I.5. NONCONVEX LMI MODELLING

Didier HENRION
henrion@laas.fr

Belgian Graduate School on
Systems, Control, Optimization and Networks
Leuven - April and May 2010

BMI - Bilinear Matrix Inequality

$$
F(x)=F_{0}+\sum_{i} x_{i} F_{i}+\sum_{i} \sum_{j} x_{i} x_{j} F_{i j} \succeq 0
$$

Symmetric matrices $F_{i}, F_{i j}$ given
Decision variables x_{i}

Actually QMI with quadratic terms x_{i}^{2}

Contrary to LMIs, BMIs may have non-convex feasible sets

Convex LMI

$$
x^{2} \leq y
$$

Convex LMI
$x y \geq 1$

Nonconvex BMI

$$
x^{2} \geq y
$$

Nonconvex BMI

$$
x y \leq 1
$$

PMI - Polynomial Matrix Inequality

$$
F(x)=\sum_{\alpha} x^{\alpha} F_{\alpha} \succeq 0
$$

More general than BMI ?

By appropriate changes of variables any PMI can be written as a BMI

Example

$F(x)=F_{0}+F_{1} x_{1}+F_{12} x_{1} x_{2}^{2}+F_{03} x_{2}^{3}$
can be written as the BMI

$$
F(x)=F_{0}+F_{1} x_{1}+F_{12} x_{1} x_{3}+F_{03} x_{2} x_{3}
$$

with lifting variable x_{3} constrained by $x_{3}=x_{2}^{2}$

$$
\begin{aligned}
& \text { Example of a nonconvex 2D BMI } \\
& F(x)= {\left[\begin{array}{ccc}
10 & 0.5 & 2 \\
0.5 & -4.5 & 0 \\
2 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
-9 & -0.5 & 0 \\
-0.5 & 0 & 3 \\
0 & 3 & 1
\end{array}\right] x_{1}+} \\
& {\left[\begin{array}{ccc}
1.8 & 0.1 & 0.4 \\
0.1 & -1.2 & 1 \\
0.4 & 1 & 0
\end{array}\right] x_{2}+\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 5.5 & -3 \\
-2 & -3 & 0
\end{array}\right] x_{1} x_{2} \succeq 0 }
\end{aligned}
$$

Example of a convex 2D BMI

Coming from a static output feedback problem

$$
\left[\begin{array}{ccc}
x_{2}\left(-13-5 x_{1}+x_{2}\right) & x_{2} & 0 \\
x_{2} & x_{1} & 0 \\
0 & 0 & x_{1}\left(-13-5 x_{1}+x_{2}\right)-x_{2}
\end{array}\right] \succ 0
$$

Converting BMI into LMI

Can we detect or exploit convexity ?
Sometimes a BMI problem can be reformulated as an LMI problem

For example the static output feedback BMI can be reformulated as the LMI

$$
\left[\begin{array}{cc}
-1+x_{1} & 1 \\
1 & -1-\frac{5}{18} x_{1}+\frac{1}{18} x_{2}
\end{array}\right] \succ 0
$$

Can we systematically detect whether such a reformulation is possible ?

Can we design a systematic reformulation algorithm ?

History of BMIs

Interest in BMIs originated in systems control Mid 1990s, Safonov's team

Typical BMI: static output feedback

$$
(A+B K C)^{T} P+P(A+B K C) \prec 0, \quad P \succ 0
$$

More intricate BMI arise for reduced order controller design, H_{2}, H_{∞} performance..

Main criticisms:

- too general
- no good algorithm
..in sharp contrast with LMIs..

