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Castellanos-Domı́nguez4
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Abstract: The aim of this paper is to propose a new generalized formulation for feature extraction based on distances
from a feature relevance point of view. This is done within anunsupervised framework. To do so, it is first
outlined the formal concept of feature relevance. Then, a novel feature extraction approach is introduced. Such
an approach employs the M-norm as a distance measure. It is demonstrated that under some conditions, this
method can readily explain literature methods. As another contribution of this paper, we propose an elegant
feature ranking approach for feature selection followed from the spectral analysis of the data variability. Also,
we provide a weighted PCA scheme revealing the relationshipbetween feature extraction and feature selection.
To assess the behavior of the studied methods within a pattern recognition system, a clustering stage is carried
out. Normalized mutual information is used to quantify the quality of resultant clusters. Proposed methods
reach comparable results with respect to literature methods.

1 Introduction

Feature extraction and selection methods are
mostly aimed at obtaining a new representation space
by reducing the dimension of input data following
a certain criterion. The former transforms the in-
put data into a lower dimensional data. The latter
chooses variables from input data keeping those that
best fulfill a selection criterion. Both methods are of-
ten associated to data mining tasks of classification
or clustering (Cai et al., 2010). Then, they provide a
lower dimensionality space while preserving the rel-
evant discriminatory information. Among the feature
extraction methods, those based on linear transforma-
tion - specially principal component analysis (PCA)
- are probably the most popular. Even though many
new complex methods for dimensionality reduction
and data representation have been recently introduced
(Lee and Verleysen, 2007), PCA and its variants still
remain appealing and suitable techniques due to their
non-parametric nature, and easiness for both imple-

mentation and outcome interpretation. For instance,
some remarkable applications are change detection
(Kuncheva and Faithfull, 2012), image segmentation
(Zhang et al., 2010), and biomedical signal classifi-
cation (Rodrı́guez-Sotelo et al., 2012). Also, PCA
is very versatile allowing for weighted versions –
WPCA (Wolf and Bileschi, 2005) and kernel exten-
sions – KPCA (Liu Fan and Tong, 2012). Some recent
approaches have been focused on new aspects of in-
terest such as sparsity (Journée et al., 2010) and rank
robustness (Candès et al., 2011).

This work outlines a formal definition of feature
relevance within a distance-based framework. Fol-
lowing from this definition, a generalized feature
extraction approach is introduced. Such an approach
transforms linearly the data by taking advantage
of the spectral information of a quadratic form
in terms of the data matrix. Here, the relevance
concept is referred to ranking features regarding a
specific optimality criterion aiming to determine
either a subset of features or establish how much



each feature contributes to optimizing such cri-
terion. In practice, optimality criterion is set for
improving the performance of a pattern recognition
system. The method proposed here is a generalized
distance-based feature extraction approach (GDFE),
which employs the M-norm as a distance measure
(Rassias, 1997). It is demonstrated that under some
conditions, this method naturally yields conventional
Euclidean-distance-based approaches (Principal
Component Analysis - PCA) as well as a quadratic
formulation (Q − α method (Wolf and Bileschi,
2005)). Also, as an important contribution of this
paper, a relevance ranking approach based on the
covariance matrix spectrum is presented. In addition,
this work describes an approach to combine feature
extraction with feature selection to yield improved
weighted appraches (Weighted PCA - WPCA).

This paper is organized as follows: Section 2 out-
lines the basics of the definition of relevance based on
distances. Section 3 introduces the generalized frame-
work and a novel feature selection approach. Also, it
shows the links with other methods. Finally, experi-
mental results and conclusions are presented in Sec-
tions 4 and 5, respectively.

