II.2. STATE-SPACE DESIGN

Didier HENRION henrion@laas.fr

Belgian Graduate School on Systems, Control, Optimization and Networks

Leuven - April and May 2010

H_2 norm

The H_2 norm is the energy (l_2 norm) of the impulse response h(t) of a system G

$$||G||_2 = \left(\int_0^\infty h^*(t)h(t)dt\right)^{1/2} = \left(\frac{1}{2\pi}\int_{-\infty}^\infty H(j\omega)H^*(j\omega)d\omega\right)^{1/2}$$

For a continuous-time system

$$\begin{array}{rcl}
\dot{x} & = & Ax + Bu \\
y & = & Cx + Du
\end{array}$$

with transfer function $G(s) = C(sI - A)^{-1}B + D$ we must assume D = 0 to have $||G||_2$ finite

Computing the H_2 norm

Let $h_i(t) = Ce^{At}B_i$ denote the *i*-th column of the impulse response of G, then

$$||G||_{2}^{2} = \sum_{i} ||h_{i}||_{2}^{2}$$

$$= \sum_{i} \int_{0}^{\infty} B_{i}^{\star} e^{A^{\star}t} C^{\star} C e^{At} B_{i} dt$$

$$= \operatorname{trace} B^{\star} \left(\int_{0}^{\infty} e^{A^{\star}t} C^{\star} C e^{At} dt \right) B$$

Matrix

$$P_o = \int_0^\infty e^{A^*t} C^* C e^{At} dt$$

is the observability Grammian solution to the Lyapunov equation

$$A^*P_0 + P_0A + C^*C = 0$$

and hence

$$||G||_2^2 = \operatorname{trace} B^* P_o B$$

If (A,C) observable then $P_o \succ 0$

Dual and LMI computation of the H_2 norm

Defining the controllability Grammian

$$P_c = \int_0^\infty e^{At} B B^* e^{A^*t} dt$$

solution to the Lyapunov equation

$$AP_c + P_cA^* + BB^* = 0$$

we have a dual expression

$$||G||_2^2 = \operatorname{trace} C P_c C^*$$

Dual lyapunov equations formulated as LMIs

$$||G||_2^2 = \min_{\text{s.t.}} \operatorname{trace} B^*PB$$
 s.t.
$$A^*P + PA + C^*C \preceq 0$$

$$P \succeq 0$$

$$\|G\|_2^2 = \min \operatorname{trace} CQC^*$$

s.t. $AQ + QA^* + BB^* \leq 0$
 $Q \succeq 0$

H_{∞} norm

The H_{∞} norm is the induced energy gain $(l_2 \text{ to } l_2)$

$$||G||_{\infty} = \sup_{\|x\|_2=1} ||Gx||_2 = \sup_{\omega} ||G(j\omega)||$$

It is the worst case gain

Computing the H_{∞} norm

In contrast with the H_2 norm, computation of the H_∞ norm is iterative

For the continuous-time linear system

$$\begin{array}{rcl}
\dot{x} & = & Ax + Bu \\
y & = & Cx + Du
\end{array}$$

with transfer function $G(s) = C(sI-A)^{-1}B + D$ we have $||G(s)||_{\infty} < \gamma$ iff $R = \gamma^2 I - D^*D > 0$ and the Hamiltonian matrix

$$\begin{bmatrix} A + BR^{-1}D^*C & BR^{-1}B^* \\ -C^*(I + DR^{-1}D^*)C & -(A + BR^{-1}D^*C)^* \end{bmatrix}$$

has no eigenvalues on the imaginary axis

We can then design a bisection algorithm with guaranteed quadratic convergence to find the minimum value of γ such that the Hamiltonian has no imaginary eigenvalues

