Zk+1Z

T
k+1 is the solution of P (X) = Q(Xk), where P (X) is

ATX+XA in the generalized Lyapunov case, and ATX+XA−XBBTX in the generalized Riccati
case; and Q(X) = −

∑m
j=1NjXN

T
j − CTC; cf. [8] where such simple iterations were used to solve

certain classes of Riccati equations. The classical theory of splittings applies here for the linear
Lyapunov case, and the classical theory of contracting iterations for non-linear equations applies
here for the Riccati case. This theory imposes some conditions on P (X) and Q(X).
One of the advantages of this classical approach is that only the data and the low-rank factors of
the old and new iterates Xk and Xk+1 need to be kept in storage. Furthermore, the solutions of the
equations with P (X), i.e., Lyapunov and Riccati, can be performed with the Galerkin projection
methods mentioned above, where the growth of rank can usually be well contained. Numerical
experiments show the competitiveness of the proposed approach.
This is joint work with Stephen D. Shank and Valeria Simoncini.
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Why does Shift-and-Invert Arnoldi work?

Christian Schröder and Leo Taslaman

Abstract
Virtually all methods for finding eigenvalues close to a target σ of a large matrix A involve solving
linear systems with the shifted matrix A − σI. If the shift is “too good,” these systems become
ill-conditioned or even singular, which at first sight seems inherently bad. Fortunately, at least for
normal matrices, there is a strong connection between the largest possible forward errors of the linear
systems and some of the eigenvectors in which we are interested. For certain algorithms, e.g., inverse
iteration, this connection implies that the ill-conditioning is benign. For shift-and-invert Arnoldi,
however, it is more complicated. We discuss this case using a backward error analysis. More
precisely, we show how errors from solving linear systems, as well as from orthogonalizing vectors,
lead to a perturbation of the underlying recurrence, and we bound the norm of this perturbation.
The standard Arnoldi algorithm (that is, without shift-and-invert) relies on the recurrence

AVk = Vk+1Hk, (1)

where Vk+1 = [Vk, vk+1] satisfies V T
k+1Vk+1 = I and Hk is a (k + 1) × k Hessenberg matrix. All

theory on how the algorithm locates eigenvalues depends on this recurrence, but, due to floating
point arithmetic, we do not see this recurrence in practice. Instead, what we have is

AV̂k = V̂k+1Ĥk + E,

where V̂k+1 = [V̂k, v̂k+1] and Ĥk are the computed quantities (so in general V̂ T
k+1V̂k+1 6= I), and E is

an error which is small relative to A. An important fact is that we can push E into a backward error
with respect to A, and in this way recover an Arnoldi-like recurrence (called Krylov decomposition
in [1]):

(A+ ∆A)V̂k = V̂k+1Ĥk,

where ∆A = −EV̂ †k and V̂ †k denotes the Moore-Penrose pseudo-inverse of V̂k [2]. In this talk, we
discuss the analog to this result for the shift-and-invert Arnoldi method, that is, when A in (1)
is replaced by (A − σI)−1. We discuss which errors are being introduced, and then track these
through the algorithm and push them back into a backward error ∆A with respect to A. We show
that the computed quantities satisfy an exact recurrence

(A+ ∆A− σI)−1V̂k = V̂k+1Ĥk,

and we bound ‖∆A‖ in terms of ‖A‖.
We give two bounds, which correspond to two different assumptions on the residuals of the linear
systems that are being solved within the algorithm. The first bound assumes that the linear systems
are solved in a backward stable fashion. This means that a computed solution x̂ of a linear system
Ax = b gives a residual that satisfies

‖Ax̂− b‖ ≤ (‖A‖‖x̂‖+ ‖b‖)ε,

where ε is a precision/tolerance parameter. If the computed basis V̂k+1 is close to orthogonal, and
the shift is meaningful (that is, |σ| < ‖A‖), then we will see that the condition number of Ĥk
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dictates the norm of ∆A. The second bound assumes that the linear systems are solved with a
residual that is small relative to the right hand side. In other words,

‖Ax̂− b‖ ≤ ‖b‖ε.

This condition “may be very stringent, and possibly unsatisfiable”[3, p 336], but it is nevertheless
often used in practice as a stopping condition for iterative linear solvers. Here, ε is often relatively
large, say 10−6. Our bound in this case can only be used if certain conditions (which can be cheaply
verified during the computation) are true. However, when these conditions are satisfied, we get a
particularly nice bound, independent of the condition number of Ĥk.
Finally, we explain how these results can be extended to the case of generalized eigenvalue problems.
Our bounds are not only of importance to eigenvalue computation, but to any algorithm that
relies on the shift-and-invert Arnoldi recurrence. Hence, other subfields of numerical analysis, for
example, model order reduction and the computation of matrix functions, are also affected by our
results.
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A new algorithm for computing quadrature-based bounds in CG

Gérard Meurant and Petr Tichý

Abstract
Today the (preconditioned) Conjugate Gradient (CG) algorithm by Hestenes and Stiefel is the
iterative method of choice for solving linear systems Ax = b with a real positive definite symmetric
matrix A. An important question is when to stop the iterations. Ideally, one would like to stop
the iterations when some norm of the error x− xk, where xk are the CG iterates, is small enough.
However, the error is unknown and most CG implementations rely on stopping criteria that use the
residual norm ‖rk‖ = ‖b−Axk‖ as a measure of convergence. These types of stopping criteria can
provide misleading information about the actual error. It can stop the iterations too early when
the norm of the error is still too large, or too late in which case too many floating point operations
have been done for obtaining the required accuracy. This motivated researchers to look for ways to
compute estimates of some norms of the error during CG iterations. The norm of the error which
is particularly interesting for CG is the A-norm which is minimized at each iteration,

‖x− xk‖A = ((x− xk)TA(x− xk))1/2.

Inspired by the connection of CG with the Gauss quadrature rule for a Riemann-Stieltjes integral,
a way of research on this topic was started by Gene Golub in the 1970s and continued throughout
the years with several collaborators (e.g., Dahlquist, Eisenstat, Fischer, Meurant, Strakoš). The
main idea of Golub and his collaborators was to obtain bounds for the integral using different
quadrature rules. It turns out that these bounds can be computed without the knowledge of the
stepwise constant measure and at almost no cost during the CG iterations.
These techniques were used by Golub and Meurant in 1994 for providing lower and upper bounds
on quadratic forms uT f(A)u where f is a smooth function, A is a symmetric matrix and u is a
given vector. Their algorithm GQL (Gauss Quadrature and Lanczos) was based on the Lanczos
algorithm and on computing functions of Jacobi matrices. Later in [1], these techniques were
adapted to CG to compute lower and upper bounds on the A-norm of the error for which the
function is f(λ) = λ−1. The idea was to use CG instead of the Lanczos algorithm, to compute
explicitly the entries of the corresponding Jacobi matrices and their modifications from the CG
coefficients, and then to use the same formulas as in GQL. The formulas were summarized in the
CGQL algorithm (QL standing again for Quadrature and Lanczos), whose most recent version is
described in the book [2].
The CGQL algorithm may seem complicated, particularly for computing bounds with the Gauss-
Radau or Gauss-Lobatto quadrature rules. In this presentation based on our paper [4], we intend to
show that the CGQL formulas can be considerably simplified. We use the fact that CG computes
the Cholesky decomposition of the Jacobi matrix which is given implicitly, and derive new algebraic
formulas by working with the LDLT factorizations of the Jacobi matrices and their modifications
instead of computing the Lanczos coefficients explicitly. In other words, one can obtain the bounds
from the CG coefficients without computing the Lanczos coefficients. The algebraic derivation of
the new formulas is more difficult than it was when using Jacobi matrices but, in the end, the
formulas are simpler. Obtaining simple formulas is a prerequisite for analyzing the behaviour of
the bounds in finite precision arithmetic and also for a better understanding of their dependence on
the auxiliary parameters µ and η which are lower and upper bounds (or estimates) of the smallest
and largest eigenvalues. We hope that these improvements will be useful for the implementation of
quadrature-based error bounds into existing and forthcoming CG codes.
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We first focus on explanation of the main idea of quadrature-based estimates of the A-norm of the
error in CG. For simplicity, we will just concentrate on the Gauss and Gauss-Radau quadrature
rules. Using the ideas of [3] and [5], we end up with the formula

