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Fixed-order robust design:
a difficult problem

In this last part of course, we study robust
stabilization with a fixed-order controller
affected by parametric uncertainty

A difficult problem in general because
• fixed-order controller means non-convexity
of the design space
• parametric uncertainty means
highly structured uncertainty and exponential
(combinatorial) complexity

In the literature: a lot of analysis results,
but very few design results..

Low-order controllers are required in embedded devices



Existing design results

• H∞ design methods, state-space techniques

• Critical direction (Nyquist), convex

optimization with cutting-plane algorithms

• Infinite-dimensional Youla-Kučera parametriza-

tion generally leading to high-order controllers

• Use of linear programming with polytopic

sufficient conditions for stability

In this course

• Use of polynomial techniques

• Use of LMI optimization

• Controllers of fixed (hence low) order



Nominal Pole placement

We consider the SISO feedback system

b
a

x

y

+

−

Closed-loop transfer function

bx

ax+ by

In the absence of hidden modes (a and b coprime

polynomials), pole placement amounts to finding
polynomials x and y solving the Diophantine
equation (from Diophantus of Alexandria 200-284)

ax+ by = c

where c is a given closed-loop characteristic
polynomial capturing the desired system poles



Pole placement: numerical aspects
The polynomial Diophantine equation

ax+ by = c

is linear in unknowns x and y, and denoting
a(s) = a0 + a1s+ · · ·+ adas

da

x(s) = x0 + x1s+ · · ·+ xdbx
db

etc..

we can identify powers of the indeterminate s to build
a linear system of equations

a0 b0

a1
. . . b1

. . .
... a0

... b0
ada a1 bdb b1

. . . ... . . . ...
ada bdb





x0
x1
...
xdx
y0
y1
...
ydy

 =

 c0
c1
...
cdc



The above matrix is called Sylvester matrix, it has a
special Toeplitz banded structure that can be exploited
when solving the equation

James J Sylvester Otto Toeplitz
(1814 London - 1897 London) (1881 Breslau - 1940 Jerusalem)



Pole placement for MIMO systems

Pole placement can be performed similarly for

a plant left MFD

A−1(s)B(s)

with a controller right MFD

Y (s)X−1(s)

The Diophantine equation to be solved is now

over polynomial matrices

A(s)X(s) +B(s)Y (s) = C(s)

and right hand-side matrix C(s) captures

information on invariant polynomials and

eigenstructure

For example C(s) may contain H2 or H∞
optimal dynamics (obtained with spectral

factorization)



Robust pole placement

Now assume that the plant transfer function

b(q)

a(q)

contains some uncertain parameter q

The problem of robust pole placement will then
consists in finding a controller

y

x
such that the uncertain closed-loop charact.
polynomial

a(q)x+ b(q)y = c(q)

is robustly stable

How can we find x, y to ensure robust stability
of c(q) for all admissible uncertainty q ?

Coefficients of c are linear in x and y, but we
saw that stability conditions are non-linear and
highly non-convex in c..



Robust pole placement

One possible remedy is a suitable

Convex approximation of
the stability region

Then we can perform design with

• linear programming (polytopes)

• quadratic programming (spheres, ellipsoids)

• semidefinite programming (LMIs)

Complexity of design algorithm increases

Conservatism of control law decreases



Robust design via polytopic approximation
MIMO plant with right MFD

B(s)A−1(s) =
[
b 0
0 0

] [
s+ 1 0

0 s+ 1

]−1

with uncertainty in parameter

b ∈ [0.5, 1.5]

We seek a proper first order controller

X−1(s)Y (s) =
[
s+ x1 x2

0 1

]−1

=
[
y1s+ y2 y3s+ y4

0 y5

]
assigning robustly the closed-loop polynomial matrix

C(s) =
[
s2 + αs+ β δ(s)

0 s+ γ

]
whose coefficients live in the polytope −14 1 0

16 −2 0
−2 1 0
0 0 −1
0 0 1

[ α
β
γ

]
>

 −196
56
−4
2
−14


These specifications amounts to assigning the poles within the disk

|s+ 8| < 6
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Robust design via polytopic approximation (2)

Equating powers of indeterminate s in the polynomial
matrix Diophantine equation

X(s)A(s) + Y (s)B(s) = C(s)

we obtain the design inequalities
−13 −7 0.5
14 8 −1
−1 −1 0.5
−13 −21 1.5
14 24 −3
−1 −3 1.5

