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Minors

A minor of a matrix F is the determinant of a submatrix of F ,

say with row index I and column index J

If I = J this is a principal minor

If I = J = 1 . . . k this is a leading principal minor

A symmetric matrix F is positive definite iff

all its leading principal minors are positive

A symmetric matrix F is positive semidefinite iff

all its principal minors are nonnegative



Positive semidefiniteness

If F ∈ Rm×m we have 2m − 1 principal minors

A simpler and equivalent criterion follows from the fact that a
univariate polynomial t 7→ f(t) =

∑
k fm−kt

k =
∏
k(t − tk) which

has only real roots satisfies tk ≤ 0 iff fk ≥ 0

Apply to characteristic polynomial

t 7→ f(t) = det(tIm + F ) =
m∑
k=0

fm−k(F )tk

A symmetric matrix F is positive semidefinite iff fi(F ) ≥ 0, ∀i

Only m polynomials to be checked, they are (signed) sums of
principal minors



Geometry of LMI sets

Given symmetric matrices Fi we want to

characterize the shape in Rn of the LMI set

F = {x ∈ Rn : F (x) = F0 +
∑n
i=1 xiFi � 0}

Build characteristic polynomial

t 7→ f(t, x) = det(tIm + F (x)) =
m∑
k=0

fm−k(x)tk

which is monic, i.e. f0(x) = 1

Matrix F (x) is PSD iff fi(x) ≥ 0 for all i = 1, . . . ,m



Semialgebraic description

Diagonal minors are multivariate polynomials of the xi

So the LMI set can be described as

F = {x ∈ Rn : fi(x) ≥ 0, i = 1,2, . . .}

which is a basic semialgebraic set

(basic = intersection of polynomial level-sets)

Moreover, it is a convex set



Example of 2D LMI feasible set

F (x) =

 1− x1 x1 + x2 x1
x1 + x2 2− x2 0
x1 0 1 + x2

 � 0

System of 3 polynomial inequalities fi(x) ≥ 0

1st order minors: f1(x) = 4− x1 ≥ 0

LMI set = intersection of an infinite number of halfspaces

{x : yTF (x)y ≥ 0} for all y ∈ R3



2nd order: f2(x) = 5− 3x1 + x2 − 2x2
1 − 2x1x2 − 2x2
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3rd order: f3(x) = 2−2x1 +x2−3x2
1−3x1x2−2x2

2−x1x
2
2−x
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LMI feasible set = intersection of sets {x : fi(x) ≥ 0}, i = 1,2,3
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Boundary of LMI region shaped by determinant
Other polynomials only isolate convex connected component



Example of 3D LMI feasible set

F = {x ∈ R3 :

 1 x1 x2
x1 1 x3
x2 x3 1


︸ ︷︷ ︸

F (x)

� 0}

A smoothened tetrahedron..

vertices correspond to points x for which rank F (x) = 1



Semialgebraic formulation

F = {x ∈ R3 : 1+2x1x2x3−(x2
1+x2

2+x2
3) ≥ 0, 3−x2

1−x
2
2−x

2
3 ≥ 0}



Intersection of LMI sets

Intersection of LMI feasible sets is also LMI

F (x) � 0 x1 ≥ −2 2x1 + x2 ≤ 0



LMI sets

LMI sets are convex basic semialgebraic sets..

but are all convex basic semialgebraic sets LMI ?

