Semi-Linearized Proximal Alternating Minimization for a Discrete Mumford-Shah Model

Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, France

Context

Defi Imag'IN CNRS SIROCCO (2017-2018): Multiphasic flow experiment modeling gas and liquid in a porous medium.

- Goal : classify gas/liquid + accurate estimation of the perimeter.
- Datasize: Image composed with 2.10⁷ pixels. Analysis to be performed on a sequence of images.

Motivation

Defi Infinity CNRS OptMatGeo (2018): vote transfer matrix estimation between two elections

- Goal : clustering the areas with similar transfer matrix (i.e. similar electoral behaviour) + sharp transitions.
- Datasize: $\sim 2.10^7$

Motivation

- Structured data (e.g. images, graphs).
- Difficulty to label data.
- For Physics or societal applications, the truth is not as sharp as clustering but it is closer from regression (smooth behaviour) and possibly sharp transition.
- Huge amount of data.

<u>Goal</u>: Design algorithmic solutions with convergence guarantees to extract piecewise smooth behaviour.

Collaborations

Marion Foare CPE and ENS de Lyon

Laurent Condat CNRS, Gipsa-lab, France & KAUST, Arabie Saoudite

Mumford-Shah

Mumford-Shah (1989)

$$\underset{\mathbf{u},\mathcal{K}}{\text{minimize}} \underbrace{\frac{1}{2} \int_{\Omega} (\mathbf{u} - \mathbf{z})^2 dx dy}_{\text{fidelity}} + \underbrace{\beta \int_{\Omega \setminus \mathcal{K}} |\nabla \mathbf{u}|^2 dx dy}_{\text{smoothness}} + \underbrace{\lambda \mathcal{H}^1(\mathcal{K} \cap \Omega)}_{\text{length}}$$

- Ω : image domain,
- $z \in L^{\infty}(\Omega)$: data,
- $\mathbf{u} \in W^{1,2}(\Omega)$: piecewise smooth approximation of \mathbf{z} , $W^{1,2}(\Omega) = \{ u \in L^2(\Omega) \ \partial u \in L^2(\Omega) \}$ where ∂ weak derivative operator
- K : set of discontinuities,
- \mathcal{H}^1 : Hausdorff measure.

Discrete Mumford-Shah like models

6/33

 $\underset{\mathbf{u},\mathcal{K}}{\text{minimize}} \ \tfrac{1}{2} \int_{\Omega} (\mathbf{u} - \mathbf{z})^2 d\mathbf{x} d\mathbf{y} + \beta \int_{\Omega \setminus \mathcal{K}} |\nabla \mathbf{u}|^2 d\mathbf{x} d\mathbf{y} + \lambda \mathcal{H}^1(\mathcal{K} \cap \Omega)$

• Potts model (1952): [Rudin et al., 1992] [Cai, Steidl, 2013] [Storath, Weinmann, 2014] minimize $\frac{1}{2} \|\mathbf{u} - \mathbf{z}\|_2^2 + \gamma \|D\mathbf{u}\|_0$ • Blake-Zisserman problem (1987): [Strekalovskiy, Cremers, 2014] [Hohm et al., 2015] minimize $\frac{1}{2} \|\mathbf{u} - \mathbf{z}\|_2^2 + \gamma \sum_i \min(|(D\mathbf{u})_i|^p, \alpha^p)$ • Ambrosio-Tortorelli (1990) [Foare et al., 2016] $\underset{\mathbf{u},\mathbf{e}}{\text{minimize}} \ \frac{1}{2} \|\mathbf{u} - \mathbf{z}\|_2^2 + \beta \|(1 - \mathbf{e}) \odot D\mathbf{u}\|^2 + \lambda \left(\varepsilon \|\tilde{D}\mathbf{e}\|_2^2 + \frac{1}{4\varepsilon} \|\mathbf{e}\|_2^2\right)$

Discrete Mumford-Shah like models

minimize
$$\frac{1}{2} \int_{\Omega} (\mathbf{u} - \mathbf{z})^2 dx dy + \beta \int_{\Omega \setminus K} |\nabla \mathbf{u}|^2 dx dy + \lambda \mathcal{H}^1(K \cap \Omega)$$

