I.5. NONCONVEX LMI MODELLING

Didier HENRION
henrion@laas.fr

Belgian Graduate School on
Systems, Control, Optimization and Networks

Leuven - April and May 2010
BMI - Bilinear Matrix Inequality

\[F(x) = F_0 + \sum_i x_i F_i + \sum_i \sum_j x_i x_j F_{ij} \succeq 0 \]

Symmetric matrices \(F_i, F_{ij} \) given
Decision variables \(x_i \)

Actually QMI with quadratic terms \(x_i^2 \)

Contrary to LMIs, BMIs may have non-convex feasible sets
Convex LMI
$x^2 \leq y$

Nonconvex BMI
$x^2 \geq y$

Convex LMI
$xy \geq 1$

Nonconvex BMI
$xy \leq 1$
PMI - Polynomial Matrix Inequality

\[F(x) = \sum_{\alpha} x^{\alpha} F_{\alpha} \succeq 0 \]

More general than BMI?

By appropriate changes of variables
any PMI can be written as a BMI

Example

\[F(x) = F_0 + F_1 x_1 + F_{12} x_1 x_2^2 + F_{03} x_2^3 \]

can be written as the BMI

\[F(x) = F_0 + F_1 x_1 + F_{12} x_1 x_3 + F_{03} x_2 x_3 \]

with lifting variable \(x_3 \) constrained by \(x_3 = x_2^2 \)
Example of a nonconvex 2D BMI

\[F(x) = \begin{bmatrix}
10 & 0.5 & 2 \\
0.5 & -4.5 & 0 \\
2 & 0 & 0 \\
1.8 & 0.1 & 0.4 \\
0.1 & -1.2 & 1 \\
0.4 & 1 & 0
\end{bmatrix} + \begin{bmatrix}
-9 & -0.5 & 0 \\
-0.5 & 0 & 3 \\
0 & 3 & 1 \\
0 & 0 & -2 \\
0 & 5.5 & -3 \\
-2 & -3 & 0
\end{bmatrix} x_1 + \begin{bmatrix}
-9 & -0.5 & 0 \\
-0.5 & 0 & 3 \\
0 & 3 & 1 \\
0 & 0 & -2 \\
0 & 5.5 & -3 \\
-2 & -3 & 0
\end{bmatrix} x_2 + \begin{bmatrix}
1.8 & 0.1 & 0.4 \\
0.1 & -1.2 & 1 \\
0.4 & 1 & 0
\end{bmatrix} x_1 x_2 \geq 0 \]
Example of a convex 2D BMI
Coming from a static output feedback problem

\[
\begin{bmatrix}
 x_2(-13 - 5x_1 + x_2) & x_2 & 0 \\
 x_2 & x_1 & 0 \\
 0 & 0 & x_1(-13 - 5x_1 + x_2) - x_2
\end{bmatrix} \succ 0
\]
Converting BMI into LMI

Can we detect or exploit convexity?

Sometimes a BMI problem can be reformulated as an LMI problem.

For example, the static output feedback BMI can be reformulated as the LMI

\[
\begin{bmatrix}
-1 + x_1 & 1 \\
1 & -1 - \frac{5}{18}x_1 + \frac{1}{18}x_2
\end{bmatrix} \succ 0
\]

Can we systematically detect whether such a reformulation is possible?

Can we design a systematic reformulation algorithm?
History of BMIs

Interest in BMIs originated in systems control
Mid 1990s, Safonov’s team

Typical BMI: static output feedback

\[(A + BK_C)^T P + P(A + BK_C) \prec 0, \quad P \succ 0\]

More intricate BMI arise for reduced order controller design, H_2, H_∞ performance..

