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Purpose of the talk : identification of macroscopic model
of bioprocesses

@ introduce important parameter estimation methods
o stress the limits of the least-squares approach
e present the maximum likelihood approach and some useful analysis
tools
@ present procedures for estimating the yield coefficients and the kinetic
parameters in biological models
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Culture of microorganisms in bioreactors

perfusion

Sample

Bioreactor
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Model structure

A reaction scheme:

Z (—Kim)éi 3 Z kimé me[l,...M]

i€Rm j€Pm
Examples:
@ a simple bacterial growth ksS — X
G+ ksO D kX + k,C
@ culture of S. cerevisiae cH koX + k4E + ksC
E + ksO S kaX + koC

The reactions are assumed independent (M is minimum) and the
number of components N > M
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Model structure

A system of mass balance equations:

w = V(t)Kp(&, t) — Four(t)E(t) + Fin(t)&in(t)
D 1) = Fou(t
V(t )di(t) +§(I)%§t) = V(t )d‘f( ) + &(t) (Fin(t) — Fout(t))

V()Ke(é. 1) = Four(t )6( ) + Fin(t)&in(1)

Fin(t)
V(1)

(&in(t) = &(1)) = Ke(&, 1) + D(t) (£in(t) = &(1))

—— = Ko(é,t) +
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Model structure

A general macroscopic model:

dé(t)
g = Kel& 1) - D(1)e(t) + F(t) - Q(1)
Examples:
. . X 1
@ a simple bacterial growth [ 3 }:[ ks ]ga(S,X)
@ culture of S. cerevisiae
)..( Ky ko k3 X 0 0
G -1 - 0 uy - X G Gin-D 0
E :[o Ky —1}[;42-x]—D- E |+ | EnD ]—[ 0 ]
. —ks 0 —ke uz - X o OTR 0
Q k7 ks ke P 0 CTR
P
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N
Model structure

A variety of kinetic laws:

@ Monod law u(s) = #maxﬁ
@ Contois law /J(S) = ﬂmax%
e Haldane law #(S) = pmax g5 a7k

A wrong model structure will lead to systematic errors in the
parameters. Overparametrization (a too large set of the degrees
of freedom) will lead to increased standard deviations.
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Parameter estimation: an art !

Parameter estimation is a difficult task as it combines:

@ Informative experimental studies

@ Selection of a good model structure (in the following we will assume
that this choice is well made: certainly requires a good
physical/biological inspiration !)

@ Selection of good parameter estimation tools (the goal of this
presentation !)

@ Model validation (direct and cross validation)
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An example of the importance of model structure and
validation

Identification of a kinetic model based on 11 measurements of u for S from
0 to 500 (by steps of 50) with an additive white noise with normal
distribution, zero mean and standard deviation of 5

— 120
H 40+ S
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An example of the importance of model structure and
validation

Identification of a kinetic model based on 11 measurements of u for S from
0 to 500 (by steps of 50) with an additive white noise with normal
distribution, zero mean and standard deviation of 5
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An example of the importance of model structure and
validation

Different candidate model structures

@ Exact model structure (Monod law)

@ Same level of complexity (Tessier law)
M= 64 (1 - 6_8/92)
© Overparametrized model (polynomial "black-box” model)

u=01+ 198+ 9332 + 9433 + 9534 + 9585
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An example of the importance of model structure and
validation

Direct Validation

L L L L L L L L L
0 50 100 150 200 260 300 380 400 480 &00
s
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An example of the importance of model structure and
validation

Direct Validation Cross Validation
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Modeling objectives
+
A priori knowledge
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Basic terminology

@ Observations (or measurements) are realizations of stochastic
processes

@ The function of the observations used to compute the parameters is
called an estimator.

@ Parameters are therefore stochastic variables with an expectation
(mean) and a standard deviation

@ The deviation of the expectation of the estimator from the hypothetical
true value of the parameter is called the bias of the estimator.

@ The standard deviation of the estimator defines and quantifies its
precision

A. Vande Wouwer - Ph. Bogaerts (UMONS and Bioprocess modeling and estimation ucL 13/81



|
Advantages of statistical estimation methods

@ The possibility to compute accuracy (bias ?) and precision (standard
deviation ?)