BMI as a rank-one LMI

Defining liftings $x_{i j}=x_{i} x_{j}$ the BMI

$$
F_{0}+\sum_{i} x_{i} F_{i}+\sum_{i} \sum_{j} x_{i} x_{j} F_{i j} \succeq 0
$$

can be written as an LMI

$$
\begin{aligned}
& F_{0}+\sum_{i} x_{i} F_{i}+\sum_{i} \sum_{j} x_{i j} F_{i j} \succeq 0 \\
& X=\left[\begin{array}{cccc}
1 & x_{1} & x_{2} & \\
x_{1} & x_{11} & x_{12} & \\
x_{2} & x_{12} & x_{22} & \\
& & & . .
\end{array}\right] \succeq 0
\end{aligned}
$$

with an additional rank constraint

$$
\operatorname{rank} X=1
$$

All the non-convexity is concentrated in this rank constraint

Handling nonconvexity

We have seen that additional variables, or liftings can prove useful in describing convex sets with LMIs

But LMI are also frequently used to cope with non-convex sets

This chapter is dedicated to the joint use of

- convex LMI relaxations, and
- additional variables $=$ liftings

Combinatorial optimization

MAXCUT: typical combinatorial optimization problem

$$
\begin{array}{ll}
\min & x^{T} Q x \\
\text { s.t. } & x_{i} \in\{-1,1\}
\end{array}
$$

Antiweb $A W_{9}^{2}$ graph
Basic non-convex constraints

$$
x_{i}^{2}=1
$$

Exponential number of points $=$ difficult problem

LMI relaxation

Basic idea..

For each i replace non-convex constraint

$$
x_{i}^{2}=1
$$

with relaxed convex constraint

$$
x_{i}^{2} \leq 1
$$

which is an LMI constraint

$$
\left[\begin{array}{cc}
1 & x_{i} \\
x_{i} & 1
\end{array}\right] \succeq 0
$$

What about cross terms $x_{i} x_{j}$?

Dealing with cross terms

Replace all non-convex constraints $x_{i}^{2}=1$ for $i=1,2, \ldots, n$ with relaxed LMI constraint

$$
X=\left[\begin{array}{ccccc}
1 & x_{1} & x_{2} & \cdots & x_{n} \\
x_{1} & 1 & x_{12} & & x_{1 n} \\
x_{2} & x_{12} & 1 & & x_{2 n} \\
\vdots & & & \ddots & \vdots \\
x_{n} & x_{1 n} & x_{2 n} & \cdots & 1
\end{array}\right] \succeq 0
$$

where $x_{i j}$ are additional variables $=$ liftings
Always less conservative than previous relaxation because $X \succeq 0$ implies for all i

$$
\left[\begin{array}{cc}
1 & x_{i} \\
x_{i} & 1
\end{array}\right] \succeq 0
$$

Rank constrained LMI

In the original problem

$$
g^{\star}=\min \quad x^{T} Q x=1 \text { s.t. } \quad x_{i}^{2}=1
$$

let $X=x x^{T}$ and then $x^{T} Q x=\operatorname{trace} Q x x^{T}=$ trace $Q X$ and $x_{i}^{2}=X_{i i}=1$ so that the problem can be written as a rank constrained LMI

$$
\begin{array}{ll}
g^{\star}=\min & \text { trace } Q X \\
\text { s.t. } & X_{i i}=1 \\
& X \succeq 0 \\
& \\
& \operatorname{rank} X=1
\end{array}
$$

Example of rank constrained LMI

$$
X=\left[\begin{array}{ll}
y & x \\
x & 1
\end{array}\right]
$$

Convex set $X \succeq 0$ ($x^{2} \leq y$)

Non-convex set $X \succeq 0$, rank $X=1\left(x^{2}=y\right)$

Relaxing the rank constraint

All the nonconvexity is concentrated into the rank constraint, so we just drop it !

The obtained LMI relaxation is called Shor's relaxation

$$
\begin{array}{cl}
p^{\star}=\min & \text { trace } Q X \\
\text { s.t. } & X_{i i}=1 \\
& X \succeq 0
\end{array}
$$

Naum Zuselevich Shor (Inst Cybernetics, Kiev) in the 1980s was among the first to recognize the relevance of this approach

Since the feasible set is relaxed = enlarged, we get a lower bound for the original non-convex optimization problem: $p^{\star} \leq g^{\star}$

Shor's relaxation

Systematic approach: can be applied to general polynomial optimization problems

Example:

$$
x_{1}^{2} x_{2}=x_{1}\left\{\begin{array} { c }
{ x _ { 1 } ^ { 2 } = x _ { 3 } } \\
{ x _ { 3 } x _ { 2 } = x _ { 1 } }
\end{array} \left\{\begin{array} { c }
{ X _ { 1 1 } = X _ { 3 0 } } \\
{ X _ { 3 2 } = X _ { 1 0 } } \\
{ X \succeq 0 } \\
{ \text { rank } X = 1 }
\end{array} \left\{\begin{array}{c}
X_{11}=X_{30} \\
X_{32}=X_{10} \\
X \succeq 0
\end{array}\right.\right.\right.
$$