Main criticisms:
• too general
• no good algorithm
..in sharp contrast with LMIs..
BMI as a rank-one LMI

Defining liftings $x_{ij} = x_i x_j$ the BMI

$$F_0 + \sum_i x_i F_i + \sum_i \sum_j x_i x_j F_{ij} \succeq 0$$

can be written as an LMI

$$F_0 + \sum_i x_i F_i + \sum_i \sum_j x_{ij} F_{ij} \succeq 0$$

$$X = \begin{bmatrix}
1 & x_1 & x_2 \\
x_1 & x_{11} & x_{12} \\
x_2 & x_{12} & x_{22} & \ldots
\end{bmatrix} \succeq 0$$

with an additional rank constraint

$$\text{rank } X = 1$$

All the non-convexity is concentrated in this rank constraint
Handling nonconvexity

We have seen that additional variables, or liftings can prove useful in describing convex sets with LMIs.

But LMI are also frequently used to cope with non-convex sets.

This chapter is dedicated to the joint use of
• convex LMI relaxations, and
• additional variables = liftings
Combinatorial optimization

MAXCUT: typical *combinatorial optimization* problem

\[
\begin{align*}
\min \quad & x^T Q x \\
\text{subject to} \quad & x_i \in \{-1, 1\}
\end{align*}
\]

Basic *non-convex* constraints

\[
x_i^2 = 1
\]

Exponential number of points = *difficult* problem
LMI relaxation

Basic idea..

For each i replace non-convex constraint

$$x_i^2 = 1$$

with relaxed convex constraint

$$x_i^2 \leq 1$$

which is an LMI constraint

$$\begin{bmatrix} 1 & x_i \\ x_i & 1 \end{bmatrix} \succeq 0$$

What about cross terms $x_i x_j$?
Dealing with cross terms

Replace all non-convex constraints \(x_i^2 = 1 \) for \(i = 1, 2, \ldots, n \) with relaxed LMI constraint

\[
X = \begin{bmatrix}
1 & x_1 & x_2 & \cdots & x_n \\
x_1 & 1 & x_{12} & \cdots & x_{1n} \\
x_2 & x_{12} & 1 & \cdots & x_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_n & x_{1n} & x_{2n} & \cdots & 1
\end{bmatrix} \succeq 0
\]

where \(x_{ij} \) are additional variables = liftings

Always less conservative than previous relaxation because \(X \succeq 0 \) implies for all \(i \)

\[
\begin{bmatrix}
1 & x_i \\
x_i & 1
\end{bmatrix} \succeq 0
\]
Rank constrained LMI

In the original problem

$$g^* = \min x^T Q x$$

s.t. $$x_i^2 = 1$$

let $$X = xx^T$$ and then $$x^T Q x = \text{trace} Q xx^T = \text{trace} Q X$$ and

$$x_i^2 = X_{ii} = 1$$ so that the problem can be written as a

rank constrained LMI

$$g^* = \min \text{trace} Q X$$

s.t. $$X_{ii} = 1$$

$$X \succeq 0$$

$$\text{rank } X = 1$$
Example of rank constrained LMI

\[X = \begin{bmatrix} y & x \\ x & 1 \end{bmatrix} \]

Convex set \(X \succeq 0 \)
\((x^2 \leq y) \)

Non-convex set \(X \succeq 0 \),
rank \(X = 1 \) \((x^2 = y) \)
Relaxing the rank constraint

All the nonconvexity is concentrated into the rank constraint, so we just drop it!

The obtained LMI relaxation is called Shor’s relaxation

\[p^* = \min \quad \text{trace } QX \]
\[\text{s.t. } \quad X_{ii} = 1 \]
\[X \succeq 0 \]

Naum Zuselevich Shor (Inst Cybernetics, Kiev) in the 1980s was among the first to recognize the relevance of this approach.

