II.1. STATE-SPACE ANALYSIS

Didier HENRION henrion@laas.fr

Belgian Graduate School on Systems, Control, Optimization and Networks

Leuven - April and May 2010

State-space methods

Developed by Kalman and colleagues in the 1960s as an alternative to frequency-domain techniques (Bode, Nichols..)

Starting in the 1980s, numerical analysts developed powerful linear algebra routines for matrix equations: numerical stability, low computational complexity, large-scale problems

Matlab launched by Cleve Moler (1977-1984) heavily relies on LINPACK, EISPACK & LAPACK packages

Pseudospectrum of a Toeplitz matrix

Linear systems stability

The continuous-time linear time invariant (LTI) system

$$\dot{x}(t) = Ax(t) \quad x(0) = x_0$$

where $x(t) \in \mathbb{R}^n$ is asymptotically stable, meaning

$$\lim_{t \to \infty} x(t) = 0 \quad \forall x_0$$

if and only if

• there exists a quadratic Lyapunov function $V(x) = x^*Px$ such that

$$V(x(t)) > 0$$

 $\dot{V}(x(t)) < 0$

along system trajectories

ullet equivalently, matrix A satisfies

$$\max_i \operatorname{real} \lambda_i(A) < 0$$

Lyapunov stability

Note that $V(x) = x^*Px = x^*(P + P^*)x/2$ so that Lyapunov matrix P can be chosen symmetric without loss of generality

Since $\dot{V}(x) = \dot{x}^* P x + x^* P \dot{x} = x^* A^* P x + x^* P A x$ positivity of V(x) and negativity of $\dot{V}(x)$ along system trajectories can be expressed as an LMI

$$A^*P + PA < 0 \quad P > 0$$

Matrices P satisfying Lyapunov's LMI with $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$

Lyapunov equation

The Lyapunov LMI can be written equivalently as the Lyapunov equation

$$A^{\star}P + PA + Q = 0$$

where $Q \succ 0$

The following statements are equivalent

- the system $\dot{x} = Ax$ is asymptotically stable
- for some matrix $Q \succ 0$ the matrix P solving the Lyapunov equation satisfies $P \succ 0$
- for all matrices $Q \succ 0$ the matrix P solving the Lyapunov equation satisfies $P \succ 0$

The Lyapunov LMI can be solved numerically without IP methods since solving the above equation amounts to solving a linear system of n(n+1)/2 equations in n(n+1)/2 unknowns

Alternative to Lyapunov LMI

Recall the theorem of alternatives for LMI

$$F(\mathbf{x}) = F_0 + \sum_i \mathbf{x_i} F_i$$

Exactly one statement is true

- there exists x s.t. F(x) > 0
- there exists a nonzero $Z \succeq 0$ s.t. trace $F_0Z \leq 0$ and trace $F_iZ = 0$ for i > 0

Alternative to Lyapunov LMI

$$F(\mathbf{x}) = \begin{bmatrix} -A^*P - PA & 0\\ 0 & P \end{bmatrix} \succ 0$$

is the existence of a nonzero matrix

$$Z = \left[\begin{array}{cc} Z_1 & 0 \\ 0 & Z_2 \end{array} \right] \succeq 0$$

such that

$$Z_1 A^* + A Z_1 - Z_2 = 0$$

Alternative to Lyapunov LMI (proof)

Suppose that there exists such a matrix $Z \neq 0$ and extract Cholesky factor

$$Z_1 = UU^*$$

Since $Z_1A^* + AZ_1 \succeq 0$ we must have

$$AUU^* = USU^*$$

where $S = S_1 + S_2$ and $S_1 = -S_1^{\star}$, $S_2 \succeq 0$

It follows from

$$AU = US$$

that U spans an invariant subspace of A associated with eigenvalues of S, which all satisfy real $\lambda_i(S) \geq 0$

Conversely, suppose $\lambda_i(A) = \sigma + j\omega$ with $\sigma \ge 0$ for some i with eigenvector v

Then rank-one matrices

$$Z_1 = vv^*$$
 $Z_2 = 2\sigma vv^*$

solve the alternative LMI

Discrete-time Lyapunov LMI

Similarly, the discrete-time LTI system

$$x_{k+1} = Ax_k$$

is asymptotically stable iff

• there exists a quadratic Lyapunov function $V(x) = x^*Px$ such that

$$V(x_k) > 0$$

 $V(x_{k+1}) - V(x_k) < 0$

along system trajectories

ullet equivalently, matrix A satisfies

$$\max_i |\lambda_i(A)| < 1$$

Here too this can be expressed as an LMI

$$A^{\star}PA - P \prec 0 \quad P \succ 0$$

More general stability regions

Let

$$\mathcal{D} = \{ s \in \mathbb{C} : \begin{bmatrix} 1 \\ s \end{bmatrix}^{\star} \begin{bmatrix} d_0 & d_1 \\ d_1^{\star} & d_2 \end{bmatrix} \begin{bmatrix} 1 \\ s \end{bmatrix} < 0 \}$$

with $d_0, d_1, d_2 \in \mathbb{C}^3$ be a region of the complex plane (half-plane or disk)