@ The possibility to establish accurate (or unbiased) and precise
methods

@ The possibility to compute the attainable precision based on a set of
available measurements

@ The possibility to optimally design experiments (i.e. to design an
experiment so as to attain a prescribed precision or to optimize the
precision)
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Overview of the talk

Basics of data analysis
Fisher Information Matrix

Parameter estimation methods

e The least-squares approach
@ The maximum likelihood approach
o Recursive formulations

Sensitivity analysis

Identification of the pseudo-stoichiometry and kinetics
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Basics of data analysis: distribution of observations

Vector of observations:

y= Iy ol
for t = t, ..., ty, and some unknown parameters 6 = [6;...0p] " ...

The purpose of identification is to estimate the expectation model of the
observations

Ely)l = m(;.0)

m:[m1...mM]T

The deviations of the observations y from the values of the expectation
model at the measurement points

&(t,0) = y(t) — m(t;, 6)
are zero-mean stochastic errors.
Bioprocess modeling and estimation ucL 16/81
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Basics of data analysis: distribution of observations

Stochastic variables can be described by deterministic functions:

@ Joint probability density function

p(y:6)

@ Joint log-probability density function
q(y:8) = In(p(y: 9))
@ Mean defined through the mathematical expectation
m; = E(y;) = fyfp(yw-- . ym; 8)dys -+ dyw
@ Covariance matrix
Y = E[(y - m)(y - m)T]
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Basics of data analysis: distribution of observations

The central limit theorem of calculus of probability and the
problem of moments [Pdlya, 1920]: "The occurrence of the
Gaussian probability density in repeated experiments, in errors
of measurements, which result in the combination of very many
and very small elementary errors, in diffusion processes etc.,
can be explained, as is well-known, by the very same limit
theorem, which plays a central role in the calculus of probability.
The actual discoverer of this limit theorem is to be named
Laplace; it is likely that its rigorous proof was first given by
Tschebyscheff and its sharpest formulation can be found, as far
as | am aware of, in an article by Liapounoff”
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Basics of data analysis: distribution of observations

The joint normal probability density function:

ply) = o -Hrm™=0m) = N(m, 3)

nZ| —

(2m)% |Z)2

and log-density function:

a(y) =~ in(2r) - L1l 2y - m) = (y - m)

A I

005 / ] 4 2
H H H H H
5 ) 3 2 El ] 1 2 3 4 5 4 3 2 El [] 1 2 3 4 5
¥ y
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Basics of data analysis: distribution of observations

If the y; are uncorrelated, ¥ = diag(c - - - o2 ) and if all the m; and o are
identical, the y; are iid (independent and identically distributed)

M 1 1 &
_ , 32
q(y) = -5 In(27) - sMIno - ; (v - m)
If the joint probability density function depends on unknown parameters 6
(we assume X does not depend on §, i.e. it is known or constant) :

o(-2(y-m(©)7E" (y-m(9)))

p(y:0) = T
pAE

1
M
2

(27)

a(y; 8) = ~5 In(2r) ~ L1 1X] ~ 2y - m(@)"E" (y - m(6))
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Basics of data analysis: precision and accuracy

Parameters : § = [61 ---6p]"

Parameter estimates : § = [0y - -- p]7

Bias: by, = E(fk) — 6k

Variance: var(fx) = o2 = E(fk — E(6k))?

Mean squared error: mse(fx) = E(6x — 6x)? = a—gk + bgk

@ An estimator is defined as convergent in quadratic mean if
its mean squared error vanishes asymptotically.

@ An estimator is defined as consistent if the probability that it
deviates less than a specified amount from its exact value
may be made arbitrarily close to one if the number of
observations is taken sufficiently large.

@ Convergence in quadratic mean implies consistency but the
converse is not true.
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Basics of data analysis: precision and accuracy

Other important indicators are the Fisher scores, which are stochastic

variables as they are evaluated using the actual observations

9q(y: 0)
50~ "9

Under suitable regularity conditions,

E(sy) =0

For Gaussian distribution (and under the assumption that ¥~ does not
depend on 6)

A. Vande Wouwer - Ph. Bogaerts (UMONS and Bioprocess modeling and estimation ucL

22/81



-
Basics of data analysis: precision and accuracy

om'™(6) __

If the observations are independent :

1 am,
= Z £(9)
0'12 06k

M

varfsy] = >’ 01_2 (argé(ké) )2

=17

With each additional observation the variance of the Fisher score
increases.
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Basics of data analysis: precision and accuracy

The Fisher information matrix :

y:6 :
Fo = E[s,s, ]—E[ |

The Fisher information matrix is a covariance matrix, and is
therefore positive semidefinite. It is positive definite if and only if
the elements of the Fisher score vector are linearly independent
stochastic variables.

