Unsupervised relevance analysis for feature extraction ahselection
A distance-based approach for feature relevance
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Abstract: The aim of this paper is to propose a new generalized formounldor feature extraction based on distances
from a feature relevance point of view. This is done withinuasupervised framework. To do so, it is first
outlined the formal concept of feature relevance. Thenyalfeature extraction approach is introduced. Such
an approach employs the M-norm as a distance measure. Inigretrated that under some conditions, this
method can readily explain literature methods. As anotbatribution of this paper, we propose an elegant
feature ranking approach for feature selection followedfthe spectral analysis of the data variability. Also,
we provide a weighted PCA scheme revealing the relatioristtipeen feature extraction and feature selection.
To assess the behavior of the studied methods within a patteognition system, a clustering stage is carried
out. Normalized mutual information is used to quantify thelity of resultant clusters. Proposed methods
reach comparable results with respect to literature mesthod

1 Introduction mentation and outcome interpretation. For instance,
some remarkable applications are change detection
] ) (Kuncheva and Faithfull, 2012), image segmentation
Feature extraction and selection methods are zhang et al., 2010), and biomedical signal classifi-
mostly aimed at obtaining a new representation spacecation (Rodriguez-Sotelo et al., 2012). Also, PCA
by reducing the dimension of input data following s very versatile allowing for weighted versions —
a certain criterion. The former transforms the in- \wpcA (Wolf and Bileschi, 2005) and kernel exten-
put data into a lower dimensional data. The latter gjons— KPCA (Liu Fan and Tong, 2012). Some recent
chooses variables from input data keeping those thatapproaches have been focused on new aspects of in-

best fulfill a selection criterion. Both methods are of- terest such as sparsity (Journée et al., 2010) and rank
ten associated to data mining tasks of classification yopystness (Candes et al., 2011).

or clustering (Cai et al., 2010). Then, they provide a

lower dimensionality space while preserving the rel- This work outlines a formal definition of feature
evant discriminatory information. Among the feature relevance within a distance-based framework. Fol-
extraction methods, those based on linear transforma-owing from this definition, a generalized feature
tion - specially principal component analysis (PCA) extraction approach is introduced. Such an approach
- are probably the most popular. Even though many transforms linearly the data by taking advantage
new complex methods for dimensionality reduction of the spectral information of a quadratic form
and data representation have been recently introducedn terms of the data matrix. Here, the relevance
(Lee and Verleysen, 2007), PCA and its variants still concept is referred to ranking features regarding a
remain appealing and suitable techniques due to theirspecific optimality criterion aiming to determine
non-parametric nature, and easiness for both imple-either a subset of features or establish how much



each feature contributes to optimizing such cri- here called relevance or ranking value. Thth rel-
terion. In practice, optimality criterion is set for evance value has a significant meaning to determine
improving the performance of a pattern recognition if the corresponding feature is relevant for either rep-
system. The method proposed here is a generalizedesentation or classification purposes. To qualjfy
distance-based feature extraction approach (GDFE),as a relevance function, once a proper criterion is
which employs the M-norm as a distance measure established, the following axioms must be satisfied
(Rassias, 1997). It is demonstrated that under some(Sepulveda-Cano et al., 2011):

conditions, this method naturally yields conventional L

Euclidean-distance-based approaches (Principal * Nonnegativityi.e. g(X,&,) > 0, v¢ € [1,d].
Component Analysis - PCA) as well as a quadratic ® Nullity, the functiong(X, &) is zero if the feature
formulation Q — a method (Wolf and Bileschi, &, is not relevant at all.