Since the feasible set is relaxed = enlarged, we get a lower bound for the original non-convex optimization problem: \(p^* \leq g^* \)
Shor's relaxation

Systematic approach: can be applied to general polynomial optimization problems

Example:

\[x_1^2 x_2 = x_1 \left\{ \begin{align*} x_1^2 &= x_3 \\ x_3 x_2 &= x_1 \end{align*} \right\} \]

\[\begin{align*} X_{11} &= X_{30} \\ X_{32} &= X_{10} \\ X &\succeq 0 \end{align*} \]

\[\text{rank } X = 1 \]

Algorithm:

- introduce lifting variables to reduce polynomials to quadratic and linear terms
- build the rank-one LMI problem
- solve the LMI problem by relaxing the non-convex rank constraint
Relaxed LMI via duality

Consider again the original problem

$$\min \quad x^T Q x$$
$$\text{s.t.} \quad x_i^2 = 1$$

and build Lagrangian $L(x, y) = x^T Q x - \sum_i y_i (x_i^2 - 1) = x^T (Q - Y) x + \text{trace} Y$ where Y is a diagonal matrix and $Q - Y \succeq 0$ must be enforced to ensure that Lagrangian is bounded below

Associated dual problem reads

$$\max \quad \text{trace} Y$$
$$\text{s.t.} \quad Q - Y \succeq 0$$
Y diagonal

This is an LMI problem!
Relaxed LMI via duality

The dual LMI problem

\[
\begin{align*}
\text{max} & \quad \text{trace } Y \\
\text{s.t.} & \quad Q \succeq Y \\
& \quad Y \text{ diagonal}
\end{align*}
\]

has for dual the **primal** LMI problem

\[
\begin{align*}
\text{min} & \quad \text{trace } QX \\
\text{s.t.} & \quad X_{ii} = 1 \\
& \quad X \succeq 0
\end{align*}
\]

which is Shor’s original LMI relaxation!

More generally it can be shown that LMI rank dropping and Lagrangian relaxation are equivalent.
Example of LMI relaxation

Original nonconvex 0-1 quadratic problem

\[g^* = \min \quad 2x_1x_2 + 4x_1x_3 + 6x_2x_3 \]
\[\text{s.t.} \quad x_i^2 = 1 \]

\[Q = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix} \]

Primal and dual LMI solutions

\[X = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}, \quad Y = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -5 \end{bmatrix} \]

yield lower bound \(p^* = \text{trace} \ QX = d^* = \text{trace} \ Y = -8 \)

(Strong duality holds here)

Since \(\text{rank} \ X = 1 \) we recover here the optimum \(x = [1 \ 1 \ -1]^T \)

such that \(X = xx^T \) and hence \(g^* = p^* = d^* \)

the relaxation is exact!
Example of LMI relaxation

LMI relaxation of ± 1 constraints

$$X = \begin{bmatrix} 1 & X_{12} & X_{13} \\ X_{12} & 1 & X_{23} \\ X_{13} & X_{23} & 1 \end{bmatrix} \preceq 0 \}$$

So we optimize the linear objective function

$$\text{trace } QX = 2X_{12} + 4X_{13} + 6X_{23}$$

and the optimum is a vertex $[1 \ -1 \ -1]$
How good are LMI relaxations?

We have seen that we can obtain lower bounds for non-convex polynomial minimization with the help of liftings and relaxations.

But can we measure the gap between the global optimum and the relaxed optimum?

In other words, how much conservative are LMI relaxations?

Answers only in a (too) few specific cases.
MAXCUT

Given a graph with arcs \((i, j)\) with weights \(a_{ij} \geq 0\), find a partition maximizing total weight of linking arcs

Non-convex quadratic problem

\[
g^* = \max \frac{1}{4} \sum_{i,j} a_{ij} (1 - x_i x_j) \\
\text{s.t. } x_i^2 = 1
\]

with convex LMI relaxation

\[
d^* = \max \frac{1}{4} \sum_{i,j} a_{ij} (1 - X_{ij}) \\
\text{s.t. } X_{ii} = 1, \ X = X^T \succeq 0
\]

With a geometric proof, Goemans and Williamson showed (1994) that independently of the data (graph) \(1 \geq \frac{g^*}{d^*} \geq 0.8786\)
LMI relaxations for quadratic problems

