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Dimensionality reduction (DR)

•DR is a key stage for both the design of a pattern recogni-

tion system or data visualization.

•Formally, the goal of DR is to embed a high dimensional

(HD) data matrix into a low-dimensional (LD), latent data

matrix.

•Recently, there has been an increasing interest in those meth-

ods aimed at preserving the data topology.

•Among them, Laplacian eigenmaps (LE) and stochastic

neighbour embedding (SNE) are the most representative.

Scope of this work

• In this work, we present a brief comparative among very re-

cent methods being alternatives to LE and SNE.

•Comparisons are done mainly on two aspects: algorithm im-

plementation, and complexity.

•Also, relations between methods are depicted.

•The goal of this work is to provide researches on this field

with some discussion and criteria decision to choose a method

according to the user’s needs.

Review of DR methods

•Notation:

–HD data matrix: Y = [yi]1≤i≤N , such that yi ∈ R
D

–LD data matrix: X = [xi]1≤i≤N , being xi ∈ R
d, where d < D

–Similarity: W = [wnm]1≤n≤N , Laplacian: L = D −W , D = Diag(W1N).

–Pn = [pnm]1≤m≤N and Qn = [qnm]1≤m≤N .

•Spectral methods:

–LE [Belkin and Niyogi, 2003]: ELE = tr(XLX⊤)s. t. XDX⊤ = Id.

–A fast LE version can be reached by using only a subset of L locally linear landmark

(LLL) Ỹ ∈ RL×N such that: Y ≈ Ỹ Z, being Z the projection matrix minimizing

||Y − Ỹ Z||2 [Vladymyrov and Carreira-Perpinán, 2013].

•Divergence-based methods:

–SNE [Hinton and Roweis, 2002]: E =
N∑
n=1

DKL(Pn||Qn) =
N∑

n,m=1
pnm log

pnm

qnm
,

where DKL denotes the Kullback-Leibler directed divergence.

–Symmetric SNE (SSNE): By symmetrizing P and Q.

– t-SNE [Van der Maaten and Hinton, 2008]: By forcing that Q follows a t-Student

distribution.

–Jensen-Shannon embedding (JSE) [Lee et al., 2013]:

EJSE =
∑N

n=1D
β
KL(Qn||Sn) where Dβ

KL = (1− β) DKL(Pn||Sn) + β DKL(Qn||Sn), and

Sn = (1− β)Pn + βQn.

Experimental setup

Data set: COIL-20

•DR are tested over the same data

set.

•To quantify the performance, the

scaled average agreement rate

RNX(K) [Lee et al., 2013] is

used. This measure means

the relative position between be-

tween a perfect embedding and a

random one.

•A numerical indicator of the

overall performance is given by

the area under the curve (AUC)

of RNX(K).

Experimental results
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39.8 CMDS
36.1 LE
36.1 LE + LLL
53.1 SNE
52.2 SSNE
49.0 EE
63.3 t-SNE + SD
64.5 t-SNE
65.2 JSE

CMDS LE LE + LLL

SNE SSNE EE

t-SNE + SD t-SNE JSE

Conclusion

This work gathers some key aspects to compare dimensionality

reduction methods. Namely, relations between them, algorithm

implementation, and complexity/processing time. Very recent

methods were studied such as elastic embedding, locally linear

landmarks for Laplacian eigenmaps and Jensen-Shanon embed-

ding. Discussion and hints provided here may facilitate users

to chose a method according the trade-off between performance

and complexity.

Comparative and discussion

•Spectral methods, in general, attempt to preserve the global structure.

•LLL is a good alternative to initialize LE meaning a decreasing of the processing time

when O(N 2d) +O(13N) +O(L3) < O(N 3).

•SNE-like methods perform a better embedding preserving smaller neighbours (local

structure). We can notice that SNE, SSNE and EE have a similar performance.

•Spectral direction (SD) makes that SNE and EE behave as a symmetrized version due

to strong assumption on the gradient calculation.

• t-SNE + SD yields a better embedding since t-distributed neighborhoods may improve

the separation of underline clusters. JSE outperforms the remaining considered methods

thanks to its symmetric divergence.
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