Matrix A is said \mathcal{D} -stable when its spectrum $\sigma(A) = \{\lambda_i(A)\}$ belongs to region \mathcal{D}

Equivalent to generalized Lyapunov LMI

$$\begin{bmatrix} I \\ A \end{bmatrix}^{\star} \begin{bmatrix} d_0 P & d_1 P \\ d_1^{\star} P & d_2 P \end{bmatrix} \begin{bmatrix} I \\ A \end{bmatrix} \prec 0 \quad P \succ 0$$

LMI stability regions

We can consider \mathcal{D} -stability in LMI regions

$$\mathcal{D} = \{ s \in \mathbb{C} : D(s) = D_0 + D_1 s + D_1^{\star} s^{\star} \prec 0 \}$$
 such as

dynamics
dominant behavior
oscillations
bandwidth
horizontal strip
damping cone

or intersections thereof

Example for the cone

$$D_0 = 0 \quad D_1 = \begin{bmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$$

Lyapunov LMI for LMI stability regions

Matrix A has all its eigenvalues in the region

$$\mathcal{D} = \{ s \in \mathbb{C} : D_0 + D_1 s + D_1^* s^* < 0 \}$$

if and only if the following LMI is feasible

$$D_0 \otimes P + D_1 \otimes AP + D_1^* \otimes PA^* \prec 0 \quad P \succ 0$$

where \otimes denotes the Kronecker product

Litterally replace s with A!

Can be extended readily to quadratic matrix inequality stability regions

$$\mathcal{D} = \{ s \in \mathbb{C} : D_0 + D_1 s + D_1^* s^* + D_2 s^* s < 0 \}$$

parabolae, hyperbolae, ellipses etc convex $(D_2 \succ 0)$ or not

Uncertain systems and robustness

When modeling systems we face several sources of uncertainty, including

- non-parametric (unstructured) uncertainty
 - unmodeled dynamics
 - truncated high frequency modes
 - non-linearities
 - effects of linearization, time-variation...
- parametric (structured) uncertainty
 - physical parameters vary within given bounds
 - interval uncertainty (l_{∞})
 - ellipsoidal uncertainty (l_2)
 - ullet diamond uncertainty (l_1)

How can we overcome uncertainty?

- model predictive control
- adaptive control
- robust control

A control law is robust if it is valid over the whole range of admissible uncertainty (can be designed off-line, usually cheap)

Uncertainty modeling

Consider the continuous-time LTI system

$$\dot{x}(t) = Ax(t) \quad A \in \mathcal{A}$$

where matrix A belongs to an uncertainty set \mathcal{A}

For unstructured uncertainties we consider norm-bounded matrices

$$\mathcal{A} = \{ A + B\Delta C : \|\Delta\|_2 \le \mu \}$$

For structured uncertainties we consider polytopic matrices

$$\mathcal{A} = \operatorname{conv} \left\{ A_1, \dots, A_N \right\}$$

There are other more sophisticated uncertainty models not covered here

Uncertainty modeling is an important and difficult step in control system design!

Robust stability

The continuous-time LTI system

$$\dot{x}(t) = Ax(t) \quad A \in \mathcal{A}$$

is robustly stable when it is asymptotically stable for all $A \in \mathcal{A}$

If $\mathcal S$ denotes the set of stable matrices, then robust stability is ensured as soon as $\mathcal A\subset \mathcal S$ Unfortunately $\mathcal S$ is a non-convex cone!

Symmetry

If dynamic systems were symmetric, i.e

$$A = A^*$$

continuous-time stability $\max_i \operatorname{real} \lambda_i(A) < 0$ would be equivalent to

$$A + A^* \prec 0$$

and discrete-time stability $\max_i |\lambda_i(A)| < 1$ to

$$A^*A \prec I \Longleftrightarrow \left[\begin{array}{cc} -I & A \\ A^* & -I \end{array} \right] \prec 0$$

which are both LMIs!

We can show that stability of a symmetric linear system can be always proven with the Lyapunov matrix P = I

Fortunately, the world is not symmetric!