Algorithm:

- introduce lifting variables to reduce polynomials to quadratic and linear terms
- build the rank-one LMI problem
- solve the LMI problem by relaxing the non-convex rank constraint

Relaxed LMI via duality

Consider again the original problem

$$
\begin{array}{ll}
\min & x^{T} Q x \\
\text { s.t. } & x_{i}^{2}=1
\end{array}
$$

and build Lagrangian $L(x, y)=x^{T} Q x-\sum_{i} y_{i}\left(x_{i}^{2}-1\right)=x^{T}(Q-$ $Y) x+$ trace Y where Y is a diagonal matrix and $Q-Y \succeq 0$ must be enforced to ensure that Lagrangian is bounded below

Associated dual problem reads

```
max trace Y
s.t. }\quadQ-Y\succeq
    Y diagonal
```

This is an LMI problem!

Relaxed LMI via duality

The dual LMI problem

$$
\begin{array}{ll}
\text { max } & \text { trace } Y \\
\text { s.t. } & Q \succeq Y \\
& Y \text { diagonal }
\end{array}
$$

has for dual the primal LMI problem

$$
\begin{array}{ll}
\text { min } & \text { trace } Q X \\
\text { s.t. } & X_{i i}=1 \\
& X \succeq 0
\end{array}
$$

which is Shor's original LMI relaxation !

More generally it can be shown that LMI rank dropping and Lagrangian relaxation are equivalent

Example of LMI relaxation

Original nonconvex 0-1 quadratic problem

$$
g^{\star}=\min _{\text {s.t. }} \begin{aligned}
& 2 x_{1} x_{2}+4 x_{1} x_{3}+6 x_{2} x_{3} \\
& x_{i}^{2}=1
\end{aligned} \quad Q=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 3 \\
2 & 3 & 0
\end{array}\right]
$$

Primal and dual LMI solutions

$$
X=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right] \quad Y=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -5
\end{array}\right]
$$

yield lower bound $p^{\star}=$ trace $Q X=d^{\star}=\operatorname{trace} Y=-8$ (strong duality holds here)

Since rank $X=1$ we recover here the optimum $x=\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]^{T}$ such that $X=x x^{T}$ and hence $g^{\star}=p^{\star}=d^{\star}$ the relaxation is exact !

Example of LMI relaxation

LMI relaxation of ± 1 constraints

$$
\left.X=\left[\begin{array}{ccc}
1 & X_{12} & X_{13} \\
X_{12} & 1 & X_{23} \\
X_{13} & X_{23} & 1
\end{array}\right] \succeq 0\right\}
$$

So we optimize the linear objective function trace $Q X=2 X_{12}+4 X_{13}+6 X_{23}$ and the optimum is a vertex $\left[\begin{array}{lll}1 & -1 & -1\end{array}\right]$

How good are LMI relaxations ?

We have seen that we can obtain lower bounds for non-convex polynomial minimization with the help of liftings and relaxations

But can we measure the gap between the global optimum and the relaxed optimum ?

In other words, how much conservative are LMI relaxations ?
Answers only in a (too) few specific cases..

MAXCUT

Given a graph with $\operatorname{arcs}(i, j)$ with weights $a_{i j} \geq 0$, find a partition maximizing total weight of linking arcs

Non-convex quadratic problem

$$
\begin{gathered}
g^{\star}=\max \frac{1}{4} \sum_{i, j} a_{i j}\left(1-x_{i} x_{j}\right) \\
\text { s.t. } x_{i}^{2}=1
\end{gathered}
$$

with convex LMI relaxation

$$
\begin{aligned}
d^{\star}=\max & \frac{1}{4} \sum_{i, j} a_{i j}\left(1-X_{i j}\right) \\
& \text { s.t. } X_{i i}=1, \quad X=X^{T} \succeq 0
\end{aligned}
$$