[ x1
y1
y2

]
>


−182

40
−2
−182

40
−2


characterizing all parameters x1, y1 and y2 of admissible
robust controllers
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Robust design via ellipsoidal approximation

Closed-loop characteristic polynomial

c(s) = a(s)x(s) + b(s)y(s)

= c0 + c1s+ · · ·+ cd−1s
d−1 + sd

whose coefficients are given by the LSE

 c0
c1
...

cd−1

 =



y0 x0

y1
. . . x1

. . .
... y0

... x0
ym−1 y1 xm−1 x1

ym
... 1

...
. . .ym−1

. . .xm−1
ym 1





b0
b1
...

bn−1
a0
a1
...

an−1

+



0
0
...
0
x0
x1
...

xm−1


c = S(x, y)p+ e(x)

It is assumed that uncertain plant parameters belong to
the ellipsoid

Ep = {p : (p− p̄)?P (p− p̄) ≤ 1}
where p̄ is a given nominal plant vector and P is a given
positive definite covariance matrix

Robust control problem:

Find controller coefficients x, y
robustly stabilizing plant a, b subject to
ellipsoidal uncertainty p ∈ Ep



Robust design via ellipsoidal approximation

Recall that by solving an LMI we could approxi-

mate from the interior the non-convex stability

region with an ellipsoid

Eq = {q : (q − q̄)?Q(q − q̄) ≤ 1}

In other words, q ∈ Eq implies q(s) stable

Using conditions for inclusion of an ellipsoid

into another we can show that finding x and

y such that q ∈ Eq for all p ∈ Ep amounts to

solving another LMI problem (not given here)

Coefficients x, y are such that the controller

y(s)/x(s) robustly stabilizes plant b(s)/a(s)



Ellipsoidal robust design: example

We consider the two mixing tanks arranged in

cascade with recycle stream

P

Fa

Fa Fb

Fa+FbTa

Tb

The controller must be designed to maintain

the temperature Tb of the second tank at a

desired set point by manipulating the power P

delivered by the heater located in the first tank

The only available measurement is

temperature Tb



Ellipsoidal robust design: example (2)

The identification of the nominal plant model
is carried out using a standard least-squares
method

A second-order discrete-time model

p(z) =
b0 + b1z

a0 + a1z + z2

is obtained with nominal plant vector

p̄ =
[

0.0038 0.0028 0.2087 −1.1871
]?

The positive definite matrix P characterizing
the uncertainty ellipsoid

Ep = {p : (p− p̄)?P (p− p̄) ≤ 1}
is readily available as a by-product of the
identification technique

P = 105


2.4179 0.0568 0.0069 0
0.0568 2.4121 0.0045 0.0062
0.0069 0.0045 0.0015 0.0014

0 0.0062 0.0014 0.0015





Ellipsoidal robust design: example (3)

Solving the LMI analysis problem we obtain first an
inner ellipsoidal approximation

Eq = {q : (q − q̄)?Q(q − q̄) ≤ 1}
of the non-convex stability region, with

Q =

 2.3378 0 0.5397
0 2.1368 0

0.5397 0 1.7552

 q̄ =

 0
0.1235

0


Then we solve the design LMI to obtain
the first-order robustly stabilizing controller

y(z)
x(z)

= 0.3377+166.0z
0.6212+z

Robust closed-loop root-locus for
random admissible ellipsoidal uncertainty



Strict positive realness

Let

D = {s :

[
1
s

]? [
a b
b? c

]
︸ ︷︷ ︸

H

[
1
s

]
< 0}

be a stability region in the complex plane where

Hermitian matrix H has inertia (1,0,1)

Let ∂D denote the 1-D boundary of D

Standard choices are

H =

[
0 1
1 0

]
H =

[
−1 0
0 1

]
for the left half-plane and the unit disk resp.

We say that a rational matrix G(s) is strictly

positive real (SPR for short) when

ReG(s) � 0 for all s ∈ ∂D



Stability and strict positive realness

Consider two square polynomial matrices of

size n and degree d

N(s) = N0 +N1s+ · · ·+Nds
d

D(s) = D0 +D1s+ · · ·+Dds
d

Polynomial matrix N(s) is stable iff there is a

stable polynomial D(s) such that rational

matrix N(s)D−1(s) is strictly positive real

Proof

From the definition of SPRness, N(s)D−1(s)

SPR with D(s) stable implies N(s) stable

Conversely, if N(s) is stable then the choice

D(s) = N(s) makes rational matrix

N(s)D−1(s) = I obviously SPR

It turns out that this condition can be

characterized by an LMI..



