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BMI - Bilinear Matrix Inequality

F (x) = F0 +
∑
i xiFi +

∑
i
∑
j xixjFij � 0

Symmetric matrices Fi, Fij given

Decision variables xi

Actually QMI with quadratic terms x2
i

Contrary to LMIs, BMIs may have non-convex feasible sets



Convex LMI Nonconvex BMI
x2 ≤ y x2 ≥ y

Convex LMI Nonconvex BMI
xy ≥ 1 xy ≤ 1



PMI - Polynomial Matrix Inequality

F (x) =
∑
α x

αFα � 0

More general than BMI ?

By appropriate changes of variables

any PMI can be written as a BMI

Example

F (x) = F0 + F1x1 + F12x1x
2
2 + F03x

3
2

can be written as the BMI

F (x) = F0 + F1x1 + F12x1x3 + F03x2x3

with lifting variable x3 constrained by x3 = x2
2



Example of a nonconvex 2D BMI

F (x) =

[
10 0.5 2
0.5 −4.5 0
2 0 0

]
+

[ −9 −0.5 0
−0.5 0 3

0 3 1

]
x1+[

1.8 0.1 0.4
0.1 −1.2 1
0.4 1 0

]
x2 +

[
0 0 −2
0 5.5 −3
−2 −3 0

]
x1x2 � 0



Example of a convex 2D BMI
Coming from a static output feedback problem[

x2(−13− 5x1 + x2) x2 0
x2 x1 0
0 0 x1(−13− 5x1 + x2)− x2

]
� 0



Converting BMI into LMI

Can we detect or exploit convexity ?

Sometimes a BMI problem can be reformulated
as an LMI problem

For example the static output feedback BMI can be reformulated
as the LMI [

−1 + x1 1
1 −1− 5

18x1 + 1
18x2

]
� 0

Can we systematically detect whether such a reformulation is
possible ?

Can we design a systematic reformulation algorithm ?



History of BMIs

Interest in BMIs originated in systems control
Mid 1990s, Safonov’s team

Typical BMI: static output feedback

(A+BKC)TP + P (A+BKC) ≺ 0, P � 0

More intricate BMI arise for reduced order controller design, H2,
H∞ performance..

Main criticisms:
• too general
• no good algorithm
..in sharp contrast with LMIs..



BMI as a rank-one LMI

Defining liftings xij = xixj the BMI

F0 +
∑
i

xiFi +
∑
i

∑
j

xixjFij � 0

can be written as an LMI

F0 +
∑
i xiFi +

∑
i
∑
j xijFij � 0

X =


1 x1 x2
x1 x11 x12
x2 x12 x22

. . .

 � 0

with an additional rank constraint

rankX = 1

All the non-convexity is concentrated in this rank constraint



Handling nonconvexity

We have seen that additional variables, or liftings can prove useful
in describing convex sets with LMIs

c

c2

1

convex set nonconvex set

But LMI are also frequently used to cope with non-convex sets

This chapter is dedicated to the joint use of
• convex LMI relaxations, and
• additional variables = liftings



Combinatorial optimization

MAXCUT: typical combinatorial optimization problem

min xTQx
s.t. xi ∈ {−1, 1}

Antiweb AW 2
9 graph

Basic non-convex constraints

x2
i = 1

Exponential number of points = difficult problem



LMI relaxation

Basic idea..

For each i replace non-convex constraint

x2
i = 1

with relaxed convex constraint

x2
i ≤ 1

which is an LMI constraint[
1 xi
xi 1

]
� 0

What about cross terms xixj ?



Dealing with cross terms

Replace all non-convex constraints x2
i = 1 for i = 1,2, . . . , n with

relaxed LMI constraint

X =


1 x1 x2 · · · xn
x1 1 x12 x1n
x2 x12 1 x2n
... . . . ...
xn x1n x2n · · · 1

 � 0

where xij are additional variables = liftings

Always less conservative than previous relaxation because X � 0
implies for all i [

1 xi
xi 1

]
� 0



Rank constrained LMI

In the original problem

g? = min xTQx

s.t. x2
i = 1

let X = xxT and then xTQx = trace QxxT = trace QX and

x2
i = Xii = 1 so that the problem can be written as a

rank constrained LMI

g? = min traceQX
s.t. Xii = 1

X � 0
rankX = 1



Example of rank constrained LMI

X =

[
y x
x 1

]

Convex set X � 0

(x2 ≤ y)

Non-convex set X � 0,

rankX = 1 (x2 = y)



Relaxing the rank constraint

All the nonconvexity is concentrated into the rank constraint,
so we just drop it !

