(Generative models as data-driven priors:
how to learn them efficiently”

Vincent Schellekens & Laurent Jacques

UCLouvain
A
X IIII II | | :... | A ;
e — « o —
A Pz . A v &
a2 — ' o > A(Po)
ol o ’ ‘..)
P. /\PQ -
B UCLouvain _ icteam fn S

v 1

S

Signal of
Interest

Motivation: inverse problems

y — (:D(QL‘*) —|— W Forward model

Measurements

S

Signal of
Interest

Motivation: inverse problems

y — (:D(,’L‘*) —|— W Forward model

Measurements

<

ZU\ — arg min l(fL’, y) —|—)\T(w) Variational formulation
£r

Y

Motivation: inverse problems

y — (:D(,’L‘*) —|— W Forward model

Measurements

Signal of
Interest <

ZB\ — s min l(fL‘, y) -+ AT (ZB) Variational formulation
£L

S

Data-fidelity loss

- Euclidean [(x;y) = ||y — (I’(CB)Hg

Motivation: inverse problems

y — (:D(QL‘*) —|— W Forward model

Measurements

Signal of
Interest <

{U\ — arg min Z(ZB, y) —|—)\T(ZB) Variational formulation

S

Data-fidelity loss) Régularization — prior

- BEuclidean I(;y) = |ly — ®(z)[5| | - Tikhonov

- TV-norm

- Sparsity (in wavelets)

- Sparsity (in dictionary) 7T = || Dx||; §

- Generative priors

Motivation: inverse problems

y — (D(,’L‘*) —|— W Forward model
Signal of

interest < -

Z/B\ — arg min l(a?, y) —|—)\T(w) Variational formulation

Measurements

S

Data-fidelity loss) Regularization — prior

- BEuclidean I(;y) = |ly — ®(z)[5| | - Tikhonov

- TV-norm

- Sparsity (in wavelets)

- Sparsity (in dictionary) 7(X) = ‘DCB 1§
From model-based
to data-driven priors!

Motivation: inverse problems

y — (D(,CL‘*) —|— W Forward model

Measurements

Signal of
Interest <

Z/B\ — al'g min l(w7 y) + AT (m) Variational formulation

S

Data-fidelity loss) Regularization — prior

- BEuclidean I(;y) = |ly — ®(z)[5| | - Tikhonov

- TV-norm

- Sparsity (in wavelets)

- Sparsity (in dictionary) 7) = ||Dx||1 }

From model-based nerative pri‘r- Idé'a: a;pproximte”true

to data-driven pl"iOTS! prior distribution from

learning examples

Generative priors in inverse problems (1)

1) Learn a generative network Gy

Dataset
We have samples (signals)

Empmcal distribution

PX—

, Idea approximate true |

¢ prior distribution from \

learning examples

Generative priors in inverse problems (1)

1) Learn a generative network gg K | Idea: approximate true |
7) o ¢ prior distribution from §
o o o b learning examples
. o o ° ° Tl iar ik it IS
.x‘ o o
. o
Empmcal distribution SEER .
Px = i -"

Dataset
We have samples (signals) from a high-dimensional distribution...

Generative priors in inverse problems (1)

1) Learn a generative network (g g ldea: approximate true |
R ¢ prior distribution from
e o o learning examples
. o ° P PR ST EIo o
9
“~ e °
.
Empirical distribution : ‘W °
. 1
PX — N Z 533%. ..' .
x;, X
Dataset
We have (signals) from a high-dimensional

... and a way to generate “artificial” samples...
Go(z) = p(OL - p(OL-1---p(O2 - p(O1 - 2))))

Latent space (Generative network
Random “noise” 10

Generative priors in inverse problems (1)

1) Learn a generative network gg - ldlems epprosdimae Grue
¢ prior distribution from |
e o o learning examples
. S ° N i s
®
“he o
" °
Empirical distribution "y
coe C—— e ' ?
e
. 1
x; X
Dataset
We have (signals) from a high-dimensional

... and a way to generate “artificial” samples...
Go(z) = p(OL - p(OL-1---p(O2 - p(O1 - 2))))

