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Context



Motivation

Defi Imag’IN CNRS SIROCCO (2017-2018): Multiphasic flow experiment

modeling gas and liquid in a porous medium.

K

z = η1

z = η2

• Goal : classify gas/liquid + accurate estimation of the perimeter.

• Datasize: Image composed with 2.107 pixels. Analysis to be

performed on a sequence of images.
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Motivation

Defi Infinity CNRS OptMatGeo (2018): vote transfer matrix estimation

between two elections

• Goal : clustering the areas with similar transfer matrix (i.e. similar

electoral behaviour) + sharp transitions.

• Datasize: ∼ 2.107
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Motivation

K

z = η1

z = η2

• Structured data (e.g. images, graphs).

• Difficulty to label data.

• For Physics or societal applications, the truth is not as sharp as

clustering but it is closer from regression (smooth behaviour) and

possibly sharp transition.

• Huge amount of data.

Goal: Design algorithmic solutions with convergence guarantees to

extract piecewise smooth behaviour.
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Collaborations

Marion Foare Laurent Condat

CPE and ENS de Lyon CNRS, Gipsa-lab, France

& KAUST, Arabie Saoudite

4/33

4



Mumford-Shah



Mumford-Shah (1989)

minimize
u,K

1

2

∫
Ω

(u− z)2dxdy︸ ︷︷ ︸
fidelity

+β

∫
Ω\K
|∇u|2dxdy︸ ︷︷ ︸

smoothness

+λH1(K ∩ Ω)︸ ︷︷ ︸
length

• Ω: image domain,

• z ∈ L∞(Ω): data,

• u ∈W 1,2(Ω): piecewise smooth approximation of z,

W 1,2(Ω) =
{
u ∈ L2(Ω) ∂u ∈ L2(Ω)

}
where ∂ weak derivative operator

• K : set of discontinuities,

• H1: Hausdorff measure.

5/33

5



Discrete Mumford-Shah like models

minimize
u,K

1
2

∫
Ω(u− z)2dxdy + β

∫
Ω\K |∇u|2dxdy + λH1(K ∩ Ω)

• Potts model (1952):

⇒ TV denoising (ROF) (1992)

[Rudin et al., 1992] [Cai, Steidl, 2013] [Storath, Weinmann, 2014]

minimize
u

1

2
‖u− z‖2

2 + γ‖Du‖0

• Blake-Zisserman problem (1987):

[Strekalovskiy, Cremers, 2014] [Hohm et al., 2015]

minimize
u

1

2
‖u− z‖2

2 + γ
∑
i

min(|(Du)i |p, αp)

• Ambrosio-Tortorelli (1990)

[Foare et al., 2016]

minimize
u,e

1

2
‖u− z‖2

2 + β‖(1− e)� Du‖2 + λ
(
ε‖D̃e‖2

2 +
1

4ε
‖e‖2

2

)
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Mumford-Shah like models: summary

Potts Blake-Zisserman Ambrosio-Tortorelli

Smooth estimate X V V

Data-term flexibility X X X

Convergence V X X

Large scale dataset V V X

Open contours X V V

⇒ Revisit Ambrosio-Tortorelli model in order to provide a large-scale

flexible convergent discrete MS like model .
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Mumford-Shah versus ROF

Noisy data Estimation and contour Estimation and contour

detection obtained detection obtained with

with ROF [Cai et al. 2019] the proposed MS model
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D-MS for images



Proposed Discrete Mumford-Shah like (D-MS) model

minimize
u,e

Ψ(u, e) := L(u; z) + β‖(1− e)� Du‖2 + λR(e)

• Ω = {1, . . . ,N1} × {1, . . . ,N2};
• z ∈ R|Ω̃|: input data = image/graph (e.g. z = Au + ε);

• u ∈ R|Ω|: piecewise smooth approximation of z;

• L: data fidelity term convex, l.s.c., proper;

• D ∈ R|E|×|Ω|: models a finite difference operator;

• e ∈ R|E|: edges between nodes whose value is 1 when a contour

change is detected and 0 otherwise;

