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Purpose of review

Gut dysbiosis was recently associated with the occurrence of type 2 diabetes (T2D). In addition to this
finding, an increasing number of studies performed upon the last 5 years have also shown that metformin
treatment leads to changes in gut bacterial composition in diabetic patients. This review focuses on the
articles describing the effects of metformin on gut homeostasis (including the gut microbiota) and proposes
potential mechanisms involved in those effects.

Recent findings

Several human and animal studies emphasized that metformin alters the gut microbiota composition by
enhancing the growth of some bacteria, such as Akkermansia muciniphila, Escherichia spp. or
Lactobacillus and by decreasing the levels of some other ones like Intestinibacter. In-vitro studies also
demonstrated a direct action of metformin on the growth of A. muciniphila and Bifidobacterium
adolescentis. Moreover, in the intestines, metformin does not only improve the glucose uptake, but it also
promotes the short-chain fatty acid (SCFA) production, protects the intestinal barrier and regulates the
secretion of gut peptides

Summary

It is now clear that gut microbiota participates to the glucose-lowering effects of metformin in the context of
diabetes. Further work is now needed to determine the exact mechanisms of action of the drug and to
understand by which processes metformin is able to enhance the growth of some bacteria exhibiting
beneficial effects for the host.
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INTRODUCTION

Metformin is the most prescribed pharmacotherapy
for the treatment of individuals with type 2 diabetes
(T2D) due to its safety and its glucose-lowering
effects. However, its mechanisms of action remain
to be clarified. It is well established that the liver is a
major site of metformin action [through an activa-
tion of the hepatic AMP-activated protein kinase
(AMPK) protein]. There is growing evidence sug-
gesting that the gut microbiota would be another
target involved in the antidiabetic effects of met-
formin. During the last 10 years, an increasing
number of studies have indicated several changes
in gut bacterial composition or function in T2D
patients. This dysbiosis observed during T2D
pathology and hyperglycemia is mostly due to a
depletion of butyrate-producing bacteria (includ-
ing Clostridium species, Eubacterium rectale, Faecali-
bacterium prausnitzii, Roseburia intestinalis or
Roseburia inulinivorans) and an enrichment of
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opportunistic pathogens, as recently reviewed [1].
In addition, emerging evidence also highlighted the
role for the gut microbiota in diabete prevention,
glycemic control and in the treatment of T2D [2].
Following the hypothesis that metformin could act
on gut microbiota to control glucose homeostasis, a
recent review by McCreight et al. [3

&

] described the
passage of metformin through the gastrointestinal
tract and supported the fact that a large accumula-
tion of metformin into the intestine could contrib-
ute to the glucose-lowering effect of this drug,
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KEY POINTS

� Emerging hypotheses suggest that metformin could
target the gut microbiota to exert its glucose-
lowering effects.

� Metformin reverses some bacterial changes occurring
during T2D, especially by increasing SCFA-producing
bacteria and by decreasing opportunistic pathogens.

� Metformin largely increases the abundance of A.
muciniphila in both human and animal models of
obesity and T2D. The growth of this bacterium is
promoted by metformin in vitro, suggesting that
metformin acts as a growth factor for some
gut microbes.

� Metformin ameliorates the intestinal functions by
improving the intestinal glucose sensing, enhancing the
production of SCFA and gut peptides or by protecting
the gut permeability.

Carbohydrates

Cop
perhaps by regulating the gut microbiota
composition. Indeed, Cabreiro et al. [4] firstly dem-
onstrated that metformin slows aging in a model of
Caenorhabditis elegans by altering microbial metab-
olism, suggesting the possibility that this drug
might similarly affect microbial metabolism and
gut microbiota composition in mammals. Since, a
number of studies performed in animals and
humans explores the possibility that gut microbiota
could contribute to the antihyperglycemic effects
of metformin.