Point-wise nonlinearity ,

tp

Go

Latent space (Generative network
Random “noise” 11

> |
leaky ReLLU

Generative priors in inverse problems (1)

1) Learn a generative network gg - ldlems epprosdimae Grue
¢ prior distribution from |
e o o learning examples
. S ° N i s
®
“he o
" °
Empirical distribution "y
coe C—— e ' ?
e
. 1
x; X
Dataset
We have (signals) from a high-dimensional

... and a way to generate “artificial” samples...
Go(2) = p(OL - p(OL-1---p(O2-p(O1-2)))) 4 P,

Latent space (GGenerative network Generated samples

Random “noise” 12

Generative priors in inverse problems (1)

1) Learn a generative network Gy s demrreeen, | § ldea: approximate true
7) o e . prior distribution from |
oo of e learning examples
. o O . ~ Pl
.x‘ e o e
) . .
Empirical distribution SR ".’
X oo C—— o o %,

~ 1

Px = — , ; .

*TN ‘ :

Dataset
Goal: mimic sampling from the NN :
data-generating distribution
(implicit manifold learning) —
A 7)9 ‘
~ 1 E
®
- () < 739 pm— F Z 6g9 (zz)
.0 o o . < 2, €7
] ‘.' p
() ® o
o o e R

Latent space (Generative network Generated samples

Random “noise” 13

Generative priors in inverse problems (1)

! Tdea: approximate true |

1) Learn a generative network gg w e, | . gl eppppiosin
7) . ‘e . ¢ prior distribution from
o o o Tee v 3 learning examples
. T) . ~ Pl
* o o ."..
, o .
Empirical distribution SR ".’
A~ 1 :': “‘
Px = — : ; .
N :

Dataset
Goal: mimic sampling from the : ™ ...proxy for... N

.

data-generating distribution ™.,

(implicit manifold learning) _— 5,
A 7)9 :“
~ 1
()

o . Po =~ Z 0Gy (2i) *
.. o) ’ =z z@EZ :
o ‘.' pe :
[o o 0:

e O Y ‘0”

Latent space (Generative network Generated samples

Random “noise” 14

Generative priors in inverse problems (2)

1) Learn a generative network Gg

2) Use the generative network in the inverse problem

15

Generative priors in inverse problems (2)

1) Learn a generative network Gg

2) Use the generative network in the inverse problem

e.qg. reconstructed signal in the range of the network

xr = 0y(z) with z = arg mzin |y — q)(ge(z))H%

Go

Latent space ,
Generative network

(coefficients) Reconstructed signal

16

(Generative priors in inverse problems

Some examples...

9 Mar 2017

Compressed Sensing using Generative Models

Ashish Bora* Ajil Jalal' Eric Price? Alexandros G. Dimakis®

Abstract

The goal of compressed sensing is to estimate a vector from an underdetermined system of noisy linear measure-
ments, by making use of prior knowledge on the structure of vectors in the relevant domain. For almost all results
in this literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees

LRI 4

similar to
near the ra]
O(klog L
using gene|
can use 5-1

Lasso (Wavelet) Lasso (DCT) Original

DCGAN

Figure 3: Reconstruction results on celebA with m = 500 measurements (of n = 12288 dimensional vector). We
show original images (top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis
(third row), and our algorithm (last row).

(Generative priors in inverse problems

Some examples...

Deep Generative Adversarial Networks for
Compressed Sensing (GANCS) Automates MRI

Morteza Mardani', Enhao Gongl, Joseph Y. Cheng1’2, Shreyas Vasanawala?,

t~ Greg Zaharchuk?, Marcus Alley?, Neil Thakur?, Song Han*, William Dally*,
S John M. Pauly', and Lei Xing1’3|‘
@\
>
<
E Magnet
inverse
0 tially tr:
f— compre
> To cope
benefits
L), manifoll
75

mixtire

Fig. 2: Representative coronal (1st row) and axial (3rd row) images for a test patient retrieved by ZF
(1st), CS-WV (2nd), ¢5-net (3th), ¢1-net (4th), GAN (5th), GANCS (6th), and gold-standard
(7th).

(Generative priors in inverse problems

Some examples...

