(Generative models as data-driven priors:
how to learn them efficiently”
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Generative priors in inverse problems (2)

1) Learn a generative network Gg

2) Use the generative network in the inverse problem

e.qg. reconstructed signal in the range of the network
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Go
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(coefficients) Reconstructed signal
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(Generative priors in inverse problems

Some examples...

9 Mar 2017

Compressed Sensing using Generative Models

Ashish Bora* Ajil Jalal' Eric Price? Alexandros G. Dimakis®

Abstract

The goal of compressed sensing is to estimate a vector from an underdetermined system of noisy linear measure-
ments, by making use of prior knowledge on the structure of vectors in the relevant domain. For almost all results
in this literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees

LRI 4

similar to
near the ra]
O(klog L
using gene|
can use 5-1

Lasso (Wavelet) Lasso (DCT) Original

DCGAN

Figure 3: Reconstruction results on celebA with m = 500 measurements (of n = 12288 dimensional vector). We
show original images (top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis
(third row), and our algorithm (last row).
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Deep Generative Adversarial Networks for
Compressed Sensing (GANCS) Automates MRI

Morteza Mardani', Enhao Gongl, Joseph Y. Cheng1’2, Shreyas Vasanawala?,

t~ Greg Zaharchuk?, Marcus Alley?, Neil Thakur?, Song Han*, William Dally*,
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Fig. 2: Representative coronal (1st row) and axial (3rd row) images for a test patient retrieved by ZF
(1st), CS-WV (2nd), ¢5-net (3th), ¢1-net (4th), GAN (5th), GANCS (6th), and gold-standard
(7th).
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SUNLayer: Stable denoising with generative networks

Dustin G. Mixon*  Soledad Villar'

Abstract]

It has been experimentally established that deep neural nety
for real world data. It has also been established that such genery
problems like compressed sensing and super resolution. In this
lem of image denoising. We propose a theoretical setting that u
properties of the activation functions will allow signal denoisin|

1 Introduction

Deep neural networks, in particular generative adversarial nety & :

used to produce generative models for real world data that can { §

for natural images (see for instance [Nguyen et al., 2016)). T
efficiently solve classical inverse problems in signal processing
pressed sensing ([Bora et al., 2017]]). The latter numerically de
solve the compressed sensing problem with ten times fewer me}
requires. Follow-up work by [Hand and Voroninski, req

empirical risk minimization) in the compressed sensing task b )

network with random weights and ReL.U activation functions.

Figure 1: Denoising with generative priors
(First line) Digits from the MNIST test set ([LeCun, 1998]]). (Second line) random noise is added to the digits. (Third

line) Denoising of images by shrinkage in wavelet domain ([Donoho and Johnstone, 1994])). (Fourth line) Denoising
by minimizing total variation ([Rudin et al., 1992]). (Fifth line) We train a GAN using the training set of MNIST to
obtain a generative model G. We denoise by finding the closest element in the image of G using stochastic grading
descent.
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Adversarial Regularizers in Inverse Problems

Sebastian Lunz Ozan Oktem Carola-Bibiane Schonlieb
DAMTP Department of Mathematics DAMTP
University of Campsid S — Llociitas Llockaal Lla it e buid
132‘:(;’”:;‘15:235 (a) High noise (b) Low noise
Method PSNR (dB) SSIM Method PSNR (dB) SSIM
MODEL-BASED MODEL-BASED
iﬁ:;;sguﬁg" Filtered Backprojection 14.9 227  Filtered Backprojection 23.3 .604
are one of i Total Variation [18§]] 27.7 .890  Total Variation [[18] 30.0 924
ization fun SUPERVISED SUPERVISED
e, Post-Processing 31.2 936  Post-Processing 33.6 955
j;f:};‘;‘:;‘h. RED [21] 29.9 904 RED [21] 32.8 .947
UNSUPERVISED UNSUPERVISED
Adversarial Reg. (ours) 30.5 927  Adversarial Reg. (ours) 32.5 946

(a) Ground Truth (b) FBP )TV (d) Post-Processing (e) Adversarial Reg.

Figure 2: Reconstruction from simulated CT measurements on the LIDC dataset




(Generative priors in inverse problems

Some examples...