The obtained LMI relaxation is called Shor’s relaxation

p? = min traceQX
s.t. Xii = 1

X � 0

Naum Zuselevich Shor (Inst Cybernetics, Kiev) in the 1980s was
among the first to recognize the relevance of this approach

Since the feasible set is relaxed = enlarged, we get a lower bound
for the original non-convex optimization problem: p? ≤ g?



Shor’s relaxation

Systematic approach: can be applied to general
polynomial optimization problems

Example:

x2
1x2 = x1

{
x2

1 = x3

x3x2 = x1


X11 = X30

X32 = X10

X � 0
rankX = 1

 X11 = X30

X32 = X10

X � 0

Algorithm:
• introduce lifting variables to reduce polynomials
to quadratic and linear terms
• build the rank-one LMI problem
• solve the LMI problem by relaxing the non-convex
rank constraint



Relaxed LMI via duality

Consider again the original problem

min xTQx

s.t. x2
i = 1

and build Lagrangian L(x, y) = xTQx −
∑
i yi(x

2
i − 1) = xT (Q −

Y )x+ trace Y where Y is a diagonal matrix and Q− Y � 0 must
be enforced to ensure that Lagrangian is bounded below

Associated dual problem reads

max trace Y
s.t. Q− Y � 0

Y diagonal

This is an LMI problem !



Relaxed LMI via duality

The dual LMI problem

max trace Y
s.t. Q � Y

Y diagonal

has for dual the primal LMI problem

min traceQX
s.t. Xii = 1

X � 0

which is Shor’s original LMI relaxation !

More generally it can be shown that LMI rank dropping and
Lagrangian relaxation are equivalent



Example of LMI relaxation

Original nonconvex 0-1 quadratic problem

g? = min 2x1x2 + 4x1x3 + 6x2x3

s.t. x2
i = 1

Q =

 0 1 2
1 0 3
2 3 0


Primal and dual LMI solutions

X =

 1 1 −1
1 1 −1
−1 −1 1

 Y =

 −1 0 0
0 −2 0
0 0 −5


yield lower bound p? = traceQX = d? = trace Y = −8
(strong duality holds here)

Since rankX = 1 we recover here the optimum x = [1 1 − 1]T

such that X = xxT and hence g? = p? = d?

the relaxation is exact !



Example of LMI relaxation

LMI relaxation of ±1 constraints

X =

 1 X12 X13
X12 1 X23
X13 X23 1

 � 0}

So we optimize the linear objective function
traceQX = 2X12 + 4X13 + 6X23
and the optimum is a vertex [1 − 1 − 1]



How good are LMI relaxations ?

We have seen that we can obtain lower bounds for non-convex
polynomial minimization with the help of liftings and relaxations

But can we measure the gap between the global optimum
and the relaxed optimum ?

In other words, how much conservative are LMI relaxations ?

Answers only in a (too) few specific cases..



MAXCUT

Given a graph with arcs (i, j) with weights aij ≥ 0,

find a partition maximizing total weight of linking arcs

Non-convex quadratic problem

g? = max 1
4
∑
i,j aij(1− xixj)

s.t. x2
i = 1

with convex LMI relaxation

d? = max 1
4
∑
i,j aij(1−Xij)

s.t. Xii = 1, X = XT � 0

With a geometric proof, Goemans and Williamson showed (1994)

that independently of the data (graph) 1 ≥
g?

d?
≥ 0.8786



LMI relaxations for quadratic problems

Non-convex quadratic problem

g? = max xTAx

s.t. x2
i = 1

with convex LMI relaxation

d? = max traceAX
s.t. Xii = 1

X = XT � 0

For A � 0 Nesterov showed that

1 ≥
g?

d?
≥

2

π
= 0.6366



Beyond Shor’s relaxation

Recent work (2000) to narrow relaxation gap
• gradually adding lifting variables
• hierarchy of nested LMI relaxations
• theoretical proof of convergence
• tradeoff between conservatism and computational effort

Dual point of views:
• theory of moments (Lasserre)
• sum-of-squares decompositions (Parrilo)



Higher order LMI relaxations
Illustration

Non-convex quadratic problem

min g0(x) = −2x2
1 − 2x2

2 + 2x1x2 + 2x1 + 6x2 − 10
s.t. g1(x) = −x2

1 + 2x1 ≥ 0
g2(x) = −x2

1 − x2
2 + 2x1x2 + 1 ≥ 0

g3(x) = −x2
2 + 6x2 − 8 ≥ 0.

