I.6. LMI SOLVERS

Didier HENRION henrion@laas.fr

Belgian Graduate School on Systems, Control, Optimization and Networks

Leuven - April and May 2010

History

Convex programming

- logarithmic barrier function (Frisch 1955)
- method of centers (Huard 1967)

Interior-point (IP) methods

- ellipsoid algorithm (Khachiyan 1979) polynomial bound on worst-case iteration count
- IP methods for LP (Karmarkar 1984) improved complexity bound and efficiency now about 50% of commercial LP solvers
- self-concordant barrier functions (Nesterov, Nemirovski 1988) IP methods for general convex programs, in particular SDP and LMI

Logarithmic barrier function

For the optimization problem

min
$$g_0(x)$$

s.t. $g_i(x) \ge 0$

where the $g_i(x)$ are twice continuously differentiable convex functions, we define the logarithmic barrier function

$$g(x) = -\sum_{i} \log g_i(x) = \log \prod_{i} g_i(x)^{-1}$$

which is convex in the interior $g_i(x) > 0$ of the feasible set

Unconstrained optimization

Then we solve the unconstrained convex problem

$$\min g_0(x) + \mu g(x)$$

where $\mu > 0$ and the term $\mu g(x)$ acts as a repellent of the boundary

The minimum is attained in the interior = interior-point method

Descent methods

To solve an unconstrained optimization problem $\min f(x)$ we produce a minimizing sequence $x_{k+1} = x_k + t_k \Delta x_k$ where $\Delta x_k \in \mathbb{R}^n$ is the step or search direction and $t_k > 0$ is the step size or step length

A descent method consists in finding a sequence $\{x_k\}$ such that $f(x^*) \leq \cdots f(x_{k+1}) < f(x_k)$ where x^* is the optimum

General descent method

- 0. given starting point x
- 1. determine descent direction Δx
- 2. line search: choose step size t > 0
- 3. update: $x = x + t\Delta x$
- 4. go to step 1 until a stopping criterion is satisfied

Newton's method

A particular choice of search direction is the Newton step

$$\Delta x = -\nabla^2 f(x)^{-1} \nabla f(x)$$

where $\nabla f(x)$ is the gradient and $\nabla^2 f(x)$ is the Hessian

This step $y = \Delta x$ minimizes the 2nd order Taylor approximation

$$\widehat{f}(x+y) = f(x) + \nabla f(x)^T y + y^T \nabla^2 f(x) y/2$$

and it is the steepest descent direction for the quadratic norm defined by the Hessian

Quadratic convergence near the optimum

Self-concordance

Shortcomings of Newton's method:

- number of required Newton steps hardly estimated in practice
- analysis depends on used coordinate system

Theory of self-concordant functions:

- number of Newton steps easily estimated
- affine-invariant property

Smooth convex functions with 2nd derivatives Lipschitz continuous with respect to the metric induced by the Hessian: $|f'''(x)| \le 2f''(x)^{3/2}$, include many logarithmic barrier functions

For LP, QP or SDP 1st and 2nd derivatives of standard self-concordant barriers can be found easily in closed form

Barrier function for an LMI

Given an LMI constraint $F(x) \succeq 0$ we define its logarithmic barrier function

$$f(x) = \log \det F(x)^{-1}$$

This function is analytic, convex and self-concordant on $\{x : F(x) \succ 0\}$, with minimum called the analytic center of the LMI (depends on F(x))

Gradient and Hessian for an LMI

Concave function -f(x) is flat in the interior of the feasible set and sharply decreases toward the boundary

Closed-form expressions for gradient

$$(\nabla f(x))_i = -\text{trace } F(x)^{-1}F_i$$

= $-\text{trace } F(x)^{-1/2}F_iF(x)^{-1/2}$

and Hessian

$$(\nabla^2 f(x))_{ij} = \operatorname{trace} F(x)^{-1} F_i F(x)^{-1} F_j$$

= $\operatorname{trace} \left(F(x)^{-1/2} F_i F(x)^{-1/2} \right) \times \left(F(x)^{-1/2} F_j F(x)^{-1/2} \right)$

IP methods for SDP

Primal / dual SDP

$$\begin{array}{ll} \min_X & \operatorname{trace} CX \\ \text{s.t.} & \operatorname{trace} A_i X = b_i \\ & X \succeq 0 \end{array}$$

$$\begin{array}{ll} \max_y & b^T y \\ \text{s.t.} & Z = C - \sum_i y_i A_i \\ & Z \succeq 0 \end{array}$$