2 Definition of feature relevance

According to a specific criterion, relevance analy-
sis (RA) distinguishes those features that best repre-
sent determined input data and/or most contribute to
effectively discriminate among the disjoint data sub-
sets into the whole input data set. Such features are
namedrelevant features. Thus, RA also recognizes
features whose representation or discrimination ca-
pability is lower, namedirrelevant features; as well
as those having repeated information (redundant fea-
tures). In general, relevant variables are determined
as those having the maximal ranking values. In the
following it is outlined the formal definition of rele-
vance and how it can be estimated by a distance based
approach. Let us consider a data matrixXXX ∈ R

N×d

comprisingN data points or samples described by ad-
dimensional feature set such thatXXX = [xxx⊤1 , . . . ,xxx

⊤
N ]
⊤=

[ξξξ1, . . . ,ξξξd], whereξξξℓ ∈ R
N is the columnℓ of data

matrix representing theℓ-th feature, andxxxi is the row
i standing for thei-th data point. Then, for each one of
the features a relevance functiong can be defined as
follows: g : RN×d×R

N → R
+ (XXX,ξξξℓ) 7→ g(XXX,ξξξℓ),

such that the value ofg(XXX,ξℓ) increases when the rel-
evance ofℓ-th variable is greater, otherwise it should
decrease. Notice that functiong matches each vari-
ableξξξℓ with an unique non-negative valueg(XXX,ξξξℓ),

here called relevance or ranking value. Theℓ-th rel-
evance value has a significant meaning to determine
if the corresponding feature is relevant for either rep-
resentation or classification purposes. To qualifyg
as a relevance function, once a proper criterion is
established, the following axioms must be satisfied
(Sepúlveda-Cano et al., 2011):

• Nonnegativity, i.e. g(XXX,ξξξℓ)≥ 0, ∀ℓ ∈ [1,d].

• Nullity, the functiong(XXX,ξξξℓ) is zero if the feature
ξξξℓ is not relevant at all.

• Non-redundancy, ifξξξℓ = aξξξl +b111d, wherea,b∈
R, ∀ℓ 6= l , and 111d is ad-dimensional all ones vec-
tor, then|g(XXX,ξξξℓ)−g(XXX,ξξξl )| → 0.

Here, a relevance analysis via a dissimilarity-
based cost function is presented. Suppose that a low-
rank representation̂XXX ∈ R

N×d of data matrixXXX is
known, such that rank(X̂XX) = p being p < d. Note
that this assumption is applicable when the number
of samples is less than that of features (N < d) andXXX
is a full-rank matrix (rank(XXX) = d). Matrix X̂XX must
be formed in such a way that the effect of the most
relevant features is captured while some dissimilarity
measuref betweenXXX andX̂XX is minimized.

3 Feature extraction and selection

Assume the feature or data matrixXXX being
centered, that is to say with zero mean regard-
ing its columns. This can be readily done by
XXX ← XXX − (1/N)111N111⊤NXXX. Then, we can extract
features by means of a linear combination with a
d-dimensional base arranged in a rotation matrix pro-
jection matrixVVV ∈ R

d×d, such thatVVV = [vvv1, . . . ,vvvd]
andvvvℓ ∈R

d represents theℓ-th column. To guarantee
the linear independency of column vectors, matrix
VVV is assumed to be orthonormal; which implies that
||vvvℓ||2 = 1 for all ℓ, as well asvvv⊤ℓ vvvk = 0 for ℓ 6= k.
Accordingly, projected data matrixYYY ∈ R

N×d can be
calculated as:YYY = XXXVVV.

Dimensionality reduction over the new repre-
sentation space: Generally, the projection is per-
formed over a lower dimensional space, which means
that data are projected with a low-rank representation
of rotation matrixV̂VV ∈Rd×p beingp< d. Therefore, a
truncated projected data matrixŶYY∈RN×p can be writ-
ten as:ŶYY = XXXV̂VV. Likewise, a lower-rank data matrix
X̂XX ∈ R

N×d can be obtained by reconstructing the data
matrix usingV̂VV instead of the whole orthonormal base.

Then, we can also write that̂XXX = ŶYYV̂VV
⊤
= XXXV̂VVV̂VV

⊤
. As



mentioned above, to quantify how accuratelyX̂XX rep-
resentXXX, a distance-based error function d(XXX, X̂XX) is
used.

