RECENT METHODS FOR DIMENSIONALITY REDUCTION: A BRIEF COMPARATIVE ANALYSIS
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e DR is a key stage for both the design of a pattern recogni- e Notation:
tion system or data visualization. —HD data matrix: Y = [yZ |<i<N, such that y; € R”

e Formally, the goal of DR i1s to embed a high dimensional -LD data matrix: X = [&;]1<;<n, being &; € RY, where d < D
(HD) data matrix into a low-dimensional (LD), latent data —Similarity: W = (wyn)i<n<n, Laplacian: L = D — W D = Diag(W1ly).
matrix. — P, = [pnm|i<m<n and Q. = [@um|i<m<n-.

e Recently, there has been an imcreasing interest in those meth- e Spectral methods:
ods aimed at preserving the data topology. ~LE [Belkin and Niyogi, 2003]: Eip = tr(XLX )s. t. XDX ' =1,

e Among them, Laplacian eigenmaps (LE) and stochastic — A fast LE version can be reached by using only a subset of L locally linear landmark
neighbour embedding (SNE) are the most representative. (LLL) Y c RV such that: Y ~ YZ being Z the projection matrix minimizing

| |Y — Y Z|]? [Vladymyrov and Carreira-Perpinan, 2013].
e Divergence-based methods:

e [n this work, we present a brief comparative among very re- ~SNE [Hinton and Roweis, 2002]: E = é\g Dii(P,||Q,) = Z D 108 Prm

cent methods being alternatives to LE and SNE. n=1 n,m=1 Grim

where D1, denotes the Kullback-Leibler directed divergence.
—Symmetric SNE (SSNE): By symmetrizing P and Q.
—t-SNE [Van der Maaten and Hinton, 2008|: By forcing that @ follows a ¢t-Student

e Comparisons are done mainly on two aspects: algorithm im-
plementation, and complexity.

e Also, relations between methods are depicted. .
| distribution.
e The goal of this work is to provide researches on this field _ Jensen-Shannon embedding (JSE) [Lee et al., 2013]:
with qurlgetdliEUSSIOH jand Cglterla decision to choose a method B — Zflv:l DQL(Qn‘ S,,) where D}’iL — (1= B)Du(P,||S,) + 8 Dir(Q,||S,), and
according to the user’'s needs.
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This work gathers some key aspects to compare dimensionality e Spectral methods, in general, attempt to preserve the global structure.
reduction methods. Namely, relations between them, algorithm e LLL is a good alternative to initialize LE meaning a decreasing of the processing time
implementation, and complexity /processing time. Very recent when (’)(NZd) 4 (f)(lN) + C’)(L3) < (’)(NS).

methods were studied such as elastic embedding, locally linear e SNE-like methods perform a better embedding preserving smaller neighbours (local

structure). We can notice that SNE, SSNE and EE have a similar performance.

e Spectral direction (SD) makes that SNE and :
to strong assumption on the gradient calculation.

landmarks for Laplacian eigenmaps and Jensen-Shanon embed-

ding. Discussion and hints provided here may facilitate users
to chose a method according the trade-off between performance

S2

Y, behave as a symmetrized version due

and complexity.
o t-ONE + 5D yields a better embedding since t-distributed neighborhoods may improve

the separation of underline clusters. JSE outperforms the remaining considered methods
thanks to its symmetric divergence.
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