LMI computation of the H_{∞} norm

Refer to the part of the course on norm-bounded uncertainty

$$\sup_{\|z\|_2=1}\|w\|=\|\Delta\|<\gamma^{-1}$$

to prove that for the continuous-time system

$$\begin{array}{rcl} \dot{x} & = & Ax + Bu \\ y & = & Cx + Du \end{array}$$

with transfer function $G(s) = C(sI-A)^{-1}B + D$ we have $||G(s)||_{\infty} < \gamma$ iff there exists a matrix P solving the LMI

$$\begin{bmatrix} A^*P + PA + C^*C & PB + C^*D \\ B^*P + D^*C & D^*D - \gamma^2I \end{bmatrix} \prec 0 \quad P \succ 0$$

Using the Schur complement and a change of variables this can be expanded to

$$\begin{bmatrix} A^*P + PA & PB & C^* \\ B^*P & -\gamma I & D^* \\ C & D & -\gamma I \end{bmatrix} \prec 0 \quad P \succ 0$$

Linear systems design

Open-loop continuous-time LTI system

$$\dot{x} = Ax + Bu$$

with state-feedback controller

$$u = Kx$$

produces closed-loop system

$$\dot{x} = (A + BK)x$$

Applying Lyapunov LMI stability condition

$$(A+BK)^*P+P(A+BK)\prec 0$$
 $P\succ 0$ we get bilinear terms..

Bilinear Matrix Inequalities (BMIs) are non-convex in general!

State-feedback design: linearizing change of variables

Project BMI onto $P^{-1} \succ 0$ $(A+BK)^*P + P(A+BK) \prec 0 \\ \Longleftrightarrow \\ P^{-1} \left[(A+BK)^*P + P(A+BK) \right] P^{-1} \prec 0 \\ \Longleftrightarrow \\ P^{-1}A^* + P^{-1}K^*B^* + AP^{-1} + BKP^{-1} \prec 0$ Denoting

$$Q = P^{-1} \quad Y = KP^{-1}$$

we derive a state-feedback design LMI

$$AQ + QA^* + BY + Y^*B^* \prec 0 \quad Q \succ 0$$

We obtained an LMI thanks to a one-to-one linearizing change of variables

Simple but very useful trick..

Finsler's lemma

A very useful trick in robust control..

The following statements are equivalent

- 1. $x^*Ax > 0$ for all $x \neq 0$ s.t. Bx = 0
- 2. $\tilde{B}^*A\tilde{B} > 0$ where $\tilde{B}\tilde{B} = 0$
- 3. $A + \lambda B^*B > 0$ for some scalar λ
- 4. $A + XB + B^*X^* > 0$ for some matrix X

Paul Finsler (1894 Heilbronn - 1970 Zurich)

State-feedback design: null-space projection

We can also use item 2 of Finsler's lemma, projecting onto the (full column rank) null-space \tilde{B} of B^{\star}

$$B^{\star}\tilde{B} = 0$$

so that BMI

$$A^*P + PA + K^*B^*P + PBK \prec 0$$

is equivalent to the projected LMI

$$\tilde{B}^{\star}(AQ + QA^{\star})\tilde{B} \prec 0 \quad Q \succ 0$$

Feedback K can be recovered from Lyapunov matrix Q as

$$K = -\lambda B^* Q^{-1}$$

where λ is a suitably large scalar

Here we obtained an LMI thanks to a projection onto a null-space

State-feedback design: Riccati inequality

We can also use item 3 of Finsler's lemma to convert BMI

$$A^*P + PA + K^*B^*P + PBK \prec 0$$

into

$$A^*P + PA - \lambda PBB^*P \prec 0$$

where $\lambda \geq 0$ is an unknown scalar

Now replacing P with λP we get

$$A^*P + PA - PBB^*P \prec 0$$

which is equivalent to the Riccati equation

$$A^*P + PA - PBB^*P + Q = 0$$

for some matrix $Q \succ 0$

Shows equivalence between state-feedback LMI stabilizability and the linear quadratic regulator (LQR) problem