In this context, we propose to review the last
findings highlighting the gut-related activities of
metformin. This review starts with a description
of both in-vivo and in-vitro studies relating the
changes in gut microbiota following metformin
administration. In a second part, the review focuses
on the regulation of intestinal functions by metfor-
min, and the involvement of gut microbes in
these processes.
METFORMIN PARTIALLY REVERSES THE
DYSBIOSIS RELATED TO TYPE 2
DIABETES

To investigate how metformin could alter the gut
microbiota composition, several studies were per-
formed in human and animal models.
Human studies

A recent work by Wu et al. [5
&&

] demonstrated that
metformin treatment-induced significant alter-
ation in the composition of the gut microbiota of
treatment-naı̈ve patients, recently diagnosed T2D.
2 www.co-clinicalnutrition.com
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In this study, all participants were fed with a hypo-
caloric diet. The whole-genome shotgun sequenc-
ing revealed that 1700 mg/day of metformin-
induced significant changes in the relative abun-
dance of 81 bacterial strains after 2 months and
regulated 86 bacterial strains after 4 months of
treatment, whereas only one bacterial strain was
altered in the placebo group. Most of these changes
were detected in the Firmicutes and Proteobacteria
phyla. Significantly, these changes correlated with
those observed in a subset of the placebo group that
switched to the metformin treatment 6 months
after the start of the clinical trial. Unlike the first
assay, they also reported a metformin-induced
increase in Bifidobacterium in this subgroup [5

&&

].
Moreover, the comparison of gut microbiota com-
position between T2D-metformin treated versus
untreated patients revealed that the treatment sig-
nificantly increased the relative abundance of
Escherichia spp. and reduced the abundance of Intes-
tinibacter genus [6]. Actually, it is not excluded that
the increased abundance of Escherichia spp. could
mediate the adverse events reported with metfor-
min treatment, such as gastrointestinal symptoms.
Wu et al. [5

&&

] also found the same changes after 2
and 4 months of treatment in treatment-naı̈ve T2D
patients, as well as an increase in the abundance of
Akkermansia muciniphila in individuals receiving
metformin for 4 months. In addition, metformin
partially reverted T2D-associated changes, as simi-
lar abundance of Subdoligranulum and Akkermansia
were found between T2D-treated metformin
patients and control healthy subjects [6]. Moreover,
in a cohort of 145 European women with T2D,
patients receiving metformin had increased levels
of Enterobacteriaceae (including Escherichia, Shigella,
Klebsiella and Salmonella) and decreased levels of
Clostridium and Eubacterium [7]. The higher levels of
Enterobacteriaceae were also found in basal condi-
tions in Nordic T2D patients (having both parents
born in Scandinavia) treated with metformin versus
untreated patients [8]. In a Columbian adult popu-
lation diagnosed with T2D, the 16S rRNA gene
sequencing revealed no differences in the number
of observed operational taxonomic unit (OTUs)
between groups (treated with metformin versus
untreated group) [9

&

]. Nonetheless, the b-diversity
was significantly reduced by the treatment, suggest-
ing that metformin alters the bacterial community
structure in the gut microbiota of T2D patients. In
this Columbian T2D population, metformin signif-
icantly increased the OTUs belonging to Mega-
sphaera and Prevotella genus, whereas the
treatment reduced the OTUs from Clostridiaceae
02d06 and Barnesiellaceae family, as well as the
Oscillospira genus [9

&

].
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Animal studies

In rodent models fed with a high fat diet (HFD),
metformin administration reduced both richness
and diversity of the gut microbiota [10,11], except
in aged obese mice where no difference was found
after the treatment [12]. Significantly, unlike the
HFD, metformin had no impact on the a-diversity
of gut microbiota from mice fed with a standard
diet, suggesting the diet-dependent effects of met-
formin on gut microbiota diversity [11]. Principal
component analysis and UniFrac distance-based
principal coordinate analysis showed that metfor-
min treatment resulted in obvious changes of gut
microbiota in rodents, observed by a clear separa-
tion between groups [10–12]. Among 134 key OTUs
analyzed in fecal samples from rats, 70 were
decreased by the treatment, whereas 56 were
increased. Metformin did not modify the Firmi-
cutes/Bacteroidetes ratio but increased the Proteo-
bacteria and Verrucomicrobia phyla. At the genus
level, metformin significantly enriched some genus
such as Allobaculum, Akkermansia, Bacteroides, Blau-
tia, Butyricicoccus, Klebsiella, Lactobacillus, Parasutter-
ella, Phascolarctobacterium and Prevotella while it
decreased Clostridium XlVa, Flavonifractor, Lachno-
spiracea_incertae_sedis, Roseburia and Clostridium XI.