Non-convex quadratic problem

\[g^* = \max x^T Ax \]
\[\text{s.t. } x_i^2 = 1 \]

with convex LMI relaxation

\[d^* = \max \text{trace } AX \]
\[\text{s.t. } X_{ii} = 1 \]
\[X = X^T \succeq 0 \]

For \(A \succeq 0 \) Nesterov showed that

\[1 \geq \frac{g^*}{d^*} \geq \frac{2}{\pi} = 0.6366 \]
Beyond Shor’s relaxation

Recent work (2000) to narrow relaxation gap
- gradually adding lifting variables
- hierarchy of nested LMI relaxations
- theoretical proof of convergence
- tradeoff between conservatism and computational effort

Dual point of views:
- theory of moments (Lasserre)
- sum-of-squares decompositions (Parrilo)
Higher order LMI relaxations
Illustration

Non-convex quadratic problem

\[
\begin{align*}
\text{min} & \quad g_0(x) = -2x_1^2 - 2x_2^2 + 2x_1x_2 + 2x_1 + 6x_2 - 10 \\
\text{s.t.} & \quad g_1(x) = -x_1^2 + 2x_1 \geq 0 \\
& \quad g_2(x) = -x_1^2 - x_2^2 + 2x_1x_2 + 1 \geq 0 \\
& \quad g_3(x) = -x_2^2 + 6x_2 - 8 \geq 0.
\end{align*}
\]

LMI relaxation built by replacing each monomial \(x_1^i x_2^j\) with lifting variable \(y_{ij}\)

For example, quadratic expression \(g_2(x) = -x_1^2 - x_2^2 + 2x_1x_2 + 1\) is replaced with linear expression \(-y_{20} - y_{02} + 2y_{11} + 1\)

Lifting variables \(y_{ij}\) satisfy non-convex relations such as \(y_{10}y_{01} = y_{11}\) or \(y_{20} = y_{10}^2\)
LMI relaxations: illustration (2)

Relax these non-convex relations by enforcing LMI constraint

\[M_1(y) = \begin{bmatrix}
1 & y_{10} & y_{01} \\
y_{10} & y_{20} & y_{11} \\
y_{01} & y_{11} & y_{02}
\end{bmatrix} \succeq 0 \]

Moment matrix of first order relaxing quadratic monomials
You have recognized \textit{Shor's relaxation}!

First LMI (\(\equiv\)Shor’s) relaxation of original global optimization problem is given by

\[
\begin{align*}
\text{min} & & -2y_{20} - 2y_{02} + 2y_{11} + 2y_{10} + 6y_{01} - 10 \\
\text{s.t.} & & -y_{20} + 2y_{10} \geq 0 \\
& & -y_{20} - y_{02} + 2y_{11} + 1 \geq 0 \\
& & -y_{02} + 6y_{01} - 8 \geq 0 \\
& & M_1(y) \succeq 0
\end{align*}
\]
LMI relaxations: illustration (3)

To build second LMI relaxation, we must increase size of moment matrix so that it captures expressions of degrees up to 4

Second order moment matrix reads

\[
M_2(y) = \begin{bmatrix}
1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{bmatrix} \succeq 0
\]
LMI relaxations: illustration (4)

Constraints are localized on moment matrices, meaning that original constraint \(g_1(x) = -x_1^2 + 2x_1 \geq 0 \) becomes localizing matrix constraint

\[
M_1(g_1y) = \begin{bmatrix}
-y_{20} + 2y_{10} & -y_{30} + 2y_{20} & -y_{21} + 2y_{11} \\
-y_{30} + 2y_{20} & -y_{40} + 2y_{30} & -y_{31} + 2y_{21} \\
-y_{21} + 2y_{11} & -y_{31} + 2y_{21} & -y_{22} + 2y_{12}
\end{bmatrix} \succeq 0
\]