Let us make a fundamental distinction between

• LMI representable sets

• lifted-LMI representable sets

We say that a convex set X ⊂ Rn is LMI representable if there

exists an affine mapping F (x) such that

x ∈ X ⇐⇒ F (x) � 0



LMI and lifted-LMI representability

We say that a convex set X ⊂ Rn is lifted-LMI representable if
there exists an affine mapping F (x, u) such that

x ∈ X ⇐⇒ ∃u ∈ Rm : F (x, u) � 0

A set X is lifted-LMI representable when

x ∈ X ⇐⇒ ∃u : F (x, u) � 0

i.e. when it is the projection of the solution set of the LMI
F (x, u) � 0 onto the x-space and u are additional, or lifting
variables

In other words, lifting variables u are not allowed
in LMI representations



LMI and lifted-LMI functions

Similarly, a convex function f : Rn → R is LMI (or lifted-LMI)

representable if its epigraph

{x, t : f(x) ≤ t}

is an LMI (or lifted-LMI) representable set
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Conic quadratic forms

The Lorentz, or ice-cream cone

{x, t ∈ Rn × R : ‖x‖2 ≤ t}

is LMI representable as

{
x, t ∈ Rn × R :

[
tIn x

xT t

]
� 0

}

As a result, all second-order conic sets are LMI representable

In the sequel we give a list of LMI and lifted-LMI representable

sets (following Ben-Tal, Nemirovski, Nesterov)



Quadratic forms

The Euclidean norm {x, t ∈ Rn × R : ‖x‖2 ≤ t}
is LMI representable (see previous slide)

The squared Euclidean norm {x, t ∈ Rn × R : xTx ≤ t}
is also LMI representable as

[
t xT

x In

]
� 0



Quadratic forms (2)

The convex quadratic set {x ∈ Rn : xTAx + bTx + c ≤ 0} with

A = AT � 0 is LMI representable as

[
−bTx− c xTDT

Dx In

]
� 0

where D is the Cholesky factor of A = DTD



Hyperbola

The branch of hyperbola {x, y ∈ R2 : x ≥ 0, xy ≥ 1}
is LMI representable as

[
x 1
1 y

]
� 0



Geometric mean of two variables

The hypograph of the geometric mean of 2 variables

{x1, x2, t ∈ R3 : x1, x2 ≥ 0,
√
x1x2 ≥ t} is LMI representable as

[
x1 t
t x2

]
� 0



Geometric mean of several variables

The hypograph of the geometric mean of 2k variables
{x1, . . . , x2k, t ∈ R2k+1 : xi ≥ 0, (x1 · · ·x2k)

1/2k ≥ t}
is lifted-LMI representable

Proof: iterate the previous construction by introducing lifting
variables

Example with k = 3:

(x1x2 · · ·x8)1/8 ≥ t
√
x1x2 ≥ x11√
x3x4 ≥ x12√
x5x6 ≥ x13√
x7x8 ≥ x14


√
x11x12 ≥ x21√
x13x14 ≥ x22

}
√
x21x22 ≥ t

Useful idea in other LMI representability problems



Rational power functions

Following the same ideas, the increasing rational power functions

f(x) = xp/q, x ≥ 0

with rational p/q ≥ 1, are lifted-LMI representable



Rational power functions

Similarly, the decreasing rational power functions

g(x) = x−p/q, x ≥ 0

with rational p/q ≥ 0, are lifted-LMI representable



Rational power functions

Example: {x, t : x ≥ 0, x7/3 ≤ t}
Start from lifted-LMI representable t̂ ≤ (x̂1 · · · x̂8)1/8

and replace

t̂ = x̂1 = x ≥ 0
x̂2 = x̂3 = x̂4 = t ≥ 0
x̂5 = x̂6 = x̂7 = x̂8 = 1

to get

x ≤ x1/8t3/8

x7/8 ≤ t3/8

x7/3 ≤ t

Same idea works for any rational p/q ≥ 1
• lift = use additional variables, and
• project in the space of original variables



Even power monomial

The epigraph of even power monomial F = {x, t : x2p ≤ t}
where p is a positive integer is lifted-LMI representable

Indeed {x, t : x2p ≤ t} ⇐⇒ {x, y, t : x2 ≤ y} and

{x, y, t : y ≥ 0, yp ≤ t}, both lifted-LMI representable

Use lifting y and project back onto x, t

Similarly, even power polynomials are lifted-LMI representable

(several monomials)



