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Ho norm

The H, norm is the energy (Io norm) of the impulse
response h(t) of a system G

00 1/2 00 1/2
\|G||2=(/O h*(t)h(t)dt) =(§ / H(jw)H*(jw)dw)
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For a continuous-time system

x Ax + Bu
Y Czxz + Du

with transfer function G(s) = C(sI—A)~'B+ D we must
assume D = 0 to have ||G]|2 finite



Computing the H> norm

Let h;(t) = Ce*B; denote the i-th column of
the impulse response of G, then
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IGIZ = D lIhill3
L[ e An At
= Z/O Bre” 'C*Ce™" B;dt
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trace B* ( /0 el tC*CeAtdt) B

Matrix

o0 *
P, :/O et CrCeAtdt

IS the observability Grammian solution to the
Lyapunov equation

AP, + P, A+ C*C =0
and hence

|G||3 = trace B*P,B

If (A,C) observable then P, = 0



Dual and LMI computation of the Ho, norm

Defining the controllability Grammian

oo *
P. = /O et BB*eA tqt
solution to the Lyapunov equation

AP.+ P.A*+ BB*=0
we have a dual expression
|G||3 = trace CP.C*
Dual lyapunov equations formulated as LMIs

|IG||3 = min trace B*PB
st. AP+ PA4+C*C <0
P >0

IG||3 = min trace CQC*
st. AQ+ QA*+4+ BB* <0
Q=0



Hoo NOrm

The Ho norm is the induced energy gain
(I2 to Ip)

|Glleo = sup ||Gzll2 = sup |G(jw)]

z]l2=1
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It is the worst case gain



In contrast with the H, norm, computation of
the Hy norm is iterative

For the continuous-time linear system

T Ax + Bu

Y Cx + Du
with transfer function G(s) = C(sI—A)~1B4D
we have [|G(s)||co < 7 iff R = ~2] — D*D > O
and the Hamiltonian matrix

A+ BR1D*C BR-1pB*
—C*(I + DR~ 1D*C —(A+ BR1D*C)*

has no eigenvalues on the imaginary axis

We can then design a bisection algorithm
with guaranteed quadratic convergence

to find the minimum value of v such that

the Hamiltonian has no imaginary eigenvalues



Refer to the part of the course on norm-bounded
uncertainty

-1
sup |w|| = [|Afl <~

|2]l2=1
to prove that for the continuous-time system

r = Ax -+ Bu
y = Cx+ Du

with transfer function G(s) = C(sI—A)~1B+D
we have ||G(s)|leo < v iff there exists a matrix
P solving the LMI

A*P+ PA+C*C PB+ C*D
B*P+DC DD—~21| 30 =0
Using the Schur complement and a change of
variables this can be expanded to

[ AP+ PA PB C* |
B*P —~I D* | <0 P»0
C D —~I




Linear systems design

Open-loop continuous-time LTI system
r = Ax + Bu
with state-feedback controller
u= Kx

produces closed-loop system
z= (A4 BK)x

Applying Lyapunov LMI stability condition

(A+ BK)*P+ P(A+BK)<0 P>0

we get bilinear terms..

Bilinear Matrix Inequalities (BMIs) are
non-convex in general !



State-feedback design:
linearizing change of variables

Project BMI onto P~1 = 0

(A4 BK)*P+ P(A+ BK) <0
<
P~ l[(A+ BK)*P+ P(A+ BK)| P71 <0
<
Plax4+ plgxp 4+ AP~ 14+ BKP~1 <0

Denoting
Q=P 1 y=Kp1
we derive a state-feedback design LMI

AQ+ QA+ BY +Y*B* <0 Q>0

We obtained an LMI thanks to a one-to-one
linearizing change of variables

Simple but very useful trick..



Finsler's lemma

A very useful trick in robust control..

