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Abstract. Dimensionality reduction methods aimed at preserving #ia tbpol-
ogy have shown to be suitable for reaching high-quality eddbd data. In partic-
ular, those based on divergences such as stochastic naigiinbedding (SNE).
The big advantage of SNE and its variants is that the neighbeservation is
done by optimizing the similarities in both high- and lowrdinsional space. This
work presents a brief review of SNE-based methods. Alsongenative analysis
of the considered methods is provided, which is done on itapbaspects such
as algorithm implementation, relationship between methadd performance.
The aim of this paper is to investigate recent alternatieeSNE as well as to
provide substantial results and discussion to compare.them

Keywords: Dimensionality reduction, divergences, similarity, $tastic neigh-
bor embedding

1 Introduction

For pattern recognition and data mining tasks involvinghhiimensional data sets,
dimensionality reduction (DR) is a key tool. The aim of DR mgaches is to extract
lower dimensional, relevant information from high-dimiemal input data, so that the
performance of a pattern recognition system might be inguoAs well, the data
visualization will become more intelligible. Among the s&ical DR approaches, we
may mention principal component analysis (PCA) and classiltidimensional scal-
ing (CMDS), which are respectively based on variance aniwii® preservation cri-
teria [1]. Nowadays, the focus of DR approaches relies onendewveloped criteria,
which are aimed at preserving the data topology. In padictihe data topology is in-
volved within the formulation through pairwise similagi between data points. There-
fore, these approaches can be readily understood from &-gina@pry point of view
such that the data are represented by a non-directed antitegigraph, in which data
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points represent the nodes, and a non-negative similatiy @ffinity) matrix holds the
pairwise edge weights. The pioneer methods incorporatdasities are Laplacian
eigenmapsg.]2] and locally linear embeddihg [3], which arecsgal approaches. More
recently, given the fact that the rows of the normalized kgirity matrix can be seen
as probability distributions, methods based on divergeihese emerged. Due to the
probabilistic connotation, the most representative metthgo named stochastic neigh-
bour embedding (SNE) [4]. SNE and its variants have showretsuitable for getting
high-quality embedding data, since they preserve sintigarin both low- and high-
dimensional space during the optimization process. Asredteves to SNE, enhanced
versions have been proposed.[lii]5, 6], a mixture of divergeis proposed. Addition-
ally, an improved gradient to speed up the procedure is atsoduced in[[6]. Another
approach, which consists of simplifying the SNE’s formidat is introduced in[[7].
Such simpler version is founded on the same principle asielestwork [8] and it is
solved by an approximate gradient following the directibaw underlying eigenvalue
problem [9].

In this work, we present a short review of recent alternatteeSNE. A compara-
tive analysis is done regarding some key aspects, hamelgritdm implementation,
performance, and links between methods. For comparisquopas, we also evaluate
a classic technique (CMDS), as well as a spectral approaapldtian eigenmaps —
LE). Experiments are carried out over third conventiongtases: an artificial spheri-
cal shell, theCO L- 20 image bankl[10], and a subset of thidl ST image bank([11].
To quantify the performance of studied methods, an imprasdion of the average
agreement rate is used, as described in [6]. Experimentedlyshow the relationship
between the divergence-based methods with the similarégguvation. The grounds
and reasonings provided here may encourage new researchey of the issues pre-
sented in this work, as well as the conclusions and discassitay facilitate users to
select a method according to the compromise between coitypéed performance.

The outline of this paper is as follows: Sectldn 2 explairsstudied methods and
discusses in detail algorithm implementation issues aerdittks between methods.
Experimental results and discussion are shown in Sellicinally, Sectio ¥ draws
the final remarks and conclusions.

2 Alternativesto Stochastic Neighbor Embedding

The DR problem is to embeded a high dimensional data mafrix [y;]i<i<n into a
low-dimensional, latent data matriX = [xi]1<i<n, SuUch that the relevant information
is preserved. Denotg € RP andx; € RY (d < D) as thei-th data point from the high-
and low-dimensional space. To cope with this problem, stetib neighbor embedding
(SNE) [4] minimizes the information divergence D betweem tlistributionsP, =
[Prmlicm<n @Nd Qn = [Onm]1<men @SSOciated with the-th point from observed and
latent data, respectively. Then, using the Kullback-Leiblirected divergencedp, the
SNE objective function is in the form:

N N
Esne(X) = Z Dk (FnllQn) = Z Prmlog Pom 1)
n=1

nm=1 qnm
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Definingdnm = llyn — ymll? anddny, = ||z, — zml|?, distributionsP, andQ, can be
chosen as generalized, normalized nonsymmetric affinitigse form

exp(-38%m/0) exp(—3dan/x3)

Prm = s and Onm = )
> exp(—%éﬁm /o-ﬁ) > exp(—%dﬁm /nﬁ)

n=ny n#my

(@)

with g,n = 0 andpp, = 0.