• R: favors sparse solution (i.e.“short |K |”), convex, l.s.c., proper.
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Proposed Discrete Mumford-Shah like (D-MS) model

minimize
u,e

Ψ(u, e) := L(u; z) + β‖(1− e)� Du‖2 + λR(e)

• Ω = {1, . . . ,N1} × {1, . . . ,N2};
• z ∈ R|Ω̃|: input data = image/graph (e.g. z = Au + ε);

• u ∈ R|Ω|: piecewise smooth approximation of z;

• L: data fidelity term convex, l.s.c., proper;

• D ∈ R|E|×|Ω|: models a finite difference operator;

• e ∈ R|E|: edges between nodes whose value is 1 when a contour

change is detected and 0 otherwise;

• R: favors sparse solution (i.e.“short |K |”), convex, l.s.c., proper.

⇒ Identify the assumptions on L and R to design an algorithmic

scheme with convergence guarantees (confidence in the solution).
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D-MS: Gauss-Seidel iterations

minimize
u,e

Ψ(u, e) := L(u; z) + β‖(1− e)� Du‖2︸ ︷︷ ︸
S(Du,e)

+λR(e)

• Gauss-Seidel scheme = coordinate descent

Set e[0] ∈ R|E|.
For k ∈ N⌊

u[k+1] ∈ Argminu Ψ(u, e[k])

e[k+1] ∈ Argmine Ψ(u[k+1], e)

• Under technical assumptions, convergence of the sequence

(u[k], e[k])`∈N to a critical point (u∗, e∗) of Ψ.

Technical assumptions = minimum is attained at each iteration, e.g.

by assuming strict convexity w.r.t one argument. (Auslender1976,

Bertsekas1999)
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D-MS: Gauss-Seidel iterations

minimize
u,e

Ψ(u, e) := L(u; z) + β‖(1− e)� Du‖2︸ ︷︷ ︸
S(Du,e)

+λR(e)

• PAM [Attouch et al. 2010]

Set e[0] ∈ R|E| and u[0] ∈ R|Ω|.
For k ∈ N⌊

u[k+1] = arg minu Ψ(u, e[k]) + ck
2 ‖u− u[k]‖2

e[k+1] = arg mine Ψ(u[k+1], e) + dk
2 ‖e− e[k]‖2

• Under technical assumptions, the sequence (u[k], e[k])`∈N converges to

a critical point (u∗, e∗) of Ψ.

Technical assumptions = closed form of the proximity operators.
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Proximity operator

Definition [Moreau,1965] Let ϕ ∈ Γ0(H) where H denotes a real Hilbert

space. The proximity operator of ϕ at point x ∈ H is the unique point

denoted by proxϕx such that

(∀x ∈ H) proxϕx = arg min
y∈H

ϕ(y) +
1

2
‖x − y‖2
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denoted by proxϕx such that

(∀x ∈ H) proxϕx = arg min
y∈H

ϕ(y) +
1

2
‖x − y‖2

Examples: closed form expression

• proxλ‖·‖1
: soft-thresholding with a fixed threshold λ > 0.

0 0.5 1 1.5 2 2.5

×10
4

-10

-8

-6

-4

-2

0

2

4

6

8

10

Identity

Soft-thresholding

λ

-λ

α
i

• prox‖·‖1,2
[Peyré,Fadili,2011].

• prox‖‖pp with p = {4
3 ,

3
2 , 2, 3, 4}[Chaux et al.,2005].

• proxDKL
[Combettes,Pesquet,2007].

• prox∑
g∈G ‖·‖q with overlapping groups [Jenatton et al., 2011]

• Composition with a linear operator: proxϕ◦L closed form if LL∗ = νId

[Pustelnik et al., 2012]

• and many others: http://proximity-operator.net
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D-MS: PAM iterations

minimize
u,e

Ψ(u, e) := L(u; z) + β ‖(1− e)� Du‖2︸ ︷︷ ︸
S(Du,e)

+λR(e)

• PAM [Attouch et al. 2010]

Set e[0] ∈ R|E| and u[0] ∈ R|Ω|.
For k ∈ N⌊

u[k+1] = arg minu Ψ(u, e[k]) + ck
2 ‖u− u[k]‖2

e[k+1] = arg mine Ψ(u[k+1], e) + dk
2 ‖e− e[k]‖2

• Under technical assumptions, the sequence (u[k], e[k])`∈N converges to

a critical point (u∗, e∗) of Ψ.