The following statements are equivalent

l.2*Ax >0 forallx =20 s.t. Bt =20

2. B*AB >0 where BB=0

3.A+ \AB*B >0 forsomescalar \

4. A+ XB+ B*X* >0 forsome matrix X

e
Paul Finsler
(1894 Heilbronn - 1970 Zurich)




State-feedback design: null-space projection

We can also use item 2 of Finsler's lemma,
projecting onto the (full column rank)
null-space B of B*

B*B =0

so that BMI

A*P+ PA+ K*B*P+ PBK <0
IS equivalent to the projected LMI

B*(AQ 4+ QA B <0 Q=0

Feedback K can be recovered from
Lyapunov matrix () as

K= -2B*Q~1
where X\ is a suitably large scalar

Here we obtained an LMI thanks to a
projection onto a null-space



State-feedback design: Riccati inequality

We can also use item 3 of Finsler's lemma to
convert BMI

A*P+ PA+ K*B*P 4+ PBK <0
into
A*P 4+ PA—-—)\APBB*P <0

where A > 0 is an unknown scalar

Now replacing P with AP we get
A*P+ PA—- PBB*P <0

which is equivalent to the Riccati equation
A*P+ PA—-— PBB*P+ Q=0

for some matrix Q >~ 0O

Shows equivalence between state-feedback LMI

stabilizability and the linear quadratic regulator
(LQR) problem



Robust state-feedback design
for polytopic uncertainty

Open-loop system x = Ax + Bu with polytopic
uncertainty

(A, B) € conv {(Al, Bl), ce e (AN, BN)}

and robust state-feedback controller u = Kx

In order to derive synthesis condition,
we start with analysis conditions

and we obtain the quadratic stabilizability LMI

with the linearizing change of variables

Q=P ! y=kp!



State-feedback H, control

Continuous-time LTI open-loop system

Ax + Byw + Byu
Crx + Dyww + Dayyu

with state-feedback controller

x
z

u= Kx
yields closed-loop system

(A 4+ BuK)z + Byw
(Cz + DzuK)ZE —|— Dzww

with transfer function

T
z

G(8) = Dow+ (Co+ Doy K)(sI — A— ByK) 1By

between performance signals w and z

H-> performance specification

1G(s)ll2 <~

We must have D, = 0 (finite gain)



H-> design LMIs

As usual, start with analysis condition:
there exists K such that ||G(s)||o < « iff

trace (Cy + D,y K)Q(C, + Dy K)* < v
(A4 BuK)Q + Q(A+ ByK)*+ BB* <0

The trace inequality can be written as
trace(C,+ Dy K)Q(Cr+ D,y K)* < traceW < =~
for some matrix W such that

|94 (Cy+ D K)Q
Q(Cz + Dz K)* @

We obtain the overall LMI formulation

| o

trace W <~
[ W C.Q + DY
@

T A 7D, Q ] ~ 0
AQ + QA+ BuY +Y*B; + BywBj;, <0
with resulting Ho suboptimal state-feedback

K=YQ!



State-feedback Hy, control

Similarly, with closed-loop system

(A 4+ BuK)z + Byw
(Cz + DzuK)$ ‘|— Dzww

and Hyo performance specification

T
z

|G (8)]loo <

on transfer function between w and z we obtain
the design LMI

AQ 4+ QA* + B,Y + Y*B* + BuB". « 2o
CzQ + D..Y + Dsz:U DzwD;w — ’721
Q>0

with resulting Hy suboptimal state-feedback
K=YQ!

Optimal Hs control: minimize ~



Mixed Hy/Hso CcONtrol

State-feedback controller system
with two performance channels

z = (A4 B,K)x + Byw
2o = (Co—+ DyK)x

and mixed performance specifications

[Goo($)lloo < Yoo |G2(8)]l2 < 72
on transfer functions from w to zs and z> respectively

Formulation of H,, constraint

AQw + BuKQ + (*) + BwBZ; * <0
Qoo >0
BMI formulation of H> constraint
trace W < o
W CoQ2 + D2y KQo2 <0
* Q2

AQ>+ B KQ>+ (x) + BuwB}, <0

Problem:

We cannot linearize simultaneously
terms K(Q) and KQ» !