‖x− xk‖2A = Q̂k,d + R̂k+d ,

where R̂k+d stands for the remainder of the considered quadrature rule, Q̂k,d is computable, and
d > 0 is a chosen integer. The remainder is positive when using the Gauss quadrature rule, and
it is negative when using the Gauss-Radau quadrature rule with a prescribed node µ > 0 that is
strictly smaller than the smallest eigenvalue of A. Hence, Q̂k,d can provide a lower bound or an
upper bound on ‖x− xk‖2A.
The question is how to compute Q̂k,d efficiently. The algorithm CGQL computes Q̂k,d using the
entries of the corresponding Jacobi matrices and their rank-one or rank-two modifications. Our
new algorithm CGQ (Conjugate Gradients and Quadrature) and its preconditioned version compute
Q̂k,d directly from the CG coefficients. In particular, the lower bound based on the Gauss quadrature
rule can be computed using the sum

Q̂k,d =
k+d−1∑
j=k

∆j , ∆j ≡ γj‖rj‖2,

where γj are the CG coefficients, see also [5], and the upper bound based on the Gauss-Radau
quadrature rule can be computed using

Q̂k,d =
k+d−2∑
j=k

∆j + ∆(µ)
k

where ∆(µ)
k is updated using the new formula

∆(µ)
k =

‖rk‖2
(
∆(µ)
k−1 −∆k−1

)
µ
(
∆(µ)
k−1 −∆k−1

)
+ ‖rk‖2

, ∆(µ)
0 = ‖r0‖

2

µ
.

In the final numerical experiment we will illustrate some of the difficulties that may arise with
modified quadrature rules when computing in finite precision arithmetic.
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Exploiting Tropical Algebra in Numerical Linear Algebra

James Hook, Vanni Noferini, Meisam Sharify and Françoise Tisseur

Abstract
Tropical mathematics is the mathematics of the real numbers, together with the operations of
addition and maximum (or minimum). Tropical algebra has been developed for modelling discrete
event systems, for solving certain optimisation problems and as a tool for proving results in algebraic
geometry. It allows the description, in a linear fashion, of phenomena that are nonlinear in the
conventional algebra. Recent results in [4], [5], [7], and [8] indicate that tropical algebra can also
be useful to numerical linear algebra. The objective of this talk is to explore diverse applications
of tropical algebra to matrix computations.
The tropical semiring (or max-plus semiring) is denoted by (R,⊕,⊗) with R = R ∪ {−∞}, and
with the addition ⊕ and the multiplication ⊗ defined by

a⊕ b = max(a, b), a⊗ b = a+ b

for all a, b ∈ R. Note −∞⊕ a = a⊕−∞ = a and 0⊗ a = a⊗ 0 = a so −∞ and 0 are the zero and
unit elements of the semiring, respectively.
Sharify [7] showed recently that the exponential of the tropical roots of the tropical polynomial

tp(x) =
d⊕

k=0
ln |ak| ⊗ x⊗k = max

0≤k≤d
(ln |ak|+ kx)

are good approximations of the roots of p(x) =
∑d
k=0 akx

k as long as the tropical roots are well
separated. What makes this result interesting is that the tropical roots of tp(x), which are the
points of nondifferentiability of tp(x), require only O(d) operations for their computation via the
Newton polygon so they are cheaper to compute than the roots of the “classical" polynomial p(x).
The tropical roots of tp(x) have been used for a while in the package MPSolve (Multiprecision Poly-
nomial Solver) [2] for the selection of the starting points in the Ehrlich-Aberth method. Sharify’s
result justifies why this selection is so effective.
Being able to cheaply locate the eigenvalues of P (λ) is useful for the numerical solution of polynomial
eigenvalue problems, in particular, when selecting the starting points in the Ehrlich-Aberth method
[3], [4], or when choosing the contour for contour integral methods for large scale problems [1]. We
show that Sharify’s result extends to matrix polynomials

P (λ) = λdAd + · · ·+ λA1 +A0 ∈ C[λ]n×n, Ad 6= 0

in the following way. To P (λ) we associate the tropical scalar polynomial

Tp(x) =
d⊕

k=0
ln(‖Ak‖)⊗ x⊗k,

where ‖ · ‖ is any matrix norm subordinate to a vector norm. We identify sufficient conditions
under which a tropical root αj of Tp(x) is a good approximation to the modulus of nkj eigenvalues
of P (λ), where kj is the multiplicity of αj , thereby providing cheap localization results for the
eigenvalues of P .
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Our aim is to use the tropical roots of Tp(x) to improve the numerical stability of polynomial
eigensolvers based on linearizations of P (λ) such as the MATLAB function polyeig. We note that
currently none of these eigensolvers is backward stable for polynomials of degree 3 or higher. We
use the tropical roots αj of Tp(x) to define eigenvalue parameter scalings of the form λ = αjµ. We
prove that polyeig combined with these scalings returns eigenpairs with small backward errors for
eigenvalues, which in modulus are not too far from αj . We also show that with such eigenvalue
parameter scaling, the linearization process does not increase the eigenvalue condition numbers,
again for those eigenvalues of P that are not too far from αj in modulus [9].
Finally, we discuss the approximation properties of the tropical eigenvalues of B =

(
ln(|aij |)

)
∈

Rn×n as approximations to the eigenvalues of A = (aij) ∈ Cn×n. The tropical eigenvalues of B are
the tropical roots of the permanent of B⊕z⊗I. We note that in tropical algebra, the permanent is
no more difficult to compute than the determinant in the conventional algebra. The computation
of the tropical eigenvalues of B is numerically stable and is cheaper than the computation of the
eigenvalues of A, in particular when A is sparse [6].
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On the Sensitivity of Matrix Functions to Random Noise