The Fisher information matrix of normally distributed observations :

m'(0)

ELH T] — (9) C()0(7_6)
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Basics of data analysis: precision and accuracy

Inflow of Fisher information for independent observations :

p(y:8) = pr(y1: O)pa(y2:0) - pulymi6) = qly Zq,(y,,_

M
~ N 991y 9)
S0 = Z 96

=

cov[s, 0] = i E[aq,(y 0) aq,a(y 0) i E[aq, y; 6) aq,(y 9)]

Fume1 > Fum : as a result of any additional independent
observation, the diagonal elements of the Fisher information
matrix either increase or remain the same.
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Basics of data analysis: precision and accuracy

Limits to precision : The Cramer-Rao bound

Suppose that & = [ - - - Bp] is an unbiased estimator. Then,
under suitable regularity conditions,

cov(8.8) > Fy"

@ No unbiased estimator can be found that is more precise
than a hypothetical unbiased estimator that has variances
equal to the diagonal elements of the Cramer-Rao lower
bound matrix.

@ This inequality does not imply that the off-diagonal elements
of the covariance matrix are necessarily larger than or equal
to the corresponding elements of the Cramer-Rao lower
bound matrix.
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Basics of data analysis: precision and accuracy

Efficiency of an estimator

@ Unbiased estimators attaining the Cramer-Rao lower bound
are called efficient unbiased.

@ Although often no efficient unbiased estimator exists, an
estimator can be usually found that attains the Cramer-Rao
lower bound asymptotically.

@ The efficiency of an estimator is the ratio of the relevant
Cramer-Rao variance to the mean squared error of the
estimator.

@ A necessary and sufficient condition for an estimator 6 to be
unbiased and to attain the Cramer-Rao lower bound is

Fe_1§9:@—9
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Basics of data analysis: precision and accuracy

The Cramer-Rao bound and parameter identifiability

A vector of parameters is identifiable from a set of observations if
the relevant Fisher information matrix is nonsingular. If, on the
other hand, the Fisher information matrix is singular, the vector of

parameters is nonidentifiable and the Cramer-Rao lower bound
matrix does not exist.

For normally distributed observations :

om' (6 om(0
F, (_)2_1 (9)
a0 29"

which implies that the parameters of the model are identifiable if and only if

both the covariance matrix of the observations and the Jacobian matrix
0;)(7-9) are nonsingular.
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Basics of data analysis: precision and accuracy

Two (trivial) examples of singularity of HZT(TQ):

@ the model can be reparametrized with less parameters, i.e.
m1 (61,62, ...0p1) can be replaced by my (61,65, ...0p2), then

om;(61"))
aQ(1 )T

is singular and

amg(6))
aQ(Z)T
maybe not ...

@ the number of observations M is less than the number of parameters
P

A. Vande Wouwer - Ph. Bogaerts (UMONS and Bioprocess modeling and estimation ucL 29/81



-
Basics of data analysis: precision and accuracy

The Cramer-Rao bound and experiment design
The guiding principle is the assumption that an hypothetical
estimator is available that attains the Cramer-Rao lower bound.
Experimental design may be used to manipulate the Cramer-Rao
variances and even to minimize them in a chosen sense.

