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History

Convex programming

e |logarithmic barrier function (Frisch 1955)
e method of centers (Huard 1967)

Interior-point (IP) methods

e cllipsoid algorithm (Khachiyan 1979)

polynomial bound on worst-case iteration count

e IP methods for LP (Karmarkar 1984)

improved complexity bound and efficiency - now about 50% of commercial
LP solvers

e self-concordant barrier functions (Nesterov, Nemirovski 1988) - IP methods
for general convex programs, in particular SDP and LMI



Logarithmic barrier function

For the optimization problem

min go(x)
S.t. gZ(JZ) >0

where the g;(x) are twice continuously differentiable convex
functions, we define the logarithmic barrier function

g(z) = —¥;109 gi(x) = log[]; g; (=) ~*

which is convex in the interior g;(x) > 0 of the feasible set



Unconstrained optimization

Then we solve the unconstrained convex problem

min go(x) + pg(x)

where > 0 and the term pug(x) acts as
a repellent of the boundary

The minimum is attained in the interior = interior-point method



Descent methods

To solve an unconstrained optimization problem min f(x)
we produce a minimizing sequence xy4+1 = x + txAx, where
Az, € R" is the step or search direction and

tr, > 0 is the step size or step length

A descent method consists in finding a sequence {z;} such that
f(x*) < - f(xps1) < f(xr) where z* is the optimum

General descent method

given starting point z

determine descent direction Ax

line search: choose step size t > 0
update: *x = x + tAx

go to step 1 until a stopping criterion
is satisfied
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Newton's method
A particular choice of search direction is the Newton step
Az = —V?f(z) 'V f(z)
where V() is the gradient and V2f(x) is the Hessian

This step y = Az minimizes the 2nd order Taylor approximation

flz+y) = f(@) + Vi) y+ 4y V2 f(x)y/2

and it is the steepest descent direction for the quadratic norm
defined by the Hessian

Quadratic convergence near the optimum



Shortcomings of Newton’s method:

e number of required Newton steps

hardly estimated in practice

e analysis depends on used coordinate system

T heory of self-concordant functions:
e Nnumber of Newton steps easily estimated
e affine-invariant property

Smooth convex functions with 2nd derivatives Lipschitz contin-
uous with respect to the metric induced by the Hessian:

"

17 (2)] < 2" (2)3/2, include many logarithmic barrier functions

For LP, QP or SDP 1st and 2nd derivatives of standard
self-concordant barriers can be found easily in closed form



Barrier function for an LMI

Given an LMI constraint F'(x) > 0 we define
its logarithmic barrier function

25

f(z) = logdet F(z)~ ! 2 T

This function is analytic, convex and self—concérdant
on {z : F(x) > 0}, with minimum called
the analytic center of the LMI (depends on F'(x))



Gradient and Hessian for an LMI

Concave function —f(x) is flat in the interior of the feasible set
and sharply decreases toward the boundary

Closed-form expressions for gradient
(Vf(z)); = —trace F(z)"1F;
_ = —trace F(z) " Y2FF(x)~1/2
It (ithAtheen N ~and Hessian

(V2f(z))i; = trace F(x) 1F,F(z)"1F;
= trace (F(z) " Y2FF(z)~1/?) x
(F(z)"Y2FF(z)~1/?)

o(x)




IP methods for SDP
Primal / dual SDP

miny traceCX max, bly
s.t. trace A; X = b; S.t. Z=C - vyA;
X >0 Z >0
Primal methods miny trace CX — plogdet X

s.t. trace A; X = b;

where parameter u is sequentially decreased to zero and iterates X, are always
primal feasible

Dual methods max, z bly—+ plogdet”Z

where parameter p is sequentially decreased to zero and iterates yi, Z; are
always dual feasible

X >~ 0 or Z, >~ 0 ensured via Newton process:
e large decreases of i require damped Newton steps
e small updates allow full (deep) Newton steps



Primal-dual IP methods for SDP
Primal-dual methods

ming, 7 trace XZ — plogdet XZ
S.t. trace A; X = b;

Minimizers satisfy KKT optimality conditions

trace A, X = b

Zi yiAi+2Z = C
XZ = ul

X, Z »= 0

Duality gap trace CX — b'y = trace XZ > 0 minimized along the central path
of solutions X (u), y(u), Z(r), a smooth curve parametrized by scalar p

For this reason, logarithmic barrier methods are also called
path-following methods



Newton step for primal-dual methods

For primal-dual IP methods, primal and dual directions AX, Ay
and AZ satisfy non-linear KKT optimality conditions

trace A;,AX = O
>iAy A+ AZ = 0
(X+2X)(Z+202) = ul

Key point is in linearizing and symmetrizing the latter equation

Long list of primal-dual search directions, the most known of
which is Nesterov-Todd’s

Dynamic updates of u result in predictor-corrector methods



Initialization
Newton’s method needs an initial feasible point

Algorithms that do not require a feasible point are called
infeasible-start methods

An elegant approach to bypass the issue of finding a feasible
point is to embed the SDP problem in a larger problem which is
its own dual (self-dual embedding) and for which a trivial feasible
starting point is known

An SDP embedding that proves useful and efficient is the homo-
geneous embedding (de Klerk/Roos/Terlaky and Luo/Sturm/Zhang)

Drawback: iterates are primal and dual feasible
only when converging



For the SDP in LMI form

min clzx

S.t. F(CE) = Fpy + YixiF; = 0
the centering problem is

T

minc' z — plogdet F'(x)

and at each iteration Newton step Ax satisfies the LSE
HAx = —g

where gradient g and Hessian H are given by

H;j trace F(2) YF,F(z)"1F;
gi ¢i/i+ trace F(z)~1F,

LSE typically solved via Cholesky or QR



Complexity

For the n-by-n LMI F(x) = 0 with m variables, the flop count of IP methods
for SDP is as follows:

For each iteration:

(a) O(n?’m) to form F(x)

(b) O(n3m) to form F(z) 'F,F(x)~1F; (m prods)
(c) O(n*m?) to form F(z) 1F; (m? prods)

(d) O(m3) to solve Newton LSE with Cholesky

Dominating terms are (b) and (¢) so the complexity for solving one Newton
step is O(n3m + n?m?) but structure can be exploited in these steps !

