
I.6. LMI SOLVERS

Didier HENRION
henrion@laas.fr

Belgian Graduate School on

Systems, Control, Optimization and Networks

Leuven - April and May 2010

History

Convex programming

• logarithmic barrier function (Frisch 1955)
• method of centers (Huard 1967)

Interior-point (IP) methods

• ellipsoid algorithm (Khachiyan 1979)
polynomial bound on worst-case iteration count
• IP methods for LP (Karmarkar 1984)
improved complexity bound and efficiency - now about 50% of commercial
LP solvers
• self-concordant barrier functions (Nesterov, Nemirovski 1988) - IP methods
for general convex programs, in particular SDP and LMI

Logarithmic barrier function

For the optimization problem

min g0(x)
s.t. gi(x) ≥ 0

where the gi(x) are twice continuously differentiable convex

functions, we define the logarithmic barrier function

g(x) = −
∑
i log gi(x) = log

∏
i gi(x)−1

which is convex in the interior gi(x) > 0 of the feasible set

Unconstrained optimization

Then we solve the unconstrained convex problem

min g0(x) + µg(x)

where µ > 0 and the term µg(x) acts as

a repellent of the boundary

The minimum is attained in the interior = interior-point method

Descent methods

To solve an unconstrained optimization problem min f(x)
we produce a minimizing sequence xk+1 = xk + tk∆xk where
∆xk ∈ Rn is the step or search direction and
tk ≥ 0 is the step size or step length

A descent method consists in finding a sequence {xk} such that
f(x?) ≤ · · · f(xk+1) < f(xk) where x? is the optimum

General descent method

0. given starting point x
1. determine descent direction ∆x
2. line search: choose step size t > 0
3. update: x = x+ t∆x
4. go to step 1 until a stopping criterion

is satisfied

Newton’s method

A particular choice of search direction is the Newton step

∆x = −∇2f(x)−1∇f(x)

where ∇f(x) is the gradient and ∇2f(x) is the Hessian

This step y = ∆x minimizes the 2nd order Taylor approximation

f̂(x+ y) = f(x) +∇f(x)Ty + yT∇2f(x)y/2

and it is the steepest descent direction for the quadratic norm

defined by the Hessian

Quadratic convergence near the optimum

Self-concordance

Shortcomings of Newton’s method:
• number of required Newton steps
hardly estimated in practice
• analysis depends on used coordinate system

Theory of self-concordant functions:
• number of Newton steps easily estimated
• affine-invariant property

Smooth convex functions with 2nd derivatives Lipschitz contin-
uous with respect to the metric induced by the Hessian:
|f ′′′(x)| ≤ 2f

′′
(x)3/2, include many logarithmic barrier functions

For LP, QP or SDP 1st and 2nd derivatives of standard
self-concordant barriers can be found easily in closed form

Barrier function for an LMI

Given an LMI constraint F (x) � 0 we define
its logarithmic barrier function

f(x) = log detF (x)−1

This function is analytic, convex and self-concordant
on {x : F (x) � 0}, with minimum called
the analytic center of the LMI (depends on F (x))

Gradient and Hessian for an LMI

Concave function −f(x) is flat in the interior of the feasible set

and sharply decreases toward the boundary

Closed-form expressions for gradient

(∇f(x))i = −trace F (x)−1Fi
= −trace F (x)−1/2FiF (x)−1/2

and Hessian

(∇2f(x))ij = trace F (x)−1FiF (x)−1Fj
= trace

(
F (x)−1/2FiF (x)−1/2

)
×(

F (x)−1/2FjF (x)−1/2
)

IP methods for SDP

Primal / dual SDP

minX trace CX
s.t. traceAiX = bi

X � 0

maxy bTy
s.t. Z = C −

∑
i yiAi

Z � 0

Primal methods minX trace CX − µ log detX
s.t. traceAiX = bi

where parameter µ is sequentially decreased to zero and iterates Xk are always
primal feasible