3.1 Generalized-distance-based feature
extraction (GDFE)

To quantify the dissimilarity betweenXXX and X̂XX, we
propose a generalized M-inner norm regarding to
any positive semi-definite matrixΩΩΩ ∈ R

N×N noted as
d(XXX, X̂XX) = ||XXX− X̂XX||2ΩΩΩ. For easiness, a squared ver-
sion is considered. Then, aiming to determine the best
truncated representation, we can pose the following
optimization problem:

min
V̂VV
||XXX− X̂XX||2ΩΩΩ s. t. V̂VV

⊤
V̂VV = III p, (1)

whereIII p denotes ap-dimensional identity matrix.
Theorem 3.1. (Optimal low-rank representation) A
feasible optimal solution of the problem

min
V̂VV
‖XXX− X̂XX‖2ΩΩΩ s. t. V̂VV

⊤
V̂VV = III p

is selectinĝVVV as the p largest eigenvectors of XXX⊤ΩΩΩXXX.

Proof 3.1. From the inner product definition and ap-
plying some trace properties, we can write a dual for-
mulation as

max
V̂VV

tr(V̂VV
⊤

XXX⊤ΩΩΩXXXV̂VV) s. t. V̂VV
⊤

V̂VV = III p. (2)

Previous quadratic formulation can be readily
solved by an eigenvector decomposition.

Low-dimension parameterp can be set by a ex-
plained variance criterion so as to capture then%
of explained variance. Let̂λλλ be the normalized
eigenvalues vector of matrixXXX⊤ΩΩΩXXX such that̂λℓ =
λℓ/∑d

ℓ=1 λℓ. Then, valuep is chosen as that satisfying

the condition∑p
ℓ=1 λ̂ℓ ≈ n/100.

According to the previous statements, feature ex-
traction can be done by a linear projectionYYY = XXXVVV
whereVVV are the eigenvectors ofXXX⊤ΩΩΩXXX. Due that
VVV arises from a maximization problem, its column
vectors must be arranged in a decreasing order re-
garding the eigenvaluesλλλ, so if VVV = [vvv1, . . . ,vvvd],
λλλ = [λ1, . . . ,λd] andλℓ corresponds tovvvℓ, thenλ1 ≥
λ2≥ ·· · ≥ λd. Likewise, the dimensionality reduction
process over the projected space is carried out with
ŶYY = XXXV̂VV whereV̂VV is formed by the firstp columns of
VVV.

Euclidean norm-based Approach: Assuming
the particular caseΩΩΩ = IIIn, the original problem ex-
pressed in (1) is reduced to be:

min
V̂VV
||XXX− X̂XX||22 s. t. V̂VV

⊤
V̂VV = III p,

where|| · ||2 represents the Euclidean norm. In fact,
whenΩΩΩ = IIIN, term||XXX− X̂XX||2ΩΩΩ becomes

||XXX− X̂XX||2IIIN
= tr

(
(XXX− X̂XX)⊤(XXX− X̂XX)

)
= ||XXX− X̂XX||22.

Then, the dual problem can be written as

max̂VVV tr(V̂VV
⊤

XXX⊤XXXV̂VV) V̂VV
⊤

V̂VV = III p. Then, the

feature extraction can be done byŶYY = XXXV̂VV whereV̂VV
are the eigenvectors ofXXX⊤XXX (like in conventional
principal component analysis – PCA).

Quadratic problem regarding the outer product:
Another particular case arises whenΩΩΩ = XXXXXX⊤. Be-
cause of the given conditions that affinity matrix must
satisfy,ΩΩΩ can be chosen as the outer product between
variables (inner product between data points, as well)
so thatΩΩΩ = XXXXXX⊤. In this case,ΩΩΩ as can be seen as
a polynomial kernel. By replacingΩΩΩ in equation (2),
we have:

tr(V̂VV
⊤

XXX⊤XXXXXX⊤XXXV̂VV) = tr(QQQ⊤ΩΩΩΩΩΩQQQ) =
p

∑
ℓ=1

λ2
ℓ , (3)

whereQQQ∈R
N×p is an arbitrary orthonormal matrix.