In another study, metformin administration
into the upper small intestine of HFD fed rats
1 day prior the collection of samples revealed a shift
of the microbiota composition from untreated rats
with the Bray–Curtis distances analysis [13

&&

].
Therefore, in this study, there was no difference
in the b-diversity between groups. The main change
observed, following the metformin treatment, was
an increase in the relative abundances of Lactoba-
cillaceae family and Lactobacillus genus. At the spe-
cies level, the treatment increased the abundance of
Lactobacillus salivarius without having a significant
effect on Lactobacillus gasseri. All these results were
confirmed in a model of gut microbiota transfer
from rats receiving the upper small intestinal infu-
sion of metformin into recipient rats. It has also
been demonstrated that metformin restored the
abundance of the beneficial bacteria Lactobacillus
and A. muciniphila in HFD fed mice developing
insulin resistance [14]. In addition to these reported
effects, metformin also rescued the relative abun-
dance of others genus altered during a HFD, such as
Anaerotruncus, Lactococcus, Parabacteroides, Odori-
bacter, Alistipes, Lawsonia, Blautia and Lactonifactor
[15]. The large increase of Akkermansia is actually
responsible for the enrichment of Verrucomicrobia
phylum observed in the metformin-treated group.
In the study of Lee and Ko [11], metformin signifi-
cantly increased the relative abundance of
1363-1950 Copyright � 2018 Wolters Kluwer Health, Inc. All rights rese
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Bacteroidetes and Verrucomicrobia phylums. Met-
formin enriched the Verrucomicrobiaceae family, and
particularly A. muciniphila. Metformin had also pos-
itive effects on the enrichment of the Clostridium
cocleatum genus. Recently, in aged obese mice, the
same authors showed that metformin decreased the
Firmicutes/Bacteroidetes ratio, together with
increased Bacteroides, Butyricimonas, Parabacteroides
genera and the A. muciniphila species [12].
In vitro studies

It has been recently reported that metformin also
directly enhances the growth of A. muciniphila and
Bifidobacterium adolescentis in pure cultures [5

&&

]. In
addition, the incubation of fecal samples from
treatment-naı̈ve patients with metformin, in a
gut simulator, also stimulates the growth of A.
muciniphila, proving the direct metformin–micro-
biota interactions.

To conclude, all these analysis performed in
human and animal models prove that metformin
induces rapid changes in the gut microbiota com-
position and could partially counteract the gut
microbiota alterations observed during T2D or
hyperglycemia. Some specific bacteria seem to be
highly regulated by metformin, such as A. mucini-
phila, since a higher abundance of this bacteria was
found following metformin administration in both
human and animal models. Significantly, the in-
vitro results suggest that metformin could act as a
growth factor for some bacterial species.
EFFECT OF METFORMIN ON KEY
INTESTINAL FUNCTIONS: A LINK WITH
THE GUT MICROBIOTA?

Even if the main effects of metformin are described
in the liver, an increasing number of evidences now
confirm that metformin treatment also affects the
intestine by acting on key processes related to glu-
cose homeostasis (Fig. 1).
Metformin regulates the intestinal glucose
uptake and glucose homeostasis

The emergence of metformin as a regulator of the
gastrointestinal function and its essential role for
glucose homeostasis has been recently reviewed
[16]. Since, the last discoveries in animal models
highlighted a new mechanism responsible for the
decrease in glucose production by metformin linked
to the modification of upper intestinal microbiota
[13

&&

]. The authors showed that metformin restored
the HFD-altered upper intestinal glucose sensing, by
normalizing sodium glucose co-transporter 1
rved. www.co-clinicalnutrition.com 3
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FIGURE 1. Impact of metformin on gut function linked to gut microbiota activity and composition. Human and animal studies
have revealed that metformin is able to modify gut microbiota composition and activity, which impacts several pathways
involved in the improvement of the diabetic phenotype at the intestinal level. Orange arrows indicate direct effect of metformin
on microbiota, blue arrows shows microbiota-mediated physiological effects. Dashed arrows indicate putative effects. For more
details, please refer to the main text.
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expression in rats. This effect was dependent on the
composition of the upper intestinal microbiota.
They show that transplant with the homogenate
from upper small intestinal microbiota contents
from metformin-pretreated donors restored glucose
sensing in HFD recipient rats. In this study, the
increased abundance of Lactobacillus was pointed
out as potentially involved in the restoration of
upper small intestinal glucose sensing [13

&&

]. More-
over, in T2D patients, a short-term administration of
metformin (7 days) inhibited the rate of small intes-
tinal glucose absorption [17

&

], whereas another
study showed that a long-term administration of
metformin (26 weeks) increased two-fold the glu-
cose utilization in the small intestine and three-fold
in the colon [18]. These last studies conclude that
metformin alters the glucose absorption and utiliza-
tion in the small intestine, participating to the
improvement of glucose homeostasis.