Difficulty = proximity operator of a sum of two functions.
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• PAM [Attouch et al. 2010]

Set e[0] ∈ R|E| and u[0] ∈ R|Ω|.
For k ∈ N u[k+1] = prox 1

ck
L(·;z)+ β

ck
S(D·,e)

(u[k])

e[k+1] = prox 1
dk
βS(Du[k+1],·)+ λ

dk
R(e[k])

• Under technical assumptions, the sequence (u[k], e[k])`∈N converges to

a critical point (u∗, e∗) of Ψ.

Difficulty = proximity operator of a sum of two functions.
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Proximity operator of a sum of two functions

proxϕ1+ϕ2
= proxϕ2

◦ prox
ϕ1 ?

• [Combettes-Pesquet, 2007] N = 1, ϕ2 = ιC of a non-empty closed

convex subset of C and ϕ1 is differentiable at 0 with h′(0) = 0.

• [Chaux-Pesquet-Pustelnik,2009] C and ϕ2 are separable in the same

basis.

• [Yu, 2013][Shi et al., 2017] ∂ϕ2(x) ⊂ ∂ϕ2(proxϕ1(x)).

• Other recent results [Pustelnik, Condat, 2017][Yukawa, Kagami,

2017][del Aguila Pla, Jaldén, 2017]
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D-MS: PALM iterations

minimize
u,e

Ψ(u, e) := L(u; z) + β‖(1− e)� Du‖2︸ ︷︷ ︸
S(Du,e)

+λR(e)

• PALM [Bolte, Sabach, Teboulle, 2013]

Set u[0] ∈ R|Ω| and e[0] ∈ R|E|.
For k ∈ N

Set γ > 1 and ck = γχ(e[k])

u[k+1] = prox 1
ck
L(·;z)

(
u[k] − 1

ck
∇uS

(
Du[k], e[k]

))
Set δ > 1 and dk = δν(u[k+1])

e[k+1] = prox 1
dk
λR

(
e[k] − 1

dk
∇eS

(
Du[k+1], e[k]

))
• Under technical assumptions, the sequence (u[k], e[k])`∈N converges to

a critical point (u∗, e∗) of Ψ.
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Proposed D-MS and algorithmic solution

minimize
u,e

Ψ(u, e) := L(u; z) + β‖(1− e)� Du‖2︸ ︷︷ ︸
S(Du,e)

+λR(e),

• Proposed Semi Linearized PAM (SL-PAM)

[Foare, Pustelnik, Condat, 2017]

Set u[0] ∈ R|Ω| and e[0] ∈ R|E|.
For ` ∈ N

Set γ > 1 and ck = γχ(e[k]).

u[k+1] = prox 1
ck
L(·;z)

(
u[k] − 1

ck
∇uS

(
Du[k], e[k]

))
Set dk > 0.

e[k+1] = prox 1
dk
λR+S(Du[k+1],·)

(
e[k]
)
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Proposed D-MS and algorithmic solution

Proposition [Foare, Pustelnik, Condat, 2017]

The sequence (u[k], e[k])k∈N generated by SL-PAM converges to a critical

point of Ψ if

1. the updating steps of u[k+1] and e[k+1] have closed form expressions;

2. the sequence (u[k], e[k])k∈N generated by SL-PAM is bounded;

3. L(A·, z), R and Ψ(·, ·) are bounded below;

4. Ψ is a Kurdyka- Lojasiewicz function;

5. ∇u and ∇e are globally Lipschitz continuous with moduli ν
(
e
)

and

ε
(
u
)

respectively, and for all k ∈ N, ν
(
e[k]
)

and ε
(
u[k]
)

are bounded

by positive constants.
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Proposed D-MS and algorithmic solution

minimize
u,e

Ψ(u, e) := L(u; z) + β‖(1− e)� Du‖2︸ ︷︷ ︸
S(Du,e)