SPRness as an LMI

Let N = [N0 N1 · · · Nd], D = [D0 D1 · · · Dd]
and

Π =



I 0
.. . ...

I 0
0 I
... . . .
0 I


Given a stable D(s), N(s) ensures SPRness of
N(s)D−1(s) iff there exists a matrix P = P ? of
size dn such that

D?N +N?D −H(P ) � 0

where

H(P ) = Π?(S ⊗ P )Π = Π?

[
aP bP
b?P cP

]
Π

Proof

Similar to the proof on positivity of a polynomial, based
on the decomposition as a sum-of-squares with lifting
matrix P



LMI condition for design

Given a stable polynomial matrix D(s), poly-
nomial matrix N(s) is stable if there is a matrix
P satisfying the LMI

D?N +N?D −H(P ) � 0

(it follows then that P � 0)

• New convex inner approximation
of stability domain
• Shape described by an LMI
• Depends on the particular choice of D(s)
• More general than polytopes and ellipsoids

Useful for design because linear in N

Polynomial D(s) will be referred to as the

central polynomial



LMI condition for analysis

The LMI condition of SPRness can be used

also for design if we interchange the respective

roles played by N(s) and D(s)

If there is a matrix P and a polynomial matrix

D(s) satisfying the LMI

D?N +N?D −H(P ) � 0
P � 0

then polynomial matrix N(s) is stable

(it follows that D(s) is stable as well)

Useful for (robust) analysis because linear in D

Note that, in contrast with the design LMI, we

have here to enforce P � 0



Second-degree discrete-time polynomial

Consider the discrete polynomial

n(z) = n0 + n1z + z2

We will study the shape of the LMI stability

region for the following central polynomial

d(z) = z2

We can show that non-strict feasibility of the

LMI is equivalent to existence of a matrix P

satisfying

p00 + p11 + p22 = 1
p10 + p01 + p21 + p22 = n1

p20 + p02 = n0
P � 0

which is an LMI in the primal SDP form



Second-degree discrete-time polynomial (2)

Infeasibility of primal LMI is equivalent to the

existence of a vector satisfying the dual LMI

y0 + n1y1 + n0y2 < 0

Y =

 y0 y1 y2
y1 y0 y1
y2 y1 y0

 � 0

The eigenvalues of Toeplitz matrix Y are

y0 − y2 and (2y0 + y2 ±
√
y2

2 + 8y2
1)/2

so it is positive definite iff y1 and y2 belong to

the interior of a bounded parabola scaled by y0

The corresponding values of n0 and n1 belong

to the interior of the envelope generated by

the curve

(2λ2−1)n0+(2λ1−1)
√
λ2n1+1 > 0 0 ≤ λi ≤ 1



Second-degree discrete-time polynomial (3)

The implicit equation of the envelope is

(2n0 − 1)2 + (

√
2

2
n1)2 = 1

a scaled circle

The LMI stability region is then the union of
the interior of the circle with the interior of the
triangle delimited by the two lines

n0 ± n1 + 1 = 0

tangent to the circle, with vertices [−1, 0],
[1/3, 4/3] and [1/3, −4/3]
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Third-degree discrete-time polynomial

Similarly, we can approximate from the inside

the nonconvex third-degree discrete-time poly-

nomial stability region with an LMI



Application to robust stability analysis

Assume that N(s, λ) is a polynomial matrix

with multi-linear dependence in a parameter

vector λ belonging to a polytope Λ

Denote by Ni(s) the vertices obtained by

enumerating each vertex in Λ

Polytopic polynomial matrix N(s, λ) is robustly

stable if there exists a matrix D and matrices

Pi satisfying the LMI

D?Ni +N?
i D −H(Pi) � 0

Pi � 0 ∀i

Proof

Since the LMI is linear in D - matrix of coefficients
of polynomial matrix D(s) - it is enough to check the
vertices to prove stability in the whole polytope



Robust stability of polynomial matrices

Example
Consider the following mechanical system

x
x

u

m

m

d

d

2

1 2

1

2

1
c1

c12

c2

It is described by the polynomial MFD[
m1s2 + d1s+ c1 + c12 −c12

−c12 m2s2 + d2s+ c2 + c12

] [
x1(s)
x2(s)