Quartic level set

Model quartic level set

F = {x, t : x4 ≤ t}

as

F = {x, t : ∃y : y ≥ x2, t ≥ y2, y ≥ 0}

LMI in x, t and y [
1 x
x y

]
� 0

[
1 y
y t

]
� 0

It can be shown that it is impossible to remove the lifting variable

y while keeping a (finite-dimensional) LMI formulation



Quartic level set: from 3D to 2D

F = {x, t : x4 ≤ t}



Largest eigenvalue

Function largest eigenvalue of a symmetric matrix
{X = XT ∈ Rn×n, t ∈ R : λmax(X) ≤ t} is LMI representable as

X � tIn

Eigenvalues of matrix

[
1 x1

x1 x2

]



Sums of largest eigenvalues

Let

Sk(X) =
k∑
i=1

λi(X), k = 1, . . . , n

denote the sum of the k largest eigenvalues
of an n-by-n symmetric matrix X

The epigraph {X = XT ∈ Rn×n, t ∈ R : Sk(X) ≤ t} is lifted-LMI
representable as

t− ks− trace Z � 0
Z � 0

Z −X + sIn � 0

where Z and s are liftings



Determinant of a PSD matrix

The determinant

det(X) =
n∏
i=1

λi(X)

is not a convex function of X, but the function

fq(X) = −detq(X), X = XT � 0

is convex when q ∈ [0, 1/n] is rational

The epigraph {X = XT ∈ Rn×n, t ∈ R : fq(X) ≤ t} is lifted-LMI representable[
X ∆

∆T diag ∆

]
� 0

t ≤ (δ1 · · · δn)q

since we know that the latter constraint (hypograph of a concave monomial)
is lifted-LMI representable

Here ∆ is a lower triangular matrix of liftings with diagonal entries δi



Application: extremal ellipsoids

A little excursion in the world of ellipsoids and polytopes..

Various representations of an ellipsoid in Rn

E = {x ∈ Rn : xTPx+ 2xT q + r ≤ 0}
= {x ∈ Rn : (x− xc)TP (x− xc) ≤ 1}
= {x = Qy + xc ∈ Rn : yTy ≤ 1}
= {x ∈ Rn : ‖Rx− xc‖ ≤ 1}

where

Q = R−1 = P−1/2 � 0



Ellipsoid volume

Volume of ellipsoid E = {Qy + xc : yTy ≤ 1}

vol E = kn detQ

where kn is volume of n-dimensional unit ball

kn =


2(n+1)/2π(n−1)/2

n(n−2)!! for n odd

2πn/2

n(n/2−1)! for n even

n 1 2 3 4 5 6 7 8
kn 2.00 3.14 4.19 4.93 5.26 5.17 4.72 4.06

Unit ball has maximum volume for n = 5



Outer and inner ellipsoidal approximations

Let S ⊂ Rn be a solid = a closed bounded convex set

with nonempty interior

• the largest volume ellipsoid Ein contained in S

is unique and satisfies Ein ⊂ S ⊂ nEin

• the smallest volume ellipsoid Eout containing S

is unique and satisfies Eout/n ⊂ S ⊂ Eout

These are Löwner-John ellipsoids

Factor n reduces to
√
n if S is symmetric

How can these ellipsoids be computed ?



Ellipsoid in polytope
Let the intersection of hyperplanes

S = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m}
describe a polytope = bounded nonempty polyhedron

The largest volume ellipsoid contained in S is

E = {Qy + xc : yTy ≤ 1}
where Q, xc are optimal solutions of the LMI problem

max det1/nQ
Q � 0
‖Qai‖2 ≤ bi − aTi xc



Polytope in ellipsoid

Let the convex hull of vertices S = conv {x1, . . . , xm}
describe a polytope

The smallest volume ellipsoid containing S is

E = {x : (x− xc)TP (x− xc) ≤ 1}
where P , xc = −P−1q are optimal solutions of the LMI problem

max t

t ≤ det1/nP[
P q
qT r

]
� 0

xTi Pxi + 2xTi q + r ≤ 1



Sums of largest singular values

Let

Σk(X) =
k∑
i=1

σi(X), k = 1, . . . , n

denote the sum of the k largest singular values
of an n-by-m matrix X

Then the epigraph {X ∈ Rn×m, t ∈ R : Σk(X) ≤ t} is lifted-LMI
representable since

