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The state estimation problem
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A link between parameter and state estimation

Back to parameter estimation ... linear scalar case

y(i) = xT(NO() + (i) =1, M]

with time varying parameters expressed as an evolution model

(i +1) = A(1e(7) + n(i)
with
o E[s(i)] = 0 and Ele(i)e())] = o2(1)5(i - j)
o E[y(1] = 0and E[(i)y ()] = Q(1)é(i - J)
As a starting point, we assume to know a posteriori estimates (i.e. taking
account of the current measurement)
o Q(ili) = 28" (i)
o P(i) = E[F" (" (i)
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A link between parameter and state estimation

Based on this assumption, the first step is to build a prediction
b (i+1) =AW (i)
which leads to an unbiased estimate (E[§ (i + 1)] = 0) if
E[6" (1)) = 0

The covariance of the predictor is given by

P(i+1)=E[F (i+1)§  (i+1)]
= AG)E[E* (D" (NAT (i) + Eln(n” (i)
= A()PT(HAT() + Q(i)
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A link between parameter and state estimation

The correction step is provided by the RLS

At A= P~(i i . PN

07 i+ 1) =80 (1+ 1) + sz e Y+ 1) = 97+ 1)]
.  p—(: P=(i+1)x(i)x" ()P~ (i+1)

PHi+1) =P+ 1) - e (w1200
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A link between parameter and state estimation

If the problem is translated to state estimation ... §(i) — x(i) and

x(i) = C(i)

y(i) = C)x(i) + (i)

and the correction by

KT+ =% (+1)+K(>i+Dy(i+1)-Ci+ 1% (i+1)]
PH(ii+1)=P (i+1)-K(@i+1)C(i+1)P(i+1)
K(i+1):P‘(i+1)CT(i+1)(R(i+1)+C(i+1)P‘(i+1)CT(i+1))_1

which is the Kalman filter we will address later on ...
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Overview of the talk

Observability

The (extended) Kalman filter

The asymptotic observer

A hybrid Kalman - asymptotic observer
The full and receding-horizon observer
Interval observers
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Indistinguishability

Consider a nonlinear dynamic system

(x(1), u(t),0)  x(t) = X,
(x(1))

The solution is given by x, (to, t, KO,Q)

< Ix-
/-\A
~
v\—/
Il
| =

The pair of initial states x} and x3 is indistinguishable, if for
every ue U definedonty <t <T:

o 6. ,0) = hlro (b 0.55.0)

I(x,) denotes the set of indistinguishable states related to x,,
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Observability

The system is observable if there are no indistinguishable pairs

Vio, VX3, X5 € X, Yu € U, AT < oo, such that

hvu(tot, x3.0)) = hxu(to.t.X5.0))  to<t<T

1.2
= X3 = Xp
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Observability and observers

Observability is related to the reconstruction of the system state X(t), with
the following minimum objectives:

@ an exact estimation for a perfect initialization :
X(o) = x(to) = X(t) = x(1),
@ an asymptotic estimation convergence : lim [%(t) - x(1)|| = 0.

Observability implies in addition that the convergence rate can be tuned
(i.e. an exponential convergence rate).
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Observability of linear time invariant (LTI) systems

x(t) = Ax(t) + Bu(t)  x(t) = X,

y(t) = Cx(1)
Can we infer x(t) from y(t) ? Not directly, but we can get further
information by differentiating m times the outputs:

y(t) = Cx(t)
y(t) = Cx(t) = CAx(t) + CBu(t)

y(t) = CAX(t) + CBu(t) = CA2x(t) + CABu(t) + CBi(t)

y(M(t) = CA™x(t) + £ CA™-IBu)(t)
These equations can be put in a more compact form:
Y(t) = Ox(t) + TU(t)

and the observability condition is Rank(O) = ny
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Observability of nonlinear systems