Metformin treatment also triggers specific mod-
ifications of the gut microbiota in the large bowel
that can be related to the improvement of glucose
homeostasis. For instance, Lee and Ko [11] showed
that in HFD fed mice treated with metformin, A.
4 www.co-clinicalnutrition.com
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muciniphila was negatively correlated with serum
glucose level, whereas other bacteria such as Clos-
tridium orbiscindens, Blautia producta and Allobacu-
lum sp. strain ID4 were negatively correlated with
the hepatic levels of peroxisome proliferator-acti-
vated receptor alpha and glucose transporter 2. A.
muciniphila is one of the most abundant single spe-
cies in the human intestinal microbiota and a well
known mucin-utilizing specialist inversely associ-
ated with obesity, diabetes and cardiovascular dis-
ease [19]. Several recent studies reported that
metformin significantly increased the abundance
of the Verrumicrobia phylum, due to an enrichment
of the genus Akkermansia, and particularly A. muci-
niphila species in both models of T2D patients and
HFD-induced obesity in mice [5

&&

,9
&

,10,11,14,15].
In this context, several treatment strategies

using A. muciniphila in murine models already show
promising results to counteract the diabetic pheno-
type. Oral administration of A. muciniphila to HFD-
fed mice significantly enhanced glucose tolerance
[15,20]. However, antidiabetic properties of A. muci-
niphila have not yet been shown in humans, due to
difficulties encountered with growth conditions of
Volume 21 � Number 00 � Month 2018
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this bacteria and the difficulty to use living Akker-
mansia as a feasible approach in patients. Plovier
et al. [21] recently addressed this issue by using the
pasteurized A. muciniphila bacteria which showed
increased capacity to reduce fat mass development,
insulin resistance and dyslipidemia versus the live
bacteria in mice. The isolation and the treatment
with a specific membrane protein of Akkermansia –
Amuc1100 – also recapitulates the improvement of
glucose homeostasis in mice, thereby suggesting
that specific components of certain bacteria pro-
moted by the metformin treatment, may play a role
in the improvement of host physiology [21]. The use
of this bacterium, or of its bioactive component,
could also be envisioned as a new strategy for
ameliorating the diabetic phenotype, if proven
in humans.

Fecal microbiota transplantation was also suc-
cessful in reproducing metformin antidiabetic
effect, proving that a substantial part of therapeutic
effect could come from a more global modulation of
the composition or activity of the gut microbiota.
Indeed, transfer of fecal material coming from met-
formin-treated individuals in germ-free mice fed
with HFD improved glucose tolerance of the recipi-
ent mice [5

&&

]. These new findings highlight the
potential of integrate microbiota targeted therapy
in the management of T2D.
Metformin promotes the short-chain fatty
acid-producing bacteria

Metabolites produced by gut microbes may also be
related to the development of T2D and insulin
resistance. Short-chain fatty acid (SCFA) are pro-
duced by anaerobic bacteria from undigestible food,
such as carbohydrates, which are catabolized into
acetate, propionate, butyrate or lactate [22]. These
SCFA have important metabolic functions and are
crucial for intestinal health [23]. In addition to the
reported effects of SCFA in gut health, SCFA exhib-
ited beneficial effects in peripheral tissues such as
adipose tissues, skeletal muscles and liver by con-
trolling substrate metabolism and function, leading
to improvement of insulin sensitivity [23]. A recent
work highlighted that intestinal dysbiosis is associ-
ated with altered SCFA levels in humans [24]. Sig-
nificantly, recent animal study has demonstrated
that butyrate and propionate activate the intestinal
gluconeogenesis, displaying beneficial effects on
glucose signaling and energy homeostasis [25].

In this context, human studies revealed an
increase of both butyrate, propionate and lactate
by metformin in T2D patients [5

&&

,6]. However,
another recent study performed in Nordic T2D
patients fed with an Okinawan-based Nordic diet
1363-1950 Copyright � 2018 Wolters Kluwer Health, Inc. All rights rese
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found contradictory results showing that the use of
metformin did not affect SCFA concentrations [8].
In this study, we cannot ensure that the use of
different diet and the ethnicity may have a possible
influence on this parameter.