Many criteria have been proposed:

@ maximize the determinant of the
FIM (volume)

@ minimize the condition number
of the FIM (ratio of the largest to
the smallest axes)

@ etc.
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Parameter estimation: the linear least-squares

The linear least-squares estimator

y(i) = ym(i) + (i) = x" (N0 +&(i) i=1,---M

°y= [y1---ym] @ Measurements (stochastic variables)

°y_ @ Model (linear in this case)

@ X =[X1-Xp] @ Explicative variables (perfectly known)

@ 0=[01-6p] @ Unknown parameters (stochastic variables)
¢ @ Measurement errors (stochastic variables)
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Parameter estimation: the linear least-squares

Least-squares criterion

M M M

JO) = D (1) = Y. (i)~ ym( = D (u() - xT(1)6)"
i=1 i=1 i=1
Least-squares estimator

8,) = ArgMin J(6)
0
Necessary condition and solution

9J(0)
80

0=0,,

M -1 I\;I 7
M:[ z(i)KT(i)) x(y(i) = (XTX)"'XTy

1>

i=1 1= h
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Parameter estimation: the linear least-squares

Properties of the least-squares estimator
Estimation error 6,, = 6 - 6,
Unbiased estimator

E[6,] =0 if E[g]=0 Vi
AND if the linear model structure is appropriate (otherwise systematic bias

can occur which is not related to the stochastic nature of the signals !)
Covariance

M -1
Elbyby] = o (Z x(f)f(i)] it Ele(i)e()] = 02 8(i—j) Vi
i=1
which can be estimated as

M -1
2 o5T 21 _ a2 N T (s A2y T y\—1
Elydy] = 62F;' =62 | Y x()xT()| = &*(XTX)
Bioprocess modeling and estimation ucL 33/81



Parameter estimation: the linear least-squares

How can we estimate &f,, ? A first natural idea would be

o Jly) 1 ,
O-M_

—(y— X\ (y- X0
However this estimator is biased !

y-X6=

| >

Y= X0y =y~ X0+ X(0-0y) =&+ X6, = (Iu~-A)2

with A = X(XTX)~'XT a symetric matrix with the following properties
AA =A AXH= X0

A. Vande Wouwer - Ph. Bogaerts (UMONS and
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Parameter estimation: the linear least-squares

A 1 .
Elo3] = ME[ST(/M - A)E
where
E[TIvg] = Mo®  E[ETAE] = o2trA = Po?
since
trA = tr(X(XTX)'XT) = tr(X"X(X"X)™") = tr(lp) = P
Therefore

E0] = (1 - 1)o7
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Parameter estimation: the linear least-squares

A correct estimate 62 is

JOm) _
M-—P M-P

o = (y - X0)"(y - X9)
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The linear least-squares: an example

Identification of stoichiometry in a batch culture where the following
reaction occurs

S1+28%5X ks, =-1 ks, =-2

The kinetics is known to be

<p(S1 , 82) = 0, 01 S1 82
The mass balance equations are

dSy dSy ax
_— = —= =k — =
at ks1§0(31 . Sg) at sch(S1 s 82) dt (p(S1 . Sg)
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The linear least-squares: an example

The main idea is to eliminate the kinetics

asS, ax

o1k — ke 22

and to integrate the resulting equation

Si(i) = ks, X(i) + (S1(0) — ks, X(0))

so as to get a linear expression, leading to the estimation of ks,

y(i) = x"(i)e
with

y(i)=8i(i) x"()=[ X() 1] 8" =] ks (51(0)~ksX(0)) |
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The linear least-squares: an example

The same can be done so as to estimate ks,

dSz ax

&2 — ko 22
pm $,¢(S1, S2) = ks, p

y()=8Sa(i) x"()=| X()) 1] 0" =] ks, (S2(0)-ks,X(0)) |
Two liner least-squares problems can therefore be solved under the
assumption that

@ X is known accurately (ideally without any error)

@ Sy and S; are measured (in this example every hour, with a
zero-mean, Gaussian noise, with a standard deviation of 0.2)
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The linear least-squares: an example

Identification of stoichiometry in a batch culture where the following
reaction occurs

Si1+255X ks =-1 ks, =-2
MATLAB DEMO

ks, = —0.9764 ks, = —2.0466

5,00,5,0.X0)
o]
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The linear least-squares: an example

If noise is present on X, for instance with a standard deviation of 0.5, a
bias appears

MATLAB DEMO

ks, = -0.8969 ks, = —1.9145

5,0.5,0,X0)
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Parameter estimation: the maximum likelihood estimation

The maximum likelihood estimator & from observations y maximizes the

the likelihood function p(y; 6)
6= arg max p(y; ) = argmax q(y; 0)
A necessary condition can be expressed using the Fisher score

39(@) = Bq(ayéQ)

=0
0=0
An efficient unbiased estimator is also the maximum likelihood
estimator.
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Parameter estimation: the maximum likelihood estimation

Additional properties :

@ Under very general conditions, the maximum likelihood
estimator is consistent.