LMI relaxation built by replacing each monomial xi1x
j
2

with lifting variable yij

For example, quadratic expression g2(x) = −x2
1− x

2
2 + 2x1x2 + 1

is replaced with linear expression −y20 − y02 + 2y11 + 1

Lifting variables yij satisfy non-convex relations such as
y10y01 = y11 or y20 = y2

10



LMI relaxations: illustration (2)

Relax these non-convex relations by enforcing LMI constraint

M1(y) =

 1 y10 y01
y10 y20 y11
y01 y11 y02

 � 0

Moment matrix of first order relaxing quadratic monomials
You have recognized Shor’s relaxation !

First LMI (=Shor’s) relaxation of original global optimization
problem is given by

min −2y20 − 2y02 + 2y11 + 2y10 + 6y01 − 10
s.t. −y20 + 2y10 ≥ 0

−y20 − y02 + 2y11 + 1 ≥ 0
−y02 + 6y01 − 8 ≥ 0
M1(y) � 0



LMI relaxations: illustration (3)

To build second LMI relaxation, we must

increase size of moment matrix so that it

captures expressions of degrees up to 4

Second order moment matrix reads

M2(y) =



1 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04


� 0



LMI relaxations: illustration (4)

Constraints are localized on moment matrices, meaning that
original constraint g1(x) = −x2

1 + 2x1 ≥ 0 becomes
localizing matrix constraint

M1(g1y) =

 −y20 + 2y10 −y30 + 2y20 −y21 + 2y11
−y30 + 2y20 −y40 + 2y30 −y31 + 2y21
−y21 + 2y11 −y31 + 2y21 −y22 + 2y12

 � 0

Second LMI feasible set included in first LMI feasible set, thus
providing a tighter relaxation

min −2y20 − 2y02 + 2y11 + 2y10 + 6y01 − 10
s.t. M1(g1y) � 0, M1(g2y) � 0, M1(g3y) � 0

M2(y) � 0

Similary, we can build up 3rd, 4th, 5th LMI relaxations..



Geometric illustration

Non-convex quadratic problem with linear objective function

max x2
s.t. 3− 2x2 − x1

2 − x
2
2 ≥ 0

−x1 − x2 − x1x2 ≥ 0
1 + x1x2 ≥ 0

Non-convex feasible set delimited by circular and hyperbolic arcs



Geometric illustration (2)

First LMI relaxation given by

max y01

s.t.

 1 y10 y01

y10 y20 y11

y01 y11 y02

 � 0

3− 2y01 − y20 − y02 ≥ 0
−y10 − y01 − y11 ≥ 0
1 + y11 ≥ 0

Projection of the LMI feasible set onto the plane y10, y01

of first-order moments

LMI optimum = 2 = upper-bound on global optimum



Geometric illustration (3)

To build second LMI relaxation, the moment matrix must capture

expressions of degrees up to 4

M2
2 (y) =



1 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04


Constraints are also lifted and relaxed with the help of

localization matrices



Geometric illustration (4)
Second LMI provides tighter relaxation

max y01

s.t.


1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 � 0

 3− 2y01 − y20 − y02 3y10 − 2y11 − y30 − y12 3y01 − 2y02 − y21 − y03

3y10 − 2y11 − y30 − y12 3y20 − 2y21 − y40 − y22 3y11 − 2y12 − y31 − y13

3y01 − 2y02 − y21 − y03 3y11 − 2y12 − y31 − y13 3y02 − 2y03 − y22 − y04

 � 0

 −y10 − y01 − y11 −y20 − y11 − y21 −y11 − y02 − y12

−y20 − y11 − y21 −y30 − y21 − y31 −y21 − y12 − y22

−y11 − y02 − y12 −y21 − y12 − y22 −y12 − y03 − y13

 � 0

 1 + y11 y10 + y21 y01 + y12

y10 + y21 y20 + y31 y11 + y22

y01 + y12 y11 + y22 y02 + y13

 � 0



Geometric illustration (5)

Optimal value of 2nd LMI relaxation = 1.6180 = global optimum

Numerical certificate = moment matrix has rank one

First order moments

(y∗10, y
∗
01) = (−0.6180,1.6180)

provide optimal solution

of original problem



Polynomial multipliers

Polynomial optimization problem

g? = min g0(x)
s.t. gi(x) ≥ 0, i = 1, . . . ,m

where gi(x) are real-valued multivariate polynomials in vector

indeterminate x ∈ Rn

Non-convex problem in general (includes 0-1 or quadratic prob-

lems) = difficult problem

If g? is the global optimum, polynomial g0(x)−g? is non-negative

whenever gi(x) ≥ 0

In particular we want to maximize such a lower bound g?



