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Université catholique de Louvain, Machine Learning Group- ICTEAM, Place du Levant 3,

B-1348 Louvain-la-Neuve, Belgium
b Molecular Imaging Radiotherapy and Oncology - IREC,
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Abstract. Dimensionality reduction methods aimed at preserving the data topol-
ogy have shown to be suitable for reaching high-quality embedded data. In partic-
ular, those based on divergences such as stochastic neighbour embedding (SNE).
The big advantage of SNE and its variants is that the neighborpreservation is
done by optimizing the similarities in both high- and low-dimensional space. This
work presents a brief review of SNE-based methods. Also, a comparative analysis
of the considered methods is provided, which is done on important aspects such
as algorithm implementation, relationship between methods, and performance.
The aim of this paper is to investigate recent alternatives to SNE as well as to
provide substantial results and discussion to compare them.

Keywords: Dimensionality reduction, divergences, similarity, stochastic neigh-
bor embedding

1 Introduction

For pattern recognition and data mining tasks involving high dimensional data sets,
dimensionality reduction (DR) is a key tool. The aim of DR approaches is to extract
lower dimensional, relevant information from high-dimensional input data, so that the
performance of a pattern recognition system might be improved. As well, the data
visualization will become more intelligible. Among the classical DR approaches, we
may mention principal component analysis (PCA) and classical multidimensional scal-
ing (CMDS), which are respectively based on variance and distance preservation cri-
teria [1]. Nowadays, the focus of DR approaches relies on more developed criteria,
which are aimed at preserving the data topology. In particular, the data topology is in-
volved within the formulation through pairwise similarities between data points. There-
fore, these approaches can be readily understood from a graph-theory point of view
such that the data are represented by a non-directed and weighted graph, in which data
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points represent the nodes, and a non-negative similarity (also affinity) matrix holds the
pairwise edge weights. The pioneer methods incorporating similarities are Laplacian
eigenmaps [2] and locally linear embedding [3], which are spectral approaches. More
recently, given the fact that the rows of the normalized similarity matrix can be seen
as probability distributions, methods based on divergences have emerged. Due to the
probabilistic connotation, the most representative method is so named stochastic neigh-
bour embedding (SNE) [4]. SNE and its variants have shown to be suitable for getting
high-quality embedding data, since they preserve similarities in both low- and high-
dimensional space during the optimization process. As alternatives to SNE, enhanced
versions have been proposed. In [5,6], a mixture of divergences is proposed. Addition-
ally, an improved gradient to speed up the procedure is also introduced in [6]. Another
approach, which consists of simplifying the SNE’s formulation, is introduced in [7].
Such simpler version is founded on the same principle as elastic network [8] and it is
solved by an approximate gradient following the direction of an underlying eigenvalue
problem [9].

In this work, we present a short review of recent alternatives to SNE. A compara-
tive analysis is done regarding some key aspects, namely: algorithm implementation,
performance, and links between methods. For comparison purposes, we also evaluate
a classic technique (CMDS), as well as a spectral approach (Laplacian eigenmaps –
LE). Experiments are carried out over third conventional databases: an artificial spheri-
cal shell, theCOIL-20 image bank [10], and a subset of theMNIST image bank [11].
To quantify the performance of studied methods, an improvedversion of the average
agreement rate is used, as described in [6]. Experimentally, we show the relationship
between the divergence-based methods with the similarity preservation. The grounds
and reasonings provided here may encourage new researches on any of the issues pre-
sented in this work, as well as the conclusions and discussions may facilitate users to
select a method according to the compromise between complexity and performance.

The outline of this paper is as follows: Section 2 explains the studied methods and
discusses in detail algorithm implementation issues and the links between methods.
Experimental results and discussion are shown in Section 3.Finally, Section 4 draws
the final remarks and conclusions.

2 Alternatives to Stochastic Neighbor Embedding

The DR problem is to embeded a high dimensional data matrixY = [yi]1≤i≤N into a
low-dimensional, latent data matrixX = [xi]1≤i≤N , such that the relevant information
is preserved. Denoteyi ∈ R

D andxi ∈ R
d (d < D) as thei-th data point from the high-

and low-dimensional space. To cope with this problem, stochastic neighbor embedding
(SNE) [4] minimizes the information divergence D between two distributionsPn =

[pnm]1≤m≤N andQn = [qnm]1≤m≤N associated with then-th point from observed and
latent data, respectively. Then, using the Kullback-Leibler directed divergence DKL , the
SNE objective function is in the form:

ESNE(X) =
N∑

n=1

DKL (Pn||Qn) =
N∑

n,m=1

pnm log
pnm

qnm
. (1)
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with qnn = 0 andpnn = 0.