- Potts model (1952): \Rightarrow TV denoising (ROF) (1992) [Rudin et al., 1992] [Cai, Steidl, 2013] [Storath, Weinmann, 2014] minimize $\frac{1}{2} ||\mathbf{u} - \mathbf{z}||_2^2 + \gamma ||D\mathbf{u}||_1$
- Blake-Zisserman problem (1987): [Strekalovskiy, Cremers, 2014] [Hohm et al., 2015]

$$\underset{\mathbf{u}}{\operatorname{minimize}} \ \frac{1}{2} \|\mathbf{u} - \mathbf{z}\|_{2}^{2} + \gamma \sum_{i} \operatorname{min}(|(D\mathbf{u})_{i}|^{p}, \alpha^{p})$$

• Ambrosio-Tortorelli (1990) [Foare et al., 2016]

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize}} \frac{1}{2} \|\mathbf{u}-\mathbf{z}\|_{2}^{2} + \beta \|(1-\mathbf{e}) \odot D\mathbf{u}\|^{2} + \lambda (\varepsilon \|\tilde{D}\mathbf{e}\|_{2}^{2} + \frac{1}{4\varepsilon} \|\mathbf{e}\|_{2}^{2})$$

Mumford-Shah like models: summary

	Potts	Blake-Zisserman	Ambrosio-Tortorelli
Smooth estimate	Х	V	V
Data-term flexibility	Х	Х	Х
Convergence	V	Х	Х
Large scale dataset	V	V	Х
Open contours	Х	V	V

 \Rightarrow Revisit Ambrosio-Tortorelli model in order to provide a large-scale flexible convergent discrete MS like model .

Mumford-Shah versus ROF

Noisy data

Estimation and contour detection obtained with ROF [Cai et al. 2019]

Estimation and contour detection obtained with the proposed MS model

D-MS for images

Proposed Discrete Mumford-Shah like (D-MS) model

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize }} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \beta \| (1-\mathbf{e}) \odot D\mathbf{u} \|^2 + \lambda \mathcal{R}(\mathbf{e})$$

•
$$\Omega = \{1, \ldots, N_1\} \times \{1, \ldots, N_2\};$$

- $\mathbf{z} \in \mathbb{R}^{|\Omega|}$: input data = image/graph (e.g. $\mathbf{z} = A\overline{\mathbf{u}} + \epsilon$);
- $\mathbf{u} \in \mathbb{R}^{|\Omega|}$: piecewise smooth approximation of \mathbf{z} ;
- \mathcal{L} : data fidelity term convex, l.s.c., proper;
- $D \in \mathbb{R}^{|\mathbb{E}| \times |\Omega|}$: models a finite difference operator;
- $e \in \mathbb{R}^{|\mathbb{E}|}$: edges between nodes whose value is 1 when a contour change is detected and 0 otherwise;
- \mathcal{R} : favors sparse solution (i.e. "short $|\mathcal{K}|$ "), convex, l.s.c., proper.

Proposed Discrete Mumford-Shah like (D-MS) model

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize }} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \beta \| (1-\mathbf{e}) \odot D\mathbf{u} \|^2 + \lambda \mathcal{R}(\mathbf{e})$$

•
$$\Omega = \{1, \ldots, N_1\} \times \{1, \ldots, N_2\};$$

- $\mathbf{z} \in \mathbb{R}^{|\Omega|}$: input data = image/graph (e.g. $\mathbf{z} = A\overline{\mathbf{u}} + \epsilon$);
- $\mathbf{u} \in \mathbb{R}^{|\Omega|}$: piecewise smooth approximation of \mathbf{z} ;
- \mathcal{L} : data fidelity term convex, l.s.c., proper;
- $D \in \mathbb{R}^{|\mathbb{E}| \times |\Omega|}$: models a finite difference operator;
- $e \in \mathbb{R}^{|\mathbb{E}|}$: edges between nodes whose value is 1 when a contour change is detected and 0 otherwise;
- \mathcal{R} : favors sparse solution (i.e. "short $|\mathcal{K}|$ "), convex, l.s.c., proper.