Polynomial multipliers

The positivity condition is satisfied if we can find polynomials

qi(x) such that

g0(x)− g? = q0(x) +
∑m
i=1 gi(x)qi(x)

Recall Lagrangian when building dual..

Multipliers qi(x) are now polynomials !

How can we enforce their positivity ?



SOS polynomials

How can we ensure that a polynomial is globally non-negative ?

p(x) ≥ 0, ∀x ∈ Rn

David Hilbert
(1862 Königsberg - 1943 Göttingen)

Hilbert’s 17th pb about algebraic sum-of-squares decompositions
of rational functions (ICM, Paris, 1900)



SOS polynomials

A form is a homogeneous polynomial, i.e. all monomials have
same degree

An obvious condition for a polynomial (form) p(x) to be non-
negative is that is a sum-of-squares (SOS) of other polynomials
(forms)

p(x) =
∑
i q

2
i (x)

However, not every non-negative polynomial or form is SOS

p(x) SOS =⇒ p(x) ≥ 0

Sufficient non-negativity condition only..



Motzkin’s polynomial

Counterexample:

p(x) = 1 + x2
1x

2
2(x2

1 + x2
2 − 3)

cannot be written as an SOS but it is globally non-negative

(vanishes at |x1| = |x2| = 1)



SOS polynomials
Let n denote the number of variables and d the degree

Non-negativity and SOS are sometimes equivalent:

n = 2 bivariate forms
univariate polynomials (dehomogen)

d = 2 quadratic forms
n = 3, d = 4 quartic forms of 3 variables

In all other cases, the set of SOS polynomials (a cone) is a subset of the set
of non-negative polynomials

We do not know polynomial-time algorithms to check whether a polynomial
is non-negative when d ≥ 4

Note however that the set of SOS polynomials is dense in the set
of polynomials nonnegative over the n-dimensional box [−1, 1]n

Most importantly

The cone of SOS polynomials
is lifted-LMI representable

as we will see in the sequel..



LMI formulation of SOS polynomials

Polynomial

p(x) =
∑
α
pαx

α

of degree |α| ≤ 2d (α = vector of powers) is SOS iff

p(x) = zTXz X � 0

where z is a vector with all monomials with degree ≤ d

Cholesky factorization X = QTQ such that

p(x) = zTQTQz = ‖Qz‖22 =
∑
i(Qz)2

i
=

∑
i q

2
i (x)

Number of squares q2
i (x) = rankX



LMI formulation of SOS polynomials

Comparing monomial coefficients in expression

p(x) = zTXz =
∑
α
pαx

α ≥ 0

we get an LMI

traceHαX = pα ∀α
X � 0

where Hα are Hankel-like matrices



SOS example

Consider the homogeneous form

p(x) = 2x4
1 + 5x4

2 + 2x3
1x2 − x2

1x
2
2

= zTXz

With monomial vector z = [x2
1 x

2
2 x1x2]T a general bivariate form

of degree 4 reads

zTXz = X11x
4
1+X22x

4
2+2X31x

3
1x2+2X32x1x

3
2+(X33+2X21)x2

1x
2
2

p(x) SOS iff there exists X � 0 such that

X11 = 2 X22 = 5
2X31 = 2 2X32 = 0
X33 + 2X21 = −1



SOS example
One particular solution is

X =

 2 −3 1
−3 5 0
1 0 5

 = QTQ, Q =
1√
2

[
2 −3 1
0 1 3

]
So p(x) is the sum of rankX = 2 squares

p(x) = 1
2
(2x2

1 − 3x2
2 + x1x2)2

+1
2
(x2

2 + 3x1x2)2



Finding polynomial multipliers

Returning to our global optimization problem

g? = min g0(x)
s.t. gi(x) ≥ 0, i = 1, . . . ,m

the problem of finding SOS polynomials qi(x) such that

p(x) = g0(x)− g? = q0(x) +
m∑
i=1

gi(x)qi(x)

can be formulated as an LMI as soon as the degrees of the qi(x)
are fixed

Depending on parity let deg p(x) = 2k − 1 or 2k; then the LMI
problem of finding an SOS p(x) is referred to as
the LMI relaxation of order k