Symmetric SNE: A symmetric version of SNE (SSNE) can be achieved by selecting
full normalized affinities which can readily be obtained by slightly expressions in (2). In
this case, rather than a restricted sum, all entries must be summed on the denominator in
order to enforce that all normalized entries sum to 1. This can be done by guaranteeing
that1⊤NQ1N = 1

⊤
NP1N = 1.

t-SNE: SNE-based methods suffer from reaching distorted and overlapped latent space,
when d is smaller than the intrinsic dimension [7]. To cope with this issue, another
variant raised, which is namedt-SNE and consists of selecting theQn as at-distributed
sequence [5].

Jensen-Shanon embeding: In [12], it is proposed a mixture by adding a regularization
parameterβ to balanceprecision andrecall so: (1− β) DKL (Pn||Qn) + βDKL (Qn||Pn).
Similarly, in [6], a novel approach is introduced which mixes the divergences as DβKL =

(1−β) DKL (Pn||Sn)+βDKL (Qn||Sn), whereSn is a distribution following the same mix-
ture rule so thatSn = (1− β)Pn + βQn. This divergence is used in the so-called Jensen-
Shannon embedding (JSE), which aims then to minimizeEJSE=

∑N
n=1 DβKL (Qn||Sn) [6].

Elastic embedding Another alternative to SNE is introduced in [7], which is called
elastic embedding (EE). EE is aimed to optimize:

EEE(X |λ) =
N∑

n,m=1

w+nmd2
nm + λ

N∑

n,m=1

w−nm exp(d2
nm) = E+EE(X) + λE−EE(X). (3)

Briefly put, this method attempts to involve the two objectives that SNE fulfills but
in a simpler way. To this end, which is the key of this method, two graphs are used. Then,
we have two kind of weighting coefficientsw+nm andw−nm being the entries of attractive
W + and repulsiveW − affinity matrices, respectively. Both of them are positive semi-
definite matrices. For simplicity, full graphs affinities are considered:w−nm = ‖yn −ym‖

2

andw+nm = exp(− 1
2δ

2
n/σ

2). From Eq. (3), the gradient ofEEE can be written as:

G(X |λ) = 4X(L+ − λL̃−) = 4XL, (4)

wherew̃−nm = w−nm exp(−d2
nm), wnm = w+nm − λw̃

−
nm, and their corresponding Laplacians

L̃ = D̃ − W̃ andL =D −W . Likewise,L+ is the non-normalized Laplacian and thus
L+ = D+ −W +. In [7], to carry out the search for the suboptimal embedded solution
X, a gradient descent algorithm is used, which is powered via the spectral direction
(SD) proposed in [9].

Following are discussed in detail some implementation issues in Section 2.1 as well
as the links between methods in Section 2.2.
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2.1 Implementation and algorithms

In this section, we discuss about two recent implementations, here called: spectral di-
rection and full gradient.

Implementation via spectral direction: Methods such as EE, SNE and SSNE can be
implemented in a fast fashion via a SD-based gradient descent search [7]. We denote
then-th embedded data point at iterationr asxn[r] = xn[r−1]+α[r]̺n[r]. SD is aimed
at determining the optimal direction̺n[r] by incorporating a partial-Hessian strategy
within the gradient descent heuristic [9]. Then, by design,Hessian is heavily exploited
which is advantageous for subsequent developments since itcan be be computed fast
and has the suitable property to be positive semi-definite. As an intuitive condition,
sought direction must hold thatB[r]̺n[r] = −gn, beinggn the columnn of G(X |λ)
andB[r] any positive semi-definite matrix. SD consists of calculating the gradient of
EEE(X |λ) following the direction of an underlying convex function which arises when
λ = 0. Such a function is in fact the attractive partE+EE (X) = EEE(X |0), whose Hessian
is∇2E+EE (X) = 4L+ being evidently positive semi-definite. As a matter of fact,possible
alternatives for selectingB[r] span from null perplexity tok = N (full graph) which
match respectively with degreeD+ and LaplacianL+ [9].

Moreover, the calculation of stepα[r] is powered by a backtracking line search [13]
following the updating ruleαl[r] = ραl−1[r] for a user-provided constantρ. Gather-
ing the spectral directions in matrixP ∈ Rd×N , per each iteration, output embedded
data can be calculated asX∗

= X + αl[r]P under the convergence criterion given by
EEE(X + αl[r]P)|λ) > EEE(X |λ) + cαl[r] tr (PG(X |λ)), wherec is a small positive
value. Steps for performing EE with backtracking line search are summarized in Algo-
rithm 1. Within this framework, SNE and its variants can be alternatively implemented.
To do so, the cost function of the method to be run should take place in E(X). The
gradient is the same for SNE-like methods, since the suboptimal solution is sough via a
spectral direction.

