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State-space methods

Developed by Kalman and colleagues in the 1960s as
an alternative to frequency-domain techniques (Bode,
Nichols..)

Starting in the 1980s, numerical analysts developed
powerful linear algebra routines for matrix equations:
numerical stability, low computational complexity, large-
scale problems

Matlab launched by Cleve Moler (1977-1984) heavily
relies on LINPACK, EISPACK & LAPACK packages
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Pseudospectrum of a Toeplitz matrix



Linear systems stability

The continuous-time linear time invariant (LTI)
system

2(t) = Az(t) x(0) = xg

where z(t) € R" is asymptotically stable,
meaning

lim z(t) =0 Vaxg

t—00

if and only if

e there exists a quadratic Lyapunov function
V(z) = *Px such that

V(x(t)) > O
V(z(t)) < O

along system trajectories
e equivalently, matrix A satisfies

max; real \;(A) <0



Lyapunov stability

Note that V(z) = o*Px = «*(P + P*)x/2
so that Lyapunov matrix P can be chosen
symmetric without loss of generality

Since V(z) = ¢*Px + o* P& = 2*A*Px 4 2*P Az positivity
of V(x) and negativity of V(x) along system trajectories
can be expressed as an LMI

A*P4+PA<0 P30

Matrices P satisfying Lyapunov’'s LMI with A = { _01 _12 }



Lyapunov equation

The Lyapunov LMI can be written equivalently
as the Lyapunov equation

AP+ PA+Q =0
where @ > O

The following statements are equivalent

e the system z = Ax is asymptotically stable
e for some matrix @Q = O the matrix P solving
the Lyapunov equation satisfies P = 0

e for all matrices @ - 0 the matrix P solving
the Lyapunov equation satisfies P = 0O

The Lyapunov LMI can be solved numerically
without IP methods since solving the above
equation amounts to solving a linear system of
n(n + 1)/2 equations in n(n + 1)/2 unknowns



Alternative to Lyapunov LMI

Recall the theorem of alternatives for LMI

F(x) =Fo+ ) =;F;

Exactly one statement is true
e there exists x s.t. Fi(z) =0
e there exists a nonzero Z > 0O s.t.
trace FpZ <0 and trace F;Z =0 for : > 0

Alternative to Lyapunov LMI

_* —_—
Fz) = A*P — PA O]>o

o) P

is the existence of a nonzero matrix

Z:[Zl o

0 Z

such that

Z1A* 4+ AZ{ — 7> =0



Alternative to Lyapunov LMI (proof)

Suppose that there exists such a matrix Z # 0
and extract Cholesky factor

Z1=UU*
Since Z1{A*+ AZ1 = 0 we must have
AUU* = USU™
where S = S1 + So and §; = —-S57, S =0

It follows from

AU =US

that U spans an invariant subspace of A
associated with eigenvalues of S,
which all satisfy real \;(S) > 0

Conversely, suppose \;(A) = o+ jw with ¢ > 0
for some ¢ with eigenvector v

Then rank-one matrices
71 = v Zy = 20vv"
solve the alternative LMI



Discrete-time Lyapunov LMI
Similarly, the discrete-time LTI system
Tp41 = Azy,
IS asymptotically stable iff

e there exists a quadratic Lyapunov function
V(x) = *Px such that

V(xk) >0
V(zg+1) — V(xg) <O

along system trajectories
e equivalently, matrix A satisfies

max; |[A;(A)] < 1
Here too this can be expressed as an LMI

A*PA—-P <0 P>0



More general stability regions

Let
D::@e(::[irlgggilli]<o}

with dp, dq,d> € C3 be a region of the complex
plane (half-plane or disk)

A l A
Matrix A is said D-stable when its spectrum
o(A) = {)\;(A)} belongs to region D

—

Equivalent to generalized Lyapunov LMI

*
I doP diP ][I
[A][ﬂPdﬁJ[A]<O =0



LLMI stability regions

We can consider D-stability in LMI regions

D={seC: D(S)ZDO—|—D18—|—D7{S*<O}

such as

D dynamics

real(s) < —« dominant behavior
real(s) < —a, |s| <r oscillations

a1 < real(s) < as bandwidth
limag(s)| < « horizontal strip

real(s)tand < —|imag(s)| damping cone

or intersections thereof

A

Example for the cone

sinf@ cosé
cosf siné

e =~ DOZO Dl:[




Lyapunov LMI for LMI stability regions

Matrix A has all its eigenvalues in the region

D:{SEC ) DO—|—D18-|-D’1(S*-<O}
if and only if the following LMI is feasible

Do® P+ D1 ® AP+ Dy PA*<0 P>0
where ® denotes the Kronecker product
Litterally replace s with A |