Robust state-feedback design for polytopic uncertainty

Open-loop system $\dot{x} = Ax + Bu$ with polytopic uncertainty

$$(A,B) \in \text{conv} \{(A_1,B_1),\ldots,(A_N,B_N)\}$$

and robust state-feedback controller u = Kx

In order to derive synthesis condition, we start with analysis conditions

$$(A_i + B_i K)^* P + P(A_i + B_i K) \prec 0 \ \forall i \quad Q \succ 0$$

and we obtain the quadratic stabilizability LMI

$$A_i \mathbf{Q} + \mathbf{Q} A_i^{\star} + B_i \mathbf{Y} + \mathbf{Y}^{\star} B_i^{\star} \prec 0 \ \forall i \quad \mathbf{Q} \succ 0$$

with the linearizing change of variables

$$Q = P^{-1} \quad Y = KP^{-1}$$

State-feedback H_2 control

Continuous-time LTI open-loop system

$$\dot{x} = Ax + B_w w + B_u u
z = C_z x + D_{zw} w + D_{zu} u$$

with state-feedback controller

$$u = Kx$$

yields closed-loop system

$$\dot{x} = (A + B_u K)x + B_w w$$

$$z = (C_z + D_{zu} K)x + D_{zw} w$$

with transfer function

$$G(s) = D_{zw} + (C_z + D_{zu}K)(sI - A - B_uK)^{-1}B_w$$
 between performance signals w and z

H₂ performance specification

$$||G(s)||_2 < \gamma$$

We must have $D_{zw} = 0$ (finite gain)

H_2 design LMIs

As usual, start with analysis condition: there exists K such that $||G(s)||_2 < \gamma$ iff

trace
$$(C_z + D_{zu}K)Q(C_z + D_{zu}K)^* < \gamma$$

 $(A + B_uK)Q + Q(A + B_uK)^* + BB^* \prec 0$

The trace inequality can be written as

 $\operatorname{trace}(C_z + D_{zu}K)Q(C_z + D_{zu}K)^* < \operatorname{trace}W < \gamma$ for some matrix W such that

$$\begin{bmatrix} W & (C_z + D_{zu}K)Q \\ Q(C_z + D_{zu}K)^* & Q \end{bmatrix} \succ 0$$

We obtain the overall LMI formulation

trace
$$W < \gamma$$

$$\begin{bmatrix} W & C_z Q + D_{zu} Y \\ Q C_z^* + Y^* D_{zu}^* & Q \end{bmatrix} \succ 0$$

$$AQ + QA^* + B_u Y + Y^* B_u^* + B_w B_w^* \prec 0$$

with resulting H_2 suboptimal state-feedback

$$K = YQ^{-1}$$

State-feedback H_{∞} control

Similarly, with closed-loop system

$$\dot{x} = (A + B_u K)x + B_w w$$

$$z = (C_z + D_{zu} K)x + D_{zw} w$$

and H_{∞} performance specification

$$||G(s)||_{\infty} < \gamma$$

on transfer function between \boldsymbol{w} and \boldsymbol{z} we obtain the design LMI

$$\begin{bmatrix} AQ + QA^* + B_uY + Y^*B_u^* + B_wB_w^* & * \\ C_zQ + D_{zu}Y + D_{zw}B_w^* & D_{zw}D_{zw}^* - \gamma^2I \end{bmatrix} \prec 0$$

$$Q \succ 0$$

with resulting H_{∞} suboptimal state-feedback

$$K = YQ^{-1}$$

Optimal H_{∞} control: minimize γ

Mixed H_2/H_{∞} control

State-feedback controller system with two performance channels

$$\dot{x} = (A + B_u K)x + B_w w$$

$$z_{\infty} = (C_{\infty} + D_{\infty u} K)x + D_{\infty w} w$$

$$z_2 = (C_2 + D_{2u} K)x$$

and mixed performance specifications

$$||G_{\infty}(s)||_{\infty} < \gamma_{\infty} \quad ||G_2(s)||_2 < \gamma_2$$

on transfer functions from w to z_{∞} and z_2 respectively Formulation of H_{∞} constraint