Serge Gratton, David Titley-Peloquin, Philippe Toint and Jean Tshimanga Ilunga

Abstract
How sensitive is a matrix function F : Ω ⊂ Rm×n → Rp×q to perturbations in its input? This is a
fundamental question in numerical linear algebra. Sensitivity analyses are usually performed using
condition numbers. The Frobenius-norm absolute condition number of F at A is defined as

lim
δ→0

sup
‖H‖F≤δ

‖F (A+H)− F (A)‖F
δ

. (1)

This is an asymptotic worst-case bound on ‖F (A+H)− F (A)‖F /‖H‖F in the small perturbation
limit. Here we are interested in random perturbations. We attempt to quantify some of the
properties of ‖F (A + H) − F (A)‖F , where F is Fréchet differentiable, A ∈ Ω is fixed, and the
elements of H are random variables following various distributions. We investigate the following
questions:
(a) How descriptive is the worst-case asymptotic analysis from (1) for small random perturbations?
(b) Can anything be said about the typical sensitivity of F even for large perturbations?
In the above, ‘small’ and ‘large’ refer to the norm of the covariance matrix of vec(H).
Specifically, let the elements of H be random variables such that vec(H) ∼ (0, σ2Σ) for a given
positive semi-definite matrix Σ ∈ Rmn×mn. Extending ideas of Fletcher [1] and Stewart [8], we
bound for any τ > 0

lim sup
σ→0

Prob
{‖F (A+H)− F (A)‖F

σ
≥ τ

}
.

The result holds independently of the distribution of the elements of H. It can be used to bound
the median (or any other percentile) of the random variable ‖F (A+H)−F (A)‖F /σ asymptotically
in the limit as σ → 0. It provides an answer to question (a) above.
Analogously to the condition number (1), the above holds for asymptotically small perturbations.
For some important classes of functions F and for random matrices H whose elements follow some
common distributions, using results of Sankar et. al. [7] we have also obtained bounds on

Prob
{
‖F (A+H)− F (A)‖F ≥ τ

}
,

for any σ > 0 and τ > 0. In contrast to the usual analysis based on first-order expansions and
condition numbers, these bounds describe the sensitivity of F to large random perturbations. This
provides at least a partial answer to question (b) above.
This stochastic analysis can be found in [2]. To illustrate we give examples from [3] involving the
sensitivity of solutions to least squares problems and related regularization algorithms. Motivated
by recent interest in the data assimilation and optimization communities in the sensitivity of Krylov
subspace iterates (e.g., [9, 5, 6]), we also present a sensitivity analysis of these iterates to random
perturbations based on our work in [4].
This abstract is based on joint work with Serge Gratton (ENSEEIHT-IRIT and CERFACS),
Philippe Toint (Université de Namur), and Jean Tshimanga Ilunga (ENSEEIHT-IRIT).
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Enhancing Incomplete Cholesky Decompositions

Jiří Kopal, Jennifer Scott, Miroslav T �uma and Miroslav Rozložník

Abstract
Incomplete Cholesky decompositions represent an important component in the solution of large
sparse symmetric positive-definite systems of equations. Such decompositions arise in a wide range
of practical applications. Preconditioners based on the decomposition combined with a Krylov-
space accelerator are routinely used in a number of production codes.

Many variants of the incomplete Cholesky decomposition and of its refinements have been proposed
and used to solve practical problems. The enhancements of the basic procedure have varied from
new mathematical ideas and algorithmic simplifications to more sophisticated implementations. If
we try to systematize the decades of development, we could classify them as offering improvements
either in the accuracy of the LLT decomposition measured by a norm of the distance from the
system matrix A or in the stability of the computed factors.

Neither of these goals can be separated from the way in which the Cholesky decomposition is
implemented. Consider, for simplicity, sequential implementations; we could state that for small
k ≥ 1, a useful and robust decomposition can afford to spend k-times more time in the factorization
than the simplest no-fill procedure. With this flexibility in mind, a space-efficient incomplete
Cholesky factorization based on the concept of intermediate memory introduced by Tismenetsky
was recently discussed in [2] (with the resulting software made available to the community [3]). As
we observed from extensive numerical experiments, the use of intermediate memory can improve
preconditioner accuracy. While a fixed bound on the memory used during the decomposition seems
to be a practical must, another important challenge is to decide on the distribution of the entries
in the factor columns. There have been a lot of important contributions on this that include, for
example, exploiting structural information provided by the symbolic factorization of a complete
factorization or using dropping rules based on estimated or computed inverses of the factors. In
this talk, we introduce a new way to split the memory between that required for the factor and
the intermediate memory used only in its construction. It is based on estimating norms of Schur
complement updates and we consider it as a natural extension of the ideas presented in [2].

We also propose a new dropping approach. It is theoretically motivated and it extends the concept of
a posteriori filtering from the approximate inverse decomposition in [1] to the incomplete Cholesky
decomposition. The new approach drops entries dynamically such that the significance of factor
entries in different columns is balanced. We believe that both our proposals may provide steps on
the way to achieving more robust incomplete Cholesky decompositions.

This work was partially supported by the projects P201/13-06684S and 108/11/0853 of the Grant
Agency of the Czech Republic and by EPSRC grant EP/I013067/1.
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Convergence of Optimization Schemes on Sets of Low-rank Matrices and
Tensors

André Uschmajew

Abstract
Low-rank optimization is classical in statistical sciences, but becomes more an more an important
tool to tackle problems of high-dimension. The task takes the abstract form

min
x∈M

J(x) (1)

where f : Rn1×n2×···×nd is a real valued function of, say, real n1 × n2 × · · · × nd tensors (which can
be huge), and M is some set of low-rank tensors. Examples for J include quadratic functions or
the Rayleigh quotient. For tensors of order d ≥ 3 there exist several concepts of rank, leading to
different setsM. The recently used notions of hierarchical tensor rank and TT rank result in sets
M which are intersections of low-rank matrix sets. From simplicity let us therefore assumeM is
the set of n1 × n2 matrices with rank bounded by k.
There are two common approaches to generate a sequence (xn) ⊆M which hopefully converges to a
solution of (1). In the first approach we make use of the fact that typically an explicit parametriza-
tion of the setM is explicitly known. It takes the form of a multi-linear map τ(u1, u2, . . . , up), for
instance, for low-rank matrices,

τ : Rn1×k × Rn2×k → Rn1×n2 , τ(U, V ) = UV T .

Then the function f = J ◦ τ is minimized using a block coordinate method without side conditions:
given xn = τ(un1 , un2 , . . . , unp ), choose a block i∗ ∈ {1, 2, . . . , p}, then calculate

un+1
i∗ ∈ argmin

ui∗
f(un1 , . . . , uni∗−1, ui∗ , u

n
i∗+1, . . . , u

n
p ),

and set
xn+1 = τ(un1 , . . . , uni∗−1, u

n+1
i∗ , uni∗+1, . . . , u

n
p ).