 $\Rightarrow \text{ Identify the assumptions on } \mathcal{L} \text{ and } \mathcal{R} \text{ to design an algorithmic scheme with convergence guarantees (confidence in the solution).}$

D-MS: Gauss-Seidel iterations

$$\underset{\mathbf{u},\mathbf{e}}{\operatorname{minimize}} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \underbrace{\beta \| (1-\mathbf{e}) \odot D\mathbf{u} \|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e})$$

- Gauss-Seidel scheme = coordinate descent Set $\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$. For $k \in \mathbb{N}$ $\mathbf{u}^{[k+1]} \in \operatorname{Arg\,min}_{\mathbf{u}} \Psi(\mathbf{u}, \mathbf{e}^{[k]})$ $\mathbf{e}^{[k+1]} \in \operatorname{Arg\,min}_{\mathbf{e}} \Psi(\mathbf{u}^{[k+1]}, \mathbf{e})$
- Under technical assumptions, convergence of the sequence
 (u^[k], e^[k])_{ℓ∈N} to a critical point (u*, e*) of Ψ.
 Technical assumptions = minimum is attained at each iteration, e.g.
 by assuming strict convexity w.r.t one argument. (Auslender1976,
 Bertsekas1999)

D-MS: Gauss-Seidel iterations

$$\underset{\mathbf{u},\mathbf{e}}{\operatorname{minimize}} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \underbrace{\beta \| (1-\mathbf{e}) \odot D\mathbf{u} \|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e})$$

• PAM [Attouch et al. 2010]
Set
$$\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$$
 and $\mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|}$.
For $k \in \mathbb{N}$
 $\mathbf{u}^{[k+1]} = \arg\min_{\mathbf{u}} \Psi(\mathbf{u}, \mathbf{e}^{[k]}) + \frac{c_k}{2} \|\mathbf{u} - \mathbf{u}^{[k]}\|^2$
 $\mathbf{e}^{[k+1]} = \arg\min_{\mathbf{e}} \Psi(\mathbf{u}^{[k+1]}, \mathbf{e}) + \frac{d_k}{2} \|\mathbf{e} - \mathbf{e}^{[k]}\|^2$

 Under technical assumptions, the sequence (**u**^[k], **e**^[k])_{ℓ∈ℕ} converges to a critical point (**u**^{*}, **e**^{*}) of Ψ.

Technical assumptions = closed form of the proximity operators.

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

Examples: closed form expression

• $\operatorname{prox}_{\lambda \parallel \cdot \parallel_1}$: soft-thresholding with a fixed threshold $\lambda > 0$.

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

- $\operatorname{prox}_{\lambda \| \cdot \|_1}$: soft-thresholding with a fixed threshold $\lambda > 0$.
- prox_{||·||1,2}[Peyré,Fadili,2011].
- $\operatorname{prox}_{\|\|_{p}^{p}}$ with $p = \{\frac{4}{3}, \frac{3}{2}, 2, 3, 4\}$ [Chaux et al.,2005].
- prox_{*D_{KL}*[Combettes,Pesquet,2007].}

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

- $\operatorname{prox}_{\lambda \| \cdot \|_1}$: soft-thresholding with a fixed threshold $\lambda > 0$.
- prox_{||·||1,2}[Peyré,Fadili,2011].
- $\operatorname{prox}_{\parallel\parallel_{p}^{p}}$ with $p = \{\frac{4}{3}, \frac{3}{2}, 2, 3, 4\}$ [Chaux et al.,2005].
- prox_{*D_{KL}* [Combettes, Pesquet, 2007].}
- $\operatorname{prox}_{\sum_{g \in \mathcal{G}} \|\cdot\|_q}$ with overlapping groups [Jenatton et al., 2011]

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

- $\operatorname{prox}_{\lambda \| \cdot \|_1}$: soft-thresholding with a fixed threshold $\lambda > 0$.
- prox_{||.||1,2}[Peyré,Fadili,2011].
- $\operatorname{prox}_{\parallel\parallel_{p}^{p}}$ with $p = \{\frac{4}{3}, \frac{3}{2}, 2, 3, 4\}$ [Chaux et al.,2005].
- prox_{*D_{KL}* [Combettes, Pesquet, 2007].}
- $\operatorname{prox}_{\sum_{g \in \mathcal{G}} \|\cdot\|_q}$ with overlapping groups [Jenatton et al., 2011]
- Composition with a linear operator: $prox_{\varphi \circ L}$ closed form if $LL^* = \nu Id$ [Pustelnik et al., 2012]