$$\begin{bmatrix} A_{\mathbf{Q}_{\infty}}^{\mathbf{Q}_{\infty}} + B_{u}K_{\mathbf{Q}_{\infty}}^{\mathbf{Q}_{\infty}} + (\star) + B_{w}B_{w}^{\star} & \star \\ C_{\infty}Q_{\infty}^{\mathbf{Q}_{\infty}} + D_{\infty u}K_{\mathbf{Q}_{\infty}}^{\mathbf{Q}_{\infty}} + D_{\infty w}B_{w}^{\star} & D_{\infty w}D_{\infty w}^{\star} - \gamma_{\infty}^{2}I \end{bmatrix} \prec 0$$

$$Q_{\infty} \succ 0$$

BMI formulation of H_2 constraint

trace
$$W < \gamma_2$$

$$\begin{bmatrix} W & C_2Q_2 + D_{2u}KQ_2 \\ \star & Q_2 \end{bmatrix} \succ 0$$

$$AQ_2 + B_uKQ_2 + (\star) + B_wB_w^{\star} \prec 0$$

Problem:

We cannot linearize simultaneously terms KQ_{∞} and KQ_2 !

Mixed H_2/H_{∞} control design LMI

Remedy:

Enforce
$$Q_2 = Q_\infty = Q$$
!

Conservative but useful.. Always trade-off between conservatism and tractability

Resulting mixed H_2/H_{∞} design LMI

$$\begin{bmatrix} AQ + B_{u}Y + (\star) + B_{w}B_{w}^{\star} & \star \\ C_{\infty}Q + D_{\infty u}Y + D_{\infty w}B_{w}^{\star} & D_{\infty w}D_{\infty w}^{\star} - \gamma_{\infty}^{2}I \end{bmatrix} \prec 0$$

$$\text{trace } W < \gamma_{2}$$

$$\begin{bmatrix} W & C_{2}Q + D_{2u}Y \\ \star & Q \end{bmatrix} \succ 0$$

$$AQ + B_{u}Y + (\star) + B_{w}B_{w}^{\star} \prec 0$$

Guaranteed cost mixed H_2/H_∞ : given γ_∞ minimize γ_2

Can be used for H_2 design of uncertain systems with norm-bounded uncertainty

Mixed H_2/H_{∞} control: example

Active suspension system (Weiland)

$$m_2\ddot{q}_2 + b_2(\dot{q}_2 - \dot{q}_1) + k_2(q_2 - q_1) + F = 0$$

$$m_1\ddot{q}_1 + b_2(\dot{q}_1 - \dot{q}_2) + k_2(q_1 - q_2)$$

$$+k_1(q_1 - q_0) + b_1(\dot{q}_1 - \dot{q}_0) + F = 0$$

$$z = \begin{bmatrix} q_1 - q_0 \\ F \\ \ddot{q}_2 \\ q_2 - q_1 \end{bmatrix} y = \begin{bmatrix} \ddot{q}_2 \\ q_2 - q_1 \end{bmatrix} w = q_0 \ u = F$$

 $G_{\infty}(s)$ from q_0 to $[q_1 - q_0 \ F]$
 $G_2(s)$ from q_0 to $[\ddot{q}_2 \ q_2 - q_1]$

Trade-off between $||G_{\infty}||_{\infty} \leq \gamma_1$ and $||G_2||_2 \leq \gamma_2$

Dynamic output-feedback

Continuous-time LTI open-loop system

$$\dot{x} = Ax + B_w w + B_u u
z = C_z x + D_{zw} w + D_{zu} u
y = C_y x + D_{yw} w$$

with dynamic output-feedback controller

$$\begin{array}{rcl}
 \dot{x}_c & = & A_c x_c + B_c y \\
 u & = & C_c x_c + D_c y
 \end{array}$$