1 [cs.LG] 25 Mar 2018

SUNLayer: Stable denoising with generative networks

Dustin G. Mixon* Soledad Villar'

Abstract]

It has been experimentally established that deep neural nety
for real world data. It has also been established that such genery
problems like compressed sensing and super resolution. In this
lem of image denoising. We propose a theoretical setting that u
properties of the activation functions will allow signal denoisin|

1 Introduction

Deep neural networks, in particular generative adversarial nety & :

used to produce generative models for real world data that can { §

for natural images (see for instance [Nguyen et al., 2016)). T
efficiently solve classical inverse problems in signal processing
pressed sensing ([Bora et al., 2017]]). The latter numerically de
solve the compressed sensing problem with ten times fewer me}
requires. Follow-up work by [Hand and Voroninski, req

empirical risk minimization) in the compressed sensing task b)

network with random weights and ReL.U activation functions.

Figure 1: Denoising with generative priors
(First line) Digits from the MNIST test set ([LeCun, 1998]]). (Second line) random noise is added to the digits. (Third

line) Denoising of images by shrinkage in wavelet domain ([Donoho and Johnstone, 1994])). (Fourth line) Denoising
by minimizing total variation ([Rudin et al., 1992]). (Fifth line) We train a GAN using the training set of MNIST to
obtain a generative model G. We denoise by finding the closest element in the image of G using stochastic grading
descent.

(Generative priors in inverse problems

Some examples...

s.CV] 11 Jan 2019

Adversarial Regularizers in Inverse Problems

Sebastian Lunz Ozan Oktem Carola-Bibiane Schonlieb
DAMTP Department of Mathematics DAMTP
University of Campsid S — Llociitas Llockaal Lla it e buid
132‘:(;’”:;‘15:235 (a) High noise (b) Low noise
Method PSNR (dB) SSIM Method PSNR (dB) SSIM
MODEL-BASED MODEL-BASED
iﬁ:;;sguﬁg" Filtered Backprojection 14.9 227 Filtered Backprojection 23.3 .604
are one of i Total Variation [18§]] 27.7 .890 Total Variation [[18] 30.0 924
ization fun SUPERVISED SUPERVISED
e, Post-Processing 31.2 936 Post-Processing 33.6 955
j;f:};‘;‘:;‘h. RED [21] 29.9 904 RED [21] 32.8 .947
UNSUPERVISED UNSUPERVISED
Adversarial Reg. (ours) 30.5 927 Adversarial Reg. (ours) 32.5 946

(a) Ground Truth (b) FBP)TV (d) Post-Processing (e) Adversarial Reg.

Figure 2: Reconstruction from simulated CT measurements on the LIDC dataset

(Generative priors in inverse problems

Some examples...

Blind Image Deconvolution using Deep Generative
Priors

Muhammad Asim” , Fahad Shamshad®, and Ali Ahmed

Abstract—This paper proposes a novel approach to regularize
the ill-posed and non-linear blind image deconvolution (blind
deblurring) using deep generative networks as priors. We employ
two separate generative models — one trained to produce
sharp images while the other trained to generate blur kernels
from lower-dimensional parameters. To deblur, we propose an
alternating gradient descent scheme operating in the latent
lower-dimensional space of each of the pretrained generative
models. Our experiments show promising deblurring results on
images even under large blurs, and heavy noise. To address the
shortcomings of generative models such as mode collapse, we
augment our generative priors with classical image priors and
report improved performance on complex image datasets. The
deblurring performance depends on how well the range of the
generator spans the image class. Interestingly, our experiments
show that even an untrained structured (convolutional) generative
networks acts as an image prior in the image deblurring context
allowing us to extend our results to more diverse natural image
datasets.

Index Terms—Blind image deblurring, generative adversarial
networks, variational autoencoders, deep image prior.

I. INTRODUCTION

LIND image deblurring aims to recover a true image

¢ and a blur kernel k£ from blurry and possibly noisy
observation y. For a uniform and spatially invariant blur, it
can be mathematically formulated as

y=1®k+n,)

where ® is a convolution operator and m is an additive -
Gaussian noise. In its full generality, the inverse problem (I]) (¢) Original

is severely ill-posed as many different instances of 7, and & fit
ha Alhcamratinw aeinaa TN I A A e Aawnss ~lh AinAsraniAa Aam

1802.04073v4 [cs.CV] 26 Feb 2019

|AY

Fig. 1: Blind image deblurring using deep generative priors.