Dual methods maxy,Z bTy + µ log detZ
s.t. Z = C −

∑
i yiAi

where parameter µ is sequentially decreased to zero and iterates yk, Zk are
always dual feasible

Xk � 0 or Zk � 0 ensured via Newton process:
• large decreases of µ require damped Newton steps
• small updates allow full (deep) Newton steps

Primal-dual IP methods for SDP

Primal-dual methods

minx,y,Z traceXZ − µ log detXZ
s.t. traceAiX = bi

Z = C −
∑

i yiAi

Minimizers satisfy KKT optimality conditions

traceAiX = bi∑
i yiAi + Z = C

XZ = µI
X,Z � 0

Duality gap traceCX − bTy = traceXZ � 0 minimized along the central path
of solutions X(µ), y(µ), Z(µ), a smooth curve parametrized by scalar µ

For this reason, logarithmic barrier methods are also called
path-following methods

Newton step for primal-dual methods

For primal-dual IP methods, primal and dual directions ∆X, ∆y

and ∆Z satisfy non-linear KKT optimality conditions

traceAi∆X = 0∑
i∆yiAi + ∆Z = 0

(X + ∆X)(Z + ∆Z) = µI

Key point is in linearizing and symmetrizing the latter equation

Long list of primal-dual search directions, the most known of

which is Nesterov-Todd’s

Dynamic updates of µ result in predictor-corrector methods

Initialization

Newton’s method needs an initial feasible point

Algorithms that do not require a feasible point are called
infeasible-start methods

An elegant approach to bypass the issue of finding a feasible
point is to embed the SDP problem in a larger problem which is
its own dual (self-dual embedding) and for which a trivial feasible
starting point is known

An SDP embedding that proves useful and efficient is the homo-
geneous embedding (de Klerk/Roos/Terlaky and Luo/Sturm/Zhang)

Drawback: iterates are primal and dual feasible
only when converging

Newton step for LMI

For the SDP in LMI form

min cTx
s.t. F (x) = F0 +

∑
i xiFi � 0

the centering problem is

min cTx− µ log detF (x)

and at each iteration Newton step ∆x satisfies the LSE

H∆x = −g

where gradient g and Hessian H are given by

Hij = trace F (x)−1FiF (x)−1Fi
gi = ci/µ+ trace F (x)−1Fi

LSE typically solved via Cholesky or QR

Complexity

For the n-by-n LMI F (x) � 0 with m variables, the flop count of IP methods
for SDP is as follows:

For each iteration:
(a) O(n2m) to form F (x)
(b) O(n3m) to form F (x)−1FiF (x)−1Fj (m prods)
(c) O(n2m2) to form F (x)−1Fi (m2 prods)
(d) O(m3) to solve Newton LSE with Cholesky

Dominating terms are (b) and (c) so the complexity for solving one Newton
step is O(n3m+ n2m2) but structure can be exploited in these steps !

Number of iterations with Newton’s method: O(
√
n log ε−1) where ε is the

desired accuracy

In general, it is assumed that m = O(n2) otherwise redundant constraints can
be removed, so the global worst-case complexity for a dense LMI is

O(n6.5 log ε−1)

Much less in practice !

Primal-dual methods

In contrast with purely primal or dual methods,

in primal-dual methods..

• At each step both primal and dual variables

are updated simultaneously

• Search direction obtained from Newton’s method applied to

modified KKT equations

• Work when problem is not strictly feasible

Generally for LP, QP or SDP primal-dual

methods outperform barrier methods

IP methods in general

General characteristics of IP methods:

• Efficiency: about 5 to 50 iterations, almost independent of

input data (problem), each iteration is a least-squares problem

(well established linear algebra)