The observability map is given by :

q,(x.u) N
q(x,u) = : . dim(q(x,u) = ng = ) ng > ny
g, (x.u) j=1
hi(x)
yi(t) gj1(x, u) e .
i) gia(x. u) e w) + (D)
q,(x,u) = : = : = :
i~ , 0Qj ng,— 0Qjng. -1 .
y ") || Ging (% 0) )+ S g

If a partition of the complete observability map is injective with respect to
the state variables, then the system is observable. However, the analytical
solution of the nonlinear system is difficult, or even impossible.
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Observability of nonlinear systems

Local observability can be checked thanks to the inverse mapping theorem
(local inverse)

X
If the Jacobian is nonsingular, an inverse function exists in some

neighborhood of x and local observability is proven.

rank (O(x,u)) = ny or det(O(x,u)) #0
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Observability of nonlinear systems

The global observability analysis of nonlinear models can be simplified

through the introduction of a canonical form [Zeitz, 84, 89;
Gauthier-Kupka, 94]:

1

' (X' x3 )
. h1 (X;)
! i(x1 i+1 11
X = X - f(x's ... x™u) , Y= ha (x4, X;)
x4 7 (x', ., x9, u) By (X o X1
x9 (X', ..., x9, u)
where
x' = [fw-.,iq], T = [f,...,fq], x"T = [x}xﬂh] hT =[hi,..., hy]
Vie{l,..q), X' €R", m>=nm>..>ng Z n; = ny
1<izq
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Observability of nonlinear systems

A system is said globally observable if

| oh;
Vie{l,..m}: —#0
X,
)
af'(x, u)
H Ny ny . == __ .
VI€{1,...,C]—1}, V(K,H)GR X R"™ : rank W—n,_iq

The first conditions imply that the ny state variables can be inferred from
the measurements, whereas the second ensure that any differences in the
state trajectory can be detected in the measurements thanks to a

pyramidal influence of the state subvector x1 on the evolution equations

x'.
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Observability analysis: an example

90/\
ksS —» X = fpy——X
sS ¥ =Hms T Ks

X(t) = =D()X(t) + @(X(1),S(1)) X(to) = Xo
S(t) = D(t)(S(t) - S(t)) - kse(X(1). S(t))  S(t) = So
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Observability analysis: an example

Two cases are inspected according to the measured state variable :

As n, =1 and ny = 2, a minimum size for the observability map is nq = 2.

@ C =[1 0] (biomass measurements) :

alx.u) = [ § ] - [ -DX +);(x,8) ]

O(x, ) 1 0
X, =
X, u D+ Bw(X S) 6¢(6>;,S)
0 XS 0p(X,S
— X+0
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Observability analysis: an example

@ C = [0 1] (substrate measurements) :

alx.u) = [ ﬁ ]:[ D(S,-n—S)S— kse(X, S) }

0 1
O(x,u) = kU8 _p _ g deXS)

X S) Bap(X S) S

with 2268 — ) x o )2 and = HmsSns

— S+0
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Observability analysis: an example

These results are confirmed using a canonical form

f1(x1, X2, U)
f2(x1, X2, U)

) X
x=| "
X2

y = h(x1)

For instance, in the case of biomass measurements, x; = X and x» = S:

xi(t) = =D(t)xi(t) + ¢(x:(t), xa(t))
Xo(t) = D(t) (Sin(t) = xa(t)) = ksp(x1(t), x2(1))

xi(l) = Xo
xo(to) = So
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The Kalman filter

Continuous-time system equations and discrete-time measurements:

x(t) = A(t)x(t) + B(t)u(t) + n(t)
y(t) = Ct)x(t) + e(t)

where 5(t) ~ N(0, Ry(1)), €(t) ~ N(0, Re(t)) and x(to) ~ N(X,, Po)

The Kalman filter is the optimal Bayesian recursive filter, which allows the
evaluation of the posterior probability density function:

P(x, Vi) = P(z(tk)‘[x(to), Y(t)]) = N(my, » Puite)

from the prior density

P(x(IYsy) = N(my, ., Patc_s)
Bioprocess modeling and estimation 20/ 44
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The Kalman filter