It’s nice! ...where’s the catch?
A 73 4
How to learn the generative network Gy 9

22

It’s nice! ...where’s the catch?
A 73 A
How to learn the generative network Gy 9

1) Golden standard: Generative Adversarial Networks - - .
0
Learn a second “discriminator” network that classifies real/ /\

fake at the same time as the generator

Reaﬁta\
— Go /

Discriminator

D¢—>L

Generator

23

It’s nice! ...where’s the catch?

A 7/59 A
How to learn the generative network Gy

1) Golden standard: Generative Adversarial Networks

Learn a second “discriminator” network that classifies real/
fake at the same time as the generator

X

Real data\‘

D¢—>L
Z—»ge /

Discriminator
Generator @, Ferenc Huszar
. y ©@fh
Very difficult to train (due to balancing of training discriminator /generator) p TR
min max £(6, ¢)
6 ¢

6669
b Q
bobEFEeEQa

\b GAN equilibrium 1\
bbbI9q A
bb o999
b o999 9®

24 On twitter...

It’s nice! ...where’s the catch?
A 73 A
How to learn the generative network Gy 9

1) Golden standard: Generative Adversarial Networks - - .
0
Learn a second “discriminator” network that classifies real/ /\‘

fake at the same time as the generator

Reaﬁta\
— Go /

Discriminator

Dq§—>£

Generator

Very difficult to train (due to balancing of training discriminator/generator)

min max L0,)

2) Maximum Mean Discrepancy

m@in MMD.,.(Px, Ps)

Easier to train (no balancing)...

25

It’s nice! ...where’s the catch?
A 73 A
How to learn the generative network Gy 9

1) Golden standard: Generative Adversarial Networks - - .
0 .
Learn a second “discriminator” network that classifies real/ /\‘

fake at the same time as the generator

Reaﬁta\
— Go /

Discriminator

Dq§—>£

Generator

Very difficult to train (due to balancing of training discriminator/generator)

min max L0,)

> Z :cz,:nj — 2 Z (x;, Gy (zj + Z (Go(24) g@(z]))

2) Maximum Mean Discrepancy z,€X z,€X z,€Z
wJEX z;€4 z;€4

m@in MMD,.(Px, Ps)

Easier to train (no balancing)...

20

It’s nice! ...where’s the catch?
A 73 A
How to learn the generative network Gy 9

1) Golden standard: Generative Adversarial Networks - - .
0 .
Learn a second “discriminator” network that classifies real/ /\

fake at the same time as the generator

Reaﬁta\
— Go /

Discriminator

Dq§—>£

Generator

Very difficult to train (due to balancing of training discriminator/generator)

méin mq?JX L(é’, ¢) Similarity between samples
> Z wz,wj — 2 Z wz,ge ZJ)+ Z (gg(zi),gg(zj))
2) Maximum Mean Discrepancy z,€X z,€X z,€Z
wJeX szZ z;€Z

m@in MMD.,.(Px, Ps)

Easier to train (no balancing)...

27

It’s nice! ...where’s the catch?
A 73 A
How to learn the generative network Gy 9

1) Golden standard: Generative Adversarial Networks - - .
0 .
Learn a second “discriminator” network that classifies real/ /\‘

fake at the same time as the generator

Reaﬁta\
— Go /

Discriminator

Dq§—>£

Generator

Very difficult to train (due to balancing of training discriminator/generator)

méin mq?JX L((g, ¢) Similarity between samples
> PICIENES: Z (®:,G0(2;)) + > K(Go(2i),Ga(2;))
2) Maximum Mean Discrepancy T xex z,€X z,€Z
wJeX szZ z;€Z

min MMD,(Px, Py)

equivalent to (for later) wr A Z Z
x;,eX z, €L
Easier to trai balancing)...
asier to train (no balancing) With A — T

28

It’s nice! ...where’s the catch?
A 73 4
How to learn the generative network Gy 9

1) Golden standard: Generative Adversarial Networks - - .
0
Learn a second “discriminator” network that classifies real/ /\

fake at the same time as the generator

ReaAl)gata\
— Go /

Discriminator

Dq§—>£

Generator

Very difficult to train (due to balancing of training discriminator/generator)

min max L0,)

2) Maximum Mean Discrepancy

m@in MMD,.(Px, Ps)

equivalent to (for latei;)

Easier to train (no balancing) but quadratic complexity...