With a geometric proof, Goemans and Williamson showed (1994) that independently of the data (graph) $1 \geq \frac{g^{\star}}{d^{\star}} \geq 0.8786$

LMI relaxations for quadratic problems

Non-convex quadratic problem

$$
\begin{aligned}
g^{\star}= & \max \\
& x^{T} A x \\
\text { s.t. } & x_{i}^{2}=1
\end{aligned}
$$

with convex LMI relaxation

$$
\begin{aligned}
d^{\star}=\max & \operatorname{trace} A X \\
\text { s.t. } & X_{i i}=1 \\
& X=X^{T} \succeq 0
\end{aligned}
$$

For $A \succeq 0$ Nesterov showed that

$$
1 \geq \frac{g^{\star}}{d^{\star}} \geq \frac{2}{\pi}=0.6366
$$

Beyond Shor's relaxation

Recent work (2000) to narrow relaxation gap

- gradually adding lifting variables
- hierarchy of nested LMI relaxations
- theoretical proof of convergence
- tradeoff between conservatism and computational effort

Dual point of views:

- theory of moments (Lasserre)
- sum-of-squares decompositions (Parrilo)

Higher order LMI relaxations

Illustration

Non-convex quadratic problem

$$
\begin{array}{ll}
\min & g_{0}(x)=-2 x_{1}^{2}-2 x_{2}^{2}+2 x_{1} x_{2}+2 x_{1}+6 x_{2}-10 \\
\mathrm{s.t.} & g_{1}(x)=-x_{1}^{2}+2 x_{1} \geq 0 \\
& g_{2}(x)=-x_{1}^{2}-x_{2}^{2}+2 x_{1} x_{2}+1 \geq 0 \\
& g_{3}(x)=-x_{2}^{2}+6 x_{2}-8 \geq 0 .
\end{array}
$$

LMI relaxation built by replacing each monomial $x_{1}^{i} x_{2}^{j}$ with lifting variable $y_{i j}$

For example, quadratic expression $g_{2}(x)=-x_{1}^{2}-x_{2}^{2}+2 x_{1} x_{2}+1$ is replaced with linear expression $-y_{20}-y_{02}+2 y_{11}+1$

Lifting variables $y_{i j}$ satisfy non-convex relations such as $y_{10} y_{01}=y_{11}$ or $y_{20}=y_{10}^{2}$

LMI relaxations: illustration (2)

Relax these non-convex relations by enforcing LMI constraint

$$
M_{1}(y)=\left[\begin{array}{c|cc}
1 & y_{10} & y_{01} \\
\hline y_{10} & y_{20} & y_{11} \\
y_{01} & y_{11} & y_{02}
\end{array}\right] \succeq 0
$$

Moment matrix of first order relaxing quadratic monomials You have recognized Shor's relaxation !

First LMI (=Shor's) relaxation of original global optimization problem is given by

$$
\begin{array}{ll}
\min & -2 y_{20}-2 y_{02}+2 y_{11}+2 y_{10}+6 y_{01}-10 \\
\mathrm{s.t.} & -y_{20}+2 y_{10} \geq 0 \\
& -y_{20}-y_{02}+2 y_{11}+1 \geq 0 \\
& -y_{02}+6 y_{01}-8 \geq 0 \\
& M_{1}(y) \succeq 0
\end{array}
$$

LMI relaxations: illustration (3)

To build second LMI relaxation, we must increase size of moment matrix so that it captures expressions of degrees up to 4

Second order moment matrix reads

$$
M_{2}(y)=\left[\begin{array}{c|ll|lll}
1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
\hline y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
\hline y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{array}\right] \succeq 0
$$

LMI relaxations: illustration (4)

Constraints are localized on moment matrices, meaning that original constraint $g_{1}(x)=-x_{1}^{2}+2 x_{1} \geq 0$ becomes localizing matrix constraint

$$
M_{1}\left(g_{1} y\right)=\left[\begin{array}{c|cc}
-y_{20}+2 y_{10} & -y_{30}+2 y_{20} & -y_{21}+2 y_{11} \\
\hline-y_{30}+2 y_{20} & -y_{40}+2 y_{30} & -y_{31}+2 y_{21} \\
-y_{21}+2 y_{11} & -y_{31}+2 y_{21} & -y_{22}+2 y_{12}
\end{array}\right] \succeq 0
$$