2005)). Also, as an important contribution of this 4 Non-redundancy, i€, = a&| +bly, wherea,b €

paper, a relevance ranking approach based on the R v/ -£|, and1y is ad-dimensional all ones vec-
covariance matrix spectrum is presented. In addition,  tor, then|g(X,&,) —g(X,&)| — O.

this work describes an approach to combine feature . .
extraction with feature selection to yield improved Here, a relevance analysis via a dissimilarity-
weighted appraches (Weighted PCA - WPCA). based cost functlonAls presented. Suppose that a low-
rank representatioiX eARNXd of data matrixX is
This paper is organized as follows: Section 2 out- known, such that rarli) = p being p < d. Note
lines the basics of the definition of relevance based onthat this assumption is applicable when the number
distances. Section 3 introduces the generalized frame-Of samples is less than that of featuris<{ d) andX
work and a novel feature selection approach. Also, it is a full-rank matrix (rankX) = d). Matrix X must
shows the links with other methods. Finally, experi- be formed in such a way that the effect of the most
mental results and conclusions are presented in Secfelevant features is captured while some dissimilarity

tions 4 and 5, respectively. measure’ betweerX andX is minimized.
2 Definition of feature relevance 3 Feature extraction and selection
According to a specific criterion, relevance analy- Assume the feature or data matrX being

sis (RA) distinguishes those features that best repre-centered, that is to say with zero mean regard-
sent determined input data and/or most contribute toing its columns. This can be readily done by
effectively discriminate among the disjoint data sub- X « X — (1/N)1y1yX. Then, we can extract
sets into the whole input data set. Such features arefeatures by means of a linear combination with a
namedrelevant features Thus, RA also recognizes d-dimensional base arranged in a rotation matrix pro-
features whose representation or discrimination ca- jection matrixV e R4<9, such thatv = [V1,...,Vqd]
pability is lower, namedrrelevant featuresas well andv, € RY represents thé-th column. To guarantee
as those having repeated informatioedundant fea-  the linear independency of column vectors, matrix
tures. In general, relevant variables are determined V is assumed to be orthonormal; which implies that
as those having the maximal ranking values. In the ||v,||; = 1 for all £, as well asv] v = 0 for £ # k.
following it is outlined the formal definition of rele-  Accordingly, projected data matri € RN*9 can be
vance and how it can be estimated by a distance basegalculated asY = XV.

approach. Let us consider a data maixc RN*d

comprisingN data points or samples described Wa Dimensionality reduction over the new repre-
dimensional feature set such tat= [x; ..., x{]" = sentation space: Generally, the projection is per-
€1,...,&g], where§, € RN is the column/ of data  formed over a lower dimensional space, which means
matrix representing théth feature, and; is the row  that data are projected with a low-rank representation
i standing for the-th data point. Then, foreach one of - ot rotation matri/ € R9*P beingp < d. Therefore, a
the features’? rdeleva’\\lnce functigrcan be defined as truncated projected data mathxe RN*P can be writ-
follor;/vti: Etlt:hR ) IX R X_> R+. (X&) th(xt’;’f)’ . ten as:Y = XV. Likewise, a lower-rank data matrix
such that the value @f(X, &) increases when the rel- X € RN*9 can be obtained by reconstructing the data

evance of/-th variable is greater, otherwise it should ) U
decrease. Notice that functignmatches each vari- MatrixusingV instead of the whole orthonormal base.

able&, with an unique non-negative valugX,§,), Then, we can also write tha = WT = X\7\7T. As



mentioned above, to quantify how accuratglyep- where|| - ||2 represents the Euclidean norm. In fact,

resentX, a distance-based error functio(Nj)A() is whenQ = Iy, term||X—)A(||§2 becomes

used. - - - -
X =X, = tr((X=%)T(X=X)) =X XI5

3.1 Generalized-distance-based feature

. Then, the dual problem can be written as
extraction (GDFE)

max; tr(\7TXTX\7) V'V = I p. Then, the
To quantify the dissimilarity betweeX andX, we  feature extraction can be done ¥y= XV whereV

propose a generalized M-inner norm regarding to &€ the eigenvectors ‘XTX_ (like in conventional
any positive semi-definite matri® € RN*N noted as ~ Principal component analysis — PCA).

d(X,X) = ||X — )A(||§2. For easiness, a squared ver- _ _

sion is considered. Then, aiming to determine the bestQuadratic problem regarding the outer product:

truncated representation, we can pose the following Another particular case arises wh@= XX . Be-

optimization problem: cause of the given conditions that affinity matrix must
- T satisfy,Q can be chosen as the outer product between
in||X —X||2 V V=l 1 i i i
rr\17|n|| —Xllg st =1Ip; @) variables (inner product between data points, as well)

so thatQ = XX . In this caseQ as can be seen as

wherel , denotes g-dimensional identity matrix. a polynomial kernel. By replacin@ in equation (2),