Definition [Moreau,1965] Let $\varphi \in \Gamma_0(\mathcal{H})$ where \mathcal{H} denotes a real Hilbert space. The proximity operator of φ at point $x \in \mathcal{H}$ is the unique point denoted by $\operatorname{prox}_{\varphi} x$ such that

$$(\forall x \in \mathcal{H}) \qquad \operatorname{prox}_{\varphi} x = \arg\min_{y \in \mathcal{H}} \varphi(y) + \frac{1}{2} \|x - y\|^2$$

- $\operatorname{prox}_{\lambda \| \cdot \|_1}$: soft-thresholding with a fixed threshold $\lambda > 0$.
- prox_{||.||1,2}[Peyré,Fadili,2011].
- $\operatorname{prox}_{\parallel\parallel_{p}^{p}}$ with $p = \{\frac{4}{3}, \frac{3}{2}, 2, 3, 4\}$ [Chaux et al.,2005].
- prox_{*D_{KL}* [Combettes, Pesquet, 2007].}
- $\mathrm{prox}_{\sum_{g\in\mathcal{G}}\|\cdot\|_q}$ with overlapping groups [Jenatton et al., 2011]
- Composition with a linear operator: $prox_{\varphi \circ L}$ closed form if $LL^* = \nu Id$ [Pustelnik et al., 2012]
- 12/33 and many others: http://proximity-operator.net

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize }} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \beta \underbrace{\|(1-\mathbf{e}) \odot D\mathbf{u}\|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e})$$

• PAM [Attouch et al. 2010]
Set
$$\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$$
 and $\mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|}$.
For $k \in \mathbb{N}$
 $\left| \begin{array}{c} \mathbf{u}^{[k+1]} = \arg\min_{\mathbf{u}} \Psi(\mathbf{u}, \mathbf{e}^{[k]}) + \frac{c_k}{2} \|\mathbf{u} - \mathbf{u}^{[k]}\|^2 \\ \mathbf{e}^{[k+1]} = \arg\min_{\mathbf{e}} \Psi(\mathbf{u}^{[k+1]}, \mathbf{e}) + \frac{d_k}{2} \|\mathbf{e} - \mathbf{e}^{[k]}\|^2 \end{array} \right|$

 Under technical assumptions, the sequence (**u**^[k], **e**^[k])_{ℓ∈ℕ} converges to a critical point (**u**^{*}, **e**^{*}) of Ψ.

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize }} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \beta \underbrace{\|(1-\mathbf{e}) \odot D\mathbf{u}\|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e})$$

• PAM [Attouch et al. 2010]
Set
$$\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$$
 and $\mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|}$.
For $k \in \mathbb{N}$
 $\begin{bmatrix} \mathbf{u}^{[k+1]} = \operatorname{prox}_{\frac{1}{c_k}\Psi(\cdot, \mathbf{e}^{[k]})}(\mathbf{u}^{[k]}) \\ \mathbf{e}^{[k+1]} = \operatorname{arg\,min}_{\mathbf{e}}\Psi(\mathbf{u}^{[k+1]}, \mathbf{e}) + \frac{d_k}{2} \|\mathbf{e} - \mathbf{e}^{[k]}\|^2$

 Under technical assumptions, the sequence (**u**^[k], **e**^[k])_{ℓ∈ℕ} converges to a critical point (**u**^{*}, **e**^{*}) of Ψ.