Hierarchy of LMI relaxations

The LMI relaxation of order k reads

d?k = min
∑
α(g0)αyα

s.t. Mk(y) =
∑
αAαyα � 0

Mk−di(giy) =
∑
αA

gi
αyα � 0 ∀i

with y0 = 1 (normalization), di is half the degree of gi(x), Mk(y)
is the moment matrix, Mk−di(giy) are the localizing matrices

The dual LMI

p?k = max traceA0X +
∑
i traceAgi0Xi

s.t. traceAαX +
∑
i traceAgiαXi = (g0)α ∀α 6= 0

corresponds to the condition p(x) SOS



Hierarchy of LMI relaxations

If feasible set gi(x) ≥ 0 is compact, and under mild additional

assumptions, Lasserre could use results by Putinar (on SOS rep-

resentations of positive polynomials) and Curto/Fialkow (on flat

extension of moment matrices) to prove in 2000 that

p?k = d?k ≤ g
?

with asymptotic convergence guarantee

limk→∞ p
?
k = g?

Moreover, in practice, convergence is fast:

p?k is very close to g? for small k



Camelback function

For the six-hump camelback function

with two global optima and six local optima, the global optimum is reached
at the first LMI relaxation (k = 1) without any problem splitting



LMI hierarchy: example

Quadratic problem

min −2x1 + x2 − x3
s.t. x1(4x1 − 4x2 + 4x3 − 20) + x2(2x2 − 2x3 + 9)

+x3(2x3 − 13) + 24 ≥ 0
x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6
0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3.

Computational burden increases quickly with relaxation order

order 1 2 3 4 5 6
bound -6.0000 -5.6923 -4.0685 -4.0000 -4.0000 -4.0000
size(y) 9 34 83 164 285 454

..yet fourth LMI relaxation solves globally the problem



Complexity

d: overall polynomial degree (2δ = d or d+ 1)
m: number of polynomial constraints
n: number of polynomial variables
M : number of primal variables (moments)
N : number of dual variables (LMI size)

M =

(
n+ 2δ

2δ

)
− 1

N =

(
n+ δ
δ

)
+m

(
n+ δ − 1
δ − 1

)

When n is fixed:
• M grows polynomially in O(δn)
• N grows polynomially in O(mδn)



Solving BMIs with LMI relaxations

Two approaches: scalarization or PMI relaxations

Scalarization:
• scalarize using characteristic polynomial
• polynomials with generally large degree

PMI relaxations:
• keep the matrix structure
• no degree growth
• theory for matrix polynomial SOS

Theory is ready, but experimentally at a very preliminary level

Numerical aspects (conditioning, solution extraction)
must be studied further



LMI modelling of convex hulls

Using the same technique, and the equivalence between nonneg-

ative and SOS polynomials in specific cases, we can build lifted-

LMI representations for convex hulls of rationally parametrized

curves and surfaces

{x ∈ Rn : xi =
pi(t)

p0(t)
}

with given polynomials p0(t), p1(t), . . . , pn(t)

• t ∈ R, any degree

• t ∈ R2, quartics pi(t)

• quadratics pi(t)

Ambient space dimension n is arbitrary



Trefoil knot curve

Convex hull lifted-LMI with 3 liftings



Steiner’s Roman surface

Convex hull lifted-LMI with 2 liftings



Cayley’s cubic surface

Projectively dual to Steiner’s Roman surface

Lifted-LMI representable as an 6-by-6 LMI with 11 liftings..
yet we have another explicit 3-by-3 LMI with no lifting !



LMI relaxations: conclusion

LMI relaxations prove useful to solve general
non-convex polynomial optimization problems

Shor’s relaxation = rank dropping = Lagrangian relaxation =
first order LMI relaxation

Sometimes one can measure the gap between
the original problem and its relaxation

A hierarchy of successive LMI relaxations can be built
with additional lifting variables and constraints

Theoretical guarantee of asymptotic convergence to
global optimum without any problem splitting
(no branch and bound scheme)