3.2 Feature selection

Feature selection is aimed to determine a subset
of features whose relevance value is greater than
the remaining features. This is done according to a
certain criterion, in this case the dissimilarity cost
function established in (1).

PCA-based relevance analysis:To introduce the
following theorem, we consider as a cost function the
dissimilarity ||XXX− X̂XX||22 and establish as a goal deter-
mining how much each variableξξξℓ contributes to min-
imize such cost function.

Theorem 3.2. (Ranking vector) Let ΛΛΛ =
Diag(λ1, . . . ,λd) and VVV = [vvv1, . . . ,vvvd] the eigen-
decomposition of XXX⊤XXX. The ranking of how much
contribute each dimension of XXX to minimize‖XXX− X̂XX‖22
when considering a p–dimensional orthonormal base
can be calculated as:

ηηη =
p

∑
ℓ=1

λℓvvvℓ ◦ vvvℓ, (4)

being◦ the Hadamard productηηη = [η1, . . . ,ηd]
⊤ and

ηℓ the rank value forξξξℓ.
Proof 3.2. Let us consider the singular value decom-
position

XXX =UUUSSSV
⊤
=

d

∑
ℓ=1

sℓuuuℓvvv
⊤
ℓ , (5)



and ξξξℓ ∈ R
N be theℓ-th column of XXX. Then,V =

[vvv1 · · ·vvvd] ∈ R
d×d are the eigenvectors of XXX⊤XXX as

well as UUU = [uuu1 · · ·uuuN] ∈ R
N×N are the eigenvectors

of XXXXXX⊤. Matrix SSS∈ R
N×d is formed by the singu-

lar values{s1, . . . ,sd}. Eigenvectors must be normal-
ized in such a way that‖uuui‖ = 1 and ‖vvvℓ‖ = 1 for
all ℓ ∈ {1, . . . ,d} and i∈ {1, . . . ,N} in order to guar-
antee that the base becomes orthonormal. Consider
any vectorξξξℓ and its lower-rank representation̂ξξξℓ,
which can be expressed as a linear combinations as

follows: ξξξℓ = ∑d
i=1ciℓuuui and ξ̂ξξℓ = ∑p

i=1ciℓuuui , where
ciℓ is the i-th coefficient associated toℓ-th column and

p< d<N. Afterwards, since‖ξξξℓ− ξ̂ξξℓ‖22=∑d
i=p+1c2

iℓ,

and ‖ξξξℓ‖22 = ∑d
ℓ=1c2

iℓ = ‖ξξξℓ − ξ̂ξξℓ‖22 +∑p
i=1c2

iℓ, mini-

mizing‖ξξξℓ− ξ̂ξξℓ‖22 is the same as maximizing∑p
i=1c2

ℓt .
Then, recalling equation(5), we have that

tr(V̂VV
⊤

ΩΩΩV̂VV) =
p

∑
i=1

s2
i tr(vvvivvv

⊤
i ) =

p

∑
i=1

λivvv
⊤
i vvvi .

Thus, we can infer that the contribution ofξξξℓ to

either maximize the quadratic formtr(ÛUU
⊤

ΩΩΩÛUU) or
minimize‖XXX − X̂XX‖22 is given byηℓ = ∑p

i=1s2
i vℓi2 =

∑p
i=1 λiv2

ℓi , where vℓi is the entryℓ of vector vvvi . Fi-
nally, gathering all the d dimensions in vectorηηη, the
ranking vector becomes

ηηη =
p

∑
ℓ=1

λℓvvvℓ ◦ vvvℓ. (6)

Since the first principal components are to capture
the most explained variance,η can be approximated
by η̂ηη = λ1vvv1 ◦ vvv1, whereλ1 is the largest eigenvalue.