]
=
[

0
u(s)

]
System parameters λ = [m1 d1 c1 m2 d2 c2 ]
belong to the uncertainty hyper-rectangle
Λ = [1, 3]× [0.5, 2]× [1, 2]× [2, 5]× [0.5, 2]× [2, 4]
and we set c12 = 1

This mechanical system is passive so it must be open-
loop stable (when u(s) = 0) independently of the values
of the masses, springs, and dampers



Robust stability of polynomial matrices

However, it is a non-trivial task to know whether the
open-loop system is robustly D-stable in some stability
region D ensuring a certain damping. Here we choose
the disk of radius 12 centered at -12

D = {s : (s+ 12)2 < 122}
The robust stability analysis problem amounts to assess-
ing whether the second degree polynomial matrix in the
MFD has its zeros in D for all admissible uncertainty in
a polytope with m = 26 = 64 vertices

LMI problem is feasible – vertex zeros shown below



Polytope of polynomials

We can also check robust stability of polytopes

of polynomials without using the edge theorem

or the graphical value set

Example
Continuous-time polytope of degree 3 with 3 vertices

n1(s) = 28.3820 + 34.7667s+ 8.3273s2 + s3

n2(s) = 0.2985 + 1.6491s+ 2.6567s2 + s3

n3(s) = 4.0421 + 9.3039s+ 5.5741s2 + s3

The LMI problem is feasible, so the polytope is robustly
stable – see robust root locus below
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Interval polynomial matrices

Similarly, we can assess robust stability of interval
polynomial matrices, a difficult problem in general

Example
Continuous-time interval polynomial matrix of degree 2
with 23 = 8 vertices [7.7− 2.3s+ 4.3s2,

3.7 + 2.7s+ 4.3s2]
[−3.1− 6s− 2.2s2,
−4.1− 7s− 2.2s2]

3.6 + 6.4s+ 4.3s2 [3.2 + 11s+ 8.2s2,
16 + 12s+ 8.2s2]


LMI is feasible so the matrix is robustly stable
See robust root locus below



State-space systems

One advantage of our approach is that state-

space results can be obtained as simple by-

products, since stability of a constant matrix

A is equivalent to stability of the pencil matrix

N(s) = sI −A

Matrix A is stable iff there exists a matrix F

and a matrix P solving the LMI

[
F ?A+A?F − aP −A? − F ? − bP
−A− F − b?P 2I − cP

]
� 0

P � 0

Proof

Just take D(s) = sI − F and notice that the

LMI can be also written more explicitly as[
−F ?
I

] [
−A I

]
+

[
−A?
I

] [
−F I

]
−
[
aP bP
b?P cP

]
> 0



Robust stability of state-space systems

We can recover known LMI stability conditions

Nice decoupling between Lyapunov matrix P

and additional variable F allows for construc-
tion of parameter-dependent Lyapunov matrix

Assume that uncertain matrix A(λ) has multi-
linear dependence on polytopic uncertain pa-
rameter λ and denote by Ai the corresponding
vertices

Matrix A(λ) is robustly stable if there exists a
matrix F and matrices Pi solving the LMI

[
F ?Ai +A?iF − aPi −A

?
i − F

? − bPi
−Ai − F − b?Pi 2I − cPi

]
� 0

Pi � 0 ∀i

Proof
Consider the parameter-dependent Lyapunov
matrix P (λ) built from vertices Pi



Robust design

Assume now that system matrix C(s, λ) comes

from a polynomial Diophantine equation

C(s, λ) = A(s, λ)X(s) +B(s, λ)Y (s)

where system matrices A and B are subject to

multi-linear polytopic uncertainty λ

In order to ensure robust SPRness of the ra-

tional matrix D−1(s)C(s, λ) central polynomial

D(s) must be close to the nominal closed-loop

matrix, such as

D(s) = C(s, λ0)

where λ0 is the nominal parameter vector

A sensible simple choice of D(s) is therefore

the nominal closed-loop denominator polyno-

mial matrix, obtained by any standard design

method (pole assignment, LQ, H∞)



Robot example

We consider the problem of designing a robust controller
for the approximate ARMAX model of a PUMA robotic
disk grinding process

From the results of identification and because of the
nonlinearity of the robot, the coefficients of the numer-
ator of the plant transfer function change for different
positions of the robot arm. We consider variations of
up to 20% around the nominal value of the parameters