@ Under general conditions, the probability density function of
a maximum likelihood estimator tends asymptotically to

o~ N(o.F,")

Maximum likelihood estimators thus distributed are
asymptotically efficient unbiased
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Maximum likelihood estimation: the linear case

The linear estimator

y(i) =
o y=1ly1-uu]
Y = [mi Yml
© Xp = [Xmy -+ Xmp]
@ X=X,+tn
® 0=1[--6p]
@ candp

A. Vande Wouwer - Ph. Bogaerts (UMONS and

() + (i)

(N0 + £(i)

N=n(N"0+e(i) i=1,---M
@ Measurements
@ Linear model
@ True explicative variables
@ Measured explicative variables
@ Unknown parameters
@ Measurement errors

Bioprocess modeling and estimation UCL  44/81
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Maximum likelihood estimation: the linear case

The linear estimator

o Efy(i)] =0

o El(iy" ()] = 2()o(I - ) o oo meen
. ° ite

° pla()] = (2,,1)n|2(,)| p(_%QT(i)Z_1(’)Q(’)) @ Gaussian

e Elg(i)]=0 @ Zero mean

o Efe(i)s(j)] = o*(1)o(i - j) o White

e ple(i)] = 21102 e p(—%(‘i((’l))) @ Gaussian

° E[a(/)QT(j)] —0 Vij @ uncorrelated
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Maximum likelihood estimation: the linear case

Probability of the M measurements (assumed independent)

Pln(i) (1) = 1.... M) = T pla(0lple(i)]
M 1 1 _ . 1 J 2
= I Varem p (31" (=" (n(i) Vero eXp(_éaz((:)))

The most likely errors are maximizing this probability, while satisfying the
assumed linear model
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Maximum likelihood estimation: the linear case

The maximization problem reduces to :

1 ()
argmax | = Z n'( )Q(l) + > Z =)
=1

n(i).&(i)

and with the model constraint (Lagrangian formulation)

L(8,y(i), x(1), A(1) =
M
2 (ol (s, (1) = x(0) " =71(0) (2 - () + 220) (¥(0) - £ ()}

i=1
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Maximum likelihood estimation: the linear case

The optimality conditions are

%lo-g, 0 lg-p, O
y(i) = ym(i) y(i) = Pi(i)
(1) = %4y (1) = %y()
A(7) = Am(i) A(7) = Au(i)
Ll s =0 A, —0
w0l 6=, ol 9=,
y(i) = (i) (i) = (i)
x(7) = (1) (1) = % (1)
() = Au(i) (1) = (i)
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Maximum likelihood estimation: the linear case

N

Using the optimality criterion with respect to ym(i), X,(i), Am(i):

Y (Ym(7) ~ x1,(1)6)
Z (i) +0™=(i)o

—

@ numerical optimization is required;
e if X = 0, then the maximum likelihood estimator reduces to the
least-squares estimator;

e the estimates of (i), X,,(1), Am(i):

ym(i) = ym(/) (1) Am(i)
Xp(i) = ()+Z(')9 Am(i)
;l .Vm() X, () M

M(I) = 0-2(1)+QT2(’)Q/I\VI
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Maximum likelihood estimation: the linear case

Statistical properties
... after some calculation neglecting second-order errors
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Maximum likelihood estimation: an example

Back to the identification of stoichiometry in a batch culture where the
following reaction occurs
Si1+255X ks =-1 ks, =-2
The linear estimator is still given by
y(i) = x" ()8
with

y(i) = Si(i) x7(i) =[ X(i) 1 ] o7 =[ ks, (S1(0) — ks, X(0)) ]
but the measurement errors on the biomass X are taken into account.