Second LMI feasible set included in first LMI feasible set, thus providing a tighter relaxation

\[
\begin{align*}
\min & \quad -2y_{20} - 2y_{02} + 2y_{11} + 2y_{10} + 6y_{01} - 10 \\
\text{s.t.} & \quad M_1(g_1y) \succeq 0, \quad M_1(g_2y) \succeq 0, \quad M_1(g_3y) \succeq 0 \\
& \quad M_2(y) \succeq 0
\end{align*}
\]

Similarly, we can build up 3rd, 4th, 5th LMI relaxations..
Non-convex quadratic problem with \textit{linear} objective function

\begin{equation*}
\begin{aligned}
\max & \quad x_2 \\
\text{s.t.} & \quad 3 - 2x_2 - x_1^2 - x_2^2 \geq 0 \\
& \quad -x_1 - x_2 - x_1x_2 \geq 0 \\
& \quad 1 + x_1x_2 \geq 0
\end{aligned}
\end{equation*}

Non-convex feasible set delimited by circular and hyperbolic arcs
Geometric illustration (2)

First LMI relaxation given by

\[
\begin{align*}
\text{max} & \quad y_{01} \\
\text{s.t.} & \quad \begin{bmatrix} 1 & y_{10} & y_{01} \\
y_{10} & y_{20} & y_{11} \\
y_{01} & y_{11} & y_{02} \end{bmatrix} \succeq 0 \\
& \quad 3 - 2y_{01} - y_{20} - y_{02} \geq 0 \\
& \quad -y_{10} - y_{01} - y_{11} \geq 0 \\
& \quad 1 + y_{11} \geq 0
\end{align*}
\]

Projection of the LMI feasible set onto the plane \(y_{10}, y_{01} \) of first-order moments

\text{LMI optimum} = 2 = \text{upper-bound} on global optimum
To build second LMI relaxation, the moment matrix must capture expressions of degrees up to 4

\[
M_2^2(\mathbf{y}) = \begin{bmatrix}
1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{bmatrix}
\]

Constraints are also lifted and relaxed with the help of localization matrices
Geometric illustration (4)

Second LMI provides tighter relaxation

\[
\begin{align*}
\text{max} & \quad y_{01} \\
\text{s.t.} & \quad \begin{bmatrix}
1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{bmatrix} \succeq 0 \\
\begin{bmatrix}
3 - 2y_{01} - y_{20} - y_{02} & 3y_{10} - 2y_{11} - y_{30} - y_{12} & 3y_{01} - 2y_{02} - y_{21} - y_{03} \\
3y_{10} - 2y_{11} - y_{30} - y_{12} & 3y_{20} - 2y_{21} - y_{40} - y_{22} & 3y_{11} - 2y_{12} - y_{31} - y_{13} \\
3y_{01} - 2y_{02} - y_{21} - y_{03} & 3y_{11} - 2y_{12} - y_{31} - y_{13} & 3y_{02} - 2y_{03} - y_{22} - y_{04}
\end{bmatrix} \succeq 0 \\
\begin{bmatrix}
-y_{10} - y_{01} - y_{11} & -y_{20} - y_{11} - y_{21} & -y_{11} - y_{02} - y_{12} \\
-y_{20} - y_{11} - y_{21} & -y_{30} - y_{21} - y_{31} & -y_{21} - y_{12} - y_{22} \\
-y_{11} - y_{02} - y_{12} & -y_{21} - y_{12} - y_{22} & -y_{12} - y_{03} - y_{13}
\end{bmatrix} \succeq 0 \\
\begin{bmatrix}
1 + y_{11} & y_{10} + y_{21} & y_{01} + y_{12} \\
y_{10} + y_{21} & y_{20} + y_{31} & y_{11} + y_{22} \\
y_{01} + y_{12} & y_{11} + y_{22} & y_{02} + y_{13}
\end{bmatrix} \succeq 0
\end{align*}
\]
Optimal value of 2nd LMI relaxation $= 1.6180 = \text{global optimum}$
Numerical \textit{certificate} $= \text{moment matrix has rank one}$