Number of iterations with Newton's method: O(y/nloge~!) where ¢ is the
desired accuracy

In general, it is assumed that m = O(n?) otherwise redundant constraints can
be removed, so the global worst-case complexity for a dense LMI is

O(nb>loge™1)

Much less in practice |



Primal-dual methods

In contrast with purely primal or dual methods,
in primal-dual methods..

e At each step both primal and dual variables
are updated simultaneously

e Search direction obtained from Newton’'s method applied to
modified KKT equations
e \Work when problem is not strictly feasible

Generally for LP, QP or SDP primal-dual
methods outperform barrier methods



IP methods in general
General characteristics of IP methods:

e Efficiency: about 5 to 50 iterations, almost independent of
input data (problem), each iteration is a least-squares problem
(well established linear algebra)

e [ heory: worst-case analysis of IP methods yields polynomial
computational time

e Structure: tailored SDP solvers can exploit problem structure



Penalty/augmented Lagrangian methods

Use similar ideas, but cannot be considered as an interior-point
method

When applied to LMI problem
minclz st. F(z) = Fo+ Y «;F; = 0
i

e penalty method - some eigenvalues of F'(x) can be negative
e barrier method - no eigenvalue of F'(x) can be negative

Augmented Lagrangian L(z,Z,p) = ¢!z + trace Zd(x,p) with
dual variable Z and suitable penalty function, for example
d(z,p) = p2(F(x) + pI)~1 — pI with penalty parameter p



General algorithm

. find Th+1 such that ||vxL($,Zk,pk>|| < e
update dual variables: Zy41 = f(xg41, Zx)
update penalty parameter: ppi1 < pg

go to step 1 until a stopping criterion

is satisfied

Sl S

Can be considered as a primal-dual method, but dual variables
are obtained in closed-form at step 2

Complexity roughly same as IP methods, but can be improved
to O(m?2K?) where K is the number of non-zero terms



SDP solvers

Self-dual embedding:
e SeDuMi (Sturm, Terlaky)
e SDPT3 (Toh, Titincl, Todd)

Primal-dual path-following predictor-corrector:
e CSDP (Borchers)
e SDPA (Kojima et al)

Dual-scaling path-following:
e DSDP (Benson, Ye, Zhang)
exploits structure for combinatorics

Projective method (project iterate on Dikin ellipsoid within SDP cone)
e LMILAB (Gahinet, Nemirovskii)
exploits linear algebra of control LMI problems

Penalty and augmented Lagrangian:
e PENSDP (Koctvara, Stingl)



Specialized SDP solvers

Parallel implementations:
e CSDP (Borchers)
e SDPA (Kojima et al)

KYP LMIs using SDP duality:
e KYPD (Hansson et al)

Verified SDP using interval arithmetic:
e VSDP (Jansson)



Nonlinear nonconvex SDP solvers

Low-rank LMIs solved as nonconvex QPs:
e SDPLR (Burer, Monteiro)

Low-rank LMIs solved by alternating projections:
e LMIRANK (Orsi et al)

BMIs via penalty and augmented Lagrangian:
e PENBMI (Koctvara, Stingl)



Matlab dependence

The following solvers are Matlab-dependent:
e SeDuMi (Sturm, Terlaky)

SDPT3 (Toh, Titinclu, Todd)

LMILAB (Gahinet, Nemirovskii)

VSDP (Jansson)

LMIRANK (Orsi et al)

Most of the other solvers are available under Matlab,
but not Matlab-dependent



Matrices as variables

Generally, in control problems we do not encounter the LMI in canonical or
semidefinite form but rather with matrix variables

Lyapunov’s inequality
ATP4+PA<0 P=P"'s=0

can be written in canonical form

F(z) =Fo+ ) Fui >0
=1
with the notations
Fo=0 F,=-A"B;—B;A
where B;, i = 1,...,n(n 4+ 1)/2 are matrix bases for symmetric matrices of
Size n

Most software packages for solving LMIs however work with canonical or
semidefinite forms, so that a (sometimes time-consuming) pre-processing step
IS required



Interfaces

Matlab Robust Control Toolbox
e LMILAB (Gahinet, Nemirovski)
originally developed for INRIA's Scilab

Matlab LMI interfaces to SDP solvers
e LMITOOL (Nikoukah, Delebecque, EI Ghaoui)
e SeDuMi Interface (Peaucelle)

Matlab convex optimization and modeling
e YALMIP (Lofberg)
e cvx (Grant, Boyd)

Matlab moments and polynomial SOS
e Gloptipoly (Lasserre et al)
e SOSTOOLS (Parrilo et al)
e SparsePOP (Kojima et al)

Python interface
e cvxopt (Vandenberghe et al)

Scilab and NSP

e LMITOOL (Nikoukah, Delebecque, EI Ghaoui)
e GloptiPoly (Lasserre et al)

e YALMIP (Lo6fberg)