MATLAB DEMO

ks, = —1.0218 ks, = —2.1005
Bioprocess modeling and estimation ucL 51/81
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Maximum likelihood estimation: more general cases

Nonlinear (scalar) model
y(ti) = ym(ti,0) + (i) i=1,---M

@ p(er,82,"+ ,em) =

e e(t,0) = y(t) - (t,,
@ s~ N(0,02)

II’:|§

p( i) @ Independent additive
9) measurement errors

@ output error (= noise &(i) for the
exact parameters)

12 1({&\?| @ Normal distribution with known
p(ei) = (2nof) " exp ) variances

i
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Maximum likelihood estimation: more general cases

The joint probability density function is given by:

M Yy (1 N2
p(y:0) = (2n0',-2)_1/zexp{—%(—y(t’) ym(t”g))}

" g
i=1 !

and the log-likelihood function

M
XQ Z 2710'

The maximum likelihood estimator

:i( y(t) = ym(t ))

I\) |

y 2
. o 1 y(ti) — ym(ti, )
Q_argmgﬂXCI(Y:Q) —argmg'nQZ( T

i=1
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Maximum likelihood estimation: more general cases

Nonlinear (vector) model
y(t) =y (t.0)+e() i=1,---M

@ Independent

® pleygro2n) = T P(2) errors
i=
e e(t,6) = y(t,) - Zm(ti’Q) @ Output errors
o &~ N(0.%) o Nomal
h distribution with
_1/2 1 _ known
p(e) = ((2n)™IZI) e {_ESiTZ e covariance
matrix
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Maximum likelihood estimation: more general cases

The joint probability density

M
plyi6) = [ | @01z exp{(y(t) -y, (1:0)) =" (v(t) -y, (t.6)]

i=1

The log-likelihood function

nyM

aly:6) = - m2e- in ()5 ) (v(t) -y, (6:0) =7 (y(6) -y (16

The maximum likelihood estimator

M
b= argmin Z y(1.0) T (y(8) - y(1.6))
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Maximum likelihood estimation: more general cases

@ If the observations are jointly normally distributed and correlated, the
maximum likelihood estimator of the parameters of the expectation
model is the weighted least squares estimator with the inverse of the
covariance matrix of the observations as weighting matrix.

@ If the observations are jointly normally distributed and uncorrelated,
the maximum likelihood estimator of the parameters of the
expectation model is the least squares estimator with the reciprocals
of the variances of the observations as weights.

@ If the observations are jointly normally distributed, are uncorrelated,
and have equal variances, the maximum likelihood estimator of the
parameters of the expectation model is the ordinary least squares
estimator.
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Maximum likelihood estimation: more general cases

What if the measurement variances are unknown ?
... back to the nonlinear scalar model

y(t) = ym(ti,0) + (i) i=1,---M
The idea is to extend the vector of unknown parameters
.
Qext:[QT g, O-M]

However, this configuration is non identifiable since P + M > M. A reduced
parametrization is needed, as for instance,

b
o?(a,b,9) = a|ym(t,9)|
Zext —

Ope =| 07 a b]T

A. Vande Wouwer - Ph. Bogaerts (UMONS and Bioprocess modeling and estimation ucL 57 /81



-
Maximum likelihood estimation: more general cases

Joint probability density function

. (y(t) -y, (1.0))?
p(y:0.a,b) = H(Zna |ym(t,-,Q)|b)—1/2 exp _% y Yo -
=1 aly_(t0)

Log-likelihood function

M i
M 1 - tl7 9))
q(y:6.a.b) = In 27r—— Ina—— Z In |y (t,0 ‘_2_ Z Ym
= |_m<t,,g>|
which simplifies to the function to minimize
M M : . 2
1 Y, (y(t) -y (4.9)
J(Q,a,b):Mlna+bZ|n|ym(t”Q)|+_Z AN Zm Ib
= = (. 0)
Y \ti8
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Maximum likelihood estimation: more general cases

Optimality condition

9J(6, a, b) 05 1% (y(t) -y, (6.0))
_— —= —- ——
o0a Y M pa ‘0 b
Xm( i» 0)

and the criterion simplifies to
M

1 tl’

J(6,b) = Z +bZIn|y (i, 0) |
= l_muz,g)
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Maximum likelihood estimation: more general cases

In the case of the nonlinear vector model

M
aly:6.%) =~ In((2x)" )- Z y(t) -y, (:0) =7 (y(t) -y, (t:0))
Using the optimality condition
oq(y:6.X)|
ox bs
and the rel%tilgr;;l AT B
o T oy =T BAXT
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Maximum likelihood estimation: more general cases