Symmetric SNE: A symmetric version of SNE (SSNE) can be achieved by selgctin
full normalized affinities which can readily be obtained bglstly expressionsir{2). In
this case, rather than a restricted sum, all entries mustroen®d on the denominator in
order to enforce that all normalized entries sum to 1. Thisteadone by guaranteeing
that1]Q1y = 1] P1y = 1.

t-SNE: SNE-based methods suffer from reaching distorted andaweed latent space,
whend is smaller than the intrinsic dimensionl [7]. To cope withstigsue, another
variant raised, which is nameé&SNE and consists of selecting thk, as at-distributed
sequence [5].

Jensen-Shanon embeding: In [12], it is proposed a mixture by adding a regularization
parametep to balanceprecision andrecall so: (1- ) Dk (PnllQn) + B Dk (Qnl| Pr).
Similarly, in [6], a novel approach is introduced which maxbe divergences a{p =
(1-) DkL (PllSh) +8 Dk (Qnl|Sh), whereS,, is a distribution following the same mix-
ture rule so thab, = (1 - B) P, + BQn. This divergence is used in the so-called Jensen-
Shannon embedding (JSE), which aims then to minir&ize = Zr’}'zl DﬁL (QnllSw) [6].

Elastic embedding Another alternative to SNE is introduced inl [7], which isledl
elastic embedding (EE). EE is aimed to optimize:

N N
Eee(X11) = )| WinGim+ 4 > Won@XPl) = Eze(X) + AEce(X).  (3)
nm=1 nm=1
Briefly put, this method attempts to involve the two objeesithat SNE fulfills but

in a simpler way. To this end, which is the key of this methaah, graphs are used. Then,
we have two kind of weighting coefficienig,, andwj,,, being the entries of attractive
W™ and repulsiva¥V ™ affinity matrices, respectively. Both of them are positieens
definite matrices. For simplicity, full graphs affinitiesaronsideredyy,, = [lyn — ymll?
andw,, = exp(-362/0?). From Eq.[[8), the gradient dee can be written as:

G(X|1) =4X(L* - L") = 4X L, (4)

whereW,,,, = Wy, expd2,), Wom = W, — AW,,,,, and their corresponding Laplacians
L=D-W andL = D-W. Likewise,L" is the non-normalized Laplacian and thus
L* = D* - W+, In[7], to carry out the search for the suboptimal embedddation
X, a gradient descent algorithm is used, which is poweredhégaspectral direction
(SD) proposed in [9].

Following are discussed in detail some implementatiorgs$u Sectio 2]1 as well
as the links between methods in Secfiod 2.2.
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2.1 Implementation and algorithms

In this section, we discuss about two recent implementatibare called: spectral di-
rection and full gradient.

Implementation via spectral direction: Methods such as EE, SNE and SSNE can be
implemented in a fast fashion via a SD-based gradient deseanchl[[7]. We denote
then-th embedded data point at iteratioasxn[r] = xn[r — 1]+ a[r] gn[r]- SD is aimed
at determining the optimal directiagn[r] by incorporating a partial-Hessian strategy
within the gradient descent heuristic¢ [9]. Then, by deskd@ssian is heavily exploited
which is advantageous for subsequent developments sigea ibe be computed fast
and has the suitable property to be positive semi-definitead intuitive condition,
sought direction must hold thd@[r]en[r] = —gn, beinggn, the columnn of G(X|1)
and BJ[r] any positive semi-definite matrix. SD consists of caldalgthe gradient of
Eee(X 1) following the direction of an underlying convex functiorhigh arises when
A = 0. Suchafunction s in fact the attractive paf. (X) = Egg(X10), whose Hessian
is V2ZE£-(X) = 4L* being evidently positive semi-definite. As a matter of facissible
alternatives for selectind3[r] span from null perplexity t&k = N (full graph) which
match respectively with degrda* and Laplaciarl.” [9].