Mixed Hy/Hs control design LMI
Remedy:
Enforce (o = Qoo = Q) !

Conservative but useful.. Always trade-off
between conservatism and tractability

Resulting mixed Ho/H~o design LMI

AQ + B,Y + (%) + BuB;, R P
trace W < o
W CoQ + DaY
N 0 >0

AQ + B,Y + (%) + ByB% < 0

Guaranteed cost mixed Ho/Heo:
given vy Minimize o

Can be used for H, design of uncertain systems
with norm-bounded uncertainty



Mixed Ho/Hso control: example

Active suspension system (Weiland)

Mo a-a;;L'qf

m2g2 + b2(g2 — 1) + k2(q2 —q1) + FF =0 iz l k. 1F J

mi1g1 + b2(q1 — ¢2) + k2(q1 — q2) 2 2
+k1(q1 —qo) +b1(4g1 —go) + F =0

Q1—QO] . e
Y w=qo u z
q2 q2 — q1
g2 — q1 l!-r}l
Gx(s) from g to [g1—qo F]
G2(s) from qo to [¢2 ¢2— qi]

"""""" e

ne o

Pareto optimal performance levels

3.5

gamma2

0.5 | | 1 1 1 1 | | 1
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
gammart

Trade-off between [|Gueolloo < 71 and ||Ga|l2 < 2



Dynamic output-feedback

Continuous-time LTI open-loop system

r = Ax+ Byw + Byu
y = Cyx + Dyyw

with dynamic output-feedback controller

Aczc + ch
Cexe + Dcy

Tc
u

Denote closed-loop system as

x
z

€T
Lc

I
PN
81
+
oy
S
z

]and

|
Q
8
+
-
S

B.C, A.

[ CZ + DZUDCCy DZUCC i|

Bu + BuDcDyu
B.Dyu

A B =
é D = D, + DzchDyw

Affine expressions on controller matrices



H-> output feedback design

H- design conditions

trace W <«
w CQ

~ > 0

5 |
AQ 4+ QA B
can be linearized with a specific
change of variables

Denote

Q:[@Q*] p:Q_]':!pP*

X M

Q X

so that P and Q can be obtained
from P and () via relation

PQ+PQ=1

Always possible when controller has same order
than the open-loop plant



Linearizing change of variables
for Ho output-feedback design

Then define

XU| P PB,| | A, B. Q 0] P

[Y v] = [o I ] [Cc Dc] [CyQ I] + [o] A[QO]
which is a one-to-one affine relation with converse

A.B.| _|P'!—-P7lPB,| | X —PAQU Q! o0
C.D.| — | O I Y V| |-C,RQ I

We derive the following H> design LMI

trace W <~
D,w + DquDyw =0
%% CzQ + DY C,+4 DquCy

* Q I >0
* * P
AQ+ BYY + () A+ B, VCy + X* By + ByV Dy,
* PA+4+UC, + (x) PBy+ UDyy
* * —1

in decision variables @, P,W (Lyapunov)
and X,Y,U,V (controller)

Controller matrices are obtained via the relation
PQ + 13(2 =1

(tedious but straightforward linear algebra)

<0



H~ output-feedback design

Similarly two-step procedure for full-order Hxo
output-feedback design:

e solve LMI for Lyapunov variables ), P, W and
controller variables X,Y,U,V

e retrieve controller matrices via linear algebra

For reduced-order controller of order n. < n
there exists a solution P, to the equation

PQ+ PQ =1
i

rank (PQ —I) = nc
—

rank [C}? ]{j] = n -+ n¢

Static output feedback iff PQ) =1

Difficult rank constrained LMI !