The function to minimize is

M

=035 () -y, (100 9)(y(t) -y, (1.9))

and a a posteriori estimate of the covariance matrix is given by

M
~ 1 R T
=1 2, () -y, (6.9) (y(t) -y, (1.9))
i=1
However this estimate, which is biased (as seen before), can be replaced
by
S T
r= M P 7 p 2, () -~y (6:0) (v(t) - v, (1.9))

i=1
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Maximum likelihood estimation: more general cases

What if the measurement noise is not Gaussian ?

... back to the nonlinear scalar model with a Laplacian noise

y(t) = ym(ti,0) + (i) i=1,---

with

N V2l
plei) = \/Eo_iexp{ Ti }

os /
\
2o \
: // - |
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Maximum likelihood estimation: more general cases

t,,8)|

1< \/_ |y
1=
and the criterion to minimize is given by

(@) -y, (1.0)

0=y =

i=1

which is the Least Absolute Deviations or Least Absolute Value criterion

.. this criterion is useful when there are outliers in the data (robust
estimation)
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Maximum likelihood estimation: more general cases
... or back to the nonlinear scalar model with a uniform noise

y(ti) = ym(t;, 0) + &(i)

i=1,---M
with

p(s) :{ 1/(2a) iflel <a

0 otherwise
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Maximum likelihood estimation: more general cases

The joint probability function

M j i) — i | = ...
p(y.0) = 1/(2a)" if |X(t') Xm(th,)|Sa, i=1,---,M
0 otherwise

All solutions such that

|Y(t: - (t,,@)’ga, i=1,--,M

are maximum likelihood estimators
A particular solution is given by the minimax (smallest maximum risk)
estimator

# = arg min max |y t) — (t,-,Q)|

0 1<is<M —m
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Maximum likelihood estimation: more general cases

The joint probability function

— —m

Mo N , =1 ...
p(y,6) = 1/(2a)V if |y(t,) y (t,,Q?| <a, i=1,---,M
0 otherwise

All solutions such that

|Z(t")_zm(l‘i,é| <a, i=1,--.M

are maximum likelihood estimators
A particular solution is given by the minimax (smallest maximum risk)
estimator

6§ = arg min max |X(t") -y (Ti,Q)|

9 1<isM =—m
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Parameter estimation: the nonlinear least-squares

The nonlinear least-squares (scalar) estimator

y(i) = ym(i) + &(i) = y(x(0),0) + &()) i=1,---M

°y=[yi-ywml
Oxm
® X =[x Xn,]
® =101 6p]
°¢

A. Vande Wouwer - Ph. Bogaerts (UMONS and

Measurements (stochastic variables)
Model (general nonlinear expression)
Explicative variables (perfectly known)

Unknown parameters (stochastic variables)
Measurement errors (stochastic variables)

Bioprocess modeling and estimation

ucL

67 /81



-
Parameter estimation: the nonlinear least-squares

The criterion

M M 5
=Z )= (y(t) -y_(x().9))

i=1
and the parameter estimates
6 = arg min J(6)
4

This problem cannot be solved in closed form and a numerical
optimization procedure is required

@ Gauss-Newton method
@ Levenberg-Marquardt method (e.g. Isgnonlin in MATLAB)
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Parameter estimation: the nonlinear least-squares

Parametric sensitivities

yo(x(). ) = 2mx(0).9)

Fisher information matrix

M
Fu = D vo(x(i), 0)yg (x(i), )
i=

Statistical properties (first-order approximation)

M
E[@] ~ Fy' D Ele(i)]ya(x(i), 6)
i=1

o E[f|~0 if E[s()]=0 Vi
o lim E[6] =0 since Jim Fi =0
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Parameter estimation: the nonlinear least-squares

Covariance of the parameter errors

Py = E[§0'] ~ o°F;]

if E[e(i)e(j)] = o?6(i—j) Vij
A correct estimate of the measurement variance can be obtained as

- 20 Z
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Parameter estimation: the nonlinear least-squares