One major problem in analyzing the convergence of such a method is to bound the linear maps

τ iu(vi) = τ(u1, . . . , ui−1, vi, ui+1, . . . , up)

from below. This typically means to bound from below the k-th largest singular value of the
unfolding (or matricization) of the tensor τ(u1, u2, . . . , up) into a matrix that represents the map
τ iu. In a recent preprint [1] with Zhening Li (Portsmouth) and Shuzhong Zhang (Minneapolis) we
were able to handle these obstacles for the problem of tensor rank-one approximation

min
u1,u2,...,ud

‖x− u1 ⊗ u2 ⊗ · · · ⊗ ud‖

when using a greedy block selection algorithm, and gave global convergence results which I would
like to present.
A second approach to solve (1) are tangential projection methods on the set M itself. The use
of Riemannian optimization techniques on matrix manifolds is well understood by now. They can
be applied, for instance, to the manifold of matrices of fixed rank. However, a notorious problem
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is that this manifold is not closed, thereby excluding global convergence results as they exist in
nonlinear optimization, unless, again, one can control the behaviour of the smallest singular value.
It would be therefore of interest to consider tangential projection methods on the set of bounded
rank matrices, replacing the tangent space by the tangent cone at singular points where the rank
drops. Such a method then would take the usual form

xn+1 = Rxn(xn + αξn),

with ξn being tangent vectors and Rxn being a (usually nonsmooth) retraction from the tangent
cone at xn to the set M. Most naturally, one can choose as retraction a best approximation in
M, which in the case of bounded rank matrices can be computed using the SVD (exploiting the
low-rank structure of tangent vectors). The convergence analysis for the sequence (xn) becomes
non-standard at cluster points of lower rank. However, these singular points are not that bad as
one might expect. The tangent cone at such a point is the disjoint union of limits of subspaces from
the regular part and can hence be explicitly described. (The set of bounded rank matrices is still a
nice object from the algebraic geometry view-point.) Using the language of convex optimization, I
would like to explore the possibilities of how to extend global critical point convergence results for
retracted line search algorithms based on the Łojasiewicz gradient inequality

|f(x)− f(x∗)|1−θ ≤ Λ‖∇f(x)‖,

which is well know for analytic manifolds, to the set of bounded rank matrices and tensors. A
crucial step here is to show that one can replace the gradient in the Lojasiewicz inequality by its
projection on the negative tangent cone, and that the retraction on M is locally stable, even in
singular points. This is ongoing research with Reinhold Schneider (Berlin).
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Structured Data Fusion with Tensorlab

Laurent Sorber, Marc Van Barel and Lieven De Lathauwer

Abstract
Structured data fusion (SDF) is the practice of jointly factorizing one or more coupled data sets
while optionally imposing structure on the factors. Each data set - stored as a dense, incomplete
or sparse tensor - in a data fusion problem can be factorized with a different tensor decomposi-
tion. Currently, in Tensorlab, the user has the choice of the Canonical Polyadic Decomposition
and Block Term Decomposition models. With a bit of effort it is easy to add new models as well.
Structure can be imposed on the factors in a modular way and the user can choose from a library
of predefined structures such as nonnegativity, orthogonality, Hankel, Toeplitz, Vandermonde, ma-
trix inverse, and many more. By selecting the right structures, classical matrix decompositions
such as the QR factorization, eigenvalue decomposition and singular value decomposition can be
computed. Tensorlab uses a domain specific language (DSL) for modelling structured data fusion
problems. The three key ingredients of an SDF model are (1) defining variables, (2) defining factors
as transformed variables and (3) defining the data sets and which factors to use for their factoriza-
tions. Using different examples, the modelling capabilities of this DSL will be demonstrated and
the effectiveness and efficiency of SDF with Tensorlab will be illustrated.
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Compact Rational Krylov Methods for the Nonlinear Eigenvalue Problem

Roel Van Beeumen, Karl Meerbergen and Wim Michiels

Abstract
We present a new framework of Compact Rational Krylov (CORK) methods for solving the non-
linear eigenvalue problem (NLEP):

A(λ)x = 0,

where λ ∈ Ω ⊆ C is called an eigenvalue, x ∈ Cn \ {0} the corresponding eigenvector, and A : Ω→
Cn×n is analytic on Ω. Linearizations are used for many years for solving polynomial eigenvalue
problems [5]. The matrix polynomial P (λ) =

∑d
i=0 λ

iPi, with Pi ∈ Cn×n, is transformed to a linear
pencil L(λ) = X − λY, with X,Y ∈ Cdn×dn, so that there is a one-to-one correspondence between
the eigenvalues of P (λ)x = 0 and L(λ)u = 0.
For the general nonlinear case, i.e., nonpolynomial eigenvalue problem, A(λ) is first approximated
by a matrix polynomial [1, 4, 7] or rational matrix polynomial [2] and then a convenient linearization
is used. The linearizations used in the literature can all be written in the following form

L(λ) = A− λB,

where

A =
[
A0 A1 · · · Ad−1

M ⊗ In×n

]
, B =

[
B0 B1 · · · Bd−1

N ⊗ In×n

]
,

with A,B ∈ Cdn×dn, Ai, Bi ∈ Cn×n, and M,N ∈ C(d−1)×d. Note that the pencil (A,B) also covers
the dynamically growing linearization pencils used in [3, 4, 7, 2]. The construction of the (rational)
polynomial approximation of A(λ) can be obtained using results on approximation theory or can
be constructed dynamically during the solution process. The last two years, we developed various
variants of the rational Krylov method based on these ideas [7, 2].
The major disadvantage of methods based on linearizations is the growing memory cost with the
iteration count. It is possible to reduce this cost in specific cases, but in general, the memory cost
is proportional to the degree of the polynomial. However, we can exploit the kronecker structure of
the part below the first block row of the pencil (A,B) such that the memory cost is not proportional
with the degree of the polynomial any more and only grows linearly with the iteration number.
We therefore present the CORK family of rational Krylov methods, which use a generalization
of the compact Arnoldi decomposition, proposed in [6]. All these methods construct a subspace
V ∈ Cdn×k, represented by two smaller matrices Q ∈ Cn×r and U ∈ Cdr×k with orthonormal
columns and r ≤ d+ k, such that

V = (Id×d ⊗Q)U.

In this way, the extra memory cost due to the linearization of the original eigenvalue problems is
negligible.
For large-scale NLEPs, we present a two-level approach: at the first level, the large-scale NLEP
is projected yielding a small (nonlinear) eigenvalue problem at the second level. Therefore, the
method consists of two nested iterations. In the outer iteration, we construct an orthogonal basis
Q and project A(λ) or L(λ) onto it. In the inner iteration, we solve the projected small linear
eigenvalue problem

L̂(λ)u = 0, L̂(λ) = (Id×d ⊗Q)∗L(λ)(Id×d ⊗Q),
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or the projected small NLEP

Â(λ)x = 0, Â(λ) = Q∗A(λ)Q.