Second LMI feasible set included in first LMI feasible set, thus providing a tighter relaxation

$$
\begin{array}{ll}
\min & -2 y_{20}-2 y_{02}+2 y_{11}+2 y_{10}+6 y_{01}-10 \\
\mathrm{s.t.} & M_{1}\left(g_{1} y\right) \succeq 0, \quad M_{1}\left(g_{2} y\right) \succeq 0, \quad M_{1}\left(g_{3} y\right) \succeq 0 \\
& M_{2}(y) \succeq 0
\end{array}
$$

Similary, we can build up 3rd, 4th, 5th LMI relaxations..

Geometric illustration

Non-convex quadratic problem with linear objective function

$$
\begin{array}{ll}
\max & x_{2} \\
\text { s.t. } & 3-2 x_{2}-x_{2}^{1}-x_{2}^{2} \geq 0 \\
& -x_{1}-x_{2}-x_{1} x_{2} \geq 0 \\
& 1+x_{1} x_{2} \geq 0
\end{array}
$$

Non-convex feasible set delimited by circular and hyperbolic arcs

Geometric illustration (2)

First LMI relaxation given by

```
\begin{array} { l l } { \operatorname { m a x } } & { y _ { 0 1 } } \\ { \text { s.t. } } & { [ [ \begin{array} { c c c } { 1 } & { y _ { 1 0 } } & { y _ { 0 1 } } \\ { y _ { 1 0 } } & { y _ { 2 0 } } & { y _ { 1 1 } } \\ { y _ { 0 1 } } & { y _ { 1 1 } } & { y _ { 0 2 } } \end{array} ] \succeq 0 } \\ { } & { 3 - 2 y _ { 0 1 } - y _ { 2 0 } - y _ { 0 2 } \geq 0 } \\ { } & { - y _ { 1 0 } - y _ { 0 1 } - y _ { 1 1 } \geq 0 } \\ { } & { 1 + y _ { 1 1 } \geq 0 } \end{array}
```


Projection of the LMI feasible set onto the plane y_{10}, y_{01} of first-order moments

LMI optimum $=2$ = upper-bound on global optimum

Geometric illustration (3)

To build second LMI relaxation, the moment matrix must capture expressions of degrees up to 4

$$
M_{2}^{2}(y)=\left[\begin{array}{c|ll|lll}
1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
\hline y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
\hline y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{array}\right]
$$

Constraints are also lifted and relaxed with the help of localization matrices

Geometric illustration (4)

Second LMI provides tighter relaxation

$$
\begin{aligned}
& \max y_{01} \\
& \text { s.t. }\left[\begin{array}{cccccc}
1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{array}\right] \succeq 0 \\
& {\left[\begin{array}{ccc}
3-2 y_{01}-y_{20}-y_{02} & 3 y_{10}-2 y_{11}-y_{30}-y_{12} 3 y_{01}-2 y_{02}-y_{21}-y_{03} \\
3 y_{10}-2 y_{11}-y_{30}-y_{12} & 3 y_{20}-2 y_{21}-y_{40}-y_{22} 3 y_{11}-2 y_{12}-y_{31}-y_{13} \\
3 y_{01}-2 y_{02}-y_{21}-y_{03} 3 y_{11}-2 y_{12}-y_{31}-y_{13} 3 y_{02}-2 y_{03}-y_{22}-y_{04}
\end{array}\right] \succeq 0} \\
& \\
& {\left[\begin{array}{ccc}
-y_{10}-y_{01}-y_{11} & -y_{20}-y_{11}-y_{21} & -y_{11}-y_{02}-y_{12} \\
-y_{20}-y_{11}-y_{21} & -y_{30}-y_{21}-y_{31} & -y_{21}-y_{12}-y_{22} \\
-y_{11}-y_{02}-y_{12} & -y_{21}-y_{12}-y_{22} & -y_{12}-y_{03}-y_{13}
\end{array}\right] \succeq 0} \\
& \\
& {\left[\begin{array}{ccc}
1+y_{11} & y_{10}+y_{21} & y_{01}+y_{12} \\
y_{10}+y_{21} & y_{20}+y_{31} & y_{11}+y_{22} \\
y_{01}+y_{12} & y_{11}+y_{22} & y_{02}+y_{13}
\end{array}\right] \succeq 0}
\end{aligned}
$$

