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A minor of a matrix F' is the determinant of a submatrix of F,
say with row index I and column index J

If I = J this is a principal minor

If I =J=1...k this is a leading principal minor

A symmetric matrix F' is positive definite iff
all its leading principal minors are positive

A symmetric matrix F' is positive semidefinite iff
all its principal minors are nonnegative



Positive semidefiniteness
If FeRMX™ we have 2™ — 1 principal minors

A simpler and equivalent criterion follows from the fact that a
univariate polynomial ¢t — f(t) = Y& frn_it"® = [1p(t — tx) which
has only real roots satisfies ¢, < O iff f > 0

Apply to characteristic polynomial

L () = det(thn + F) = > fu o (F)EF
k=0

A symmetric matrix F is positive semidefinite iff f;(F') > 0, Vi

Only m polynomials to be checked, they are (signed) sums of
principal minors



Given symmetric matrices F; we want to
characterize the shape in R"™ of the LMI set

F={zeR": F(z) = Fo+ X", z;F; = 0}

Build characteristic polynomial

L f(t2) = det(thy + F(@) = 3" fros(a)t?
k=0

which is monic, i.e. fp(z) =1

Matrix F(x) is PSD iff f;(x) >0 foralli=1,...,m



Semialgebraic description
Diagonal minors are multivariate polynomials of the x;
So the LMI set can be described as
F={zeR": fi(x) >0,1=1,2,...}

which is a basic semialgebraic set
(basic = intersection of polynomial level-sets)

Moreover, it is a convex set



Example of 2D LMI feasible set

l—x1 x1 4+ xo 1
Flx) = | z1+20 2—25 0 >0
1 O 1+xp

System of 3 polynomial inequalities f;(x) > 0O
1st order minors: fi(x) =4 —x21 >0

LMI set = intersection of an infinite number of halfspaces
{z : yI' F(z)y > 0} for all y € R3



2nd order: fo(x) =5 —3x1 + 25 — 256% — 2x1T> — 233% >0




3rd order: fz(x) = 2—2xq +az2—3:0%—3:(;1332—2:0%—33133%—3:% >0




LMI feasible set = intersection of sets {x : f;(z) >0}, i=1,2,3

Boundary of LMI region shaped by determinant
Other polynomials only isolate convex connected component



Example of 3D LMI feasible set

1 x1 xo |
F={zecR3: |21 1 z3| >0}
|z x3 1

\

A smoothened tetrahedron..
vertices correspond to points x for which rank F'(z) = 1



Semialgebraic formulation
F={zxeR3: 1+2$1$2$3—($%+ZC%+5E§) > 0, 3—:1;1 a;2 x3 > 0}




Intersection of LMI sets
Intersection of LMI feasible sets is also LMI

F(z) =0 x1>-2 2r1+22<0




L MI sets

LMI sets are convex basic semialgebraic sets..
but are all convex basic semialgebraic sets LMI 7

Let us make a fundamental distinction between
o LLMI representable sets
e lifted-LMI representable sets

We say that a convex set X C R" is LMI representable if there
exists an affine mapping F(x) such that

reX <— F(x) >0



LMI and lifted-LMI representability

We say that a convex set X C R" is lifted-LMI representable if
there exists an affine mapping F(x,u) such that

xr€X <«<— JueR™ : F(z,u) =0

A set X is lifted-LMI representable when

r€e€X < Ju : F(x,u) =0

i.e. when it is the projection of the solution set of the LMI
F(xz,u) = 0 onto the z-space and wu are additional, or lifting
variables

In other words, lifting variables v are not allowed
in LMI representations



LMI and lifted-LMI functions

Similarly, a convex function f : R® — R is LMI (or lifted-LMI)
representable if its epigraph

{z,t @ f(z) <t}
is an LMI (or lifted-LMI) representable set
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Conic quadratic forms

The Lorentz, or ice-cream cone

(z,t ER" X R : ||z]o < t}

2

As a result, all second-order conic sets are LMI representable

is LMI representable as

t.[n xXr

s

{m,tER”XR:

In the sequel we give a list of LMI and lifted-LMI representable
sets (following Ben-Tal, Nemirovski, Nesterov)



Quadratic forms

The Euclidean norm {z,t € R®" xR : ||z||o < t}
is LMI representable (see previous slide)

The squared Euclidean norm {z,t € R" x R : rly < t}
is also LMI representable as




Quadratic forms (2)

The convex quadratic set {x € R" : 2l Az + blx 4 ¢ < 0} with
A= AT = 0 is LMI representable as
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where D is the Cholesky factor of A = D1 D