The partial Schur decomposition of the linearization allows for efficient and reliable locking, purging
and restarting. We translate these operations on the (approximate) invariant pairs of the underlying
nonlinear eigenvalue problem, which leads to a two-level approach. We also illustrate the methods
with numerical examples and give a number of scenarios where the methods performs very well.
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Error Bounds and Aggressive Early Deflation for Extended QR Algorithms

Thomas Mach, Raf Vandebril and David Watkins

Abstract
The QR algorithm is a renowned method for computing all eigenvalues of an arbitrary small to
medium sized matrix. A preliminary unitary similarity transformation to Hessenberg form is in-
dispensable for keeping the computational complexity of the subsequent QR steps under control.
When restraining computing time is the vital issue, we observe that the prominent role played by
the Hessenberg matrix is sufficient but perhaps not necessary to fulfill this goal.
We will show, that a whole family of matrices, sharing the major qualities of Hessenberg matrices
can be put forward. Instead of considering and operating directly on the matrices themselves,
we will utilize their QR factorization, where the Q factor itself is decomposed in n − 1 rotations
Q = Gp(1) . . . Gp(n−1), each Gi operating on rows i and i+ 1 and p a permutation of {1, . . . , n− 1}.
The order of the rotations in the decomposition of the Q factor encompasses several particular
matrix types such as Hessenberg, inverse Hessenberg, and CMV matrices. In general these matrices
exhibit an intriguing link with extended Krylov subspaces and as such they will be named extended
Hessenberg matrices.
We will expand the classical QR algorithm to deal with generic extended Hessenberg matrices,
without paying in computational complexity. It will be shown that the standard bulge chasing in-
terpretation in the implicit QR versions nicely translates to a rotation chasing approach. Moreover,
the numerical experiments illustrate that the ordering of the rotations has a significant impact on
the number of iterations to be performed, e.g., in some particular cases, the number of iterations
can be diminished strikingly.
We will also discuss the deflation criterion determining which rotations are close to the identity,
allowing to split the original problem in parts. It will be shown that this deflation criterion can be
considered to be optimal with respect to absolute and relative perturbations on the eigenvalues.
Further, we present a generalization of aggressive early deflation to the extended QR algorithm,
allowing the identification and deflation of already converged, but hidden, eigenvalues. Numerical
results underpinning the power of aggressive early deflation are included.
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Robust Integrators for the Dynamical Low-Rank Approximation using
Rank-Structured Tensors

Christian Lubich, Ivan Oseledets and Bart Vandereycken

Abstract

Low rank tensors Given a d-dimensional tensor X ∈ Rn×n×···×n, there a few ways to approxi-
mate X by a low-rank tensor such that the approximation needs considerably less parameters than
nd. In this talk, we consider approximation by tensor trains (TT) or matrix product states (MPS),
and by hierarchical tensors (HT); see [GKT13] for a recent overview with applications. For exam-
ple, a TT/MPS tensor of rank k = (k0, k1, . . . , kd) with k0 = kd = 1 is a tensor Y ∈ Rn×n×···×n

that can be written element-wise as

Y (`1, `2, . . . , `d) = G1(`1) ·G2(`2) · · ·Gd(`d),

whereGi(`i) ∈ Rki−1×ki is a parameterization matrix of Y for each i and `i. The required parameters
is thereby reduced from nd to less than dnK2 with K := maxi ki.
The TT/MPS/HT formats enjoy many useful properties that make them attractive numerically:
they are stable, allow for explicit quasi-best approximations and are based on matrix algebra. In
addition, it was recently shown in [HRS12, HOV13] that the sets

Mk = {Y ∈ Rn×n×···×n : TT/MPS rank of Y is k}

are smooth embedded submanifolds of Rn×n×···×n. The same holds for HT tensors; see [UV13].

Dynamical low rank Consider now the problem where X(t) is a time-dependent d-dimensional
tensor that satisfies a differential equation

Ẋ(t) = F (X(t)), F : Rn×n×···×n → Rn×n×···×n.

Instead of approximating X(t) by some (quasi-best) Y (t) ∈Mk for each t separately,

Y (t) ∈Mk, ‖Y (t)−X(t)‖ → min,

one can also consider the dynamical low-rank approximation of Y (t),

Ẏ (t) ∈ TY (t)Mk, ‖Ẏ (t)− F (Y (t))‖ → min, (1)

where TY(t)Mk is the tangent space ofMk at Y (t). For ‖ · ‖ the `2 norm, (1) becomes

Ẏ (t) = PTY (t)Mk F (Y (t)), (2)

with PTYMk an orthogonal projection. This approach was introduced and analyzed for matrices in
[KL07] and extended to TT/MPS/HT in [LRSV13].
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Integrating a stiff ODE Since the dimension of Mk is O(ndK2), one would like to avoid
integrating (2) in the full space Rn×n×···×n. The standard approach is to lift (1) to an equivalent
ODE that evolves on the horizontal space of a certain principal fiber bundle. For example, in the
case of matrices, we obtain

U̇ = P⊥U F (USV T )V S−1, Ṡ = UTF (USV T )V, V̇ = P⊥V [F (USV T )]TUS−T , (3)

where Y (t) = U(t)S(t)V (t)T is a time-dependent factorization of Y (t) with orthonormal U, V ∈
Rn×k and non-singular S ∈ Rk×k. Since the matrices U, V, S are small compared to an n×n matrix,
integrating (3) can now in principle be done efficiently. The extension to TT/MPS and HT tensors
is more technical but not difficult conceptually.
However, there is a fundamental numerical problem. Fix σmax(Y (t)) = 1. Observe that when
σmin(Y (t))→ 0, the r.h.s. of (3) will become ill-conditioned resulting in a severe step-size restriction
for standard explicit integrators. This is very unfortunate since σmin(X(t))→ 0 is bound to happen
when we are aiming for increasingly good approximations of Y (t) by X(t).

Split projector time stepper The step-size restriction from above can be avoided by implicit
time integration. This is however more involved than explicit integration and it will still require
regularization of the S−1 terms. In the case of matrices, [LO13] proposed an explicit integrator
based on a clever Lie–Trotter splitting of the projector PTY(t)Mk . This integrator has remarkably
robustness properties in the case of small singular values and it is considerably more accurate than
standard explicit integrators.
In this talk, I will explain how this integrator can be extended to TT/MPS and HT using similar
splitting ideas. While the extension to TT/MPS is fairly intuitive, it turns out to be more intricate
for HT. Numerical experiments indicate that the new integrator is considerably faster and more
accurate than integrating the formulation as a horizontal flow, like in (3).
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The Anti-Triangular Factorization of Symmetric Matrices

Nicola Mastronardi and Paul Van Dooren

Abstract
Indefinite symmetric matrices occur in many applications, such as optimization, least squares prob-
lems, partial differential equations and variational problems. In these applications one is often in-
terested in computing a factorization of the indefinite matrix that puts into evidence the inertia of
the matrix or possibly provides an estimate of its eigenvalues. In this talk we present a new matrix
decomposition that provides this information for any symmetric indefinite matrix by transforming
it to a block anti-triangular form using orthogonal similarity transformations. We discuss several
of the properties of the decomposition and show its use in the analysis of saddle point problems.
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The Quest for a General Functional Tensor Framework for Blind Source
Separation in Biomedical Data Processing

