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State-space methods

Developed by Kalman and colleagues in the 1960s as
an alternative to frequency-domain techniques (Bode,
Nichols..)

Starting in the 1980s, numerical analysts developed
powerful linear algebra routines for matrix equations:
numerical stability, low computational complexity, large-
scale problems

Matlab launched by Cleve Moler (1977-1984) heavily
relies on LINPACK, EISPACK & LAPACK packages

Pseudospectrum of a Toeplitz matrix



Linear systems stability

The continuous-time linear time invariant (LTI)
system

ẋ(t) = Ax(t) x(0) = x0

where x(t) ∈ Rn is asymptotically stable,
meaning

lim
t→∞

x(t) = 0 ∀x0

if and only if

• there exists a quadratic Lyapunov function
V (x) = x?Px such that

V (x(t)) > 0
V̇ (x(t)) < 0

along system trajectories
• equivalently, matrix A satisfies

maxi real λi(A) < 0



Lyapunov stability

Note that V (x) = x?Px = x?(P + P ?)x/2
so that Lyapunov matrix P can be chosen
symmetric without loss of generality

Since V̇ (x) = ẋ?Px+ x?P ẋ = x?A?Px+ x?PAx positivity
of V (x) and negativity of V̇ (x) along system trajectories
can be expressed as an LMI

A?P + PA ≺ 0 P � 0

Matrices P satisfying Lyapunov’s LMI with A =
[

0 1
−1 −2

]



Lyapunov equation

The Lyapunov LMI can be written equivalently

as the Lyapunov equation

A?P + PA+Q = 0

where Q � 0

The following statements are equivalent

• the system ẋ = Ax is asymptotically stable

• for some matrix Q � 0 the matrix P solving

the Lyapunov equation satisfies P � 0

• for all matrices Q � 0 the matrix P solving

the Lyapunov equation satisfies P � 0

The Lyapunov LMI can be solved numerically

without IP methods since solving the above

equation amounts to solving a linear system of

n(n+ 1)/2 equations in n(n+ 1)/2 unknowns



Alternative to Lyapunov LMI

Recall the theorem of alternatives for LMI

F (x) = F0 +
∑
i

xiFi

Exactly one statement is true
• there exists x s.t. F (x) � 0
• there exists a nonzero Z � 0 s.t.

trace F0Z ≤ 0 and trace FiZ = 0 for i > 0

Alternative to Lyapunov LMI

F (x) =

[
−A?P − PA 0

0 P

]
� 0

is the existence of a nonzero matrix

Z =

[
Z1 0
0 Z2

]
� 0

such that

Z1A
? +AZ1 − Z2 = 0



Alternative to Lyapunov LMI (proof)

Suppose that there exists such a matrix Z 6= 0
and extract Cholesky factor

Z1 = UU?

Since Z1A
? +AZ1 � 0 we must have

AUU? = USU?

where S = S1 + S2 and S1 = −S?1, S2 � 0

It follows from

AU = US

that U spans an invariant subspace of A
associated with eigenvalues of S,
which all satisfy real λi(S) ≥ 0

Conversely, suppose λi(A) = σ+ jω with σ ≥ 0
for some i with eigenvector v

Then rank-one matrices

Z1 = vv? Z2 = 2σvv?

solve the alternative LMI



Discrete-time Lyapunov LMI

Similarly, the discrete-time LTI system

xk+1 = Axk

is asymptotically stable iff

• there exists a quadratic Lyapunov function

V (x) = x?Px such that

V (xk) > 0
V (xk+1)− V (xk) < 0

along system trajectories

• equivalently, matrix A satisfies

maxi |λi(A)| < 1

Here too this can be expressed as an LMI

A?PA− P ≺ 0 P � 0



More general stability regions

Let

D = {s ∈ C :

[
1
s

]? [
d0 d1
d?1 d2

] [
1
s

]
< 0}

with d0, d1, d2 ∈ C3 be a region of the complex
plane (half-plane or disk)

Matrix A is said D-stable when its spectrum
σ(A) = {λi(A)} belongs to region D

Equivalent to generalized Lyapunov LMI

[
I
A

]? [
d0P d1P
d?1P d2P

] [
I
A

]
≺ 0 P � 0



LMI stability regions

We can consider D-stability in LMI regions

D = {s ∈ C : D(s) = D0 +D1s+D?
1s
? ≺ 0}

such as

D dynamics
real(s) < −α dominant behavior
real(s) < −α, |s| < r oscillations
α1 < real(s) < α2 bandwidth
|imag(s)| < α horizontal strip
real(s) tan θ < −|imag(s)| damping cone

or intersections thereof

Example for the cone

D0 = 0 D1 =

[
sin θ cos θ
cos θ sin θ

]



Lyapunov LMI for LMI stability regions

Matrix A has all its eigenvalues in the region

D = {s ∈ C : D0 +D1s+D?
1s
? ≺ 0}

if and only if the following LMI is feasible

D0 ⊗ P +D1 ⊗AP +D?
1 ⊗ PA

? ≺ 0 P � 0

where ⊗ denotes the Kronecker product

Litterally replace s with A !

