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Primal and dual

For primal problem

*

p* = infz go(x)
S.t. gz(a:)gO

define Lagrangian
L(z,z) = go(z) + Zzz'gz'(ﬂ?) = [go(x) g1(z) go(x) -+ ][1 21 25 ---]*

and Lagrange dual function

f(z) = inf L(z, 2)
where z is a dual multiplier

Function f is always concave even if primal problem is nonconvex



Weak duality

Define problem

= sup, f(z)
st. z>0

which is always convex since f is concave

Weak duality always holds: p* > because

f(z) < go(x) + Zzz g;(z) < go(x)

7 <0
for any primal feasible x and dual feasible z

The difference p* — d* > 0 is called duality gap



Strong duality

Sometimes, assumptions ensure that strong duality holds:

*

p:

An example is Slater’'s constraint qualification assuming a strictly
feasible convex primal (or dual) problem



Geometric interpretation of duality

Consider the primal optimization problem

*

p* = infz go(x)
s.t. g1(x) <O

with Lagrangian L(x,z) = go(x) + zg1 (x)
dual function f(z) = infy L(x, 2)
and problem

= sup, f(2)
st. z>0



Geometric duality

go(Xx)

L(x,z)
f(z) gi1(x)

\<(Z’1)

Lagrangian L(xz,z) = go(x) + zg1(x) is a supporting line with
(negative) slope —z, whose intersection with g1 (xz) = 0 axis gives
dual function f(z) = infy L(x, 2)




Geometric duality

go(X)

g1(x)

Three supporting lines, including the optimum z* yielding d* < p*
(duality gap = no strong duality here)



Complementary slackness

Suppose that strong duality holds, let £* be primal optimal and
2* be dual optimal, then

f(z*)
infs (go(x) + 5; 2gi(x))
g0(=*) + ¥; 2fgi(2*)
go(z*)

go(z™)

IANIA |

from which it follows that z7g;(z*) =0

This is complementary slackness: zf >0 == g;(z*) =0
or equivalently g;(z*) <0 = 27 =0

In words, the ¢th optimal multiplier is zero
unless the th constraint is active at the optimum



Assuming that functions g; are differentiable and that strong
duality holds, then the gradient of Lagrangian L(x,z*) over x
vanishes at z*:

g;(z*) < 0 (primal feasible)
z¥ > 0 (dual feasible)
z¥g;(z*) = 0 (complementary)
Vao(a*) + X4 2 Vgi(a*) = 0

Necessary Karush-Kuhn-Tucker conditions
satisfied by any primal and dual optimal pair

For convex problems, KKT conditions are also sufficient



Equality constraints

Multipliers corresponding to equality constraints are unconstrained:

p* = infz go(x)
S.t. h](a:) =0
gi(x) <0

Lagrangian L(x,y,2) = go(z) + > y;h;(z) + X; z:9:(x)
dual function f(y,z) = infy L(x,vy, 2)
dual problem

= SUPy 2 f(y,2)
S.t. z>0

no constraint on multiplier vector y



Primal LP

p* = infy Ly
s.t. Ax=b
x>0

dual function

f(y,2)

infz(cle + y1l'(b— Az) — 212)
bty ife—Aly—2z=0

| —oco otherwise

Dual LP

= sup, bly
st. z=c—Aly>0



Primal SDP

p* = infyxy traceCX
s.t. trace A; X =,
X >0

dual function
f(y,Z) = infx (traceCX + >, y;(b; —trace A;X) — trace ZX)
_ { by ifC—2Z—3,y4;, =0
—oo Otherwise
Dual SDP

= sup, bly
S.t. Z =C — ZzyzAz ~ 0



Example of SDP duality gap

Example
Consider the primal semidefinite program
inf 1
0O x1 0
S.t. r1 X2 0 EO
O O 14 x
with
sup
— (14+v1)/2 —
s.t. (14 1)/2 0 — >0

In the primal necessarily x1 = 0 (x1 appears in a row with zero diagonal entry)
so the primal optimum is 1 = 0O

Similarly, in the dual necessarily (141:)/2 = 0 so the dual optimum is y; = —1

There is a nonzero duality gap here



T heorem of the alternatives

Consider primal feasibility problem

gi(x) >0
and dual feasibility problem

f(y) <0, y=>0
with dual function f(y) = sup;>.; y;9:(x)

Dual feasible implies primal infeasible

Proof: if x* is primal feasible then f(y) = sup;>;y;g;(x) >
> i y;9;(x*) and hence f(y) >0 for all y >0

Separating hyperplanes in convex analysis

Can be generalized in the context of convex conic programming..



Farkas' lemma

When solving a primal/dual conic problem

inf ¢z sup bly
st. Ar=0b zeK st. c—AlyeK

in the absence of a duality gap, then either

e 1z is optimal and y certifies optimality, i.e. bly = c¢lz, or

e vy is optimal and z certifies optimality, i.e. ¢l =bly, or

e thereis no xz e K with Ax = b and this is certified by vy, i.e.
bl'y >0 and —Aly € K, or

e there is no y such that ¢ — ALy € K and this is certified by
r,ie clz<0, Az =0,z K

T

Either we find a feasible point or
we certify that no such point exists



In the LMI formulation, the primal problem is actually in dual
SDP form (confusing indeed..)

p* = infy clz

S.t. F(CIZ) = Fp + YixiF; = 0
with LMI in primal SDP form

— Supy trace — FpZ
s.t. trace F;Z = ¢
Z =0

Primal (resp. dual) not strictly feasible iff there exists
a certificate of infeasibility provided by the dual (resp. primal)



Theorem of alternatives for LMIs

For the LMI mapping
F(z) = Fo+ > z;F
i

Exactly one statement is true

e there exists = s.t. F'(xz) =0

e there exists a nonzero Z = Z1 = 0 s.t.
trace FpZ <0 and trace F;Z =0 for + > 0O

Useful for detecting infeasibility of LMIs

Rich literature on theorems of alternatives for
generalized inequalities, e.g. nonpolyhedral convex cones



S-procedure: frequently useful in robust and nonlinear control,
IS an outcome of the theorem of alternatives

There exists no nonzero complex vector x such that

x*A;x>0,1=1,...,p

if there exist real numbers y;, > 0 such that
> e YiAs < 0

If there exists zg such that zjA;xzg > 0 for some i,
the converse also holds

e when p = 2 for real quadratic forms

e when p = 3 for complex quadratic forms