• Theory: worst-case analysis of IP methods yields polynomial

computational time

• Structure: tailored SDP solvers can exploit problem structure

Penalty/augmented Lagrangian methods

Use similar ideas, but cannot be considered as an interior-point

method

When applied to LMI problem

min cTx s.t. F (x) = F0 +
∑
i

xiFi � 0

• penalty method - some eigenvalues of F (x) can be negative

• barrier method - no eigenvalue of F (x) can be negative

Augmented Lagrangian L(x, Z, p) = cTx + trace ZΦ(x, p) with

dual variable Z and suitable penalty function, for example

Φ(x, p) = p2(F (x) + pI)−1 − pI with penalty parameter p

Penalty/augmented Lagrangian methods (2)

General algorithm

1. find xk+1 such that ‖∇xL(x, Zk, pk)‖ ≤ εk
2. update dual variables: Zk+1 = f(xk+1, Zk)
3. update penalty parameter: pk+1 < pk
4. go to step 1 until a stopping criterion

is satisfied

Can be considered as a primal-dual method, but dual variables

are obtained in closed-form at step 2

Complexity roughly same as IP methods, but can be improved

to O(m2K2) where K is the number of non-zero terms

SDP solvers

Self-dual embedding:
• SeDuMi (Sturm, Terlaky)
• SDPT3 (Toh, Tütüncü, Todd)

Primal-dual path-following predictor-corrector:
• CSDP (Borchers)
• SDPA (Kojima et al)

Dual-scaling path-following:
• DSDP (Benson, Ye, Zhang)
exploits structure for combinatorics

Projective method (project iterate on Dikin ellipsoid within SDP cone)
• LMILAB (Gahinet, Nemirovskii)
exploits linear algebra of control LMI problems

Penalty and augmented Lagrangian:
• PENSDP (Kočvara, Stingl)

Specialized SDP solvers

Parallel implementations:

• CSDP (Borchers)

• SDPA (Kojima et al)

KYP LMIs using SDP duality:

• KYPD (Hansson et al)

Verified SDP using interval arithmetic:

• VSDP (Jansson)

Nonlinear nonconvex SDP solvers

Low-rank LMIs solved as nonconvex QPs:

• SDPLR (Burer, Monteiro)

Low-rank LMIs solved by alternating projections:

• LMIRANK (Orsi et al)

BMIs via penalty and augmented Lagrangian:

• PENBMI (Kočvara, Stingl)

Matlab dependence

The following solvers are Matlab-dependent:

• SeDuMi (Sturm, Terlaky)

• SDPT3 (Toh, Tütüncü, Todd)

• LMILAB (Gahinet, Nemirovskii)

• VSDP (Jansson)

• LMIRANK (Orsi et al)

Most of the other solvers are available under Matlab,

but not Matlab-dependent

Matrices as variables

Generally, in control problems we do not encounter the LMI in canonical or
semidefinite form but rather with matrix variables

Lyapunov’s inequality

ATP + PA ≺ 0 P = P T � 0

can be written in canonical form

F (x) = F0 +
m∑
i=1

Fixi � 0

with the notations

F0 = 0 Fi = −ATBi −BiA
where Bi, i = 1, . . . , n(n + 1)/2 are matrix bases for symmetric matrices of
size n

Most software packages for solving LMIs however work with canonical or
semidefinite forms, so that a (sometimes time-consuming) pre-processing step
is required

Interfaces
Matlab Robust Control Toolbox
• LMILAB (Gahinet, Nemirovski)
originally developed for INRIA’s Scilab

Matlab LMI interfaces to SDP solvers
• LMITOOL (Nikoukah, Delebecque, El Ghaoui)
• SeDuMi Interface (Peaucelle)

Matlab convex optimization and modeling
• YALMIP (Löfberg)
• cvx (Grant, Boyd)

Matlab moments and polynomial SOS
• Gloptipoly (Lasserre et al)
• SOSTOOLS (Parrilo et al)
• SparsePOP (Kojima et al)

Python interface
• cvxopt (Vandenberghe et al)

Scilab and NSP
• LMITOOL (Nikoukah, Delebecque, El Ghaoui)
• GloptiPoly (Lasserre et al)
• YALMIP (Löfberg)