First order moments
$(y_{10}^*, y_{01}^*) = (-0.6180, 1.6180)$
provide optimal solution of original problem
Polynomial multipliers

Polynomial optimization problem

\[g^* = \min \ g_0(x) \]
\[\text{s.t.} \quad g_i(x) \geq 0, \ i = 1, \ldots, m \]

where \(g_i(x) \) are real-valued multivariate polynomials in vector indeterminate \(x \in \mathbb{R}^n \)

Non-convex problem in general (includes 0-1 or quadratic problems) = difficult problem

If \(g^* \) is the global optimum, polynomial \(g_0(x) - g^* \) is non-negative whenever \(g_i(x) \geq 0 \)

In particular we want to maximize such a lower bound \(g^* \)
Polynomial multipliers

The positivity condition is satisfied if we can find polynomials $q_i(x)$ such that

$$g_0(x) - g^* = q_0(x) + \sum_{i=1}^{m} g_i(x) q_i(x)$$

Recall Lagrangian when building dual..

Multipliers $q_i(x)$ are now polynomials!
How can we enforce their positivity?
SOS polynomials

How can we ensure that a polynomial is globally non-negative?

\[p(x) \geq 0, \forall x \in \mathbb{R}^n \]

Hilbert’s 17th pb about algebraic sum-of-squares decompositions of rational functions (ICM, Paris, 1900)
SOS polynomials

A form is a homogeneous polynomial, i.e. all monomials have same degree.

An obvious condition for a polynomial (form) \(p(x) \) to be non-negative is that it is a sum-of-squares (SOS) of other polynomials (forms):

\[
p(x) = \sum_i q_i^2(x)
\]

However, not every non-negative polynomial or form is SOS:

\[
p(x) \text{ SOS} \implies p(x) \geq 0
\]

Sufficient non-negativity condition only..
Motzkin's polynomial

Counterexample:

\[p(x) = 1 + x_1^2 x_2^2 (x_1^2 + x_2^2 - 3) \]

cannot be written as an SOS but it is globally non-negative (vanishes at \(|x_1| = |x_2| = 1\))
SOS polynomials

Let n denote the number of variables and d the degree.

Non-negativity and SOS are sometimes equivalent:

<table>
<thead>
<tr>
<th>$n = 2$</th>
<th>bivariate forms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>univariate polynomials (dehomogen)</td>
</tr>
<tr>
<td>$d = 2$</td>
<td>quadratic forms</td>
</tr>
<tr>
<td>$n = 3$, $d = 4$</td>
<td>quartic forms of 3 variables</td>
</tr>
</tbody>
</table>

In all other cases, the set of SOS polynomials (a cone) is a subset of the set of non-negative polynomials.

We do not know polynomial-time algorithms to check whether a polynomial is non-negative when $d \geq 4$.

Note however that the set of SOS polynomials is dense in the set of polynomials nonnegative over the n-dimensional box $[-1, 1]^n$.

Most importantly

The cone of SOS polynomials is lifted-LMI representable

as we will see in the sequel.
LMI formulation of SOS polynomials

Polynomial

\[p(x) = \sum_{\alpha} p_{\alpha} x^{\alpha} \]

of degree \(|\alpha| \leq 2d\) (\(\alpha = \text{vector of powers}\)) is SOS iff

\[p(x) = z^T X z \quad X \succeq 0 \]

where \(z\) is a vector with all monomials with degree \(\leq d\)

Cholesky factorization \(X = Q^T Q\) such that

\[
\begin{align*}
p(x) &= z^T Q^T Q z = \|Qz\|_2^2 = \sum_i (Qz)_i^2 \\
&= \sum_i q_i^2(x)
\end{align*}
\]

Number of squares \(q_i^2(x) = \text{rank } X\)
LMI formulation of SOS polynomials