σi(X) = λi

([
0 XT

X 0

])

and the sum of largest eigenvalues of a
symmetric matrix is lifted-LMI representable



Positive polynomials

The set of univariate polynomials that are positive on the real
axis is lifted-LMI representable in the coefficient space

Can be proved with cone duality (Nesterov) or with theory of
moments (Lasserre) - more on that later

The even polynomial

p(s) = p0 + p1s+ · · ·+ p2ns
2n

satisfies p(s) ≥ 0 for all s ∈ R if and only if

pk =
∑
i+j=kXij, k = 0,1, . . . ,2n

= traceHkX

for some lifting matrix X = XT � 0



Sum-of-squares decomposition

The expression of pk with Hankel matrices Hk comes from

p(s) = [1 s · · · sn]X[1 s · · · sn]?

hence X � 0 naturally implies p(s) ≥ 0

Conversely, existence of X for any polynomial p(s) ≥ 0 follows
from the existence of a sum-of-squares (SOS) decomposition
(with at most two elements) of

p(s) =
∑
k q

2
k(s) ≥ 0

Matrix X has entries Xij =
∑
k qkiqkj

Seeking the lifting matrix amounts to seeking
an SOS decomposition



Primal and dual formulations

Global minimization of polynomial p(s) =
∑n
k=0 pks

k

Global optimum p∗: maximum value of p̂ such that p(s)− p̂ ≥ 0

Primal LMI problem

max p̂ = p0 − traceH0X
s.t. traceHkX = pk, k = 1, . . . , n

X � 0

Dual LMI problem

min p0 +
∑n
k=1 pkyk

s.t. H0 +
∑n
k=1Hkyk � 0

with Hankel structure (moment matrix)



Positive polynomials and LMIs

Example: Global minimization of the polynomial

p(s) = 48− 92s+ 56s2 − 13s3 + s4

Solving the dual LMI problem yields p∗ = p(5.25) = −12.89

min 48− 92y1 + 56y2 − 13y3 + y4

s.t.

 1 y1 y2

y1 y2 y3

y2 y3 y4

 � 0



Complex LMIs

The complex valued LMI

F (x) = A(x) + jB(x) � 0

is equivalent to the real valued LMI

[
A(x) B(x)
−B(x) A(x)

]
� 0

If there is a complex solution to the LMI

then there is a real solution to the same LMI

Note that matrix A(x) = AT (x) is symmetric

whereas B(x) = −BT (x) is skew-symmetric



INTERLUDE



LMI set or not ?
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LMI

x1x2 ≥ 1 and x1 ≥ 0

⇐⇒

[
x1 1
1 x2

]
� 0



LMI set or not ?
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LMI

x2 ≥ x2
1

⇐⇒

[
1 x1
x1 x2

]
� 0



LMI set or not ?
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LMI

x2
1 + x2

2 ≤ 1

⇐⇒

[
1 + x1 x2
x2 1− x1

]
� 0



LMI set or not ?
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NOT LMI: not basic semialgebraic
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LMI set or not ?
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NOT LMI: not connected
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LMI set or not ?
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LMI

1− 2x1 − x2
1 − x

2
2 + 2x3

1 ≥ 0 and x1 ≤ 1
2

⇐⇒

 1 x1 0
x1 1 x2
0 x2 1− 2x1

 � 0



LMI set or not ?
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NOT LMI

but projection of an LMI

1 + u1 u2
u2 1− u1

1 x1
x1 u1

1 x2
x2 u2


� 0

with two liftings u1 and u2