Extension to the vector case

y(i) = y(x(i),0) + &(i) i=1,---M

M
J©O) = > (y(0) = ym(x(1),0))" Q7'(0) (i) = ym(x(0), 6))

i=1
@ Weighted least-squares : Q is a positive semi-definite matrix

@ Maximum likelihood (Gaussian distribution): Q is the covariance
matrix of the measurement noise

@ Numerical optimization 8§ = argmin J(6)
[4
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Parameter estimation: the nonlinear least-squares

Extension to differential equation model

dy(t
20 _ fy.x0.0

come back to the previous case trough numerical integration

y(t) = y(x(1). 6. y(0))

The model is expressed as

y(i) =y, (x(7),0) + &(i)

which is an algebraic equation where y(0) is included either in x(i) (if it is
known) or @ (if it is unknown)
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A. Vande Wouwer - Ph. Bogaerts (UMONS and

Parameter estimation: the nonlinear least-squares

Computation of the parametric sensitivities through the solution of a new

differential equation system

a 0y(x(t),0,y(0))
0

6
[ X\1), ¢ Pt
ot 00 ay(t) 00 00
or in short form

with initial condition

_ 9y(0)
= 58
which is equal to 0 or 1 whether y(0) is known or not
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Parameter estimation: the nonlinear least-squares

Covariance of the parameter errors

E[68'] ~ Py = 6°Fy

W—Zm ).8)Q ()] (x(0). )

Ele(i)e(j)] = o®6(i—j) Vi,
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Nonlinear least-squares: an example

Identification of the parameters of Monod kinetics in a batch culture

1

S—-X
(S, X) = 1(S)X = e ———X
»(o, =M = Mmax K+S
with timax = 0.2and K = 1
das aX
_— = = S’X -_— = S,X
S = w8 T =we(s.X)

Measurement of S and X every hour, with a zero-mean Gaussian noise
with standard deviation 0.2
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Nonlinear least-squares: an example

MATLAB DEMO

fmax = 0.1958 K = 0.8929

500 8.X ()
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Least-squares: recursive forms and evolutionary
problems

On-line estimation of the parameters: recursive formulation of the
least-squares algorithm (scalar linear case)

~ A Pix(i+1) xT(i A
Q,-H—Q,--Fm[)’(""‘l) (i+1)8]

. _ p Pix(i+1)xT (i4+1)P;
Pret = P S5 Pate)
@ requires an initialization with 6, and Po
@ usually Py = Alis taken large
@ P;is the inverse of the FIM and P; > Pjy4
@ influence of initialization

M

JO) = (y() - xT()8) + [0~ 6,]"P5 " [0~ ;]

i=1
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Least-squares: recursive forms and evolutionary
problems

Advantages of the recursive formulation
@ The number of numerical operations associated with including each
new observation is reduced.

@ The recursive computation requires a very small and constant amount
of memory.

@ The recursive estimation and the collection of observations may be
stopped once a desired degree of convergence of the parameter
estimates has been attained.

@ Time-varying parameters can be estimated.
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Least-squares: recursive forms and evolutionary
problems

An exponential forgetting factor a < 1 can be included,

A~ 1) B A~

by = b+ i U+ 1) = X7+ 1)
Pix(i+1)xT (i+1)P;

Pt = 1[P - 2 ln)

a+xT(i4+1)Pix(i+1)
Scalar nonlinear case:
N P,y (i+1) i N
Ql+1 = 9 + 1+yT(,+1)ply (,_H)[y(l + 1) _Xm(i(l + 1)’91]
Py, / (i+1)y T(f+1)P,
1+Lj(i+1)P;L)(i+1)

Piy1 = Pi—

No guarantee of convergence !
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recursive forms and evolutionary problems : an example

Identification of stoichiometry in a batch culture where the following
reaction occurs
S1+28%5X ks, =-1 ks, =-2

Again, two liner least-squares problems are solved under the assumption
that

@ X is known accurately (ideally without any error)

@ S; and S, are measured (in this example every hour, with a
zero-mean, Gaussian noise, with a standard deviation of 0.2)
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recursive forms and evolutionary problems : an example

Identification of stoichiometry in a batch culture where the following
reaction occurs

Si1+255X ks =-1 ks, =-2

i} 0

0.2
05

04

06

= + 1 1
J l lo=tzxs
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