To understand the increase of SCFA production
by metformin, a recent review by Montandon and
Jornayvaz [26

&

] summarizes the last studies showing
the contribution of antidiabetic drugs (including
metformin) on the enrichment of SCFA-producing
bacteria. Metformin treatment increased the OTUs
belonging to SCFA-producing bacteria, including
Allobaculum, Bacteroides, Blautia, Butyricoccus, Lacto-
bacillus, Akkermansia and Phascolarctobacterium
genus in rats [10,11,15]. An enrichment of some
bacterial taxa producing SCFA, including for
instance Bacteroides or Butyricimonas genus, was also
found in aged obese mice [12]. In humans with T2D,
metformin also increased the relative abundances of
genus involved in the SCFA production: Akkerman-
sia, Lactobacillus, Bifidobacterium, Prevotella, Mega-
sphaera, Shewanella, Blautia or Butyrivibrio [5

&&

,6,9
&

].
To conclude, the enrichment of the SCFA-pro-

ducing bacteria by metformin could be a mediating
mechanism for inducing beneficial effects on the
host, particularly during metabolic diseases such as
obesity and T2D.
Metformin promotes the mucin-degrading
bacteria

The higher abundance of Akkermansia following
metformin administration – described before –
could be explained by the regulation in the number
of mucin-producing goblet cells in the intestine,
providing more substrate for the growth of A. muci-
niphila. Indeed, Shin et al. [15] demonstrated that
metformin increases the number of goblet cell pop-
ulation in mice, regardless of metabolic profile or
dietary composition. Moreover, the number of gob-
let cells was positively correlated with the abun-
dance of Akkermansia. In addition, expression of
MUC2 and MUC5 genes, two markers for analyzing
mucin levels, significantly increased in HFD-fed
female mice treated with metformin [11]. However,
Bauer et al. [13

&&

] did not find an increase of A.
muciniphila with metformin; this is probably due
to the fact that the analysis was done in the upper
small intestine and A. muciniphila colonized more
cecum and colon.
Metformin enhances the gut-related peptides
secretion

As reviewed by McCreight et al. [3
&

], metformin may
also affect glucose metabolism by increasing
rved. www.co-clinicalnutrition.com 5
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glucagon-like peptide-1 (GLP-1) secretion in both
mouse and human studies. In a clinical intervention
study with T2D patients stopping and restarting the
metformin treatment, it appeared that the metfor-
min withdrawal was associated with a reduction of
active and total GLP-1 in the serum, whereas this
effect was reversed when metformin was restarted
[27]. A similar profile was also found for the con-
centration of circulating peptide tyrosine-tyrosine
(PYY) during metformin treatment but the effects
were less pronounced than those observed for GLP-
1. In addition, the authors found correlations
between the abundances of Firmicutes and Bacter-
oidetes phyla and the levels of serum PYY suggesting
the potent implication of gut bacteria in the regula-
tion of this hormone [27]. Metformin also increased
the level of total GLP-1, in nondiabetic subjects and
metformin-treated diabetic patients, independently
of changes in weight or glycemia [28]. In addition,
both delayed-release metformin and immediate-
release metformin (using different tablets including
or not a proprietary enteric coat) resulted in compa-
rable increases of plasma GLP-1 and PYY concen-
trations, in T2D patients [29]. Bronden et al. [30]
demonstrated that single-dose metformin enhances
bile acid-induced secretion of plasma GLP-1 follow-
ing cholecystokinin-mediated gallbladder emptying
in T2D patients. Moreover, in diabetic rats, intra-
duodenal infusion of metformin lowered blood glu-
cose through a GLP-1 dependent mechanism [31].
This study highlighted the importance of the gut–
brain–liver communication for acute metformin
action, as inhibition of duodenal AMPK suppressed
the hepatic glucose production-lowering effect of
intraduodenal metformin, suggesting that acute
metformin effect is AMPK-dependent and required
the activation of PKA by GLP-1 in duodenal enter-
ocytes [31].