Can be extended readily to quadratic matrix
inequality stability regions

D=1{secC : D0+D18+D*8*—|—D28*8<O
1

parabolae, hyperbolae, ellipses etc
convex (D> > 0) or not



Uncertain systems and robustness

When modeling systems we face several sources
of uncertainty, including

e non-parametric (unstructured) uncertainty
e UnMmodeled dynamics
e truncated high frequency modes
e Non-linearities
e effects of linearization, time-variation..
e parametric (structured) uncertainty
e physical parameters vary within given bounds
e interval uncertainty (loo)
e cllipsoidal uncertainty (I»)
e diamond uncertainty (I7)

How can we overcome uncertainty 7
e Mmodel predictive control

e adaptive control
e robust control

A control law is robust if it is valid over the
whole range of admissible uncertainty (can be
designed off-line, usually cheap)



Uncertainty modeling
Consider the continuous-time LTI system
2(t) = Ax(t) Ac A

where matrix A belongs to an uncertainty set
A

For unstructured uncertainties we consider
norm-bounded matrices

A={A+BAC : ||All> < p}

For structured uncertainties we consider
polytopic matrices

A=conv{Aq,...,Anx}

There are other more sophisticated uncertainty
models not covered here

Uncertainty modeling is an important and
difficult step in control system design !



Robust stability
The continuous-time LTI system
x(t) =Ax(t) Aec A

IS robustly stable when it is asymptotically
stable for all A€ A

If S denotes the set of stable matrices, then
robust stability is ensured as soon as A C S
Unfortunately § is a non-convex cone !

Non-convex set
of continuous-time
stable matrices

[ 2]




Symmetry
If dynamic systems were symmetric, i.e
A= A*

continuous-time stability max;real \;(A) < 0 would be
equivalent to

A+ A* <0

and discrete-time stability max; [\;(A)| < 1 to

-1 A

*
AA<I<:>[A* 7

| <o

which are both LMIs !

We can show that stability of a symmetric linear system
can be always proven with the Lyapunov matrix P =1

Fortunately, the world is not symmetric !



Because of non-convexity of the cone of stable
matrices, robust stability is sometimes difficult
to check numerically, meaning that

computational cost is an exponential function
of the number of system parameters

Remedy:

The continuous-time LTI system z(t) = Ax(t)
is quadratically stable if its robust stability can
be guaranteed with the same quadratic
Lyapunov function for all A € A

Obviously, quadratic stability is more pessimistic,
or more conservative than robust stability:

Quadratic stability == Robust stability

but the converse is not always true



Quadratic stability for polytopic uncertainty

The system with polytopic uncertainty

z(t) = Ax(t) Ae€conv{Aq,...,An}

IS quadratically stable iff there exists a matrix
P solving the LMI

AP+ PA; <0 P>0

Proof by convexity

S NAFP+ PA) = AT ()P4 PA(N) <0

for all \; > 0 such that > ; \; =1

This is a vertex result: stability of a whole
family of matrices is ensured by stability of the
vertices of the family

Usually vertex results ensure
computational tractability



Quadratic and robust stability: example

Consider the uncertain system matrix

OB g B Bud

with real parameter § such that |§| < p
= polytope with vertices A(—u) and A(u)
stability | maxu

quadratic | 0.7526
robust 1.6666

+ d=0
4t | - |d|=1.6666
[d|<=0.7526




Quadratic stability for norm-bounded
uncertainty

The system with norm-bounded uncertainty

z(t) = (A+ BAC)z(t) [[All2 <p

IS quadratically stable iff there exists a matrix
P solving the LMI

B*P —~2]
with v~1 = 4

This is called the bounded-real lemma
proved next with the S-procedure

We can maximize the level of
allowed uncertainty by minimizing scalar ~



Norm-bounded uncertainty as feedback

Uncertain system

z= (A4 BAC)x
can be written as the feedback system

r = Az + Bw
z = (Cx
w = Az

— X = AX+Bw

A ——

so that for the Lyapunov function V(z) = ™ Px
we have
V(x) Dx* P
2¢*P(Ax + Bw)
x*(A*P 4+ PA)x + 2x*PBw
z |"[ A*P+PA PB]|[ 2
w B*P 0 w