Sabine Van Huffel

Abstract
Substantial progress in data recording technologies and information processing in recent years have
enabled acquisition and analysis of large amounts of biomedical data. Extraction of the underly-
ing health relevant information patterns, called sources, is crucial for a reliable prediction of the
underlying pathology or health condition. Examples are cardiac and respiratory rhythms, epileptic
and neuronal spikes, QRS-complexes, bursts frequently occurring in Electroencephalograms (EEG),
peaks emerging in Magnetic Resonance Spectroscopy (MRS), etc. Their extraction is a core prob-
lem in biomedical data processing. Blind source separation (BSS) consists in finding such source
signals and the mixing mechanism, given only the raw signals, hence the term blind. Rapid ad-
vances in healthcare diagnostics and medical technologies open up new challenges for information
processing.
The BIOTENSORS project, granted by the European Research Council (grant 339804, from Febr.
1,2014, till Febr. 1, 2019) intends to significantly push the state of the art in the important field of
BSS. We will develop algebraically and numerically well-founded tensor techniques for BSS involving
block terms, heterogeneous data sets and various constraints. We will use these techniques to face
current grand challenges in biomedical data fusion. Indeed, in today’s information society, more
or less coupled data are everywhere (e.g. social network data) and the challenge is to find good
ways to interpret them. We will however limit ourselves to concrete applications in biomedical
data processing, in which the BIOMED research group, STADIUS division, KU Leuven, has built
a strong expertise. The overall aim translates concretely into the following specific objectives.

1. Development of advanced algorithms for the computation of tensor decompositions, firmly
based on numerical mathematics. These will also allow more general studies, involving block
terms, coupled data sets and various types of constraints, relevant for biomedical applications.

2. Introduction of advanced approaches to BSS, based on Block Term Decompositions instead of
Canonical Polyadic Decompositions, possibly involving multimodal data, possibly exploiting
source structure, and allowing a broad set of constraints.

3. Development of reliable algorithms for tensor decomposition updating and tracking, with
extensions to coupled data sets, which may be used in continuous patient monitoring.

4. Development of next generation BSS algorithms for specific biomedical areas. We focus on 3
applications for which extensive expertise and fully validated datasets are available, namely:

• Metabolite quantification and brain tumour tissue typing using Magnetic Resonance
Spectroscopic Imaging,
• Functional monitoring including seizure detection and polysomnography,
• Cognitive brain functioning and seizure zone localization using simultaneous Electro-
encephalography-functional MR Imaging integration.

5. Development of open-source BSS software for broad use.
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By working directly at the forefront in close collaboration with the clinical scientists who actually
use our software, we can have a huge impact. Starting from an overview of existing tensor based
BSS algorithms in the above-mentioned areas, we explore the potential impact and evolutions of
tensor based BSS for biomedical data processing. This is joint work with Lieven De Lathauwer.
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Rank-Revealing Decompositions for Matrices with Multiple Symmetries

David Bindel, Charles Van Loan and Joseph Vokt

Abstract
Suppose an order-6 tensor A has the property that the value of A(i1, i2, i3, j1, j2, j3) does not
change if the i-indices are permuted, or if the j-indices are permuted, or if the i-indices as a
group are swapped with the j-indices as a group. Such a tensor has multiple symmetries and if
it is smartly unfolded into a matrix A, then A itself has interesting structure above and beyond
ordinary symmetry. In the case of the given example, there are permutation matrices Γ1 and Γ2
(both involving Kronecker products and perfect shuffles) such that both Γ1AΓT1 and Γ2AΓT2 equal
A. We show how to compute a structure-preserving, low-rank approximation to A using LDLT
with diagonal pivoting together with a very cheap block diagonalization that is performed at the
start. The full exploitation of structure has dramatic ramifications for efficiency and applications.
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Two-level Methods with a Priori Chosen Convergence Factor

Panayot S. Vassilevski

Abstract
A two-level method for solving a linear system Ax = b with a s.p.d. matrix, is characterized with a
convergent smoother M , an interpolation matrix P and a coarse matrix Ac = P TAP . The (inverse
of the) two-level operator admits the following explicit form

B−1
TL = M

−1 + (I −M−TA)PA−1
c P T (I −AM−1),

where M = M
(
M +MT −A

)−1
MT is a symmetrization of M (i.e., if M stands for forward

Gauss-Seidel, then M stands for symmetric Gauss–Seidel). The above formula is readily derived
from the more familiar product iteration formula

ETL ≡ (I −M−TA)(I − PA−1
c P TA)(I −M−1A),

which represents the composition of three processes; namely, the pre-smoothing iteration I−M−1A,
coarse-grid correction I − PA−1

c P TA, and post-smoothing iteration I −M−TA. It is readily seen
that BTL is s.p.d., and that it provides A-convergent iteration (for any A-convergent smootherM).
We have the estimates

vTAv ≤ vTBTLv ≤ KTLvTAv. (1)

The constant KTL, as it is well-known, is related to the weak approximation property of the
interpolation matrix P (or the coarse space Range (P )); namely, for any vector v there is a coarse
interpolant Pvc such that

‖v− Pvc‖2M̃ ≤ KTL vTAv. (2)

Above, M̃ = MT (M +MT −A)−1M is the symmetrization of MT . The best constant KTL in (1)
has been proven to admit the following characterization

KTL = max
v

min
vc
‖v− Pvc‖2

M̃

vTAv
.

In this talk, we investigate choices of P andM that lead to making KTL as close to unity as desired
in beforehand. Equivalently, the TL-convergence factor, %TL = 1− 1

KTL
, can be made as small as

desired.
We apply our strategy to matrices A that can be assembled from local semi-definite ones {Ae}, that
is, the global quadratic form vTAv is a sum of the local quadratic forms vTe Aeve, where ve is the
restriction of v to the local sets (of indices) e. Typical examples are finite element discretization
matrices as well as graph Laplacian.
The procedure involves first, partitioning the set {e} into non-overlapping ones (aggregates), solv-
ing eigenproblems for the local matrices associated with each such aggregate; selecting subset of
eigenvectors in the lower part of the computed spectrum, and building a tentative interpolant P
which by construction ensures the weak approximation property

‖v− Pvc‖2D ≤ η vTAv.

244



D is a diagonal matrix, the so-called `1–smother for A. The actual P is obtained by smoothing-out
P using appropriate matrix-polynomial

P = pνa(D−1A)P .

A first key step in the analysis is establishing energy boundedness of P of the form

‖v− Pvc‖2A ≤ (1 + τ) ‖v‖2A, (3)

for an a priori chosen τ > 0 as small as needed, whereas at the same time, we maintain weak
approximation property of the form,

‖v− Pvc‖2D ≤ η
1
τ

vTAv.

The smoother M is also chosen as a matrix polynomial

M−1 =
(
I − qνs(D−1A)

)
A−1, (qνs(0) = 1).