Quadratic formulation for feature selection:
Recalling section 3.1 and redefiningΩΩΩ as ΩΩΩααα =

∑d
ℓ=1 αααℓξξξℓξξξ

⊤
ℓ =XXX diag(ααα)XXX⊤, arises another interest-

ing approach. This method is the so-calledQ− α
(Wolf and Bileschi, 2005). In order to satisfy the
conditions given by equation (3), it is necessary that
tr(ΩΩΩαααΩΩΩααα) = ∑d

ℓ=1λ2
ℓ , and thereforeααα must be unit:

||ααα||22 = ααα⊤ααα = 1. Then,Q−α objective function
can be written as:

max
QQQ, ααα

tr(QQQ⊤ΩΩΩαααΩΩΩαααQQQ) =
d

∑
ℓ=1

λ2
ℓ s. t.QQQ⊤QQQ= III p. (7)

The weighting vectorααα and the orthonormal ma-
trix QQQ are determined at the maximal point of the op-
timization problem. The objective function can also
be rewriting as the following quadratic form:

max
ααα

ααα⊤GGGααα s. t. ααα⊤ααα = 1,

where GGG ∈ R
d×d is a matrix with entries

Gkℓ = (ξξξk ξξξ⊤ℓ ) ξξξk QQQ QQQ⊤ ξξξ⊤ℓ , for k, ℓ ∈ {1, . . . ,d}.

Since matrixGGG is obtained from an arbitrary or-
thonormal transformation, it is necessary to apply
an iterative method to tune the matrixQQQ and the
weighting vectorααα. As a consequence, the previous
equation becomes the objective function to be used
in the unsupervised version ofQ− α as described
in (Wolf and Bileschi, 2005). The time calculation
when computing the vectorααα can be reduced just
to one iteration with no significant decrease of
accuracy (Wolf and Bileschi, 2005). To this end, the
feature relevance may be preserved optimizing the
d original variables or the firstp variables. Indeed,
maximizing tr(QQQ⊤ΩΩΩαααΩΩΩαααQQQ) is equivalent to maxi-
mize tr(ΩΩΩαααΩΩΩααα) = tr(XXX Diag(ααα)XXX⊤XXX diag(ααα)XXX⊤).
Since this expression is bilinear regardingααα, the
objective function can be re-written asααα⊤HHHααα, where
Hkℓ = tr(xxx⊤k xxxkxxx⊤ℓ xxxℓ) = xxxkxxx⊤ℓ tr(xxx⊤k xxxℓ) = (xxxkxxx⊤ℓ )

2.
Accordingly, it can be inferred that the approximate
vector of relevancêααα is the eigenvector correspond-
ing to the largest eigenvalue ofHHH = (XXX⊤XXX)◦ (XXX⊤XXX).

3.3 Combining feature extraction and
selection

Feature extraction can be enhanced using the rele-
vance vectors as weighting factors as described in
(Wolf and Bileschi, 2005). For instance, according
to the above discussed, weighting vector can be cho-
sen as the ranking or relevance vectors, namelyηηη,
η̂ηη, ααα and α̂αα. Let www ∈ R

d a weighting vector, then
the weighting matrixWWW ∈ R

d×d is WWW = Diag(www).
Therefore, feature can be extracted by the modified
projection: ŶYY = XXXWWWV̂VV. To keep the the same spec-
tral properties, we should ensureWWW to be orthonormal
(WWW2 = IIId). By normalizing weighting vector in such a
way that||www||2 = 1, matrixWWW becomes orthonormal.
In other words, we can write the functional of prob-

lem stated in (2) as tr(ṼVV
⊤

WWW⊤XXX⊤XXXWWWṼVV) = ∑p
i=1 λi ,

whenΩΩΩ = III p.