Theorem 3.1. (Optimal low-rank representation) A we have:
feasible optimal solution of the problem . P
S T~ G YT TYT) T _ 2
min||X — x”§2 st VTV =1, tr(V X'XX'XV) = tr(Q'QQQ) = /Zl)\€7 3)
v =
is selecting/ as the p largest eigenvectorsXf RX. whereQ € RN*P is an arbitrary orthonormal matrix.

Proof 3.1. From the inner product definition and ap- 3.2 Feature selection

plying some trace properties, we can write a dual for- L )
Feature selection is aimed to determine a subset

mulation as i
ST T s T of features whose relevance value is greater than
mvax tr(V X QXV) s.t. VV=Ip (2 the remaining features. This is done according to a
Previous quadratic formulation can be readily ?fnrg;gncégggg’h'e% Ezlslcase the dissimilarity cost
solved by an eigenvector decomposition. O (D).

Low-dimension parametgy can be set by a ex-

plained variance criterion so as to capture ti¥é PCA-based relevance analysis:To introduce the

¢ lained . Leh be th lized following theorem, we consider as a cost function the
of explained variance. LeA be the normalize dissimilarity ||X — X||2 and establish as a goal deter-

- T 0N, — o , : .
e|gen(}/alues vector of matriX QX such that\s = mining how much each variablg contributes to min-
A¢/ 3 p—1 M. Then, valugois chosen as that satisfying  jmize such cost function. '

iti p ~ .
the conditiony ;_, A, ~ n/100. Theorem 3.2. (Ranking vector) Let A =
According to the previous statements, feature ex- Diag(A1,...,Aq) and V = [vi,...,vq] the eigen-

traction can be done by a linear project¥n= XV o ;
whereV are the eigenvectors of 'QX. Due that decomp03|t|on o?(ix. .The rank-ln.g .Of how Lm;Ch
contribute each dimension &f & minimize| X — X||5

V arises from a maximization problem, its column when considering a p—dimensional orthonormal base
vectors must be arranged in a decreasing order re- g p
can be calculated as:

garding the eigenvaluek, so if V = [vi,...,Vy], o
A = [A1,...,Ag] andA, corresponds tar, theni; > .
A2 > --- > Aq. Likewise, the dimensionality reduction n= glMW Ve, (4)
process over the projected space is carried out withb _ h q d orod T and
Y = XV whereV is formed by the firsp columns of eingo the Hadamard produdy = [N3,...,n¢] " an
V. n¢ the rank value fog,.

Euclidean norm-based Approach: Assuming Proof 3.2. Let us consider the singular value decom-
the particular cas€ = I, the original problem ex-  position
pressed in (1) is reduced to be:

d
_ T _ T
min|IX - X[ s.t. V' V=1, X=Usv —/;Seumv (5)
\ 4



and &, € RN be the/-th column ofX Then,? =
[Vi---vg] € R99 are the eigenvectors ok XX as
well asW = [u; ---uy] € RN*N are the eigenvectors
of XXT. Matrix Se RN*Y is formed by the singu-
lar values{s,...,s4}. Eigenvectors must be normal-
ized in such a way thafu|| = 1 and ||v¢|| = 1 for
all e {1,...,d}andie {1,...,N} in order to guar-

Since matrixG is obtained from an arbitrary or-
thonormal transformation, it is necessary to apply
an iterative method to tune the matrQ and the
weighting vectora. As a consequence, the previous
equation becomes the objective function to be used
in the unsupervised version @ — a as described

in (Wolf and Bileschi, 2005). The time calculation

antee that the base becomes orthonormal. Considerwhen computing the vectan can be reduced just

any vectorg, and its lower-rank representatiogy,

to one iteration with no significant decrease of

which can be expressed as a linear combinations as accuracy (Wolf and Bileschi, 2005). To this end, the

follows: &, = 59, ciu; and fé =3P, ciu, where
ci¢ is the i-th coefficient associategﬁdh column and
p<d<N. Afterwards, sincé€, —&[[3=3" 1 ¢,
and [|&[13 = 371 ¢ = |18 — &3+ 3.1 ¢, mini-
mizing||&, — &,|3 is the same as maximizirgf’ , c2.
Then, recalling equatiofb), we have that

(V' QV) = is,z tr(viv) = i)\ivﬁvi.