29

It’s nice! ...where’s the catch?
A 73 4
How to learn the generative network Gy 9

1) Golden standard: Generative Adversarial Networks N D
0
Learn a second “discriminator” network that classifies real/ ‘/\A

fake at the same time as the generator

ReaAl)gata\‘
[— Go /

Discriminator

D¢—>L

Generator

Very difficult to train (due to balancing of training discriminator/generator)

min max L0,)

> E : wszj

x;, X

2) Maximum Mean Discrepancy
x;cX

m@in MMD,.(Px, Ps)

equivalent to (for latelr"w) 1

Easier to train (no balancing) but quadratic complexity... typpicalyy MEgInEs mgedve |

amounts of data

Compressive Learning to the rescue!

31

Compressive Learning: principle

Usual machine learning

Learning

&
_

Large /V means...

... large
memory &
training time!

Compressive Learning: principle

Usual machine learning Compressive Learning

R. Gribonval et al.,“Compressive Statistical Learning
with Random Feature Moments,” 2017

Learning Y2 "
s . Q® 9
X ﬁ 9 X Cb//)é" s ‘,\,V
¢ = Em Em Em E m " “. ----- [o W M O M M W OEMOEOEmm Y 4 "" ?

m “observations”

m ~ size(f) < Nn

N
>~

v
s,ng|e pass overX . Dataset sketch (summary)

|
¥

e
C

Large /V means... Large /V means...
. large .. constant
memory & memory &

training time! training time!

<1 (({
B (({
1 (({
1 (({

Sketching a dataset

N examples

e —

[] N A

My B

I,i,., a ,I,- n-dimensional
l =] o N

o - l - v

L»:137; c R"

34

Sketching a dataset

N examples

P N examples
P
m =
1 T
X = 7-7-7 S ,I, Dim. reduction IR IR R
E A m B R" s RP
1 = B k’
y, € RY
k»acz- c R" Z

- Compressed representation
* Preserves relevant information

35

Sketching a dataset

N examples

N examples

—N—
—T
O O
H
,-,-,--- ,I, Dim. reduction LR IR
HEE N R"™ & RP
Em" =

L»:137; c R"

36

Lyi c R”

- Compressed representation
* Preserves relevant information
- Constant number of examples x

N can be VERY large (“big data”)!

Sketching a dataset

N examples

e]
I I] =
Ay B3

] L m
I) 7-7 * e 7I’- SketChing ZX — E C
afla a: .
N N - l B -r

k»mi c R"

- Compressed representation
* Preserves relevant information
- Dataset summary = single vector

37 [Gribonval17]

Sketching a dataset

N examples

— -
TTHET J

| .
I7 7-7"'7.7 <X — = c C™
-I- - --
--- l-

k»ac?; c R"

- Compressed representation
* Preserves relevant information
- Dataset summary = single vector

38 [Gribonval17]

Sketching a dataset

gt N TR
||

1. Project on m (random) vectors

i Controls the cluster scale

39

Sketching a dataset

1. Project on m (random) vectors
2. Nonlinear periodic signature function

40

Sketching a dataset

1. Project on m (random) vectors
2. Nonlinear periodic signature function

[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]

Sketching a dataset

1. Project on m (random) vectors

2. Nonlinear periodic signature function
3. Pooling (average)

[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]

Sketching a dataset

1. Project on m (random) vectors

2. Nonlinear periodic signature function
3. Pooling (average)

1 T
Zx = |— » €Y e

445=1

[A. Rahimi, B. Recht, “Random Features for Large-scale Kernel Machines” ,NIPS, 2007]

Compressive Learning: SoA in one slide

“Sketching” “Learnlng
Generalized moments Moment matchlng

Linear sensing Inverse problem

Dataset /\ Sketch Model
r Advantages: w EX|st|ng (unsuperwsed) tasks: \
* One single pass on dataset (parallelizable) e clustering: k-means, subspace
* Harsh compression (ideal for large-scale clustering
datasets) * mixture model estimation: GMM,
* Handy for privacy preservation alpha-stable distributions

\ J

* Principal Component Analysis
* Independent Component Analysis
* Generative networks (this work)

_ J

44

Compressively learning generative networks

A

>I<

° [J [J Q" . .