Norm-bounded uncertainty as feedback (2)

Since A*A < p2] it follows that

wrw = 2*A*Az < p2z*z
<

*
o “”_[w” 0 sz”wlso

Combining with the quadratic inequality
*
: =z A*P+ PA PB x
v@ =g [ T[] <

and using the S-procedure we obtain

A*P+PA PB | —C*C 0
B*P 0 0 ~2I

or equivalently

A*P 4+ PA+C*C PB
B*P —~2]



Norm-bounded uncertainty: generalization

Now consider the feedback system

r = Ax+ Bw
z = Czx+Dw
w = Az

with additional feedthrough term Dw

We assume that matrix I — AD is non-singular
— well-posedness of feedback interconnection
so that we can write
w= Az=A(Czx+ Dw)
(I — AD)w = ACx
w= (I - AD) 1ACz

and derive the linear fractional transformation
(LFT) uncertainty description

t = Az + Bw = (A+ B(I — AD)"1AC)x



Norm-bounded LFT uncertainty

The system with norm-bounded
LFT uncertainty

i=(A+B(I-AD)'AC)z |Al2<p

IS quadratically stable iff there exists a matrix
P solving the LMI

A*P+ PA+ C*C PB4+ C*D
[ B*P 4+ D*C D*D—nyI] Rl
Notice the lower right block D*D — ~2] < 0
which ensures non-singularity of I — AD hence
well-posedness

LFT modeling can be used more generally to
cope with rational functions of uncertain pa-
rameters, but this is not covered in this course..



Sector-bounded uncertainty

Consider the feedback system

r = Ax+ Bw
z = Cx+ Dw
w = f(2)

where vector function f(z) satisfies

2*f(z) <0 f(0)=0

which is a sector condition

f(z) can also be considered as an uncertainty
but also as a non-linearity



Quadratic stability for sector-bounded
uncertainty

We want to establish quadratic stability with
the quadratic Lyapunov matrix V(z) = ax*Px
whose derivative
V(z) = 22*P(Az + Bf(2))
[ x ]*[A*P—I—PA PB] [ T ]
f(z) B*P 0 f(z)

must be negative when

227f(z) = 2(Cz+ Df(2))"f(2)
. x 0 C* x
- [f(Z)] [C D+D*][f(Z)]

IS non-positive, so we invoke the S-procedure
to derive the LMI

[A*P—|—PA PB — C*

This is called the positive-real lemma



Parameter-dependent Lyapunov functions

Quadratic stability:

e fast variation of parameters

e computationally tractable

e conservative, or pessimistic (worst-case)

Robust stability:

e NO variation of parameters

e computationally difficult (in general)
e exact (is it really relevant ?)

Is there something in between 7

For example, given an LTI system affected by box,
or interval uncertainty

2(t) = A@))z(t) = (Ao + S0, M(®) A)a(t)

where
AeAN={\ €[N, \]}

we may consider parameter-dependent
Lyapunov matrices, such as

P(A(®)) = Po+ >, M)



Polytopic Lyapunov certificate

Quadratic Lyapunov function V(z) = z*P(\)x must be
positive with negative derivative along system
trajectory hence

P(A) =0 VieA
and

A*OV) PN + PO)A*(V) 4+ P()\) <0 VYA EA

We have to solve parametrized LMIs

Parametrized LMIs feature non-linear terms in A so
it is not enough to check vertices of A, denoted by vertA

)\%—A1+>\2 ZO on vert A
but not everywhere on A = [0, 1] x [0, 1]



Parametrized LMIs

Central problem in robustness analysis:
find x such that

F(z,\) =Y, \%Fa(x) =0, VAIXEA

where A is a compact set, typically the unit
simplex or the unit ball

Convex but infinite-dimensional problem
which is difficult in general

Matrix extensions of polynomial positivity
conditions, for which various hierarchies of LMIs
are available:

e POlya’s theorem

e Schmudgen’s representation

e Putinar representation

See EJC 2006 survey by Carsten Scherer