Robust and quadratic stability

Because of non-convexity of the cone of stable matrices, robust stability is sometimes difficult to check numerically, meaning that

computational cost is an exponential function of the number of system parameters

Remedy:

The continuous-time LTI system $\dot{x}(t) = Ax(t)$ is quadratically stable if its robust stability can be guaranteed with the same quadratic Lyapunov function for all $A \in \mathcal{A}$

Obviously, quadratic stability is more pessimistic, or more conservative than robust stability:

Quadratic stability \Longrightarrow Robust stability

but the converse is not always true

Quadratic stability for polytopic uncertainty

The system with polytopic uncertainty

$$\dot{x}(t) = Ax(t) \quad A \in \text{conv} \{A_1, \dots, A_N\}$$

is quadratically stable iff there exists a matrix P solving the LMI

$$A_i^T P + P A_i \prec 0 \quad P \succ 0$$

Proof by convexity

$$\sum_{i} \lambda_{i} (A_{i}^{T} P + P A_{i}) = A^{T}(\lambda) P + P A(\lambda) < 0$$

for all $\lambda_i \geq 0$ such that $\sum_i \lambda_i = 1$

This is a vertex result: stability of a whole family of matrices is ensured by stability of the vertices of the family

Usually vertex results ensure computational tractability

Quadratic and robust stability: example

Consider the uncertain system matrix

$$A(\delta) = \begin{bmatrix} -4 & 4 \\ -5 & 0 \end{bmatrix} + \delta \begin{bmatrix} -2 & 2 \\ -1 & 4 \end{bmatrix}$$

with real parameter δ such that $|\delta| \leq \mu$ = polytope with vertices $A(-\mu)$ and $A(\mu)$

stability	$max\mu$
quadratic	0.7526
robust	1.6666

Quadratic stability for norm-bounded uncertainty

The system with norm-bounded uncertainty

$$\dot{x}(t) = (A + B\Delta C)x(t) \quad \|\Delta\|_2 \le \mu$$

is quadratically stable iff there exists a matrix *P* solving the LMI

$$\begin{bmatrix} A^*P + PA + C^*C & PB \\ B^*P & -\gamma^2I \end{bmatrix} \prec 0 \quad P \succ 0$$

with
$$\gamma^{-1} = \mu$$

This is called the bounded-real lemma proved next with the S-procedure

We can maximize the level of allowed uncertainty by minimizing scalar γ

Norm-bounded uncertainty as feedback

Uncertain system

$$\dot{x} = (A + B\Delta C)x$$

can be written as the feedback system

so that for the Lyapunov function $V(x) = x^* P x$ we have

$$\dot{V}(x) = 2x^*P\dot{x}
= 2x^*P(Ax + Bw)
= x^*(A^*P + PA)x + 2x^*PBw
= \begin{bmatrix} x \\ w \end{bmatrix}^* \begin{bmatrix} A^*P + PA & PB \\ B^*P & 0 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}$$

Norm-bounded uncertainty as feedback (2)

Since $\Delta^{\star}\Delta \leq \mu^2 I$ it follows that

$$w^*w = z^*\Delta^*\Delta z \leq \mu^2 z^*z$$

$$\iff$$

$$w^*w - \mu^2 z^*z = \begin{bmatrix} x \\ w \end{bmatrix}^* \begin{bmatrix} -C^*C & 0 \\ 0 & \gamma^2 I \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} \leq 0$$

Combining with the quadratic inequality

$$\dot{V}(x) = \begin{bmatrix} x \\ w \end{bmatrix}^{\star} \begin{bmatrix} A^{\star}P + PA & PB \\ B^{\star}P & 0 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} < 0$$

and using the S-procedure we obtain

$$\begin{bmatrix} A^*P + PA & PB \\ B^*P & 0 \end{bmatrix} \prec \begin{bmatrix} -C^*C & 0 \\ 0 & \gamma^2 I \end{bmatrix}$$

or equivalently

$$\begin{bmatrix} A^*P + PA + C^*C & PB \\ B^*P & -\gamma^2I \end{bmatrix} \prec 0 \quad P \succ 0$$