Also, the calculation of SD is speeded up by using Cholesky decomposition. Namely,
rather than calculating matrix directly withP = −G(X |λ)(B)−1 (which isO(N3D)
when using conventional Gaussian-Jordan elimination), two solve triangular systems in
the formR⊤R vec(P ) = − vec(G) are solved, whereR is the upper triangular matrix
resulting from the Cholesky decomposition ofB ⊗ Id. Latter calculation can be done
in O(N2d) with standard linear algebra routines. In addition, computation ofR needs
to be done only once at first iteration and its complexity isO( 1

3N).
Implementation via a full gradient and Hessian: In [6], the search is done by using

a full gradient calculated over the whole cost function (no approximations are done).
In this case, the search is done viaxn[r] = xn[r − 1] + µn[r]∇E, whereµn[r] is an
adaptive step size dependent on the Hessian. Given the nature of divergences, doing
so can increase the complexity. Even more when using a mixture of divergences (E =
EJSE), calculation of gradient and Hessian may be more expensive. Nonetheless, the
advantage of this implementation is that scaling is considered in both high and low
dimensional space. This provides a more modulated gradientand then a better tracking
of the local structure of data during the optimization process.
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Algorithm 1 SNE via SD

Input: Affinity matrices W + and W
−, Niter, ǫ, λ, X , r = 1

Compute the graph Laplacian L
+

Compute the objective function E(X) (3)
Set δ(X∗,X) ≥ ǫ
while δ(X∗,X) ≥ ǫ do

Calculate the gradient G(X |λ) using Eq. (4)
Calculate spectral direction matrix: P = −G(X |λ)(L+)−1

Backtracking line search for estimating X
∗

Set c, ρ, and α0

Initialize l = 1
while E(X + αP|λ) > E(X |λ) + cαl tr (PG(X |λ)) do
αl = ραl−1

Calculate E(X + αlP|λ)
Increase l by 1

end while

Estimate X
∗ as: X∗

=X + αlP

δ(X∗,X) = ‖X∗ −X‖F
Update X =X

∗

end while

Output: Embedded data X

2.2 Links between methods

Relation between SNE and EE: Eliminating independent terms fromX, Equation (1)
can be expanded as

ESNE(X) =
N∑

n,m=1

pnm‖xn − xm‖
2
+

N∑

n=1

log
∑

n,m

exp(‖xn − xm‖
2). (5)

Hence we can appreciate that by omitting the log operator andadding a homotopy pa-
rameterλ, ESNE becomes the EE’s cost function. Furthermore, EE is a variantof the
elastic network applied to solve the traveling salesman problem as explained in [8].

Relation between SNE and LE: Laplacian Eigenmaps (LE) introduced in [2] is a
popular approach for DR. This approach is spectral and is aimed at minimizing local
distances. The LE’s cost function can be written as

∑N
n,m=1 wnm‖xn − xm‖, whereW =

[wnm]1≤n≤N is the similarity matrix and|| · || stands for Euclidean distance. Alternatively,
we can express LE’s formulation as

ELE(X) = tr(XLX⊤) s. t. XDX⊤
= Id, XD1N = 0d, (6)

whereD = Diag(W1N) is the degree matrix andL is the graph Laplacian matrix
given byL =D −W . LE’s constraints facilitates the solution leading to a generalized
eigenvalue problem. Along this line, the embedded data is then thed smallest vector
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eigenvectors of normalized LaplacianD−1/2LD−1/2. This formulation is also useful
to determine underline data clusters within input data [14]. Recalling Equation (5), it
is noticeable that, doing as in diffusion maps [15] which means using the normalized
affinities so thatpnm = wnm, the right hand side of the Equation is the same as the LE
objective function.

Relation between EE and LE: This relationship is quite similar to that when com-
paring SNE with EE. However, it is worth mentioning that by settingλ = 0, EE does not
reach the same embedding as LE, since the optimization is different. EE’s embedding is
determined through a search and that of LE comes from a spectral decomposition under
orthonormality assumptions.

3 Experiments and results

Following the experiments to compare the DR methods are described. First, the consid-
ered data sets and the methods to be compared are mentioned. Also, the parameter set-
tings to carry out the DR procedure as well as the performancemeasure are described.
Finally, obtained results and discussion are drawn.