Therefore, if assuming a weighted data matrix
X̃XX ∈ R

N×d such that̃XXX = XXXWWW, matrixṼVV corresponds

to the firstp eigenvectors of̃XXX
⊤

X̃XX arranged decreas-
ingly regarding the corresponding eigenvalues. In
conclusion, relevance vector can be used to extract
features within a weighted PCA (WPCA) framework.
From another point of view, considering the rotated
eigenvectorŝVVV =WWWṼVV, the projection can be done by
YYY = XXXWWWV̂VV. Doing so, the weighted principal compo-
nents can be calculated directly from the eigen-space
of the original data.



4 Results and discussion

For experiments, we use some numeric data sets
from the UCI data repository (Bache and Lichman,
2013) as shown in Table 1. To test how the studied
methods behave within a pattern recognition system,
the representation spaces reached by each method are
clustered by a standard grouping algorithm. Namely,
K-means with centers initialized randomly and set-
ting the number of clusters as that of classesc from
each database. Clustering performance is assessed by
a normalized-mutual-information-based index (NMI)
as described in (Strehl and Ghosh, 2002), which is
bounded within the interval[0,1], reaching 1 when
input cluster/class assignments are identical. Here,
NMI is applied to compare the original class labels
with each resulting cluster assignment. The cluster-
ing procedure is iterated 20 times for every represen-
tation spaces resulting from the studied methods as
well as the row data, and then mean and standard de-
viation values of NMI are collected. Likewise, the
explained variance parameter is set to ben= 95% for
all the feature extraction methods. The same percent-
age is used to choose the relevance features byQ−α,
so that features contributing to the 95% of the area
under the curve ofα plotting are picked, once it is
squared and decreasingly ordered. To performQ−α,
we use the power embedded algorithm as (Wolf and
Bileschi, 2005)setting the maximum number of iter-
ations to 4. In (Wolf and Bileschi, 2005), author
demonstrate that 4 iterations are enough to reach con-
vergence. Tables 1 and 2 show respectively the per-
formance reached by the feature extraction and se-
lection methods. For the sake of shorthand notation,
approach selecting variables using theorem 3.2 is de-
noted asrelPCA, as well as the quadratic formula-
tion asQ−α and its approximated version asQ−α
App. Likewise, approaches extracting features by the
WPCA scheme are named so: whenwww= 111d asPCA,
www= ηηη asWPCA(ηηη), www= ααα asWPCA(ααα), andwww= α̂αα
asWPCA(α̂αα). Proposed approach GDFE is applied by
settingΩi j = exp(−0.5(xxxi−xxx j)/σ2), whereσ is cho-
sen as the maximum one among the 10% of the min-
imum Euclidean distances between data points from
XXX. Term p stands for either the number of relevant
features or the lower dimension parameter.

From the results, it can be noticed that either ex-
tracting or selecting features regarding the analysis of
variability are able to improve the clustering perfor-
mance. Since the clustering method is a simple one
(clusters are naturally formed by a notion of similar-
ity given by the Euclidean distance), the performance
quality can be mostly attributed to the resultant rep-
resentation space accomplished by the feature extrac-

tion/selection methods. The reference values for com-
paratively analyzing the considered methods are in the
third and fifth columns from Table 1 wherein the val-
ues of dimensionsd and NMI of the original input
data are respectively shown. That said, the perfor-
mance of feature selection methods should not only
be measured by NMI but also by taking into con-
sideration the number of selected featuresp. Those
databases having at some extent classes linearly sep-
arability reach higher NMI, for instance,Iris and
Twonorm. Nonetheless, feature selection may out-
perform other procedures when more more complex
data are analyzed (less compactness in this case). It
is worth mentioning that this occurs when the intrin-
sic data information is separable and concentrated in
some dimensions (the relevant ones). PCA-based rel-
evance approach (relPCA) outperforms conventional
PCA and shows comparable results withQ−α. Then,
we can claim that variability measured directly from
the spectrum of a generalized covariance matrix might
provide suitable information to achieve new represen-
tation spaces when clusters are somewhat compact.