Comparing monomial coefficients in expression

\[p(x) = z^T X z = \sum \alpha p_\alpha x^\alpha \geq 0 \]

we get an LMI

\[\text{trace } H_\alpha X = p_\alpha \quad \forall \alpha \]

\[X \succeq 0 \]

where \(H_\alpha \) are Hankel-like matrices
Consider the homogeneous form

\[p(x) = 2x_1^4 + 5x_2^4 + 2x_1^3x_2 - x_1^2x_2^2 \]

With monomial vector \(z = [x_1^2, x_2^2, x_1x_2]^T \) a general bivariate form of degree 4 reads

\[z^T X z = X_{11} x_1^4 + X_{22} x_2^4 + 2X_{31} x_1^3 x_2 + 2X_{32} x_1 x_2^3 + (X_{33} + 2X_{21}) x_1^2 x_2^2 \]

\(p(x) \) SOS iff there exists \(X \succeq 0 \) such that

\[
\begin{align*}
X_{11} &= 2 & X_{22} &= 5 \\
2X_{31} &= 2 & 2X_{32} &= 0 \\
X_{33} + 2X_{21} &= -1
\end{align*}
\]
SOS example

One particular solution is

\[
X = \begin{bmatrix}
2 & -3 & 1 \\
-3 & 5 & 0 \\
1 & 0 & 5
\end{bmatrix} = Q^T Q, \quad Q = \frac{1}{\sqrt{2}} \begin{bmatrix}
2 & -3 & 1 \\
0 & 1 & 3
\end{bmatrix}
\]

So \(p(x) \) is the sum of rank \(X = 2 \) squares

\[
p(x) = \frac{1}{2}(2x_1^2 - 3x_2^2 + x_1x_2)^2 + \frac{1}{2}(x_2^2 + 3x_1x_2)^2
\]
Finding polynomial multipliers

Returning to our global optimization problem

\[
g^* = \min g_0(x) \\
\text{s.t. } g_i(x) \geq 0, \ i = 1, \ldots, m
\]

the problem of finding SOS polynomials \(q_i(x) \) such that

\[
p(x) = g_0(x) - g^* = q_0(x) + \sum_{i=1}^{m} g_i(x)q_i(x)
\]

can be formulated as an LMI as soon as the degrees of the \(q_i(x) \) are fixed

Depending on parity let \(\deg p(x) = 2k - 1 \) or \(2k \); then the LMI problem of finding an SOS \(p(x) \) is referred to as the LMI relaxation of order \(k \)
Hierarchy of LMI relaxations

The LMI relaxation of order k reads

$$d^*_k = \min \sum_\alpha (g_0)_\alpha y_\alpha$$

s.t.

$$M_k(y) = \sum_\alpha A_\alpha y_\alpha \succeq 0$$

$$M_{k-d_i}(g_i y) = \sum_\alpha A_{g_i}^\alpha y_\alpha \succeq 0 \quad \forall i$$

with $y_0 = 1$ (normalization), d_i is half the degree of $g_i(x)$, $M_k(y)$ is the moment matrix, $M_{k-d_i}(g_i y)$ are the localizing matrices.

The dual LMI

$$p^*_k = \max \text{ trace } A_0 X + \sum_i \text{ trace } A_{g_i}^\alpha X_i$$

s.t.

$$\text{ trace } A_\alpha X + \sum_i \text{ trace } A_{g_i}^\alpha X_i = (g_0)_\alpha \quad \forall \alpha \neq 0$$

corresponds to the condition $p(x)$ SOS.
Hierarchy of LMI relaxations

If feasible set $g_i(x) \geq 0$ is compact, and under mild additional assumptions, Lasserre could use results by Putinar (on SOS representations of positive polynomials) and Curto/Fialkow (on flat extension of moment matrices) to prove in 2000 that

$$p^*_k = d^*_k \leq g^*$$

with asymptotic convergence guarantee

$$\lim_{k \to \infty} p^*_k = g^*$$

Moreover, in practice, convergence is fast: p^*_k is very close to g^* for small k
Camelback function