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize }} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \beta \underbrace{\|(1-\mathbf{e}) \odot D\mathbf{u}\|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e})$$

• PAM [Attouch et al. 2010]
Set
$$\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$$
 and $\mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|}$.
For $k \in \mathbb{N}$
 $\begin{bmatrix} \mathbf{u}^{[k+1]} = \operatorname{prox}_{\frac{1}{c_k}\mathcal{L}(\cdot;\mathbf{z}) + \frac{\beta}{c_k}\mathcal{S}(D\cdot,\mathbf{e})}(\mathbf{u}^{[k]}) \\ \mathbf{e}^{[k+1]} = \operatorname{arg\,min}_{\mathbf{e}} \Psi(\mathbf{u}^{[k+1]}, \mathbf{e}) + \frac{d_k}{2} \|\mathbf{e} - \mathbf{e}^{[k]}\|^2$

 Under technical assumptions, the sequence (**u**^[k], **e**^[k])_{ℓ∈ℕ} converges to a critical point (**u**^{*}, **e**^{*}) of Ψ.

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize }} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \beta \underbrace{\|(1-\mathbf{e}) \odot D\mathbf{u}\|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e})$$

• PAM [Attouch et al. 2010]
Set
$$\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$$
 and $\mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|}$.
For $k \in \mathbb{N}$
 $\mathbf{u}^{[k+1]} = \operatorname{prox}_{\frac{1}{c_k}\mathcal{L}(\cdot;\mathbf{z}) + \frac{\beta}{c_k}\mathcal{S}(D\cdot,\mathbf{e})}(\mathbf{u}^{[k]})$
 $\mathbf{e}^{[k+1]} = \operatorname{prox}_{\frac{1}{d_k}\beta\mathcal{S}(D\mathbf{u}^{[k+1]},\cdot) + \frac{\lambda}{d_k}\mathcal{R}}(\mathbf{e}^{[k]})$

 Under technical assumptions, the sequence (**u**^[k], **e**^[k])_{ℓ∈ℕ} converges to a critical point (**u**^{*}, **e**^{*}) of Ψ.

Difficulty = proximity operator of a sum of two functions.

Proximity operator of a sum of two functions

 $\mathrm{prox}_{\varphi_1+\varphi_2}=\mathrm{prox}_{\varphi_2}\circ\mathrm{prox}_{\varphi_1?}$

- [Combettes-Pesquet, 2007] N = 1, φ₂ = ι_C of a non-empty closed convex subset of C and φ₁ is differentiable at 0 with h'(0) = 0.
- [Chaux-Pesquet-Pustelnik,2009] C and φ_2 are separable in the same basis.
- [Yu, 2013][Shi et al., 2017] $\partial \varphi_2(x) \subset \partial \varphi_2(\operatorname{prox} \varphi_1(x))$.
- Other recent results [Pustelnik, Condat, 2017][Yukawa, Kagami, 2017][del Aguila Pla, Jaldén, 2017]

$$\underset{\mathbf{u},\mathbf{e}}{\operatorname{minimize}} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \underbrace{\beta \| (1-\mathbf{e}) \odot D\mathbf{u} \|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e})$$

- PALM [Bolte, Sabach, Teboulle, 2013] Set $\mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|}$ and $\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$. For $k \in \mathbb{N}$ $\begin{bmatrix} \text{Set } \gamma > 1 \text{ and } c_k = \gamma \chi(\mathbf{e}^{[k]}) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\frac{1}{c_k}\mathcal{L}(\cdot;\mathbf{z})} \left(\mathbf{u}^{[k]} - \frac{1}{c_k}\nabla_{\mathbf{u}}\mathcal{S}(D\mathbf{u}^{[k]}, \mathbf{e}^{[k]})\right)$ $\text{Set } \delta > 1 \text{ and } d_k = \delta \nu(\mathbf{u}^{[k+1]})$ $\mathbf{e}^{[k+1]} = \operatorname{prox}_{\frac{1}{d_k}\lambda\mathcal{R}} \left(\mathbf{e}^{[k]} - \frac{1}{d_k}\nabla_{\mathbf{e}}\mathcal{S}(D\mathbf{u}^{[k+1]}, \mathbf{e}^{[k]})\right)$
- Under technical assumptions, the sequence (**u**^[k], **e**^[k])_{ℓ∈ℕ} converges to a critical point (**u**^{*}, **e**^{*}) of Ψ.

$$\underset{\mathbf{u},\mathbf{e}}{\text{minimize }} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \underbrace{\beta \| (1-\mathbf{e}) \odot D\mathbf{u} \|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e}),$$