Blind Image Deconvolution using Deep Generative
Priors

Muhammad Asim” , Fahad Shamshad®, and Ali Ahmed

Abstract—This paper proposes a novel approach to regularize
the ill-posed and non-linear blind image deconvolution (blind
deblurring) using deep generative networks as priors. We employ
two separate generative models — one trained to produce
sharp images while the other trained to generate blur kernels
from lower-dimensional parameters. To deblur, we propose an
alternating gradient descent scheme operating in the latent
lower-dimensional space of each of the pretrained generative
models. Our experiments show promising deblurring results on
images even under large blurs, and heavy noise. To address the
shortcomings of generative models such as mode collapse, we
augment our generative priors with classical image priors and
report improved performance on complex image datasets. The
deblurring performance depends on how well the range of the
generator spans the image class. Interestingly, our experiments
show that even an untrained structured (convolutional) generative
networks acts as an image prior in the image deblurring context
allowing us to extend our results to more diverse natural image
datasets.

Index Terms—Blind image deblurring, generative adversarial
networks, variational autoencoders, deep image prior.

I. INTRODUCTION

LIND image deblurring aims to recover a true image

¢ and a blur kernel k£ from blurry and possibly noisy
observation y. For a uniform and spatially invariant blur, it
can be mathematically formulated as

y=1®k+n, )

where ® is a convolution operator and m is an additive -
Gaussian noise. In its full generality, the inverse problem (I]) (¢) Original

is severely ill-posed as many different instances of 7, and & fit
ha Alhcamratinw aeinaa TN I A A e Aawnss ~lh AinAsraniAa Aam

1802.04073v4 [cs.CV] 26 Feb 2019

|AY

Fig. 1: Blind image deblurring using deep generative priors.
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Compressive Learning: principle

Usual machine learning Compressive Learning

R. Gribonval et al.,“Compressive Statistical Learning
with Random Feature Moments,” 2017
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- Compressed representation
* Preserves relevant information
- Constant number of examples x

N can be VERY large (“big data”)!
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Sketching a dataset
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Sketching a dataset

1. Project on m (random) vectors
2. Nonlinear periodic signature function

[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]



Sketching a dataset

1. Project on m (random) vectors

2. Nonlinear periodic signature function
3. Pooling (average)

[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]



Sketching a dataset

1. Project on m (random) vectors

2. Nonlinear periodic signature function
3. Pooling (average)

1 T
Zx = |— » €Y e

445=1

[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]



Compressive Learning: SoA in one slide

“Sketching” “Learnlng
Generalized moments Moment matchlng

Linear sensing Inverse problem

Dataset /\ Sketch Model
r Advantages: w EX|st|ng (unsuperwsed) tasks: \
* One single pass on dataset (parallelizable) e clustering: k-means, subspace
* Harsh compression (ideal for large-scale clustering
datasets) * mixture model estimation: GMM,
* Handy for privacy preservation alpha-stable distributions

\ J

* Principal Component Analysis
* Independent Component Analysis
* Generative networks (this work)

\_ J
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A

>I<

° [ J [ J Q" . .

Empmcal distribution
Dataset K 4 Px
- Main idea: move to the
RN compressed domain!

A 7?9

VA H . « ° .
- & i \ | .. .. |
z Go Po

Generated samples

Latent space Generative network

45



Compressively learning generative networks

A
>|<
g e o o H
. [ B ) ° ° -
Q”‘ [ J [ J
°, % A m
° ° :,. é ZX a 6 C
Emplrlcal distribution Sketching ..
Dataset TPy -
AN .
o Main idea: move to the
RN compressed domain!

Z 0 Sl y m
& B E A(ﬁe):le c™
— —> % .’ Y : Sketching =
U
2 Gy Po \

Generated samples

Latent space Generative network

vke.’-c‘ch of generatéd rsamplés}

1 e ~T ‘ £
L A(Po) = - Z eift Gol=e) |
Zi€Z }

46



Compressively learning generative networks
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Compressively learning generative networks
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Compressively learning generative networks

Proposed approach: match the sketches of real and generated data
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...but where dataset is accessed only once ‘
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Compressively learning generative networks

Proposed approach: match the sketches of real and generated data
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...but where dataset is accessed only once ‘
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Preliminary results
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To conclude: open challenges
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