Primal methods

$$\min_{X} \operatorname{trace} CX - \mu \log \det X$$

s.t.
$$\operatorname{trace} A_{i}X = b_{i}$$

where parameter μ is sequentially decreased to zero and iterates X_k are always primal feasible

Dual methods

$$\max_{y,Z} b^T y + \mu \log \det Z$$

s.t. $Z = C - \sum_i y_i A_i$

where parameter μ is sequentially decreased to zero and iterates y_k, Z_k are always dual feasible

 $X_k \succeq 0$ or $Z_k \succeq 0$ ensured via Newton process:

- ullet large decreases of μ require damped Newton steps
- small updates allow full (deep) Newton steps

Primal-dual IP methods for SDP

Primal-dual methods

$$\begin{array}{ll} \min_{x,y,Z} & \operatorname{trace} XZ - \mu \log \det XZ \\ \text{s.t.} & \operatorname{trace} A_i X = b_i \\ & Z = C - \sum_i y_i A_i \end{array}$$

Minimizers satisfy KKT optimality conditions

trace
$$A_i X = b_i$$

 $\sum_i y_i A_i + Z = C$
 $XZ = \mu I$
 $X, Z \succeq 0$

Duality gap trace $CX - b^T y = \operatorname{trace} XZ \succeq 0$ minimized along the central path of solutions $X(\mu)$, $y(\mu)$, $Z(\mu)$, a smooth curve parametrized by scalar μ

For this reason, logarithmic barrier methods are also called path-following methods

Newton step for primal-dual methods

For primal-dual IP methods, primal and dual directions ΔX , Δy and ΔZ satisfy non-linear KKT optimality conditions

trace
$$A_i \Delta X = 0$$

$$\sum_i \Delta y_i A_i + \Delta Z = 0$$

$$(X + \Delta X)(Z + \Delta Z) = \mu I$$

Key point is in linearizing and symmetrizing the latter equation

Long list of primal-dual search directions, the most known of which is Nesterov-Todd's

Dynamic updates of μ result in predictor-corrector methods

Initialization

Newton's method needs an initial feasible point

Algorithms that do not require a feasible point are called infeasible-start methods

An elegant approach to bypass the issue of finding a feasible point is to embed the SDP problem in a larger problem which is its own dual (self-dual embedding) and for which a trivial feasible starting point is known

An SDP embedding that proves useful and efficient is the homogeneous embedding (de Klerk/Roos/Terlaky and Luo/Sturm/Zhang)

Drawback: iterates are primal and dual feasible only when converging

Newton step for LMI

For the SDP in LMI form

min
$$c^T x$$

s.t. $F(x) = F_0 + \sum_i x_i F_i \succeq 0$

the centering problem is

$$\min c^T x - \mu \log \det F(x)$$

and at each iteration Newton step Δx satisfies the LSE

$$H\Delta x = -g$$

where gradient g and Hessian H are given by

$$H_{ij}$$
 = trace $F(x)^{-1}F_iF(x)^{-1}F_i$
 g_i = c_i/μ + trace $F(x)^{-1}F_i$

LSE typically solved via Cholesky or QR

Complexity

For the n-by-n LMI $F(x) \succeq 0$ with m variables, the flop count of IP methods for SDP is as follows:

For each iteration:

- (a) $\mathcal{O}(n^2m)$ to form F(x)
- (b) $\mathcal{O}(n^3m)$ to form $F(x)^{-1}F_iF(x)^{-1}F_j$ (m prods)
- (c) $\mathcal{O}(n^2m^2)$ to form $F(x)^{-1}F_i$ $(m^2 \text{ prods})$
- (d) $\mathcal{O}(m^3)$ to solve Newton LSE with Cholesky

Dominating terms are (b) and (c) so the complexity for solving one Newton step is $\mathcal{O}(n^3m + n^2m^2)$ but structure can be exploited in these steps!

Number of iterations with Newton's method: $\mathcal{O}(\sqrt{n}\log\varepsilon^{-1})$ where ε is the desired accuracy

In general, it is assumed that $m = \mathcal{O}(n^2)$ otherwise redundant constraints can be removed, so the global worst-case complexity for a dense LMI is

$$\mathcal{O}(n^{6.5}\log \varepsilon^{-1})$$

Much less in practice!

Primal-dual methods

In contrast with purely primal or dual methods, in primal-dual methods..