Norm-bounded uncertainty: generalization

Now consider the feedback system

$$\dot{x} = Ax + Bw
z = Cx + Dw
w = \Delta z$$

with additional feedthrough term Dw

We assume that matrix $I - \Delta D$ is non-singular = well-posedness of feedback interconnection so that we can write

$$w = \Delta z = \Delta (Cx + Dw)$$
$$(I - \Delta D)w = \Delta Cx$$
$$w = (I - \Delta D)^{-1} \Delta Cx$$

and derive the linear fractional transformation (LFT) uncertainty description

$$\dot{x} = Ax + Bw = (A + B(I - \Delta D)^{-1}\Delta C)x$$

Norm-bounded LFT uncertainty

The system with norm-bounded LFT uncertainty

$$\dot{x} = \left(A + B(I - \Delta D)^{-1} \Delta C\right) x \quad \|\Delta\|_2 \le \mu$$

is quadratically stable iff there exists a matrix P solving the LMI

$$\begin{bmatrix} A^*P + PA + C^*C & PB + C^*D \\ B^*P + D^*C & D^*D - \gamma^2I \end{bmatrix} \prec 0 \quad P \succ 0$$

Notice the lower right block $D^*D - \gamma^2I \prec 0$ which ensures non-singularity of $I - \Delta D$ hence well-posedness

LFT modeling can be used more generally to cope with rational functions of uncertain parameters, but this is not covered in this course..

Sector-bounded uncertainty

Consider the feedback system

$$\dot{x} = Ax + Bw
z = Cx + Dw
w = f(z)$$

where vector function f(z) satisfies

$$z^{\star}f(z) \le 0 \quad f(0) = 0$$

which is a sector condition

f(z) can also be considered as an uncertainty but also as a non-linearity

Quadratic stability for sector-bounded uncertainty

We want to establish quadratic stability with the quadratic Lyapunov matrix $V(x) = x^*Px$ whose derivative

$$\dot{V}(x) = 2x^* P(Ax + Bf(z))$$

$$= \begin{bmatrix} x \\ f(z) \end{bmatrix}^* \begin{bmatrix} A^* P + PA & PB \\ B^* P & 0 \end{bmatrix} \begin{bmatrix} x \\ f(z) \end{bmatrix}$$

must be negative when

$$2z^{*}f(z) = 2(Cx + Df(z))^{*}f(z)$$

$$= \begin{bmatrix} x \\ f(z) \end{bmatrix}^{*} \begin{bmatrix} 0 & C^{*} \\ C & D + D^{*} \end{bmatrix} \begin{bmatrix} x \\ f(z) \end{bmatrix}$$

is non-positive, so we invoke the S-procedure to derive the LMI

$$\begin{bmatrix} A^*P + PA & PB - C^* \\ B^*P - C & -D - D^* \end{bmatrix} \prec 0 \quad P \succ 0$$

This is called the positive-real lemma

Parameter-dependent Lyapunov functions

Quadratic stability:

- fast variation of parameters
- computationally tractable
- conservative, or pessimistic (worst-case)

Robust stability:

- no variation of parameters
- computationally difficult (in general)
- exact (is it really relevant?)

Is there something in between?

For example, given an LTI system affected by box, or interval uncertainty

$$\dot{x}(t) = A(\lambda(t))x(t) = (A_0 + \sum_{i=1}^{N} \lambda_i(t)A_i)x(t)$$

where

$$\lambda \in \Lambda = \{\lambda_i \in [\lambda_i, \overline{\lambda_i}]\}$$

we may consider parameter-dependent Lyapunov matrices, such as

$$P(\lambda(t)) = P_0 + \sum_i \lambda_i(t) P_i$$

Polytopic Lyapunov certificate

Quadratic Lyapunov function $V(x) = x^*P(\lambda)x$ must be positive with negative derivative along system trajectory hence

$$P(\lambda) \succ 0 \quad \forall \lambda \in \Lambda$$

and

$$A^*(\lambda)P(\lambda) + P(\lambda)A^*(\lambda) + \dot{P}(\lambda) \prec 0 \quad \forall \lambda \in \Lambda$$

We have to solve parametrized LMIs

Parametrized LMIs feature non-linear terms in λ so it is not enough to check vertices of Λ , denoted by vert Λ

$$\lambda_1^2-\lambda_1+\lambda_2\geq 0 \text{ on vert } \Delta$$
 but not everywhere on $\Delta=[0,\,1]\times[0,\,1]$

Parametrized LMIs

Central problem in robustness analysis: find x such that

$$F(\mathbf{x}, \lambda) = \sum_{\alpha} \lambda^{\alpha} F_{\alpha}(\mathbf{x}) \succ 0, \quad \forall \lambda \in \Lambda$$

where Λ is a compact set, typically the unit simplex or the unit ball

Convex but infinite-dimensional problem which is difficult in general

Matrix extensions of polynomial positivity conditions, for which various hierarchies of LMIs are available:

- Pólya's theorem
- Schmüdgen's representation
- Putinar representation
 See EJC 2006 survey by Carsten Scherer