Denote closed-loop system as

$$\begin{array}{lll} \dot{\tilde{x}} & = & \tilde{A}\tilde{x} + \tilde{B}w \\ z & = & \tilde{C}\tilde{x} + \tilde{D}w \end{array} \quad \text{with } \tilde{x} = \left[\begin{array}{c} x \\ x_c \end{array} \right] \text{ and }$$

$$\tilde{A} = \begin{bmatrix} A + B_u D_c C_y & B_u C_c \\ B_c C_y & A_c \end{bmatrix} \qquad \tilde{B} = \begin{bmatrix} B_w + B_u D_c D_{yw} \\ B_c D_{yw} \end{bmatrix}$$

$$\tilde{C} = \begin{bmatrix} C_z + D_{zu} D_c C_y & D_{zu} C_c \end{bmatrix} \qquad \tilde{D} = D_{zw} + D_{zu} D_c D_{yw}$$

Affine expressions on controller matrices

H_2 output feedback design

 H_2 design conditions

$$\begin{array}{c} \operatorname{trace} W < \gamma \\ \left[\begin{array}{c} W & \tilde{C}\tilde{Q} \\ \star & \tilde{Q} \end{array} \right] \succ 0 \\ \left[\begin{array}{ccc} \tilde{A}\tilde{Q} + \tilde{Q}\tilde{A}^{\star} & \tilde{B} \\ \tilde{B}^{\star} & -I \end{array} \right] \prec 0 \end{array}$$

can be linearized with a specific change of variables

Denote

$$ilde{Q} = \left[egin{array}{cc} Q & ar{Q}^{\star} \\ ar{Q} & imes \end{array}
ight] \hspace{5mm} ilde{P} = ilde{Q}^{-1} = \left[egin{array}{cc} P & ar{P} \\ ar{P}^{\star} & imes \end{array}
ight]$$

so that \bar{P} and \bar{Q} can be obtained from P and Q via relation

$$PQ + \bar{P}\bar{Q} = I$$

Always possible when controller has same order than the open-loop plant

Linearizing change of variables for H_2 output-feedback design

Then define

$$\begin{bmatrix} X & U \\ Y & V \end{bmatrix} = \begin{bmatrix} \bar{P} & PB_u \\ 0 & I \end{bmatrix} \begin{bmatrix} A_c & B_c \\ C_c & D_c \end{bmatrix} \begin{bmatrix} \bar{Q} & 0 \\ C_y Q & I \end{bmatrix} + \begin{bmatrix} P \\ 0 \end{bmatrix} A \begin{bmatrix} Q & 0 \end{bmatrix}$$

which is a one-to-one affine relation with converse

$$\begin{bmatrix} A_c B_c \\ C_c D_c \end{bmatrix} = \begin{bmatrix} \bar{P}^{-1} - \bar{P}^{-1} P B_u \\ 0 & I \end{bmatrix} \begin{bmatrix} X - P A Q U \\ Y & V \end{bmatrix} \begin{bmatrix} \bar{Q}^{-1} & 0 \\ -C_y Q \bar{Q}^{-1} & I \end{bmatrix}$$

We derive the following H_2 design LMI

in decision variables Q, P, W (Lyapunov) and X, Y, U, V (controller)

Controller matrices are obtained via the relation

$$PQ + \bar{P}\bar{Q} = I$$

(tedious but straightforward linear algebra)

H_{∞} output-feedback design

Similarly two-step procedure for full-order H_{∞} output-feedback design:

- solve LMI for Lyapunov variables Q, P, W and controller variables X, Y, U, V
- retrieve controller matrices via linear algebra

For reduced-order controller of order $n_c < n$ there exists a solution \bar{P}, \bar{Q} to the equation

$$PQ + \bar{P}\bar{Q} = I$$

iff

$$\operatorname{rank} \left(\begin{array}{c} PQ - I \\ \longrightarrow \\ \operatorname{rank} \left[\begin{array}{c} Q & I \\ I & P \end{array} \right] = n + n_c$$

Static output feedback iff PQ = I

Difficult rank constrained LMI!