It requires an initialization
mtouo = Xy Piolfo =P
and proceeds in two steps: prediction + correction

@ Continuous prediction step for tx_¢ <t <

X(tk—1) = mtk,mm P(tk—1) = Ptk-1|tk—1
R(t) = A(DX(1) + B(1)y(t) P(t) = A(t)P(t) + P()AT(t) + Ry(
Myt = x(1) Pry, = P(t)

@ Discrete correction step at t =

Myt = X(t) Phites = P(t)
K(tk) = Phit CT (t)(C (i) Pyyu CT(t) + Re(t))™
mtk“k = mtk|tk_1 + K(tk)(z(tk) - C(tk)mtk|tk_1)

Pfklfk = Pfkll‘k-1 - K(tk)c(tk)Ptklfk-1
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The Kalman filter

@ The initial state covariance matrix Py represents the confidence in the
initial guess for the state vector X,,.

@ The covariance matrix R, describes the system noise. It is often
"tuned” so as to keep some level of uncertainty on the state estimates
preventing that the correction matrix K(t) vanishes for k — co, and
so as to "adjust” the respective levels of confidence in the model and
the measurements.

@ The measurement error covariance matrix R, contains information on
the measurement noise.

@ The estimation error covariance matrix P(t) can be used to assess
the estimation accuracy and to compute confidence intervals for the
estimators.
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Extension to nonlinear systems: The extended Kalman
filter

Continuous-time system equations and discrete-time measurements:

x(t) = f(x(1), u(t)) + n(t)

y(t) = h(x(t)) + e(t)
where 77( ) ~ N(0,Ry(t)), e(tx) ~ N(0,Re(tx)) and x(to) ~ N(X,. Po)
A simple idea: use a linearization along the state estimate trajectory
of(x(t), u(t))
ox
. oh(x(1))

C(x(t)) =
o 0% lxi=x(1)

The EKF is an approximate (suboptimal) method. Nonlinear evolution

do not preserve Gaussian distributions.
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Extension to nonlinear systems: The extended Kalman

filter

Continuous prediction equations

Ry(t)

(X(1), u(1))
(X(1) u(D)P(t) + P(OFT(X(1). u(t)) +

I~

(1) =
P(t) =

m

Discrete correction equations
)Ptk\k 1CT(tK) + Rf(tk))_1

K(tk) = Pfkltk1c ( )( (
mTkll‘k = l‘klfk 1 + K(tk)(x( ) (mtkltk 1))
= Ptk|tk—1 K(tk)c( )Pfklfk 1

Pfkll‘k
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The extended Kalman filter: an example

Prediction
A L N é(t) N
X(t) = D(t)X(t)+umA(t)+KsX(t)
Ao ) -y S(t) &
S() = D()(Sin(t) = 8(1) = wamg =m0

where
5(t) _ Ks v
F()A( S) B Hm é(t)+KSA b(1) ﬂm(é(t)JrKs)ZX(t)
Ea —Vim= S(1) -D(t) - v,umL)A( t)
S(t)+Ks (é(t)JrKs)2
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The extended Kalman filter: an example

Correction

rp— TN

0'?(_(1‘;() + (ri oy-5-(t)

P o5, () ogeg(t)
K|tk O')A<+§+(tk) O-2§+(tk)
2 2
2 _ 9x 2 _ Ix o
Tell) = Tz ) s (t) = Rt oies (i)
X X X
()
&
o) = o5 () - —
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The extended Kalman filter: an example

Exact model (R, = 0) - measurement of biomass every 6 hours with a

standard deviation of 1 mM

(mM)
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The extended Kalman filter: an example

Kinetic parameter error (but still R, = 0) - measurement of biomass every
6 hours with a standard deviation of 1 mM

N W A~ O
o o o
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The extended Kalman filter: an example