• Proposed Semi Linearized PAM (SL-PAM)

```
 \begin{array}{l} [ \text{Foare, Pustelnik, Condat, 2017} ] \\ \text{Set } \mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|} \text{ and } \mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}. \\ \text{For } \ell \in \mathbb{N} \\ \\ \text{Set } \gamma > 1 \text{ and } c_k = \gamma \chi(\mathbf{e}^{[k]}). \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\frac{1}{c_k}\mathcal{L}(\cdot;\mathbf{z})} \Big(\mathbf{u}^{[k]} - \frac{1}{c_k} \nabla_{\mathbf{u}} \mathcal{S}\big(D\mathbf{u}^{[k]}, \mathbf{e}^{[k]}\big) \Big) \\ \text{Set } d_k > 0. \\ \mathbf{e}^{[k+1]} = \operatorname{prox}_{\frac{1}{d_k}\lambda\mathcal{R} + \mathcal{S}(D\mathbf{u}^{[k+1]}, \cdot)} \Big(\mathbf{e}^{[k]}\Big) \end{array}
```

Proposition [Foare, Pustelnik, Condat, 2017] The sequence $(\mathbf{u}^{[k]}, \mathbf{e}^{[k]})_{k \in \mathbb{N}}$ generated by SL-PAM converges to a critical point of Ψ if

- 1. the updating steps of $\mathbf{u}^{[k+1]}$ and $\mathbf{e}^{[k+1]}$ have closed form expressions;
- 2. the sequence $(\mathbf{u}^{[k]}, \mathbf{e}^{[k]})_{k \in \mathbb{N}}$ generated by SL-PAM is bounded;
- 3. $\mathcal{L}(A, \mathbf{z}), \mathcal{R}$ and $\Psi(\cdot, \cdot)$ are bounded below;
- 4. Ψ is a Kurdyka-Łojasiewicz function;
- 5. $\nabla_{\mathbf{u}}$ and $\nabla_{\mathbf{e}}$ are globally Lipschitz continuous with moduli $\nu(\mathbf{e})$ and $\varepsilon(\mathbf{u})$ respectively, and for all $k \in \mathbb{N}$, $\nu(\mathbf{e}^{[k]})$ and $\varepsilon(\mathbf{u}^{[k]})$ are bounded by positive constants.

$$\underset{\mathbf{u},\mathbf{e}}{\operatorname{minimize}} \Psi(\mathbf{u},\mathbf{e}) := \mathcal{L}(\mathbf{u};\mathbf{z}) + \underbrace{\beta \| (1-\mathbf{e}) \odot D\mathbf{u} \|^2}_{\mathcal{S}(D\mathbf{u},\mathbf{e})} + \lambda \mathcal{R}(\mathbf{e}),$$

• Proposed Semi Linearized PAM (SL-PAM) [Foare, Pustelnik, Condat, 2017] Set $\mathbf{u}^{[0]} \in \mathbb{R}^{|\Omega|}$ and $\mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}$ For $\ell \in \mathbb{N}$ Set $\gamma > 1$ and $c_k = \gamma \chi(\mathbf{e}^{[k]})$. $\mathbf{u}^{[k+1]} = \operatorname{prox}_{\frac{1}{c_k} \mathcal{L}(\cdot; \mathbf{z})} \left(\mathbf{u}^{[k]} - \frac{1}{c_k} \nabla_{\mathbf{u}} \mathcal{S}(D\mathbf{u}^{[k]}, \mathbf{e}^{[k]}) \right)$ Set $d_k > 0$. $\mathbf{e}^{[k+1]} = \operatorname{prox}_{\frac{1}{d_k}\lambda\mathcal{R} + \mathcal{S}(D\mathbf{u}^{[k+1]}, \cdot)} \left(\mathbf{e}^{[k]}\right)$ • The sequence $(\mathbf{u}^{[k]}, \mathbf{e}^{[k]})_{\ell \in \mathbb{N}}$ converges to a critical point $(\mathbf{u}^*, \mathbf{e}^*)$ of Ψ \Rightarrow Difficulty: Computation $\operatorname{prox}_{\frac{1}{d_{i}}\lambda\mathcal{R}+\mathcal{S}(Du^{[k+1]}, \cdot)}$