Thus, we can infer that the contribution &f to

either maximize the quadratic fornur(UTQU) or
minimize||X — X |3 is given byn, = yP , $v,?
zip:l)\iv%i, where vy; is the entry/ of vectorvw. Fi-
nally, gathering all the d dimensions in vectgy the
ranking vector becomes

p
n :; )\ngOVg. O
/=1

(6)

Since the first principal components are to capture
the most explained varianceg,can be approximated
by j = A1v10Vy, wherel; is the largest eigenvalue.

Quadratic formulation for feature selection:
Recalling section 3.1 and redefinif@ as Qq =
Z;’:lagf,f{; =X diag(a)XT, arises another interest-
ing approach. This method is the so-cal@d- a
(Wolf and Bileschi, 2005). In order to satisfy the
conditions given by equation (3), it is necessary that
tr(QaQq) = 9,72, and therefora@ must be unit:
|| =aTa = 1. Then,Q— o objective function
can be written as:

d
max tr(Q' QuQuQ) = glxgs. tQ'Q=1, (7)

The weighting vectoa and the orthonormal ma-
trix Q are determined at the maximal point of the op-
timization problem. The objective function can also
be rewriting as the following quadratic form:

maaxaTGa s.t. ala=1,

where G eTRdXd is a_ matrix with entries
G = (§,&)8& QQ" &, , for k/c{1,....d}.

feature relevance may be preserved optimizing the
d original variables or the firsp variables. Indeed,
maximizing tr(QTQunQ) is equivalent to maxi-
mize t(QqQq) = tr(X Diag(a)X "X diaga)X ).
Since this expression is bilinear regarding the
objective function can be re-written as Ha, where

He = 106 X060 X) = X tr(x{ %) = (XX} )
Accordingly, it can be inferred that the approximate
vector of relevanc@ is the eigenvector correspond-
ing to the largest eigenvalue Bf = (X" X) o (X " X).

3.3 Combining feature extraction and
selection

Feature extraction can be enhanced using the rele-
vance vectors as weighting factors as described in
(Wolf and Bileschi, 2005). For instance, according
to the above discussed, weighting vector can be cho-
sen as the ranking or relevance vectors, nanmgly

N, a andd. Letw e RY a weighting vector, then
the weighting matrixdW € R9*9 is W = Diag(w).
Therefore, feature can be extracted by the modified
projection:\? =XWV. To keep the the same spec-
tral properties, we should ensdiéto be orthonormal
(W? = 14). By normalizing weighting vector in such a
way that||w||2 = 1, matrixW becomes orthonormal.

In other words, we can write the functional of prob-
lem stated in (2) as ¢ WX XWV) = 3P\,
whenQ = I,

_ Therefore, if assuming a weighted data matrix
X € RN*9 such thaiX = XW, matrixV corresponds

to the firstp eigenvectors of(T)N( arranged decreas-
ingly regarding the corresponding eigenvalues. In
conclusion, relevance vector can be used to extract
features within a weighted PCA (WPCA) framework.
From another point of view, considering the rotated
eigenvectorg =WV, the projection can be done by

Y = XWV. Doing so, the weighted principal compo-
nents can be calculated directly from the eigen-space
of the original data.