Moreover, the calculation of stegjr] is powered by a backtracking line searchl[13]
following the updating ruley[r] = pai-1[r] for a user-provided constapt Gather-
ing the spectral directions in matri® € RN, per each iteration, output embedded
data can be calculated &* = X + o|[r]P under the convergence criterion given by
Eee(X + ai[r]P)I1) > Eege(X]A) + cay[r] tr (PG(X|A)), wherec is a small positive
value. Steps for performing EE with backtracking line shaae summarized in Algo-
rithm[dl. Within this framework, SNE and its variants can lematively implemented.
To do so, the cost function of the method to be run should td&eepn E(X). The
gradient is the same for SNE-like methods, since the sulapsolution is sough via a
spectral direction.

Also, the calculation of SD is speeded up by using Choleskgaigosition. Namely,
rather than calculating matrix directly witR = —G(X|2)(B)™* (which is O(N3D)
when using conventional Gaussian-Jordan eliminatiorg swlve triangular systems in
the formR™ Rvec(P) = — vec(G) are solved, wherd is the upper triangular matrix
resulting from the Cholesky decomposition Bf® I4. Latter calculation can be done
in O(N?d) with standard linear algebra routines. In addition, cotapan of R needs
to be done only once at first iteration and its complexit@@ N).

Implementation via a full gradient and Hessian: In [6], the search is done by using
a full gradient calculated over the whole cost function (ppraximations are done).
In this case, the search is done wig[r] = xq[r — 1] + un[r]VE, whereu,[r] is an
adaptive step size dependent on the Hessian. Given theenaitaiivergences, doing
so can increase the complexity. Even more when using a reixtudivergencest =
E;sp), calculation of gradient and Hessian may be more expenbivaetheless, the
advantage of this implementation is that scaling is comsidién both high and low
dimensional space. This provides a more modulated gradiehthen a better tracking
of the local structure of data during the optimization pgxe
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Algorithm 1 SNE via SD

Input: Affinity matrices W* and W7, Nier, €, 4, X, 1 =1
Compute the graph Laplacian L*
Compute the objective function E(X) (3)
Set 6(X*, X) > €
while §(X*, X) > ¢ do
Calculate the gradient G(X|A) using Eq. ()
Calculate spectral direction matrix: P = —~G(X|A)(L*)™*

Backtracking line search for estimating X*

Set ¢, p, and ag

Initialize | =1

while E(X + aPl1) > E(X|1) + ¢ tr (PG(X|2)) do
@ = pay
Calculate E(X + oyP|1)
Increase | by 1

end while

Estimate X" as: X" =X + P
5(X*, X) = X" - X
Update X = X~

end while

Output: Embedded data X

2.2 Linksbetween methods

Relation between SNE and EE: Eliminating independent terms froX, Equation[(1)
can be expanded as

N N
Esve(X) = . Pomllzn — zml® + > log > expllan — zall?). (5)
1 n=1

nm= n#m

Hence we can appreciate that by omitting the log operatomaléhg a homotopy pa-
rameterd, Esne becomes the EE’s cost function. Furthermore, EE is a vadhtite
elastic network applied to solve the traveling salesmablpro as explained if_[8].

Relation between SNE and LE: Laplacian Eigenmaps (LE) introduced [ [2] is a
popular approach for DR. This approach is spectral and ig@iat minimizing local
distances. The LE’s cost function can be Writterﬁé}glzl Whml|Zn — Zml|, whereW =
[Wnm]1<n<n IS the similarity matrix and - || stands for Euclidean distance. Alternatively,
we can express LE’s formulation as

Ee(X)= t(XLX")s.t. XDX" =15, XD1y=0g (6)

whereD = Diag(W'1y) is the degree matrix anfl is the graph Laplacian matrix
given byL = D — W. LE’s constraints facilitates the solution leading to agyafized
eigenvalue problem. Along this line, the embedded datadr thed smallest vector
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eigenvectors of normalized Laplacidd~Y/?L D2, This formulation is also useful

to determine underline data clusters within input data.[R8calling Equatior[{5), it

is noticeable that, doing as in diffusion mafpsi[15] which measing the normalized
affinities so thatpnm = wnym, the right hand side of the Equation is the same as the LE
objective function.

Relation between EE and LE: This relationship is quite similar to that when com-
paring SNE with EE. However, it is worth mentioning that bitisgy 1 = 0, EE does not
reach the same embedding as LE, since the optimizatiorféselift. EE's embedding is
determined through a search and that of LE comes from a sppdettomposition under
orthonormality assumptions.