Proposition [Foare, Pustelnik, Condat, 2017] We assume that S is separable, i.e,

$$(\forall \mathbf{e} = (\mathbf{e}_i)_{1 \leq i \leq |\mathbb{E}|}) \qquad \mathcal{R}(\mathbf{e}) = \sum_{i=1}^{|\mathbb{E}|} \sigma_i(\mathbf{e}_i),$$

where $\sigma_i: \mathbb{R}^{|\mathbb{E}|} \to] - \infty; +\infty$ with a closed form proximity operator expression.

Let $d_k > 0$, then

$$\operatorname{prox}_{\frac{1}{d_k}\lambda\mathcal{R}+\mathcal{S}(D\mathbf{u}^{[k+1]},\cdot)}(\mathbf{e}^{[k]}) = \left(\operatorname{prox}_{\frac{\lambda\sigma_i}{2\beta(D\mathbf{u}^{[k]})_i^2 + d_k}}\left(\frac{\beta(D\mathbf{u}^{[k+1]})_i^2 + \frac{d_k\mathbf{e}_i^{[k]}}{2}}{\beta(D\mathbf{u}^{[k+1]})_i^2 + \frac{d_k}{2}}\right)\right)_{i\in\mathbb{R}}$$

minimize
$$\mathcal{L}(\mathbf{u}; \mathbf{z}) + \beta || (1 - \mathbf{e}) \odot D\mathbf{u} ||^2 + \lambda \mathcal{R}(\mathbf{e})$$

- \mathcal{R} : favors sparse solution (i.e. "short |K|") and convex.
 - 1. Ambrosio-Tortorelli approximation:

$$\mathcal{R}(\mathbf{e}) = \varepsilon \| D \mathbf{e} \|_2^2 + rac{1}{4 arepsilon} \| \mathbf{e} \|_2^2$$
 with $arepsilon > 0$

- 2. ℓ_1 -norm: $\mathcal{R}(\mathbf{e}) = \|\mathbf{e}\|_1$
- 3. Quadratic ℓ_1 : [Foare, Pustelnik, Condat, 2017] $\mathcal{R}(\mathbf{e}) = \sum_{i=1}^{|\mathbb{E}|} \max\left\{ |e_i|, \frac{e_i^2}{4\varepsilon} \right\}.$

Proposition [Foare,Pustelnik,Condat, 2017] For every $\eta \in \mathbb{R}$ and $\tau, \epsilon > 0$

$$\operatorname{prox}_{\tau \max\{|.|,\frac{|.|^2}{4\epsilon}\}}(\eta) = \operatorname{sign}(\eta) \max\left\{0, \min\left[|\eta| - \tau, \max\left(4\epsilon, \frac{|\eta|}{\frac{\tau}{2\epsilon} + 1}\right)\right]\right\}$$

- 1. Visual results (proposed versus state-of-the-art) when $\mathcal{L}(\textbf{u};\textbf{z}) = \tfrac{1}{2}\|\textbf{u}-\textbf{z}\|_2^2$
- 2. Quantitative results.
- 3. Convergence comparisons (proposed versus PALM).
- 4. Sensitivity to the initialization.
- 5. Visual results when $\mathcal{L}(\mathbf{u}; \mathbf{z}) = \frac{1}{2} \|A\mathbf{u} \mathbf{z}\|_2^2$.

Ground truth

Data

Convergence PALM versus SL-PALM: $\Psi(\mathbf{u}^{[\ell]}, \mathbf{e}^{[\ell]})$ w.r.t. iterations ℓ

• Efficient (convergence guarantees and time) algorithm for solving a generic D-MS model.

• Flexibility in the data-term: possibility to handle many image degradation to improve interface detection (Poisson noise, blur,...).

• Flexibility in the choice of the discrete difference operator.

• Clear benefit of joint image restoration and interface detection (cf. comparison with Thresholded-TV).