Geometric illustration (5)

Optimal value of 2 nd LMI relaxation $=1.6180=$ global optimum Numerical certificate $=$ moment matrix has rank one

First order moments
$\left(y_{10}^{*}, y_{01}^{*}\right)=(-0.6180,1.6180)$ provide optimal solution of original problem

Polynomial multipliers

Polynomial optimization problem

$$
\begin{aligned}
& g^{\star}= \min \\
& g_{0}(x) \\
& \text { s.t. } \\
& g_{i}(x) \geq 0, i=1, \ldots, m
\end{aligned}
$$

where $g_{i}(x)$ are real-valued multivariate polynomials in vector indeterminate $x \in \mathbb{R}^{n}$

Non-convex problem in general (includes $0-1$ or quadratic problems) $=$ difficult problem

If g^{\star} is the global optimum, polynomial $g_{0}(x)-g^{\star}$ is non-negative whenever $g_{i}(x) \geq 0$

In particular we want to maximize such a lower bound g^{\star}

Polynomial multipliers

The positivity condition is satisfied if we can find polynomials $q_{i}(x)$ such that

$$
g_{0}(x)-g^{\star}=q_{0}(x)+\sum_{i=1}^{m} g_{i}(x) q_{i}(x)
$$

Recall Lagrangian when building dual..

Multipliers $q_{i}(x)$ are now polynomials ! How can we enforce their positivity ?

SOS polynomials

How can we ensure that a polynomial is globally non-negative ?

$$
p(x) \geq 0, \forall x \in \mathbb{R}^{n}
$$

David Hilbert
(1862 Königsberg - 1943 Göttingen)
Hilbert's 17th pb about algebraic sum-of-squares decompositions of rational functions (ICM, Paris, 1900)

SOS polynomials

A form is a homogeneous polynomial, i.e. all monomials have same degree

An obvious condition for a polynomial (form) $p(x)$ to be nonnegative is that is a sum-of-squares (SOS) of other polynomials (forms)

$$
p(x)=\sum_{i} q_{i}^{2}(x)
$$

However, not every non-negative polynomial or form is SOS

$$
p(x) \mathrm{SOS} \Longrightarrow p(x) \geq 0
$$

Sufficient non-negativity condition only..

Motzkin's polynomial

Counterexample:

$$
p(x)=1+x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}-3\right)
$$

cannot be written as an SOS but it is globally non-negative (vanishes at $\left|x_{1}\right|=\left|x_{2}\right|=1$)

SOS polynomials

Let n denote the number of variables and d the degree
Non-negativity and SOS are sometimes equivalent:

```
n=2 bivariate forms
    univariate polynomials (dehomogen)
d=2 quadratic forms
n=3,d=4 quartic forms of 3 variables
```

In all other cases, the set of SOS polynomials (a cone) is a subset of the set of non-negative polynomials
We do not know polynomial-time algorithms to check whether a polynomial is non-negative when $d \geq 4$
Note however that the set of SOS polynomials is dense in the set of polynomials nonnegative over the n-dimensional box $[-1,1]^{n}$
Most importantly
The cone of SOS polynomials is lifted-LMI representable
as we will see in the sequel..

LMI formulation of SOS polynomials

Polynomial

$$
p(x)=\sum_{\alpha} p_{\alpha} x^{\alpha}
$$

of degree $|\alpha| \leq 2 d$ ($\alpha=$ vector of powers) is SOS iff

$$
p(x)=z^{T} X z \quad X \succeq 0
$$

where z is a vector with all monomials with degree $\leq d$
Cholesky factorization $X=Q^{T} Q$ such that

$$
\begin{aligned}
p(x) & =z^{T} Q^{T} Q z=\|Q z\|_{2}^{2}=\sum_{i}(Q z)_{i}^{2} \\
& =\sum_{i} q_{i}^{2}(x)
\end{aligned}
$$