Kinetic parameter error (and R, is adjusted) - measurement of biomass
every 6 hours with a standard deviation of 1 mM

_ Time (h)
=80
E
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Time (h)
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Asymptotic observer

A reaction scheme:

D (kim&SB D Kim&G  met,.M]

i€Rm j€Pm
A general macroscopic model:

()
= = Kg(&.t) - DDE(t) + F(1) - Q)

There is a partition &7 = [§T§T] inducing a partition KT = [KJ K] where
K, € RPM is full row rank: rank(Ka) =rank(K)=p<M

£, =Kaplé,.€,)-DE +F, - Q,
§b - Kb?(ga’gb) - ng tE-Q,
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Asymptotic observer

£, =Kaplé,.€,)-DE +F, - Q,
&y = Kb?(ga’gb) - Dg, +Fp- Q,

If we introduce a state transformation

£, =5,
Z:C§a+§b

with the matrix C € R(N-P)*P solution of CK, + K, = 0, then

z:_D§+C(Ea_Qa)+Eb_Qb
éb :g_cé—:a

The state transformation allows the elimination of the - uncertain - kinetics
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Asymptotic observer
If ¢ € Rl denotes the measured concentrations, and £, € RN-L then

z= A, + Ak,

2=-D2+C(F,-Q,)+F,-Q,
£~ A (z-Aid)
where A\ = (AJAz)71AT € RIN-LX(N-P) is the left pseudo inverse of Ay

For this matrix to exist (necessary condition of asymptotic

observability) L > p
In the particular case where L = p and §1 = §a then the observer reduces

5=-D2+C(E, - Q) +E,-Q,
£, —2-Ct
32/44
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Asymptotic observer
If the measurements occur at discrete times (always the case),

extrapolation is required
Zero-order extrapolation

y(t) =y(t) tk <t < g

First-order extrapolation
y(tc) = y(te-1)

V() = y(t) + (t - 1) T

The estimation error converges asymptoticaly to zero

%, _ a6, ~ &) — D -¢)
dt dt =2 =2
provided that D is persistently exiting

Ik <t < kgt

t4ot
36>0,4>0 fD(T)dTZ,B

t
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Hybrid Kalman-asymptotic observer

Get the best from both solutions: an exponential convergence if the model

is accurate, and an asymptotic convergence if the kinetic model is
uncertain

The starting point is the EKF

K(t) = P~(t)HT |CP~(t)HT + Rs(tk)]_1

A—

§+(tk) =¢ () + K(t) (Z(tk) - Hg_(tk))
P*(t) = P~(t) — K(t)HP™ ()

A. Vande Wouwer - P. Bogaerts (UMONS - ULB Bioprocess modeling and estimation

34 /44



-
Hybrid Kalman-asymptotic observer

We assume that the measurements y(tc) = He(t) +&(t) = £ (&) + &(t)
induce a partition K™ = [ K/ KJ ] where rank(Ki) =L =M

A state transformation is introduced using the C matrix wich is solution of
CKi+Ko=0

Zy = '§_:1
Two extreme situations can be defined:

@ ¢ =1 :just a simple change of notation (plain EKF)
@ 6 = 0 : asymptotic observer

@ 0 <6 <1 :intermediate situations to be specified - ¢ will play the role
of a confidence level in the model !
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Hybrid Kalman-asymptotic observer

This state transformation can be used to express the Kalman filter in an
alternative form

with

A. Vande Wouwer - P. Bogaerts (UMONS - ULB Bioprocess modeling and estimation 36/44



-
Hybrid Kalman-asymptotic observer

This state transformation can be used to express the Kalman filter in an
alternative form

K(tk) = P )HT [HP(5)HT Re(t)]”

+
27 (k) = (Tk)+K(tk)( () — HZ™ (tx )):2_(tk)+K(Tk)(x(tk)—§(fk))
P*(t) = P~(t) — K(tk)HP~(tx)

At this stage, more influencial modifications are introduced:

@ an extension of the state 2" = | 2] 2] ¢ | with an additional state

equation % = 0 and a new measurement matrix Hs = [ H O ]

@ a weighted sum of the estimation 2y and the measurement y to build
the estimation of &4: g—‘ =62, 4+ (1-6)y

@ an extrapolation of the discrete-time measurements (as in the
asymptotic observer)
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Hybrid Kalman-asymptotic observer

Summing up all these modifications leads to the prediction equations

déz:aKzg@f) D2, + Uy + (1 - 9)Cu,

%;i:o

92 = F(2)P+PFT(2)+ R,
£ =02 +(1-0)y
£, =2,-(1-0)C¢,

with

K1f(§1a§2(51’éz’5)) - Dz,
1(2) = | 6Kag(21,€,(24,2,,6)) = Dz, + (1 - 6)Cy;
0
F(2) = 42

z=2(t)
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Hybrid Kalman-asymptotic observer

.. and the correction equations

(k) = P~ (1) YHT [HsP~(t)HT + Ra(t)]
2 (1) = 27 (t) + K(t) (v (t) — & (&)
P+(tk) = P_(tk) — K(tk)H(;P_(Tk)

with positivity constraints on the concentration estimates &;(t) and &»(t)
such that
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Hybrid Kalman-asymptotic observer

In practice ...

@ 0 <6 <1 canbe seen as a degree of confidence in the kinetic model

@ ¢ = 1is used as initialization to give a chance to the model ! (which
means that we start with the EKF)

@ If 6 ends up in 0, then the observer behaves as the asymptotic
observer

@ the covariance matrix of the estimation errors

PzInn - Oni1
Pito)=| A" ’
() [ Oin  Ps ]
(e.g.P; = 10%andP; = 0.1)

can be tuned to adjust the sensitivity to the kinetic model
discrepancies

A. Vande Wouwer - P. Bogaerts (UMONS - ULB Bioprocess modeling and estimation 40/ 44



E—
Full horizon observer

Consider a nonlinear dynamic system with discrete-time measurements
x(t) = f(x(1), u(t))  x(o) = X,
y(t) = h(x(t)) + &(t)

The solution g(t, u, x,) can be obtained by numerical integration.

The idea of the full-horizon observer is to compute the most likely initial
conditions on the absis of all the measurement data collected so far

k

Rop = arg mmZ[y ) = h(g(t.u(t).x0)] "R (t)y (4) = h(g(tu(t).xo)]

i=1

and to predict a state estimate trajectory between two measurement times
by simulating the model equations from these estimated initial conditions

R(1) = g(tu(t)Lyy)  te <<t
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Full horizon observer

The algorithm can be summarized as follows:

@ Initialization: numerical solution of the model equations starting from
an initial condition built using the values of the measured states, and
an initial guess of the nonmeasured states

@ Correction: at each new measurement time, identification of the
most likely initial conditions, on the basis of all the measurement
information collected so far

@ Prediction: between two measurement times, simulation of the
model equations using the latest initial condition estimates
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Full horizon observer

Algorithm properties
@ the nonlinear model is used without any approximation (in contrast to
the extended Kalman filter which requires an on-line linearization)

@ the drawback is the use of a nonlinear optimization procedure (with its
associated problems)

@ The existence of a solution to the minimimization problem requires
that the number of available measurements is larger than the number
of states km > n
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Full and receding horizon observers

Possible extensions

@ constraints on the initial conditions (e.g. positivity constraints)
@ use of a receding horizon of length L (so as to forget the past)

k

Xy = argmin [y (1) = h(g(t.u(t).x)] R (1) [y (t) - h(g(tu(h).x,)]
X0 j=k—L+1

withk >Land mL > n

@ jointly estimate a few unknown parameters

Rop- 0 ]—afgman[y ) = h(g(tu(t)x,. 0)17 R (H)Iy(6) - h(g(t.u(t).x,. 0)]

Xl iy

with mk > n+p
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