4 Results and discussion tion/selection methods. The reference values for com-
paratively analyzing the considered methods are in the
third and fifth columns from Table 1 wherein the val-

For experiments, we use some numeric data Sets g of dimensionsl and NMI of the original input

from the UEI dat_a repbcl)sitory (Bacheh andhLichm(;;}na data are respectively shown. That said, the perfor-
2013) as shown in Table 1. To test how the studied ahce of feature selection methods should not only
methods behave within a pattern recognition system, po aasured by NMI but also by taking into con-
the representation spaces reached by each method argyearation the number of selected featupesThose

clustered by a standarq grouping algorithm. Namely, databases having at some extent classes linearly sep-
K-means with centers initialized randomly and set- arability reach higher NMI, for instancésis and

ting the number of clusf[ers as that of CI"_"SSéEDm Twonorm Nonetheless, feature selection may out-
each datlaba(\jse. Cluslter]:ng perforrgancg |sdass?sse()j bﬁferform other procedures when more more complex
a normalized-mutual-information-based index (NMI P

. . . data are analyzed (less compactness in this case). It
as described in (Strehl and Ghosh, 2002), which is y ( P )

bounded within the i 1 hing 1 wh is worth mentioning that this occurs when the intrin-
bounded within the intervgl0,1], reaching 1 when o yata information is separable and concentrated in
input cluster/class assignments are identical. Here

. lied h icinal cl label 'some dimensions (the relevant ones). PCA-based rel-
NMhl IS aﬁp 1€ It.o COTnpare the original ¢ ?]SS ? €IS evance approach (relPCA) outperforms conventional
with each resulting cluster assignment. The cluster- oo a and shows comparable results with- o. Then,
ing procedure is iterated 20 times for every represen-

) ; . we can claim that variability measured directly from
tation spaces resulting from the studied methods as

I h d dth d dard d the spectrum of a generalized covariance matrix might
well as the row data, and then mean and standar e'provide suitable information to achieve new represen-
viation values of NMI are collected. Likewise, the

. ) _ o tation spaces when clusters are somewhat compact.
explained variance parameter is set tabe 95% for Regarding proposed GDFE, it is noticeable that
all th_e feature extraction methods. The same percent-y, .o approach outperforms the remaining considered
age is used to choose the relevance featuré&3d-by,

that feat tributing to the 95% of th methods reaching better performance -or at least the
S0 that Teatures contributing to the o OTIN€ aréa same as that reached when using the row data- while
under the curve ofi plotting are picked, once it is

squared and decreasingly ordered. To perfQrma using a low dimensional representation. Indeed, when
. ’ choosingQ as any similarity matrix, not only the
we use the power embedded algorithm as (Wolf and ng y simpanty X y

Bileschi, 2005)setting the maximum number of iter symmetric positive condition is fulfilled but an addi-
. ! . . i lint ti ty is al hed. Notice that
ations to 4. In (Wolf and Bileschi, 2005), author iona’ INTETEsting propery 1s a'so reache otce tha

. . the quadratic ternX " QX vyields a projection matrix
demonstrate that 4 iterations are enough to reach con<;

vergence. Tables 1 and 2 show respectively the per-?)/ involving 5|m|uga?eously the Va(;'af‘c.el (V.‘;.h'Ch catn
formance reached by the feature extraction and se-. € seen as a gioba ”.'easure)’ and simiiarities captur-
lection methods. For the sake of shorthand notation, ng Ioc_ahzed mformaqon._ Then, a more_ﬂex_lble and
approach selecting variables using theorem 3.2 is de_\éerslatl!tehd?tahi)erJectmln IS dretach(at_jl, vahI:‘ciIh c'js able to
noted asrelPCA as well as the quadratic formula- ta?r?vvz:\”riansclgor}::gr%mgc?r)w(esi ?:r\ilrerli(e)nu ned a cer-
tion asQ — a and its approximated version §— o P ’
App. Likewise, approaches extracting features by the
WPCA scheme are named so: wher= 14 asPCA
w=n asWPCAR), w = a asWPCAaq), andw = @ 5 Conclusions and future work
asWPCAQ). Proposed approach GDFE is applied by
settingQ;; = exp(—0.5(X — X;) /0?), wherea is cho- This work presents a formal definition of feature
sen as the maximum one among the 10% of the min- relevance within an unsupervised framework based
imum Euclidean distances between data points from on distances. This framework yields a novel gener-
X. Term p stands for either the number of relevant alized feature extraction problem that linearly trans-
features or the lower dimension parameter. forms data keeping improved components that most
From the results, it can be noticed that either ex- contribute to the variance, while analyzing simultane-
tracting or selecting features regarding the analysis of ously the local data information through similarities.
variability are able to improve the clustering perfor- The generalized formulation allows to explain
mance. Since the clustering method is a simple oneother approaches such as PCA ghda. Also, based
(clusters are naturally formed by a notion of similar- on the spectrum of a generalized covariance matrix,
ity given by the Euclidean distance), the performance a new approach to estimate the feature relevance is
quality can be mostly attributed to the resultant rep- introduced. We explain how to link feature extrac-
resentation space accomplished by the feature extraction and feature selection, as well as, how to lead new