Number of squares $q_{i}^{2}(x)=$ rank X

LMI formulation of SOS polynomials

Comparing monomial coefficients in expression

$$
p(x)=z^{T} X z=\sum_{\alpha} p_{\alpha} x^{\alpha} \geq 0
$$

we get an LMI

```
trace H\alphaX = po }\quad\forall
X\succeq0
```


where H_{α} are Hankel-like matrices

SOS example

Consider the homogeneous form

$$
\begin{aligned}
p(x) & =2 x_{1}^{4}+5 x_{2}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2} \\
& =z^{T} X z
\end{aligned}
$$

With monomial vector $z=\left[x_{1}^{2} x_{2}^{2} x_{1} x_{2}\right]^{T}$ a general bivariate form of degree 4 reads
$z^{T} X z=X_{11} x_{1}^{4}+X_{22} x_{2}^{4}+2 X_{31} x_{1}^{3} x_{2}+2 X_{32} x_{1} x_{2}^{3}+\left(X_{33}+2 X_{21}\right) x_{1}^{2} x_{2}^{2}$
$p(x)$ SOS iff there exists $X \succeq 0$ such that

$$
\begin{aligned}
& X_{11}=2 \quad X_{22}=5 \\
& 2 X_{31}=2 \quad 2 X_{32}=0 \\
& X_{33}+2 X_{21}=-1
\end{aligned}
$$

SOS example

One particular solution is

$$
X=\left[\begin{array}{ccc}
2 & -3 & 1 \\
-3 & 5 & 0 \\
1 & 0 & 5
\end{array}\right]=Q^{T} Q, Q=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
2 & -3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

So $p(x)$ is the sum of rank $X=2$ squares

$$
\begin{aligned}
p(x)= & \frac{1}{2}\left(2 x_{1}^{2}-3 x_{2}^{2}+x_{1} x_{2}\right)^{2} \\
& +\frac{1}{\left(x_{2}^{2}+3 x_{1} x_{\Omega}\right)^{2}}
\end{aligned}
$$

Finding polynomial multipliers

Returning to our global optimization problem

$$
\begin{aligned}
& g^{\star}= \min \\
& \text { s.t. } g_{0}(x) \\
& g_{i}(x) \geq 0, i=1, \ldots, m
\end{aligned}
$$

the problem of finding SOS polynomials $q_{i}(x)$ such that

$$
p(x)=g_{0}(x)-g^{\star}=q_{0}(x)+\sum_{i=1}^{m} g_{i}(x) q_{i}(x)
$$

can be formulated as an LMI as soon as the degrees of the $q_{i}(x)$ are fixed

Depending on parity let deg $p(x)=2 k-1$ or $2 k$; then the LMI problem of finding an SOS $p(x)$ is referred to as the LMI relaxation of order k

Hierarchy of LMI relaxations

The LMI relaxation of order k reads

$$
\begin{aligned}
& d_{k}^{\star}=\min \sum_{\alpha}\left(g_{0}\right)_{\alpha} y_{\alpha} \\
& \text { s.t. } \\
& M_{k}(y)=\sum_{\alpha} A_{\alpha} y_{\alpha} \succeq 0 \\
& M_{k-d_{i}}\left(g_{i} y\right)=\sum_{\alpha} A_{\alpha}^{g_{i}} y_{\alpha} \succeq 0 \quad \forall i
\end{aligned}
$$

with $y_{0}=1$ (normalization), d_{i} is half the degree of $g_{i}(x), M_{k}(y)$ is the moment matrix, $M_{k-d_{i}}\left(g_{i} y\right)$ are the localizing matrices

The dual LMI

$$
\begin{aligned}
& p_{k}^{\star}= \max \text { trace } A_{0} X+\sum_{i} \text { trace } A_{0}^{g_{i}} X_{i} \\
& \text { s.t. } \\
& \text { trace } A_{\alpha} X+\sum_{i} \text { trace } A_{\alpha}^{g_{i}} X_{i}=\left(g_{0}\right)_{\alpha} \quad \forall \alpha \neq 0
\end{aligned}
$$

corresponds to the condition $p(x)$ SOS

Hierarchy of LMI relaxations

If feasible set $g_{i}(x) \geq 0$ is compact, and under mild additional assumptions, Lasserre could use results by Putinar (on SOS representations of positive polynomials) and Curto/Fialkow (on flat extension of moment matrices) to prove in 2000 that

$$
p_{k}^{\star}=d_{k}^{\star} \leq g^{\star}
$$

with asymptotic convergence guarantee

$$
\lim _{k \rightarrow \infty} p_{k}^{\star}=g^{\star}
$$

Moreover, in practice, convergence is fast:
p_{k}^{\star} is very close to g^{\star} for small k