Data sets and methods: Experiments are carried out over three conventional data sets.
The first data set is an artificial spherical shell (N = 1500 data points andD = 3). The
second data set is theCOIL-20 image bank [10], which contains 72 gray-level images
representing 20 different objects (N = 1440 data points –20 objects in 72 poses/angles–
with D = 1282). The third data set is a randomly selected subset of theMNIST image
bank [11], which is formed by 6000 gray-level images of each of the 10 digits (N =
1500 data points –150 instances for all 10 digits– andD = 242). Figure 1 depicts
examples of the considered data sets.

−0.5
0

0.5

−0.5

0

0.5

−0.5
0

0.5

(a) Spherical shell (b) COIL-20 (c) MNIST

Fig. 1: The three considered data sets. To carry out the DR procedure, images fromCOIL-20
andMNIST data sets are vectorized.
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Methods to be compared: We consider the SNE-like methods, namely: classical SNE,
SSNE,t-SNE, EE,t-SNE via spectral direction (t-SNE + SD), and JSE. Also, we eval-
uate a representative classical technique, which is a CMDS;and a spectral technique
being LE.

Performance measure and parameter settings: To quantify the performance of studied
methods, the scaled version of the average agreement rateRNX(K) introduced in [6]
is used, which is ranged within the interval [0, 1]. SinceRNX(K) is calculated at each
perplexity value from 2 toN − 1, a numerical indicator of the overall performance can
be obtained by calculating its area under the curve (AUC). EE, t-SNE+SD and SSNE
are implemented via a spectral direction procedure. Meanwhile, SNE,t-SNE and JSE
are implemented via a full gradient scheme. Both SD and full gradient implementations
involve a backtracking line search.

To form the similarity matrices, given a perplexity parameter K, the relative band-
width parameterσn is estimated regarding its distributionPn so that the entropy over
neighbors of such distribution is approximately logK. This is done by a binary search
as explained in [7]. The homotopy parameter for EE is setλ = 100. Regularization
parameterβ for JSE is set to be 1/2. For all methods, input data is embedded into a
2-dimensional space, thend = 2. The number of neighbors is established asK = 30.
The rest of free parameter areǫ = 10−3, c = 0.1,ρ = 0.8, andα0 = 1.

Results and discussion: Overall results forSphere,COIL andMNIST regarding AUC
RNX(K) are respectively shown in Figures 2, 3 and 4. As well, the resultant embedded
spaces reached by each method are depicted.

For all considered databases, SNE-like methods perform a better embedding pre-
serving smaller neighbours (local structure) in comparison the other methods. We can
notice that SNE, SSNE and EE have a similar performance. In this case, SD makes
that SNE and EE behave as a symmetrized version due to the strong assumption done
over the gradient calculation. On the contrary,t-SNE + SD performs a better embed-
ding sincet-distributed probabilities may improve the separation of underline clusters
despite that the gradient is biased to be that of the related,quadratic and symmetric
form. Indeed,t-SNE + SD accomplishes a similarRNX(K) shape and AUC in com-
parison witht-SNE. JSE outperforms the remaining considered methods dueto both
the divergence type, and the identical similarity definition in the high-dimensional and
low-dimensional space.

As another important observation from this work, we notice that the spectral meth-
ods (LE and CMDS), in general, attempt to preserve the globalstructure (larger neigh-
bors). Particularly, CMDS exhibiting a pronounced peak on large neighbors. Then, we
can claim that SNE based methods are better at preserving local structure, meanwhile
those based on spectral analysis preserve the global structure.

4 Conclusions

This work reviews recent dimensionality reduction methodsbased on divergences. In
particular, stochastic neighbor embedding and its improved variants. We provide a short
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(a) RNX(K) for all considered methods. The value of AUC is shown in the

legend besides the method’s name.

(b) CMDS (c) LE (d) SNE (e) SSNE

(f) EE (g) t-SNE + SD (h) t-SNE (i) JSE

Fig. 2: Results forSpherical shell. Results are shown regarding the quality measure
RNX(K). The curves and their AUC (a) for all considered methods aredepicted, as well as the
embedding data (b)-(j).

comparative analysis involving key aspects such as relations between methods, algo-
rithm implementation, and performance. Empirically, we demonstrate that methods us-
ing normalized similarities as probabilities and optimizing divergences reach better em-
bedding by preserving the local structure of data. This is the case of SNE and its vari-
ants, in which the similarities are optimized in both high- and -low dimensional spaces.
Meanwhile, spectral methods like multidimensional scaling and Laplacian eigenmaps
are better at preserving global structure.

Discussion and results given here may facilitate users to choose a method seeking a
good trade-off between performance and complexity.
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