The next key step in the analysis is establishing a smoothing property of the following type:

vTMv ≤ (1 + τ)vTAv + 1
τ

C

ν2
s

vTDv. (4)

The constant τ > 0 can be chosen a priori as small as needed, whereas the constant C is independent
of τ . Combining the two major estimates (3)-(4), we get an estimate of the form (2) with a constant
KTL which can get as close to unity as needed by choosing τ sufficiently small and νs sufficiently
large.
We illustrate the performance of the method on some PDE and non-PDE (graph Laplacian) exam-
ples.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
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On the Relationship Between Nesterov’s Optimal Convex Optimization
Algorithm and Conjugate Gradient

Sahar Karimi and Stephen A. Vavasis

Abstract
Consider the problem of minimizing f : Rn → R, where f is a C1 strictly convex function. In
particular, we assume that there exist two parameters L, l > 0 such that for all x,y ∈ Rn,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

and
f(y) ≥ f(x) +∇f(x)T (y− x) + l

2
‖y− x‖2.

Here and throughout this abstract, ‖ · ‖ refers to the Euclidean norm. Such functions have a
unique minimizer which we will denote as x∗. Classical steepest-descent guarantees a function
value reduction of ε, i.e., f(xk) − f(x∗) ≤ ε(f(x0) − f(x∗)), where xk is the kth iterate, provided
that k ≥ const · log(1/ε)L/l.
Nemirovsky and Yudin [2], Nesterov [3, 4] and subsequent authors have proposed ‘optimal’ algo-
rithms for this problem, which have a bound of k = const · log(1/ε)

√
L/l iterations.

In the case that f(x) = 1
2xTAx − bTx, where A is a positive definite matrix, it is well known

that x∗ = A−1b, that f is strictly convex with L = λmax(A) and l = λmin(A), and that conjugate
gradient achieves a function value reduction of ε in k = const · log(1/ε)

√
κ(A) iterations. Thus,

conjugate gradient is also ‘optimal’ in the sense of Nemirovsky and Yudin. In practice, conju-
gate gradient substantially outperforms the more general optimal algorithms when specialized to
quadratic functions for two reasons: first, the constant is smaller for conjugate gradient; second,
conjugate gradient is known to converge superlinearly.
In this work, we show that Nesterov’s 1998 optimal algorithm can be hybridized with conjugate
gradient to yield a method with the best properties of both methods, namely, the optimal complexity
bound is retained, but in the case of quadratic functions (i.e., solving linear equations), the fast
conjugate gradient convergence is replicated, assuming the line-search is exact.
A consequence is that the hybrid algorithm in practice can sometimes significantly outperform both
Nesterov’s method and also traditional nonlinear conjugate gradient methods (Fletcher-Reeves,
Polak-Ribière, Hager-Zhang [1]) when applied to nonquadratic but strictly convex functions. Fur-
thermore, additional insight into linear conjugate gradient is obtained.
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Numerical Methods for Computing the H∞-Norm of Large-Scale Descriptor
Systems

Peter Benner, Ryan Lowe and Matthias Voigt

Abstract
In this talk we consider linear time-invariant continuous-time descriptor systems of the form

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(1)

where E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn is the descriptor vector, u(t) ∈ Rm is the
input vector, and y(t) ∈ Rp is the output vector. Systems of this kind are the natural formulation
of many dynamical models arising, e.g., in the simulation, control and optimization of electrical
circuits, constrained multi-body systems, or certain semidiscretized PDEs.
Often it is very convenient to work with the transfer function, mapping inputs to outputs in the
Laplace domain. Assuming Ex(0) = 0, the transfer function of (1) is given by

G(s) = C(sE −A)−1B.

In many applications, for instance in robust control design, one is interested in the H∞-norm of a
stable and proper transfer function G(·), defined by

‖G‖H∞ := sup
s∈C+

‖G(s)‖2 = sup
ω∈R
‖G(iω)‖2 ,

with C+ := {s ∈ C : Re(s) > 0}.
If the state-space dimension n of the system is small, there already exist methods to compute the
H∞-norm which are mostly based on computing the purely imaginary eigenvalues {iω1, . . . , iωk}
of skew-Hamiltonian/Hamiltonian matrix pencils of the form

λ

[
E 0
0 ET

]
−
[

A 1
γBB

T

− 1
γC

TC −AT

]
. (2)

Then we have ‖G(iωj)‖2 = γ for j = 1, . . . , k, and the frequency intervals with ‖G(iω)‖2 > γ can
be easily computed. However, in the most recent form, this algorithm [1] uses a full structured
factorization of (2) and thus cannot be applied if the state-space dimension is large. In this talk
we present two approaches to overcome this problem.
The first method [2] exploits the relationship between the H∞-norm and the structured complex
stability radius of the transfer function G(·). This is the spectral norm of the smallest complex
perturbation ∆ that makes the perturbed transfer function

G∆(s) := C(sE − (A+B∆C))−1B (3)

unstable, improper, or even not well-defined. The algorithm is based on structured ε-pseudospectra
for G(·). This means that we consider all perturbations ∆ with ‖∆‖2 < ε and analyze how
the poles of (3) might move. The set of all these perturbed poles is called the structured ε-
pseudospectrum of G(·). To compute the structured complex stability radius we have to find
the structured ε-pseudospectrum that touches the imaginary axis. This calculation is carried out
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by a nested iteration. The inner iteration is adapted from [3] and computes the structured ε-
pseudospectral abscissa for a fixed value of ε, that is the real part of the rightmost point in the
structured ε-pseudospectrum. This iteration relies on the fact that the entire pseudospectrum can
be realized by rank-1 perturbations, so an optimal perturbation can be efficiently computed. In
the outer iteration, the value of ε is updated by Newton’s method in order to drive the structured
ε-pseudospectral abscissa to zero, similarly as in [4]. Since the inner iteration might only converge
to a local maximizer, we discuss a way to obtain good initial values that indeed allows convergence
to a global maximizer in most cases. These initial values are obtained by computing some dominant
poles [5], i.e., those poles of G(·) that generate the largest local maxima of ‖G(iω)‖2 for ω ∈ R.
The second method [6] that we present goes back to the algorithm from [1], but instead of the
skew-Hamiltonian/Hamiltonian pencils (2) it uses closely related even pencils. Actually, we would
have to compute all purely imaginary eigenvalues of these pencils to obtain all intervals for ω in
which ‖G(iω)‖2 > γ. However, we can relax this requirement when we make again use of the
dominant poles of G(·). These are used to calculate shifts for a structure-preserving method for
even eigenvalue problems [7] which computes eigenvalues close to these shifts. In this way we do
not necessarily compute all frequency intervals with ‖G(iω)‖2 > γ, but we can still obtain the
frequency interval that contains the optimal frequency ω at which the H∞-norm is attained.
In the talk we will compare both approaches with each other and also with [1, 4], and discuss
advantages and disadvantages. Furthermore, we will present numerical results and demonstrate
that both methods perform well, even for rather difficult examples.
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Antitriangular Factorization for Saddle Point matrices and the Null Space
method

Jen Pestana and Andy Wathen

Abstract
Recently, Mastronadi and Van Dooren introduced the block antitriangular (or “Batman”) factor-
ization for symmetric indefinite matrices. This factorization employs only orthogonal similarity
transforms and allows for the solution of linear equations in a straightforward way.
We will show the simplification of this algorithm for saddle point matrices and demonstrate that it
represents the well-known Null Space method in precisely the same way that LU represents Gauss
Elimination. The batman factorization has several attractive features that we will touch on: it is
backwards stable, inertia revealing and is simply updated for augmented Lagrangian modifications.
The relation to common preconditioning approaches will also be dicussed given time.
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Fast, Stable, Computation of the Eigenvalues
of Unitary-plus-rank-one Matrices