For the six-hump camelback function with two global optima and six local optima, the global optimum is reached at the first LMI relaxation \((k = 1)\) without any problem splitting.
LMI hierarchy: example

Quadratic problem

\[
\begin{align*}
\text{min} & \quad -2x_1 + x_2 - x_3 \\
\text{s.t.} & \quad x_1(4x_1 - 4x_2 + 4x_3 - 20) + x_2(2x_2 - 2x_3 + 9) \\
& \quad + x_3(2x_3 - 13) + 24 \geq 0 \\
& \quad x_1 + x_2 + x_3 \leq 4, \quad 3x_2 + x_3 \leq 6 \\
& \quad 0 \leq x_1 \leq 2, \quad 0 \leq x_2, \quad 0 \leq x_3 \leq 3.
\end{align*}
\]

Computational burden increases quickly with relaxation order

<table>
<thead>
<tr>
<th>order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>bound</td>
<td>-6.0000</td>
<td>-5.6923</td>
<td>-4.0685</td>
<td>-4.0000</td>
<td>-4.0000</td>
<td>-4.0000</td>
</tr>
<tr>
<td>size(y)</td>
<td>9</td>
<td>34</td>
<td>83</td>
<td>164</td>
<td>285</td>
<td>454</td>
</tr>
</tbody>
</table>

..yet fourth LMI relaxation solves globally the problem
Complexity

d: overall polynomial degree ($2\delta = d$ or $d + 1$)
m: number of polynomial constraints
n: number of polynomial variables
M: number of primal variables (moments)
N: number of dual variables (LMI size)

\[
M = \binom{n + 2\delta}{2\delta} - 1
\]
\[
N = \binom{n + \delta}{\delta} + m \binom{n + \delta - 1}{\delta - 1}
\]

When n is fixed:
- M grows polynomially in $O(\delta^n)$
- N grows polynomially in $O(m\delta^n)$
Solving BMIs with LMI relaxations

Two approaches: scalarization or PMI relaxations

Scalarization:
- scalarize using characteristic polynomial
- polynomials with generally large degree

PMI relaxations:
- keep the matrix structure
- no degree growth
- theory for matrix polynomial SOS

Theory is ready, but experimentally at a very preliminary level

Numerical aspects (conditioning, solution extraction) must be studied further
LMI modelling of convex hulls

Using the same technique, and the equivalence between nonnegative and SOS polynomials in specific cases, we can build lifted-LMI representations for convex hulls of rationally parametrized curves and surfaces

\[\{ x \in \mathbb{R}^n : x_i = \frac{p_i(t)}{p_0(t)} \} \]

with given polynomials \(p_0(t), p_1(t), \ldots, p_n(t) \)

- \(t \in \mathbb{R} \), any degree
- \(t \in \mathbb{R}^2 \), quartics \(p_i(t) \)
- quadratics \(p_i(t) \)

Ambient space dimension \(n \) is arbitrary
Trefoil knot curve

Convex hull lifted-LMI with 3 liftings
Steiner's Roman surface

Convex hull lifted-LMI with 2 liftings
Cayley’s cubic surface

Projectively dual to Steiner’s Roman surface

Lifted-LMI representable as an 6-by-6 LMI with 11 liftings. yet we have another explicit 3-by-3 LMI with no lifting!
LMI relaxations: conclusion

LMI relaxations prove useful to solve general non-convex polynomial optimization problems

Shor’s relaxation = rank dropping = Lagrangian relaxation = first order LMI relaxation

Sometimes one can measure the gap between the original problem and its relaxation

A hierarchy of successive LMI relaxations can be built with additional lifting variables and constraints

Theoretical guarantee of asymptotic convergence to global optimum without any problem splitting (no branch and bound scheme)