- Efficient (convergence guarantees and time) algorithm for solving a generic D-MS model. ⇒ bi-convexity and other properties of the objective function could be considered to have stronger convergence guarantees.
- Flexibility in the data-term: possibility to handle many image degradation to improve interface detection (Poisson noise, blur,...).

• Flexibility in the choice of the discrete difference operator.

• Clear benefit of joint image restoration and interface detection (cf. comparison with Thresholded-TV).

• Efficient (convergence guarantees and time) algorithm for solving a generic D-MS model.

- Flexibility in the data-term: possibility to handle many image degradation to improve interface detection (Poisson noise, blur,...). ⇒ Strong assumptions on the degration operator that we would like to relax.
- Flexibility in the choice of the discrete difference operator.

• Clear benefit of joint image restoration and interface detection (cf. comparison with Thresholded-TV).

• Efficient (convergence guarantees and time) algorithm for solving a generic D-MS model.

• Flexibility in the data-term: possibility to handle many image degradation to improve interface detection (Poisson noise, blur,...).

- Flexibility in the choice of the discrete difference operator. ⇒
 Discretization scheme to improve interface detection (choice of D).
 Convergence to the true MS model (cf. [Belz, Bredies;2019]).
- Clear benefit of joint image restoration and interface detection (cf. comparison with Thresholded-TV).

• Efficient (convergence guarantees and time) algorithm for solving a generic D-MS model.

• Flexibility in the data-term: possibility to handle many image degradation to improve interface detection (Poisson noise, blur,...).

• Flexibility in the choice of the discrete difference operator.

Clear benefit of joint image restoration and interface detection (cf. comparison with Thresholded-TV). ⇒ More generally, better to perform one-step procedure rather than two-steps.

Two-step versus one-step texture segmentation

 \Rightarrow Illustration of Interface detection on a piecewise fractal textured image $_{30/3}$ that mimics a multiphasic flow.

• M. Foare, N. Pustelnik, and L. Condat, Semi-linearized proximal alternating minimization for a discrete Mumford-Shah model, accepted to **IEEE Trans. on Image Processing**, 2019.

• Y. Kaloga, M. Foare, N. Pustelnik, and P. Jensen, Discrete Mumford-Shah on graph for mixing matrix estimation, accepted to **IEEE Signal Processing Letters**, 2019.

• B. Pascal, N. Pustelnik, and P. Abry, Nonsmooth convex joint estimation of local regularity and local variance for fractal texture segmentation, submitted, 2019.

Definition 3 (*Kurdyka–Łojasiewicz property*) Let $\sigma : \mathbb{R}^d \to (-\infty, +\infty]$ be proper and lower semicontinuous.

(i) The function σ is said to have the *Kurdyka–Łojasiewicz (KL) property* at u

 ∈ dom ∂σ := {u ∈ ℝ^d : ∂σ (u) ≠ Ø} if there exist η ∈ (0, +∞], a neighborhood U of u
 and a function φ ∈ Φ_n, such that for all

$$u \in U \cap [\sigma(\overline{u}) < \sigma(u) < \sigma(\overline{u}) + \eta],$$

the following inequality holds

$$\varphi'(\sigma(u) - \sigma(\overline{u})) \operatorname{dist}(0, \partial\sigma(u)) \ge 1.$$
(2.4)

(ii) If σ satisfy the KL property at each point of dom $\partial \sigma$ then σ is called a *KL function*.

Convergence

(i) Sufficient decrease property: Find a positive constant ρ_1 such that

$$\rho_1 \left\| z^{k+1} - z^k \right\|^2 \le \Psi(z^k) - \Psi(z^{k+1}), \quad \forall k = 0, 1, \dots$$

(ii) A subgradient lower bound for the iterates gap: Assume that the sequence generated by the algorithm \mathcal{A} is bounded.¹ Find another positive constant ρ_2 , such that

$$\left\|w^{k+1}\right\| \le \rho_2 \left\|z^{k+1} - z^k\right\|, \quad w^k \in \partial \Psi\left(z^k\right), \quad \forall k = 0, 1, \dots.$$

(iii) Using the KL property: Assume that Ψ is a KL function and show that the generated sequence $\{z^k\}_{k\in\mathbb{N}}$ is a Cauchy sequence.