Jared L. Aurentz, Thomas Mach, Raf Vandebril and David S. Watkins

Abstract
We consider upper Hessenberg unitary-plus-rank-one matrices, that is, matrices of the form A =
Ũ + x̃ỹT , where Ũ is unitary, and A is upper Hessenberg. This includes the class of Frobenius
companion matrices, so methods for this type of matrix can be applied to the problem of finding
the zeros of a polynomial.
The unitary-plus-rank-one structure is preserved by any method that performs unitary similarity
transformations, including Francis’s implicitly-shifted QR algorithm. We present a new implemen-
tation of Francis’s algorithm that acts on a data structure that stores the matrix in O(n) space
and performs each iteration in O(n) time.
We store A in the form A = QR, where Q is unitary and R is upper triangular. In this sense
our method is similar to one proposed by Chandrasekaran, Gu, Xia, and Zhu (Oper. Theory Adv.
Appl. 179 (2007), pp. 111–143), but our method stores R differently. Since Q is a unitary upper-
Hessenberg matrix, it can be stored as a product Q = Q1Q2 · · ·Qn−1, where each Qj is a Givens-like
unitary tranformation that acts only on rows j and j + 1. We call these Qj core transformations.
Both our algorithm and that of Chandrasekaran et. al. use this representation of Q. For R, they
use a quasiseparable generator representation. Our representation scheme factors R in the form

R = Cn−1 · · ·C1(B1 · · ·Bn−1 + e1y
T ),

where the Cj and Bj are unitary core transformations. This is possible because R is also unitary-
plus-rank-one.
Performing Francis iterations on an upper Hessenberg matrix A of the form

A = QR = Q1 · · ·Qn−1Cn−1 · · ·C1(B1 · · ·Bn−1 + e1y
T )

is largely a matter of manipulating core transformations. We will show how to do this.
We will compare our algorithm to other fast (and slow) algorithms in terms of speed and accuracy.
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Fast Hankel Tensor-Vector Products and Application to Exponential Data
Fitting

Weiyang Ding, Yimin Wei and Liqun Qi

Abstract
This talk is contributed to a fast algorithm for Hankel tensor-vector products. For this purpose, we
first discuss a special class of Hankel tensors that can be diagonalized by the Fourier matrix, which
is called anti-circulant tensors. Then we obtain a fast algorithm for Hankel tensor-vector products
by embedding a Hankel tensor into a larger anti-circulant tensor. The computational complexity is
about O(m2n logmn) for a square Hankel tensor of order m and dimension n, and the numerical
examples also show the efficiency of this scheme. Moreover, the block version for multi-level block
Hankel tensors is discussed as well. Finally, we apply the fast algorithm to exponential data fitting
and the block version to 2D exponential data fitting for higher performance.
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A CS Decomposition Method for Eigenvalues of Orthogonal Matrices

Daniela Calvetti, Lothar Reichel and Hongguo Xu

Abstract
A factorized condensed form of a real 2n×2n orthogonal matrix U is proposed. With the assumption
that U does not take ±1 as its eigenvalues, one is able to determine a real orthogonal matrix Q̃
such that

Q̃UQ̃T = ΣZΣZT ,

where

Σ =
[
In 0
0 −In

]
, Z =

[
C1 ST2
S1 CT2

]
,

Z is orthogonal and C1, C2, S1, S2 are all n×n upper bidiagonal. This factorization can be computed
mainly with an improved version of the Schur parameter method proposed in [1].
Once the factorized form has been computed, a full CS decomposition algorithm is applied to
compute the CS decomposition[

U1 0
0 U2

]
Z

[
V1 0
0 V2

]T
=
[
C −S
S C

]
,

where U1, U2, V1, V2 are real orthogonal and C, S are diagonal satisfying C2 + S2 = In. The
proposed CS decomposition algorithm adopts the idea used in Demmel-Kahan’s SVD algorithm
([2]) for computing the small CS values and uses an improved version of the method in [3, 4]. for
the rest. Therefore, the computed CS values have high accuracy.

Define Q =
[
U1 0
0 U2

]
Q̃. One has

QUQT =
[
C2 − S2 2CS
−2CS C2 − S2

]
,

which is essentially a Schur decomposition of U .
Because the CS iterations are performed on half-sized blocks, the method is less expensive than
other QR type algorithms when the similarity matrix Q is needed.
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The Dual Padé Family of Iterations for the Matrix p-Sector Function and
one topic more on a Specific Procrustes Problem

Krystyna Ziȩtak

Abstract
In the talk we focus on the dual Padé families of iterations, introduced in [15], for computing the
matrix pth root and the matrix p-sector function. We determine certain regions of convergence of
these iterations using results proved in [5] and [6]. The matrix p-sector function, introduced in [14],
is a generalization of the matrix sign function.
The second topic of our talk is focused on a specific Procrustes problem. In a Procrustes problem
the goal is to find a matrix X from some class M of matrices for which the following minimum is
reached

min
X∈M

‖A−BX‖F ,

where ‖ · ‖F is the Frobenius norm and A,B are given, real matrices. It is a nearness problem
(for other nearness problems see [10]). In the classical orthogonal Procrustes problem, M is the
set of orthogonal matrices. However, one considers also other types of M, for example, the Stiefel
matrices, symmetric matrices and so on (see [1], [3], [4], [9], [11, Theorem 8.6]). In our talk the
set M contains matrices which are subblocks of orthogonal matrices. We investigate this specific
Procrustes problem and present a preliminary version of an iterative algorithm for computing its
solutions. This part of our talk is based on a joint work with João Cardoso (Coimbra, Portugal).
The dual Padé family of iterations for computing the matrix pth root includes the Schröder itera-
tions, considered in [2], and the Newton and Halley methods. Therefore our results on a convergence
of the dual Padé iterations generalize the results of Cardoso and Loureiro [2], Guo [8], Lin [13] for
the Schröder iterations, the Newton and Halley methods, respectively. It is worth to underline that
the Newton method does not belong to the Padé family of iterations introduced in [12]. However,
the Halley method belongs to the Padé and dual Padé families of iterations, simultaneously.
The concept of the dual Padé family for computing the p-sector function is different from the idea
of the reciprocal Padé family of iterations introduced by Greco, Iannazzo and Poloni [7] for the
matrix sign function.
Guo [8] and Lin [13] have shown some properties of iterates and of corresponding residuals generated
by the Newton and Halley methods for computing the principal pth root of a matrix. We generalize
their results to the Padé family of iterations and to the dual Padé family of iterations for the matrix
pth root. We prove that the properties of the Newton and Halley methods, presented by Guo [8],
follow from properties of the Padé approximants to the function (1 − z)−1/p that generate the
iterations of the Padé and dual Padé families. For all above purposes, concerning the Padé and
dual Padé families, we study the properties of Padé approximants to the function (1− z)−1/p.
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