Empmcal distribution
Dataset K 4 Px
- Main idea: move to the
RN compressed domain!

A 7?9

VA H . « ° .
- & i \ | |
z Go Po

Generated samples

Latent space Generative network

45

Compressively learning generative networks

A
>|<
g e o o H
. [B) ° ° -
Q”‘ [J [J
°, % A m
° ° :,. é ZX a 6 C
Emplrlcal distribution Sketching ..
Dataset TPy -
AN .
o Main idea: move to the
RN compressed domain!

Z 0 Sl y m
& B E A(ﬁe):le c™
— —> % .’ Y : Sketching =
U
2 Gy Po \

Generated samples

Latent space Generative network

vke.’-c‘ch of generatéd rsamplés}

1 e ~T ‘ £
L A(Po) = - Z eift Gol=e) |
Zi€Z }

46

Compressively learning generative networks

|
. | ZXaeCm
m
m
0“y -
: Main idea: move to the
RN compressed domain!
A ’P@
0 e -l
o e _) A()l c Cm
E— -> X .’ Y : Sketching

AS
?h

Go

Latent space Generative network Generated samples

, Sketch of generatéd (samplés}
»i 1 T o |
¢ A(Pe) NG Z 't o(z:) |

zi€Z

47

Compressively learning generative networks

Proposed approach: match the sketches of real and generated data

2

: E Go(z;)
HlelIl <X ; €

48

Compressively learning generative networks

Proposed approach: match the sketches of real and generated data

2

. E Go(z;)
Hleln <X N €

Sampled (Monte Carlo)
estimation to the MMD!

ijA

MY

: 2§
": . 1 SNt AN 1 sy L g :
‘/," min EwNA T E elw xr; E elw g@ (zz) i
£ 9 N N, ;‘
i x,cX zZ, €L ~S

...but where dataset is accessed only once ‘

49

Compressively learning generative networks

Proposed approach: match the sketches of real and generated data

2
1 . T
: 0 .
min ||z x / E !t 9o(zi)
0 N
~ Sampled (Monte Carlo)
S estimation to the MMD!
.0 ?
W;i ~ A Practical learning algorithm
V. 1 c T 1 iwT Go(2:)] " Differentiable by chain rule (feat. backprop) ‘ |
meln EA N ZE:X W T ﬁ ZE:Zelw o0(z; ; :

7 n’ 0P (u 0Gg (2
VoLl(0;zx) =—2- ni’ Dol R !rﬂ ((")EL) ' J?)(a)>] |

u=Gp(2z;)

...but where dataset is accessed only once ‘

50

Preliminary results

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 1

—0.50 ~

1.00 -

0.75 A

0.50 A

0.25 A

0.00 A

—0.25 A

—0.50 A

—0.75 1

—1.00 A

True data (before sketching)
Generat

ed data

. o

True data (before sketching)
+ Generated data

Simple 2d signals...

...it works (in principle)!

True data (before sketching)
Generated data

—-1.00

-0.75

—-0.50

-0.25

0.00

0.25

0.50 0.75 1.00

51

0.2 0.4

0.0 A1

—0.2 1

-0.4 1

—0.6

—0.8 A

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

To conclude: open challenges

A
e O [) -
. [BN) ° ° . -
‘ ° :o ° ,/4 :I m
« o ?, —_— Z X u e C
Emplrlcal distribution Sketching m
=
Dataset =
2
m@m zZx — i @Tge(zZ)
j t ZIEZ)
Sketch size? Batch size? Kernel?
t Py -
® [|

Z 6 s 4
@ s ik
— —> ‘' am . Sketching F
: Go Po

Generated samples

Latent space Generative network

53