- At each step both primal and dual variables are updated simultaneously
- Search direction obtained from Newton's method applied to modified KKT equations
- Work when problem is not strictly feasible

Generally for LP, QP or SDP primal-dual methods outperform barrier methods

IP methods in general

General characteristics of IP methods:

- Efficiency: about 5 to 50 iterations, almost independent of input data (problem), each iteration is a least-squares problem (well established linear algebra)
- Theory: worst-case analysis of IP methods yields polynomial computational time
- Structure: tailored SDP solvers can exploit problem structure

Penalty/augmented Lagrangian methods

Use similar ideas, but cannot be considered as an interior-point method

When applied to LMI problem

$$\min c^T x \text{ s.t. } F(x) = F_0 + \sum_i x_i F_i \succeq 0$$

- ullet penalty method some eigenvalues of F(x) can be negative
- ullet barrier method no eigenvalue of F(x) can be negative

Augmented Lagrangian $L(x,Z,p)=c^Tx+$ trace $Z\Phi(x,p)$ with dual variable Z and suitable penalty function, for example $\Phi(x,p)=p^2(F(x)+pI)^{-1}-pI$ with penalty parameter p

Penalty/augmented Lagrangian methods (2)

General algorithm

- 1. find x_{k+1} such that $\|\nabla_x L(x, Z_k, p_k)\| \le \epsilon_k$
- 2. update dual variables: $Z_{k+1} = f(x_{k+1}, Z_k)$
- 3. update penalty parameter: $p_{k+1} < p_k$
- 4. go to step 1 until a stopping criterion is satisfied

Can be considered as a primal-dual method, but dual variables are obtained in closed-form at step 2

Complexity roughly same as IP methods, but can be improved to $O(m^2K^2)$ where K is the number of non-zero terms

SDP solvers

Self-dual embedding:

- SeDuMi (Sturm, Terlaky)
- SDPT3 (Toh, Tütüncü, Todd)

Primal-dual path-following predictor-corrector:

- CSDP (Borchers)
- SDPA (Kojima et al)

Dual-scaling path-following:

• DSDP (Benson, Ye, Zhang) exploits structure for combinatorics

Projective method (project iterate on Dikin ellipsoid within SDP cone)

• LMILAB (Gahinet, Nemirovskii) exploits linear algebra of control LMI problems

Penalty and augmented Lagrangian:

PENSDP (Kočvara, Stingl)

Specialized SDP solvers

Parallel implementations:

- CSDP (Borchers)
- SDPA (Kojima et al)

KYP LMIs using SDP duality:

• KYPD (Hansson et al)

Verified SDP using interval arithmetic:

• VSDP (Jansson)

Nonlinear nonconvex SDP solvers

Low-rank LMIs solved as nonconvex QPs:

• SDPLR (Burer, Monteiro)

Low-rank LMIs solved by alternating projections:

• LMIRANK (Orsi et al)

BMIs via penalty and augmented Lagrangian:

• PENBMI (Kočvara, Stingl)

Matlab dependence

The following solvers are Matlab-dependent:

- SeDuMi (Sturm, Terlaky)
- SDPT3 (Toh, Tütüncü, Todd)
- LMILAB (Gahinet, Nemirovskii)
- VSDP (Jansson)
- LMIRANK (Orsi et al)

Most of the other solvers are available under Matlab, but not Matlab-dependent

Matrices as variables

Generally, in control problems we do not encounter the LMI in canonical or semidefinite form but rather with matrix variables

Lyapunov's inequality

$$A^T P + PA < 0$$
 $P = P^T > 0$

can be written in canonical form

$$F(\mathbf{x}) = F_0 + \sum_{i=1}^m F_i \mathbf{x}_i \succ 0$$

with the notations

$$F_0 = 0$$
 $F_i = -A^T B_i - B_i A$

where B_i , $i=1,\ldots,n(n+1)/2$ are matrix bases for symmetric matrices of size n

Most software packages for solving LMIs however work with canonical or semidefinite forms, so that a (sometimes time-consuming) pre-processing step is required

Interfaces

Matlab Robust Control Toolbox

• LMILAB (Gahinet, Nemirovski) originally developed for INRIA's Scilab

Matlab LMI interfaces to SDP solvers

- LMITOOL (Nikoukah, Delebecque, El Ghaoui)
- SeDuMi Interface (Peaucelle)

Matlab convex optimization and modeling

- YALMIP (Löfberg)
- cvx (Grant, Boyd)

Matlab moments and polynomial SOS

- Gloptipoly (Lasserre et al)
- SOSTOOLS (Parrilo et al)
- SparsePOP (Kojima et al)

Python interface

cvxopt (Vandenberghe et al)

Scilab and NSP

- LMITOOL (Nikoukah, Delebecque, El Ghaoui)
- GloptiPoly (Lasserre et al)
- YALMIP (Löfberg)