Camelback function

For the six-hump camelback function

with two global optima and six local optima, the global optimum is reached at the first LMI relaxation $(k=1)$ without any problem splitting

LMI hierarchy: example

Quadratic problem

$$
\begin{array}{ll}
\min & -2 x_{1}+x_{2}-x_{3} \\
\text { s.t. } & x_{1}\left(4 x_{1}-4 x_{2}+4 x_{3}-20\right)+x_{2}\left(2 x_{2}-2 x_{3}+9\right) \\
& \quad+x_{3}\left(2 x_{3}-13\right)+24 \geq 0 \\
& x_{1}+x_{2}+x_{3} \leq 4, \quad 3 x_{2}+x_{3} \leq 6 \\
& 0 \leq x_{1} \leq 2, \quad 0 \leq x_{2}, \quad 0 \leq x_{3} \leq 3
\end{array}
$$

Computational burden increases quickly with relaxation order

order	1	2	3	4	5	6
bound	-6.0000	-5.6923	-4.0685	-4.0000	-4.0000	-4.0000
size (y)	9	34	83	164	285	454

..yet fourth LMI relaxation solves globally the problem

Complexity

d : overall polynomial degree $(2 \delta=d$ or $d+1)$
m : number of polynomial constraints
n : number of polynomial variables
M : number of primal variables (moments)
N : number of dual variables (LMI size)

$$
\begin{aligned}
M & =\binom{n+2 \delta}{2 \delta}-1 \\
N & =\binom{n+\delta}{\delta}+m\binom{n+\delta-1}{\delta-1}
\end{aligned}
$$

When n is fixed:

- M grows polynomially in $O\left(\delta^{n}\right)$
- N grows polynomially in $O\left(m \delta^{n}\right)$

Solving BMIs with LMI relaxations

Two approaches: scalarization or PMI relaxations
Scalarization:

- scalarize using characteristic polynomial
- polynomials with generally large degree

PMI relaxations:

- keep the matrix structure
- no degree growth
- theory for matrix polynomial SOS

Theory is ready, but experimentally at a very preliminary level

Numerical aspects (conditioning, solution extraction) must be studied further

LMI modelling of convex hulls

Using the same technique, and the equivalence between nonnegative and SOS polynomials in specific cases, we can build liftedLMI representations for convex hulls of rationally parametrized curves and surfaces

$$
\left\{x \in \mathbb{R}^{n}: x_{i}=\frac{p_{i}(t)}{p_{0}(t)}\right\}
$$

with given polynomials $p_{0}(t), p_{1}(t), \ldots, p_{n}(t)$

- $t \in \mathbb{R}$, any degree
- $t \in \mathbb{R}^{2}$, quartics $p_{i}(t)$
- quadratics $p_{i}(t)$

Ambient space dimension n is arbitrary

Trefoil knot curve

Convex hull lifted-LMI with 3 liftings

Steiner's Roman surface

Convex hull lifted-LMI with 2 liftings

Cayley’s cubic surface

Projectively dual to Steiner's Roman surface

Lifted-LMI representable as an 6-by-6 LMI with 11 liftings.. yet we have another explicit 3-by-3 LMI with no lifting !

LMI relaxations: conclusion

LMI relaxations prove useful to solve general non-convex polynomial optimization problems

Shor's relaxation $=$ rank dropping $=$ Lagrangian relaxation $=$ first order LMI relaxation

Sometimes one can measure the gap between the original problem and its relaxation

A hierarchy of successive LMI relaxations can be built with additional lifting variables and constraints

Theoretical guarantee of asymptotic convergence to global optimum without any problem splitting (no branch and bound scheme)