3 Experimentsand results

Following the experiments to compare the DR methods arerithest First, the consid-
ered data sets and the methods to be compared are mentidsedth® parameter set-
tings to carry out the DR procedure as well as the performarezsure are described.
Finally, obtained results and discussion are drawn.

Data sets and methods. Experiments are carried out over three conventional dasa se
The first data set is an artificial spherical shé&ll£ 1500 data points an@ = 3). The
second data set is ti@Z0 L- 20 image bank[10], which contains 72 gray-level images
representing 20 different objectd & 1440 data points —20 objects in 72 poses/angles—
with D = 128). The third data set is a randomly selected subset okMieST image
bank [11], which is formed by 6000 gray-level images of eatthe 10 digits N =
1500 data points —150 instances for all 10 digits— &nd= 24°). Figure[1 depicts
examples of the considered data sets.

NS AW DN — O
VRV -2 E—0Q
VAN LAnL£fhtd~0C

KA R N R T
DN U= N NQ
v\ fOatwN—CO
sBNNEFHTWOB—O
DAoL wNN0
Do PsouLPr—N
[ X J

oY odlERPRo—

05
(@) spherical shell

—~

:
%

Fig. 1. The three considered data sets. To carry out the DR proceiduages fromCO L- 20
andWNI ST data sets are vectorized.
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Methods to be compared: We consider the SNE-like methods, namely: classical SNE,
SSNE, t-SNE, EE t-SNE via spectral directiontSNE + SD), and JSE. Also, we eval-
uate a representative classical technique, which is a CMID8;a spectral technique
being LE.

Performance measure and parameter settings. To quantify the performance of studied
methods, the scaled version of the average agreemenRga{&) introduced in [[6]

is used, which is ranged within the interval Q. SinceR\x(K) is calculated at each
perplexity value from 2 toN — 1, a numerical indicator of the overall performance can
be obtained by calculating its area under the curve (AUC).tEENE+SD and SSNE
are implemented via a spectral direction procedure. MedeWwBNE,t-SNE and JSE
are implemented via a full gradient scheme. Both SD and faliigent implementations
involve a backtracking line search.

To form the similarity matrices, given a perplexity paraeré€, the relative band-
width parametetr, is estimated regarding its distributid®, so that the entropy over
neighbors of such distribution is approximately KgThis is done by a binary search
as explained in[]7]. The homotopy parameter for EE isAset 100. Regularization
parametep for JSE is set to be/P. For all methods, input data is embedded into a
2-dimensional space, theh= 2. The number of neighbors is establishedkas 30.
The rest of free parameter are= 1073, ¢ = 0.1,p = 0.8, andap = 1.

Resultsand discussion: Overall results foSpher e, CO L andMNI ST regarding AUC
Rux(K) are respectively shown in Figure’2, 3 amd 4. As well, thaltast embedded
spaces reached by each method are depicted.

For all considered databases, SNE-like methods perfornitartembedding pre-
serving smaller neighbours (local structure) in comparig® other methods. We can
notice that SNE, SSNE and EE have a similar performance.i$ncése, SD makes
that SNE and EE behave as a symmetrized version due to thgy stesumption done
over the gradient calculation. On the contrar@NE + SD performs a better embed-
ding sincet-distributed probabilities may improve the separation derline clusters
despite that the gradient is biased to be that of the relagealiratic and symmetric
form. Indeed t-SNE + SD accomplishes a simil&yx(K) shape and AUC in com-
parison witht-SNE. JSE outperforms the remaining considered methodsadheth
the divergence type, and the identical similarity defimitio the high-dimensional and
low-dimensional space.

As another important observation from this work, we notlea the spectral meth-
ods (LE and CMDS), in general, attempt to preserve the glstioatture (larger neigh-
bors). Particularly, CMDS exhibiting a pronounced peakamyé¢ neighbors. Then, we
can claim that SNE based methods are better at preserviabdtvacture, meanwhile
those based on spectral analysis preserve the globalgteuct

4 Conclusions

This work reviews recent dimensionality reduction methbdsed on divergences. In
particular, stochastic neighbor embedding and its impteagiants. We provide a short
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(2) Rux(K) for all considered methods. The value of AUC is shown in the
legend besides the method’s name.