The fourth-order discrete-time model is given by

b(z−1, q)

a(z−1, q)
=

(
(0.0257 + q1) + (−0.0764 + q2)z−1

+(−0.1619 + q3)z−2 + (−0.1688 + q4)z−3

)
1− 1.914z−1 + 1.779z−2 − 1.0265z−3 + 0.2508z−4

where

|q1| ≤ 0.00514, |q2| ≤ 0.01528, |q3| ≤ 0.03238, |q4| ≤ 0.03376



Robot

Closed-loop polynomial

d(z, q) = z12[(1−z−1)a(z−1, q)x(z−1)+z−5b(z−1, q)y(z−1)]

where the term 1 − z−1 is introduced in the controller
denominator to maintain the steady state error to zero
when parameters are changed

With the input central polynomial d(z) = z19 the LMI
returns the seventh-order robust controller

y(z−1)

x(z−1)
=

(
−0.2863 + 0.2928z−1 + 0.0221z−2

−0.1558z−3 + 0.0809z−4 + 0.1420z−5

−0.1254z−6 + 0.0281z−7

)
(

1 + 1.1590z−1 + 0.9428z−2

+0.4996z−3 + 0.3044z−4 + 0.4881z−5

+0.4003z−6 + 0.3660z−7

)



Second-order systems

Second-order linear system

(A0 +A1s+A2s
2)x = Bu
y = Cx

to be controlled by PD output-feedback

controller

u = −(F0 + F1s)y

Applications: large flexible space structures, earthquake engineer-

ing, mechanical multi-body systems, damped gyroscopic systems,

robotics control, vibration in structural dynamics, flows in fluid me-

chanics, electrical circuits

320m long Millenium footbridge over river Thames in London



PD controller

Closed-loop system behavior captured by zeros

of quadratic polynomial matrix

N(s) = (A0 +BF0C) + (A1 +BF1C)s+A2s
2

Zeros of N(s) must be located in some stability

region D characterized as before by matrix H

Uncertainty can affect A0 (stiffness)

A1 (damping) and A2 (mass)

Given A0, A1, A2, B, C
find F0, F1

ensuring robust pole placement



Robust LMI stability condition

• Norm-bounded (unstructured) uncertainty

N(s) + ∆M(s) σmax(∆) ≤ δ

LMI robust stability condition on N(s)

[
D?N +N?D −H(P )− γD?D δM?

δM γI

]
� 0

• Polytopic (structured) uncertainty

N(s) =
∑
i

λiN i(s)
∑
i

λi = 1 λi ≥ 0

Vertex LMI robust stability conditions:

DN i + (N i)?D −H(P i) � 0, i = 1,2, . . .

Parameter-dependent Lyapunov matrix

P (λ) =
∑
i λ
iP i



Robust design

Once central polynomial matrix D(s) is fixed,

robust stability condition is LMI in N(s), so

extension to design is straightforward

Easy incorporation of structural constraints

on controller coefficient matrices F0, F1:

• minimization of 2-norm (SOCP)

• enforcing some entries to zero (LP)

• maximization of uncertainty radius (SDP)

Key point is choice of
central polynomial matrix

Good policy: set D(s) to some nominal sys-

tem matrix obtained by some standard design

method (pole placement, LQ, H2 or H∞), then

try to optimize around D(s)



Example: five masses

Five masses linked by elastic springs
controlled by two external forces

1

2

3

4

5

A0 =

 2.565 1.080 0 0 1.089
0.6038 0.8206 0.4766 0 0

0 0.6009 1.504 0.4808 0
0 0 0.4300 1.114 0.5131

0.6190 0 0 0.4626 0.8352


B =

 0 1.964
0 0
0 0
0 0

1.116 0

 A1 = 05
A2 = I5
C = I5

Purely imaginary open-loop poles ±i1.783, ±i1.380, ±i1.145,
±i0.5675 and ±i0.3507

Nominal PD controller F 0
0 , F 0

1 obtained with LQ design
Resulting central polynomial matrix

D(s) = (A0 +BF 0
0C) + (A1 +BF 0

1C)s+A2s2

Stability region D = {s : Re s < −0.1}



Five mass example (2)

Minimizing the norm of feedback matrices F0,

F1 over the design LMI yields

‖[F0 F1]‖ = 0.7537 < ‖[F0
0 F0

1 ]‖ = 1.462

Closed-loop pseudospectrum of the five masses example