Can be extended readily to quadratic matrix

inequality stability regions

D = {s ∈ C : D0 +D1s+D?
1s
? +D2s

?s ≺ 0}

parabolae, hyperbolae, ellipses etc

convex (D2 � 0) or not



Uncertain systems and robustness

When modeling systems we face several sources
of uncertainty, including

• non-parametric (unstructured) uncertainty
• unmodeled dynamics
• truncated high frequency modes
• non-linearities
• effects of linearization, time-variation..

• parametric (structured) uncertainty
• physical parameters vary within given bounds
• interval uncertainty (l∞)
• ellipsoidal uncertainty (l2)
• diamond uncertainty (l1)

How can we overcome uncertainty ?
• model predictive control
• adaptive control
• robust control

A control law is robust if it is valid over the
whole range of admissible uncertainty (can be
designed off-line, usually cheap)



Uncertainty modeling

Consider the continuous-time LTI system

ẋ(t) = Ax(t) A ∈ A

where matrix A belongs to an uncertainty set
A

For unstructured uncertainties we consider
norm-bounded matrices

A = {A+B∆C : ‖∆‖2 ≤ µ}

For structured uncertainties we consider
polytopic matrices

A = conv {A1, . . . , AN}

There are other more sophisticated uncertainty
models not covered here

Uncertainty modeling is an important and
difficult step in control system design !



Robust stability

The continuous-time LTI system

ẋ(t) = Ax(t) A ∈ A

is robustly stable when it is asymptotically
stable for all A ∈ A

If S denotes the set of stable matrices, then
robust stability is ensured as soon as A ⊂ S
Unfortunately S is a non-convex cone !

Non-convex set
of continuous-time

stable matrices[
−1 x
y z

]



Symmetry

If dynamic systems were symmetric, i.e

A = A?

continuous-time stability maxi real λi(A) < 0 would be
equivalent to

A+A? ≺ 0

and discrete-time stability maxi |λi(A)| < 1 to

A?A ≺ I ⇐⇒
[
−I A
A? −I

]
≺ 0

which are both LMIs !

We can show that stability of a symmetric linear system
can be always proven with the Lyapunov matrix P = I

Fortunately, the world is not symmetric !



Robust and quadratic stability

Because of non-convexity of the cone of stable

matrices, robust stability is sometimes difficult

to check numerically, meaning that

computational cost is an exponential function
of the number of system parameters

Remedy:

The continuous-time LTI system ẋ(t) = Ax(t)

is quadratically stable if its robust stability can

be guaranteed with the same quadratic

Lyapunov function for all A ∈ A

Obviously, quadratic stability is more pessimistic,

or more conservative than robust stability:

Quadratic stability =⇒ Robust stability

but the converse is not always true



Quadratic stability for polytopic uncertainty

The system with polytopic uncertainty

ẋ(t) = Ax(t) A ∈ conv {A1, . . . , AN}

is quadratically stable iff there exists a matrix

P solving the LMI

ATi P + PAi ≺ 0 P � 0

Proof by convexity∑
i

λi(A
T
i P + PAi) = AT (λ)P + PA(λ) ≺ 0

for all λi ≥ 0 such that
∑
i λi = 1

This is a vertex result: stability of a whole

family of matrices is ensured by stability of the

vertices of the family

Usually vertex results ensure

computational tractability



Quadratic and robust stability: example

Consider the uncertain system matrix

A(δ) =

[
−4 4
−5 0

]
+ δ

[
−2 2
−1 4

]

with real parameter δ such that |δ| ≤ µ
= polytope with vertices A(−µ) and A(µ)

stability maxµ
quadratic 0.7526
robust 1.6666



Quadratic stability for norm-bounded

uncertainty

The system with norm-bounded uncertainty

ẋ(t) = (A+B∆C)x(t) ‖∆‖2 ≤ µ

is quadratically stable iff there exists a matrix

P solving the LMI

[
A?P + PA+ C?C PB

B?P −γ2I

]
≺ 0 P � 0

with γ−1 = µ

This is called the bounded-real lemma

proved next with the S-procedure

We can maximize the level of

allowed uncertainty by minimizing scalar γ



Norm-bounded uncertainty as feedback

Uncertain system

ẋ = (A+B∆C)x

can be written as the feedback system

ẋ = Ax+Bw
z = Cx
w = ∆z

.
x = Ax+Bw

∆

w z

so that for the Lyapunov function V (x) = x?Px
we have

V̇ (x) = 2x?P ẋ
= 2x?P (Ax+Bw)
= x?(A?P + PA)x+ 2x?PBw

=

[
x
w

]? [
A?P + PA PB

B?P 0

] [
x
w

]