Hyperbola

The branch of hyperbola {z,y € R? : >0, zy > 1}
is LMI representable as




Geometric mean of two variables

The hypograph of the geometric mean of 2 variables
{x1,20,t € R3 : x1,20 >0, /x5 >t} is LMI representable as




Geometric mean of several variables

The hypograph 01:C the geometric mean of 2’2 variables
{:Bl,...,:czk,t e R2"+1 - x; > 0, (xl---xzk)l/Q >t}
is lifted-LMI representable

Proof: iterate the previous construction by introducing lifting
variables

Example with k£ = 3:

(z1z2---28)1/8 > ¢

VIT1T2 > T11

V/IT3Ta > T12 VT11T12 =2 21

VITs5Te = T13 VT13T14 =2 T2 VT21222 2
VI7T8 2> T14

Useful idea in other LMI representability problems



Rational power functions

Following the same ideas, the increasing rational power functions

2
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0 02 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
X

with rational p/q > 1, are lifted-LMI representable



Rational power functions

Similarly, the decreasing rational power functions

5
45+

4 oy
35+

1=

I 1 I I I 1 I I I
0 02 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
X

with rational p/q > 0, are lifted-LMI representable



Rational power functions

Example: {z,t :

x> 0, x7/3§t}

Start from lifted-LMI representable £ < (z1 - --2g)1/8

and replace
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Same idea works for any rational p/q > 1
e |ift = use additional variables, and
e project in the space of original variables



Even power monomial

The epigraph of even power monomial F = {x,t : 2P < t}
where p is a positive integer is lifted-LMI representable

Indeed {z,t : %P <t} <= {z,y,t : =2 <y} and
{x,y,t : y >0, y? <t}, both lifted-LMI representable

Use lifting y and project back onto z,t

Similarly, even power polynomials are lifted-LMI representable
(several monomials)



Quartic level set

Model quartic level set

F={z,t: z* <t}

as
F={zt: 3y :y>z° t>y? y>0}
LMI in x,t and y
x Yy |~ y t | —
It can be shown that it is impossible to remove the lifting variable
y while keeping a (finite-dimensional) LMI formulation



Quartic level set: from 3D to 2D

F =Ax,t :




Largest eigenvalue

Function largest eigenvalue of a symmetric matrix
(X = XT e R™" ¢t ¢ R : Amax(X) <t} is LMI representable as

X < tl,

] | |
N N — o —- n w S

Eigenvalues of matrix [ L o ]
r1 To



Sums of largest eigenvalues
Let
k
S(X) =Y NX), k=1,...,n
i=1

denote the sum of the k largest eigenvalues
of an n-by-n symmetric matrix X

The epigraph {X = XT e R™" ¢t ¢ R : Si(X) < t} is lifted-LMI
representable as

t— ks —traceZ >0
Z =0
Z — X +sl, >0

where Z and s are liftings



Determinant of a PSD matrix

The determinant
det(X) = [ [ 2:(X)
i=1

is not a convex function of X, but the function
fi(X) = —det!(X), X=X'">0

is convex when ¢ € [0, 1/n] is rational

The epigraph {X = XT e R t ¢ R : f,(X) <t} is lifted-LMI representable

X A
AT diaga | =9
tS (51"'571)(1

since we know that the latter constraint (hypograph of a concave monomial)
is lifted-LMI representable

Here A is a lower triangular matrix of liftings with diagonal entries 9,



Application: extremal ellipsoids

A little excursion in the world of ellipsoids and polytopes..

Various representations of an ellipsoid in R™

E

{x e R" : gl Pz 4 22Tg+r <0}
{x eR" : (x —z) Pz —zc) <1}
{r=Qy+azceR" : yTy<1}
{x € R"™ : ||Rx — z¢|| < 1}

where

Q=R '=P Y250



Ellipsoid volume
Volume of ellipsoid E = {Qy + z. : yly <1}
VOl E = kpdet @

where k,, is volume of n-dimensional unit ball

2(n+1)/2,(n—1)/2

- n(n—2)TI for n odd
n — 271.71/2 £
2(n/2=1)1 or n even
|1 2 3 4 5 6 7 8

n
ko | 2.00 3.14 4.19 493 526 b5.17 4.72 4.06

Unit ball has maximum volume for n = 5



Outer and inner ellipsoidal approximations

Let S C R"™ be a solid = a closed bounded convex set
with nonempty interior

e the largest volume ellipsoid Ej, contained in S
is unique and satisfies Ejy C S C nEj,

e the smallest volume ellipsoid Ey,t containing S
is unique and satisfies Egut/n C S C Eout

These are Lowner-John ellipsoids
Factor n reduces to /n if S is symmetric

How can these ellipsoids be computed 7



Ellipsoid in polytope
Let the intersection of hyperplanes
S={zeR":alx<b,i=1,...,m}
describe a polytope = bounded nonempty polyhedron
The largest volume ellipsoid contained in S is
E={Qy+=z. : y'y<1}
where @, z. are optimal solutions of the LMI problem

max det!/"Q
Q=0
1Qaill> < b — a] .