# | Database Row data relPCA Q-a Q—a App.
NMI N JdJec NMI [ p NMI [ p NMI p
1 Iris 0.73:t0.07| 150 | 4 | 3 | 0.71+0.05| 2 | 0.5A40.06| 1 | 0.58:0.04| 1
2 80x 0.64+0.06 | 45 8 | 3 ]065:006] 6 | 0.38:0.07| 5 | 0.38:0.07| 5
3| Malaysia | 0.38t0.01| 291 | 8 | 20| 0.4A40.02| 4 | 0.5A40.01| 1 | 054001 1
4 Breast 0.75+0.00 | 683 | 9 | 2 | 0.75£0.00| 7 | 0.740.00| 6 | 0.740.00| 6
5 Chr ono 0.41+0.01 | 1143| 8 | 24 | 0.42+0.01| 6 | 0.43t0.01| 5 | 0.42+0.01| 5
6 | Satellite | 0.56+0.06 | 6435| 36 | 6 | 0.5A40.05| 32 | 0.61+0.02| 5 | 0.60+0.02| 5
7 | Soybeanl | 0.68t0.03 | 266 | 35| 15| 0.69:0.02 | 18 | 0.65+0.02 | 15 | 0.65+0.01 | 15
8 | Twonorm | 0.85+0.00 | 7400 | 20 | 2 | 0.85:0.00 | 18 | 0.81+0.00 | 18 | 0.81+0.00 | 18

Table 1: Feature selection results. Notathbd andc denotes the number of data points, the number of dimensimhthe
number of class, respectively. Temrs the number of relevant features.

# PCA WPCA(n) GDFE WPCA(a) WPCA(a)
NMI [ P NMI [ p NMI [ p NMI [ p NMI [ P
1|07000| 1 | 0.82£0.02| 4 | 0.85:0.00| 1 | 0.80£0.00| 4 | 0.79£0.00 | 4
21066006 5 | 0.72:0.08| 3 | 0.740.07| 5 | 0.6A0.06 | 4 | 0.6/A0.06 | 4
3]042£001| 1 | 0414001 | 8 | 0.42:001| 1 | 0.46£0.01| 2 | 0.46t0.01| 2
41075000 6 | 0.79+0.00| 4 | 0.75+0.00| 4 | 0.76:0.00 | 5 | 0.75:0.00 | 5
5] 041+001| 5 | 045:001| 3 | 0514001 | 5 | 0.4A40.01| 3 | 0.4A40.01| 3
6 | 0.580.05| 5 | 0.61+0.02 | 4 | 0.65:0.05| 5 | 0.62:0.06 | 5 | 0.61+0.07 | 5
7] 0.66:0.01 | 15| 0.68:0.01 | 4 | 0.75:0.02 | 15 | 0.71+0.03 | 5 | 0.72£0.02 | 5
8 0.85+0 18 | 0.83+0.00 | 17 | 0.8A40.00 | 18 | 0.86:0.00 | 18 | 0.85:0.00 | 18

Table 2: Feature extraction results. Hgoelenotes the number of considered components of the ortmahdase.

WPCA alternatives via relevance analysis.

As a future work, new distances as well as other
similarity matrices are to be explored aiming at the
design of a non-supervised system with optimal rep-
resentation stages.
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