Norm-bounded uncertainty as feedback (2)

Since ∆?∆ � µ2I it follows that

w?w = z?∆?∆z � µ2z?z
⇐⇒

w?w − µ2z?z =

[
x
w

]? [ −C?C 0
0 γ2I

] [
x
w

]
≤ 0

Combining with the quadratic inequality

V̇ (x) =

[
x
w

]? [
A?P + PA PB

B?P 0

] [
x
w

]
< 0

and using the S-procedure we obtain[
A?P + PA PB

B?P 0

]
≺
[
−C?C 0

0 γ2I

]
or equivalently

[
A?P + PA+ C?C PB

B?P −γ2I

]
≺ 0 P � 0



Norm-bounded uncertainty: generalization

Now consider the feedback system

ẋ = Ax+Bw
z = Cx+Dw
w = ∆z

with additional feedthrough term Dw

We assume that matrix I−∆D is non-singular

= well-posedness of feedback interconnection

so that we can write

w = ∆z = ∆(Cx+Dw)
(I −∆D)w = ∆Cx

w = (I −∆D)−1∆Cx

and derive the linear fractional transformation

(LFT) uncertainty description

ẋ = Ax+Bw = (A+B(I −∆D)−1∆C)x



Norm-bounded LFT uncertainty

The system with norm-bounded

LFT uncertainty

ẋ =
(
A+B(I −∆D)−1∆C

)
x ‖∆‖2 ≤ µ

is quadratically stable iff there exists a matrix

P solving the LMI

[
A?P + PA+ C?C PB + C?D

B?P +D?C D?D − γ2I

]
≺ 0 P � 0

Notice the lower right block D?D − γ2I ≺ 0

which ensures non-singularity of I −∆D hence

well-posedness

LFT modeling can be used more generally to

cope with rational functions of uncertain pa-

rameters, but this is not covered in this course..



Sector-bounded uncertainty

Consider the feedback system

ẋ = Ax+Bw
z = Cx+Dw
w = f(z)

where vector function f(z) satisfies

z?f(z) ≤ 0 f(0) = 0

which is a sector condition

f(z)

z

f(z) can also be considered as an uncertainty
but also as a non-linearity



Quadratic stability for sector-bounded

uncertainty

We want to establish quadratic stability with

the quadratic Lyapunov matrix V (x) = x?Px

whose derivative

V̇ (x) = 2x?P (Ax+Bf(z))

=

[
x

f(z)

]? [
A?P + PA PB

B?P 0

] [
x

f(z)

]
must be negative when

2z?f(z) = 2(Cx+Df(z))?f(z)

=

[
x

f(z)

]? [
0 C?

C D +D?

] [
x

f(z)

]
is non-positive, so we invoke the S-procedure

to derive the LMI

[
A?P + PA PB − C?
B?P − C −D −D?

]
≺ 0 P � 0

This is called the positive-real lemma



Parameter-dependent Lyapunov functions

Quadratic stability:
• fast variation of parameters
• computationally tractable
• conservative, or pessimistic (worst-case)

Robust stability:
• no variation of parameters
• computationally difficult (in general)
• exact (is it really relevant ?)

Is there something in between ?

For example, given an LTI system affected by box,
or interval uncertainty

ẋ(t) = A(λ(t))x(t) = (A0 +
∑N

i=1 λi(t)Ai)x(t)

where

λ ∈ Λ = {λi ∈ [λi, λi]}
we may consider parameter-dependent
Lyapunov matrices, such as

P (λ(t)) = P0 +
∑

i λi(t)Pi



Polytopic Lyapunov certificate

Quadratic Lyapunov function V (x) = x?P (λ)x must be
positive with negative derivative along system
trajectory hence

P (λ) � 0 ∀λ ∈ Λ

and

A?(λ)P (λ) + P (λ)A?(λ) + Ṗ (λ) ≺ 0 ∀λ ∈ Λ

We have to solve parametrized LMIs

Parametrized LMIs feature non-linear terms in λ so
it is not enough to check vertices of Λ, denoted by vertΛ

λ2
1 − λ1 + λ2 ≥ 0 on vert ∆

but not everywhere on ∆ = [0, 1]× [0, 1]



Parametrized LMIs

Central problem in robustness analysis:

find x such that

F (x, λ) =
∑
α λ

αFα(x) � 0, ∀λ ∈ Λ

where Λ is a compact set, typically the unit

simplex or the unit ball

Convex but infinite-dimensional problem

which is difficult in general

Matrix extensions of polynomial positivity

conditions, for which various hierarchies of LMIs

are available:

• Pólya’s theorem

• Schmüdgen’s representation

• Putinar representation

See EJC 2006 survey by Carsten Scherer