The mechanisms of regulation of GLP-1 secre-
tion by metformin are well discussed in the review of
Bahne et al. [32]. In this review, the authors hypoth-
esized that metformin could probably increase
directly the GLP-1 concentration by increasing its
secretion from L cells, or by reducing its degradation
by dipeptidyl peptidase-4 in the intestinal mucosa
and portal system. One other explanation is that
metformin could indirectly enhance the GLP-1
secretion, via alterations in the bile acid pool or
via modulation of the gut microbiota [32]. This last
point is particularly of interest in the current review.
Indeed, we have discussed above that metformin
increases the production of SCFA by the gut micro-
biota. Propionate, acetate and butyrate have been
shown to act on G protein-coupled receptors, result-
ing in GLP-1 secretion [33]. Thus, the action of
metformin on gut microbiota composition could
6 www.co-clinicalnutrition.com
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explain the regulation of GLP-1 concentration. Sig-
nificantly, one earlier study also demonstrated that
metformin decreased the levels of plasma GIP (glu-
cose-dependent insulinotropic polypeptide) in rats
fed with a high-fat/high-sucrose diet [34]. Elevated
GIP levels are associated with glucose intolerance
and hyperinsulinemia, and the authors found that a
combined action of metformin and oligofructose
maximally attenuates GIP release [34]. These new
findings support that metformin strongly regulates
the intestinal hormones GLP-1, PYY and GIP
involved in the insulin secretion and this mecha-
nism could participate to the glucose-lowering
effects by metformin.
Metformin regulates the bile acids turnover

Bile acids are amphipathic water-soluble steroid-
based molecules well known for their important
lipid-solubilizing role in the assimilation of fat. In
addition to their lipid-solubilizing function, bile
acids are also able to modulate both lipid and glu-
cose metabolism by activating the 7-transmem-
brane bile acid receptor 7-transmembrane bile
acid receptor and the nuclear farnesoid X receptor
farnesoid X receptor [35].

The impact of metformin on the bile acids turn-
over and homeostasis has been well documented
and reviewed [3

&

,32]. Recent work also indicated
that metformin may help to improve glucose metab-
olism by regulating the level of serum total bile acids
in diabetic rats [36]. After 4 months of metformin
treatment, Wu et al. [5

&&

] observed large increases in
plasma bile acid concentrations (total, primary, sec-
ondary and unconjugated), whereas the levels of
bile acids remained unchanged in fecal samples.
The authors showed that 2 months of metformin
increased the abundance of bsh, a gene encoding
bile salt hydrolases enzymes produced by the gut
microbiota. On the contrary, to our knowledge,
there is no study showing correlation between spe-
cific bacteria and the concentration of bile acids
following metformin treatment.
Metformin maintains the integrity of the
intestinal barrier

It has been well established that a high-fat diet alters
the gut microbiota composition, and increases the
plasma concentration of lipopolysaccharide (LPS) in
mice, which contribute to an alteration of intestinal
permeability and a reduced glucose tolerance [37].
Metformin has been shown to limit the HFD-
induced increases in serum LPS level, probably
due to a modification of the gut microbiota compo-
sition [15]. Few time later, another team confirmed
Volume 21 � Number 00 � Month 2018
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that metformin lowered the blood LPS level and
protected gut barrier function in a model of HFD-
induced obesity and insulin resistance in mice [14].
Moreover, the exogenous administration of LPS
blocked the enhancing effects of metformin on
glucose control and insulin signaling. These results
suggest a role of metformin in modulating gut
microbiota and blood LPS level for both enhancing
insulin signaling and reducing glucose level. As also
recently reviewed by two teams, AMPK could play a
role in maintaining the intestinal barrier integrity,
and thus, the metformin-mediated activation of
AMPK could participate to the decrease of LPS leak-
age from the gut [38,39].
CONCLUSION

The discovery of the gut microbiota as a metabolic
partner in the management of T2D led to several
studies investigating whether metformin could tar-
get the gut microbes to mediate its glucose-lowering
effects in the organism. During the last 5 years, a
number of evidences have indicated that metformin
induces rapid changes in gut bacterial composition
and improves intestinal functions. First, metformin
enhances the SCFA production, promotes the activ-
ity of endocrine cells by releasing more GLP-1 and
PYY peptides, regulates the bile acids turnover and
reduces endotoxemia. Second, metformin increased
the relative abundance of some specific bacteria
known to induce beneficial effects in the host, such
as A. muciniphila or Lactobacillus.

Taken together, all these mechanisms could
participate to the glucose-reducing effects of met-
formin. Even if, during several years, the liver was
considered as the main target of metformin action,
the recent knowledge confirmed that gut micro-
biome is also mainly targeted by this drug and
may be potentially the first site of action in the
control of glucose homeostasis by metformin. It is
now widely accepted that gut microbiota plays a
crucial role in the management of T2D development
and future strategies (as metformin administration
coupled with nutritional advices and physical activ-
ity) should focus on the analysis of gut microbiota
modulation to improve the diabetic phenotype.
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