(b) CMDS (c) LE (d) sNE (e) ssNE

(f) ee (9) t-SNE + SD (h) t-sNE (i) Jse

Fig.2: Results forSpheri cal shel|l. Results are shown regarding the quality measure

Rux(K). The curves and their AUC (a) for all considered methodsdaygicted, as well as the
embedding data (b)-(j).

comparative analysis involving key aspects such as rektietween methods, algo-
rithm implementation, and performance. Empirically, wendastrate that methods us-
ing normalized similarities as probabilities and optimgdivergences reach better em-
bedding by preserving the local structure of data. Thiséscdise of SNE and its vari-
ants, in which the similarities are optimized in both highdalow dimensional spaces.
Meanwhile, spectral methods like multidimensional sa@atmd Laplacian eigenmaps
are better at preserving global structure.

Discussion and results given here may facilitate usersaosha method seeking a
good trade-off between performance and complexity.

References

1. Ingwer Borg.Modern multidimensional scaling: Theory and applications. Springer, 2005.

2. Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps domensionality reduction and
data representatiofNeural computation, 15(6):1373-1396, 2003.



10.

11.

Review of dimensionality reduction methods based on SNE

00xz0i0ts

) T

R
o)
R
Q

(2) Rux(K) for all considered methods. The value of AUC is shown in the
legend besides the method’s name.

(b) cmps (c) L (&) SNE .(e) SSNE

Id . & e
,;/\\ )
e 1% )
(f) ee (9) t-SNE + SD (h) t-sNE (i) Jse

Fig. 3: Results and obtained embedding dataG@6r L- 20.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensignediuction by locally linear
embedding.Science, 290(5500):2323-2326, 2000.

Geoffrey E Hinton and Sam T Roweis. Stochastic neighbdresiding. InAdvances in
neural information processing systems, pages 833-840, 2002.

Laurens Van der Maaten and Geoffrey Hinton. Visualiziaggdusing t-sne.Journal of
Machine Learning Research, 9(2579-2605):85, 2008.

John A Lee, Emilie Renard, Guillaume Bernard, Pierre Diipand Michel Verleysen. Type
1 and 2 mixtures of kullback-leibler divergences as costfions in dimensionality reduc-
tion based on similarity preservatioNeurocomputing, 2013.

. Miguel A Carreira-Perpinan. The elastic embedding igym for dimensionality reduction.

In ICML, volume 10, pages 167-174, 2010.

. Richard Durbin, Richard Szeliski, and Alan Yuille. An &rsas of the elastic net approach

to the traveling salesman probleikeural Computation, 1(3):348-358, 1989.

. Max Vladymyrov and Migueh. Carreira-Perpifian. Partial-hessian strategiesdst earn-

ing of nonlinear embedding€oRR, abs/1206.4646, 2012.

Sammeer A Nene, Shree K Nayar, and Hiroshi Murase. Cotuotiject image library
(coil-20). Dept. Comput. ci., Columbia Univ., New York.[Online] http://maw. cs. columbia.
edu/CAVE/coil-20. html, 62, 1996.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrickriéaf Gradient-based learning
applied to document recognitioRroceedings of the IEEE, 86(11):2278-2324, 1998.



10 Diego H. Peluffo-Ordofiez, J. A. Lee and Michel Verlayse

60

[0l
y

9
<

100Ryy(K)
)
Q
=0
T

b

NN NN
100 NW~]]
7
7
£ g\
h U
o
B

oiioiitnck

00rxeiode

IOy 00

"

22,

2l
+
)]
o

[NV
-

10° 10°

b
e}
b
Q.

K
(2) Rux(K) for all considered methods. The value of AUC is shown in the
legend besides the method’s name.

(b) cmps (c) LE | (d) sNE (e) ;SNE

(f) ee (;cj) t-SNE + SD (h) ‘t—SNE (i) Jse

Fig.4: Results and obtained embedding dataNiit ST.

12. Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helem#éiand Samuel Kaski. Informa-
tion retrieval perspective to nonlinear dimensionalitgiuetion for data visualizationThe
Journal of Machine Learning Research, 11:451-490, 2010.

13. Jorge Nocedal and S Wright. Numerical optimizationjesein operations research and
financial engineeringSpringer, New York, 2006.

14. Stella X Yu and Jianbo Shi. Multiclass spectral clusigriln Computer Vision, 2003. Pro-
ceedings. Ninth |EEE International Conference on, pages 313-319. IEEE, 2003.

15. Amit Singer and H-T Wu. Vector diffusion maps and the eawtion Laplacian Communi-
cations on Pure and Applied Mathematics, 65(8):1067-1144, 2012.



	Lecture Notes in Computer Science
	Introduction
	Alternatives to Stochastic Neighbor Embedding
	Implementation and algorithms
	Links between methods

	Experiments and results
	Conclusions