+λR(e),

• Proposed Semi Linearized PAM (SL-PAM)

[Foare, Pustelnik, Condat, 2017]

Set u[0] ∈ R|Ω| and e[0] ∈ R|E|.
For ` ∈ N

Set γ > 1 and ck = γχ(e[k]).

u[k+1] = prox 1
ck
L(·;z)

(
u[k] − 1

ck
∇uS

(
Du[k], e[k]

))
Set dk > 0.

e[k+1] = prox 1
dk
λR+S(Du[k+1],·)

(
e[k]
)

• The sequence (u[k], e[k])`∈N converges to a critical point (u∗, e∗) of Ψ

⇒ Difficulty: Computation prox 1
dk
λR+S(Du[k+1],·)
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Proposed D-MS and algorithmic solution

Proposition [Foare, Pustelnik, Condat, 2017]

We assume that S is separable, i.e,

(∀e=(ei )1≤i≤|E|) R(e) =

|E|∑
i=1

σi (ei ),

where σi :R|E|→]−∞; +∞] with a closed form proximity operator expres-

sion.

Let dk > 0, then

prox 1
dk
λR+S(Du[k+1],·)(e[k]) =

(
prox λσi

2β(Du[k])2
i

+dk

β(Du[k+1])2
i +

dke
[k]
i

2

β(Du[k+1])2
i + dk

2

)
i∈E
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Proposed D-MS and algorithmic solution

minimize
u,e

L(u; z) + β‖(1− e)� Du‖2 + λR(e)

• R: favors sparse solution (i.e.“short |K |”) and convex.

1. Ambrosio-Tortorelli approximation:

R(e) = ε‖De‖2
2 +

1

4ε
‖e‖2

2 with ε > 0

2. `1-norm: R(e) = ‖e‖1

3. Quadratic `1:

[Foare, Pustelnik, Condat, 2017]

R(e) =
∑|E|

i=1 max

{
|ei |,

e2
i

4ε

}
.
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Proposed D-MS and algorithmic solution

Proposition [Foare,Pustelnik,Condat, 2017]

For every η ∈ R and τ, ε > 0

prox
τ max{|.|, |.|

2

4ε
}
(η) = sign(η) max

{
0,min

[
|η| − τ,max

(
4ε,

|η|
τ
2ε + 1

)]}
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Experiments

1. Visual results (proposed versus state-of-the-art) when

L(u; z) = 1
2‖u− z‖2

2

2. Quantitative results.

3. Convergence comparisons (proposed versus PALM).

4. Sensitivity to the initialization.

5. Visual results when L(u; z) = 1
2‖Au− z‖2

2.
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Experiments
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Experiments 1

TV (Strekalovskiy, Discret AT Quadratic-`1

Cremers, 2014) (Foare et al., 2016)
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Experiments 2
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Experiments 3

Convergence PALM versus SL-PALM: Ψ(u[`], e[`]) w.r.t. iterations `
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Experiments 4
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Experiments 5
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D-MS for images: conclusions

• Efficient (convergence guarantees and time) algorithm for solving a

generic D-MS model.

⇒ bi-convexity and other properties of the

objective function could be considered to have stronger convergence

guarantees.

• Flexibility in the data-term: possibility to handle many image

degradation to improve interface detection (Poisson noise, blur,...).

⇒
Strong assumptions on the degration operator that we would like to

relax.

• Flexibility in the choice of the discrete difference operator.

⇒
Discretization scheme to improve interface detection (choice of D).

Convergence to the true MS model (cf. [Belz, Bredies;2019]) .

• Clear benefit of joint image restoration and interface detection (cf.

comparison with Thresholded-TV).

⇒ More generally, better to

perform one-step procedure rather than two-steps.
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Two-step versus one-step texture segmentation

Mask Synthetic texture Optimal solution

T-ROF [Cai2013] Matrix factorization Proposed

[Cai2013] [Yuan2015] [Pascal2019]

⇒ Illustration of Interface detection on a piecewise fractal textured image

that mimics a multiphasic flow.30/33
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