Polytope in ellipsoid
Let the convex hull of vertices S = conv {z1,...,znm}
describe a polytope
The smallest volume ellipsoid containing S is
E={z: (zx—z)"P(x—x.) <1}
where P, x. = —P~1q are optimal solutions of the LMI problem

ol

max t
t < detl/"p
P q
e
:I:;TFP:Bi + Qx?q +r<1



Sums of largest singular values

Let
k
(X)) =) o(X), k=1,...,n
i=1
denote the sum of the k largest singular values
of an n-by-m matrix X

Then the epigraph {X € R"™*™M ¢t € R : X.(X) <t} is lifted-LMI
o x7T
oi(X) = A ([ ¥ 0

representable since
and the sum of largest eigenvalues of a
symmetric matrix is lifted-LMI representable




The set of univariate polynomials that are positive on the real
axis is lifted-LMI representable in the coefficient space

Can be proved with cone duality (Nesterov) or with theory of
moments (Lasserre) - more on that later

The even polynomial

p(s) = po + p1s+ - + pops"

satisfies p(s) > 0 for all s € R if and only if

Zz—l-]ZkX’L]? k=0,1,...,2n
trace H; X

Pk

for some lifting matrix X = X7 = 0



Sum-of-squares decomposition

T he expression of p, with Hankel matrices H; comes from

p(s) =1 s -+ S"|X[1 s --- S"*
hence X > 0 naturally implies p(s) > 0

Conversely, existence of X for any polynomial p(s) > 0 follows
from the existence of a sum-of-squares (SOS) decomposition
(with at most two elements) of

p(s) = Xk q(s) >0
Matrix X has entries X;: = > 1 Ak,

Seeking the lifting matrix amounts to seeking
an SOS decomposition



Primal and dual formulations

Global minimization of polynomial p(s) = >7_, pgs”
Global optimum p*: maximum value of p such that p(s) —p >0

Primal LMI problem
max p = pg — trace HpX
s.t. traceHp. X =p, k=1,...,n
X >0
Dual LMI problem

min po + >-7—1 PrVk
st. Ho+>p_1Hpyp, =0

with Hankel structure (moment matrix)



Positive polynomials and LMIs

Example: Global minimization of the polynomial

p(s) = 48 — 925 + 565° — 135> + s*
Solving the dual LMI problem yields p* = p(5.25) = —12.89

100

80

60

min 48 — 92y; + 56y> — 13y3 + ya

1 yl y2 g 40
S.t. y1 y2 y3 | =0

Y2 Y3z Ya




Complex LMIs

The complex valued LMI

F(z) = A(z) +jB(z) = 0

IS equivalent to the real valued LMI

A(x) B(x)

_B(x) A(z) | Z°

If there is a complex solution to the LMI
then there is a real solution to the same LMI

Note that matrix A(z) = AL () is symmetric
whereas B(z) = —B!'(2) is skew-symmetric



INTERLUDE



LMI set or not 7

x1xo > 1 and x1 > 0



LMI
x1xo> > 1 and x1 >0

<

LB



LMI set or not ?




L MI



LMI set or not ?




L2



LMI set or not ?

Y+ 2x9t2 + 5 > 0, Vit € R}



NOT LMI: not basic semialgebraic

o zx% or x1,x2 >0



LMI set or not ?

-1 -0.5 0 0.5

1—2:1;1—:13%—:10%4—2:13{’20



NOT LMI: not connected

-1 -0.5 0 0.5 1 15 2



LMI set or not 7

-15 -1 -0.5 0 0.5

1—2m1—x%—x%+2x?20and wlg%



2

1—2x1 —x7 —

LMI

<~
1 0
1 o

roy 1—2xq |

a?2—|—2x1>0 and x1

<3

NI



15

LMI set or not ?

0.5

-1.5
-1.5

15



NOT LMI
but projection of an LMI

14 uy U
U 1 —wuy
1l =
r1 Ujq
1 x5
Tp up |

with two liftings w1 and u»