Regarding proposed GDFE, it is noticeable that
this approach outperforms the remaining considered
methods reaching better performance -or at least the
same as that reached when using the row data- while
using a low dimensional representation. Indeed, when
choosingΩΩΩ as any similarity matrix, not only the
symmetric positive condition is fulfilled but an addi-
tional interesting property is also reached. Notice that
the quadratic termXXX⊤ΩΩΩXXX yields a projection matrix
V̂VV involving simultaneously the variance (which can
be seen as a global measure), and similarities captur-
ing localized information. Then, a more flexible and
versatile data projection is reached, which is able to
deal with slightly complex data while fulfilled a cer-
tain variance or compactness criterion.

5 Conclusions and future work

This work presents a formal definition of feature
relevance within an unsupervised framework based
on distances. This framework yields a novel gener-
alized feature extraction problem that linearly trans-
forms data keeping improved components that most
contribute to the variance, while analyzing simultane-
ously the local data information through similarities.

The generalized formulation allows to explain
other approaches such as PCA andQ−α. Also, based
on the spectrum of a generalized covariance matrix,
a new approach to estimate the feature relevance is
introduced. We explain how to link feature extrac-
tion and feature selection, as well as, how to lead new



# Data base Row data relPCA QQQ−−−ααα QQQ−−−ααα App.
NMI N d c NMI p NMI p NMI p

1 Iris 0.73±0.07 150 4 3 0.71±0.05 2 0.57±0.06 1 0.58±0.04 1
2 80x 0.64±0.06 45 8 3 0.65±0.06 6 0.38±0.07 5 0.38±0.07 5
3 Malaysia 0.38±0.01 291 8 20 0.47±0.02 4 0.57±0.01 1 0.57±0.01 1
4 Breast 0.75±0.00 683 9 2 0.75±0.00 7 0.77±0.00 6 0.77±0.00 6
5 Chromo 0.41±0.01 1143 8 24 0.42±0.01 6 0.43±0.01 5 0.42±0.01 5
6 Satellite 0.56±0.06 6435 36 6 0.57±0.05 32 0.61±0.02 5 0.60±0.02 5
7 Soybean1 0.68±0.03 266 35 15 0.69±0.02 18 0.65±0.02 15 0.65±0.01 15
8 Twonorm 0.85±0.00 7400 20 2 0.85±0.00 18 0.81±0.00 18 0.81±0.00 18

Table 1: Feature selection results. NotationN, d andc denotes the number of data points, the number of dimensions and the
number of class, respectively. Termp is the number of relevant features.

# PCA WPCA(ηηη) GDFE WPCA(ααα) WPCA(α̂αα)
NMI p NMI p NMI p NMI p NMI p

1 0.79±0.00 1 0.82±0.02 4 0.85±0.00 1 0.80±0.00 4 0.79±0.00 4
2 0.66±0.06 5 0.72±0.08 3 0.74±0.07 5 0.67±0.06 4 0.67±0.06 4
3 0.42±0.01 1 0.41±0.01 8 0.42±0.01 1 0.46±0.01 2 0.46±0.01 2
4 0.75±0.00 6 0.79±0.00 4 0.75±0.00 4 0.76±0.00 5 0.75±0.00 5
5 0.41±0.01 5 0.45±0.01 3 0.51±0.01 5 0.47±0.01 3 0.47±0.01 3
6 0.58±0.05 5 0.61±0.02 4 0.65±0.05 5 0.62±0.06 5 0.61±0.07 5
7 0.66±0.01 15 0.68±0.01 4 0.75±0.02 15 0.71±0.03 5 0.72±0.02 5
8 0.85±0 18 0.83±0.00 17 0.87±0.00 18 0.86±0.00 18 0.85±0.00 18

Table 2: Feature extraction results. Here,p denotes the number of considered components of the orthonormal base.

WPCA alternatives via relevance analysis.
As a future work, new distances as well as other

similarity matrices are to be explored aiming at the
design of a non-supervised system with optimal rep-
resentation stages.
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