I.3. LMI DUALITY

Didier HENRION henrion@laas.fr

Belgian Graduate School on Systems, Control, Optimization and Networks

Leuven - April and May 2010

Primal and dual

For primal problem

$$p^{\star} = \inf_{x} g_0(x)$$

s.t. $g_i(x) \leq 0$

define Lagrangian

$$L(x,z) = g_0(x) + \sum_i z_i g_i(x) = [g_0(x) g_1(x) g_2(x) \cdots][1 z_1 z_2 \cdots]^T$$

and Lagrange dual function

$$f(z) = \inf_{x} L(x, z)$$

where z is a dual multiplier

Function f is always concave even if primal problem is nonconvex

Weak duality

Define dual problem

$$d^{\star} = \sup_{z} f(z)$$

s.t. $z \ge 0$

which is always convex since f is concave

Weak duality always holds: $p^* \ge d^*$ because

$$f(z) \le g_0(x) + \sum_i z_i \underbrace{g_i(x)}_{\le 0} \le g_0(x)$$

for any primal feasible x and dual feasible z

The difference $p^* - d^* \ge 0$ is called duality gap

Strong duality

Sometimes, assumptions ensure that strong duality holds:

$$p^{\star} = d^{\star}$$

An example is Slater's constraint qualification assuming a strictly feasible convex primal (or dual) problem

Geometric interpretation of duality

Consider the primal optimization problem

$$p^{\star} = \inf_{x} g_0(x)$$

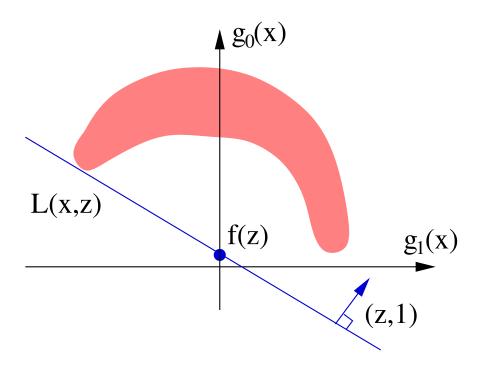
s.t. $g_1(x) \leq 0$

with Lagrangian $L(x,z)=g_0(x)+zg_1(x)$ dual function $f(z)=\inf_x L(x,z)$ and dual problem

$$d^{\star} = \sup_{z} f(z)$$

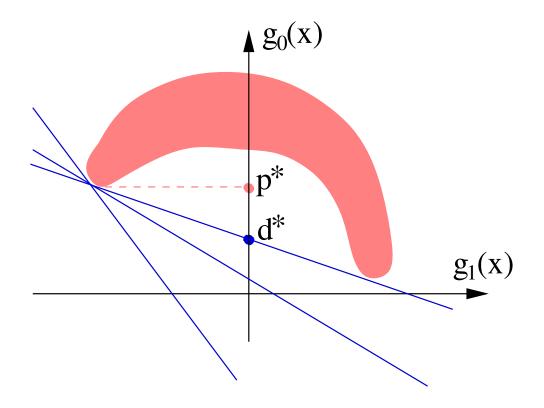
s.t. $z \ge 0$

Geometric duality



Lagrangian $L(x,z)=g_0(x)+zg_1(x)$ is a supporting line with (negative) slope -z, whose intersection with $g_1(x)=0$ axis gives dual function $f(z)=\inf_x L(x,z)$

Geometric duality



Three supporting lines, including the optimum z^* yielding $d^* < p^*$ (duality gap = no strong duality here)

Complementary slackness

Suppose that strong duality holds, let x^* be primal optimal and z^* be dual optimal, then

$$g_0(x^*) = f(z^*)$$

$$= \inf_x \left(g_0(x) + \sum_i z_i^* g_i(x) \right)$$

$$\leq g_0(x^*) + \sum_i z_i^* g_i(x^*)$$

$$\leq g_0(x^*)$$

from which it follows that $z_i^* g_i(x^*) = 0$

This is complementary slackness: $z_i^* > 0 \implies g_i(x^*) = 0$ or equivalently $g_i(x^*) < 0 \implies z_i^* = 0$

In words, the ith optimal multiplier is zero unless the ith constraint is active at the optimum

KKT optimality conditions

Assuming that functions g_i are differentiable and that strong duality holds, then the gradient of Lagrangian $L(x, z^*)$ over x vanishes at x^* :

$$g_i(x^*) \leq 0$$
 (primal feasible)
 $z_i^* \geq 0$ (dual feasible)
 $z_i^* g_i(x^*) = 0$ (complementary)
 $\nabla g_0(x^*) + \sum_i z_i^* \nabla g_i(x^*) = 0$

Necessary Karush-Kuhn-Tucker conditions satisfied by any primal and dual optimal pair

For convex problems, KKT conditions are also sufficient

Equality constraints

Multipliers corresponding to equality constraints are unconstrained:

$$p^*$$
 = \inf_x $g_0(x)$
s.t. $h_j(x) = 0$
 $g_i(x) \le 0$

Lagrangian $L(x,y,z)=g_0(x)+\sum_j y_j h_j(x)+\sum_i z_i g_i(x)$ dual function $f(y,z)=\inf_x L(x,y,z)$ dual problem

$$d^{\star} = \sup_{y,z} f(y,z)$$

s.t. $z \ge 0$

no constraint on multiplier vector y

LP duality

Primal LP

$$p^{\star} = \inf_{x} c^{T}x$$
s.t. $Ax = b$
 $x \ge 0$

dual function

$$f(y,z) = \inf_{x} (c^{T}x + y^{T}(b - Ax) - z^{T}x)$$

$$= \begin{cases} b^{T}y & \text{if } c - A^{T}y - z = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Dual LP

SDP duality

Primal SDP

$$p^{\star} = \inf_{X} \operatorname{trace} CX$$

s.t. $\operatorname{trace} A_{i}X = b_{i}$
 $X \succeq 0$

dual function

$$f(y,Z) = \inf_{X} (\operatorname{trace} CX + \sum_{i} y_{i}(b_{i} - \operatorname{trace} A_{i}X) - \operatorname{trace} ZX)$$

$$= \begin{cases} b^{T}y & \text{if } C - Z - \sum_{i} y_{i}A_{i} = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Dual SDP

Example of SDP duality gap

Example

Consider the primal semidefinite program

inf
$$x_1$$
s.t.
$$\begin{bmatrix} 0 & x_1 & 0 \\ x_1 & x_2 & 0 \\ 0 & 0 & 1+x_1 \end{bmatrix} \succeq 0$$

with dual

sup
$$y_1$$

s.t.
$$\begin{bmatrix} -y_2 & (1+y_1)/2 & -y_3 \\ (1+y_1)/2 & 0 & -y_4 \\ -y_3 & -y_4 & -y_1 \end{bmatrix} \succeq 0$$

In the primal necessarily $x_1 = 0$ (x_1 appears in a row with zero diagonal entry) so the primal optimum is $x_1 = 0$

Similarly, in the dual necessarily $(1+y_1)/2=0$ so the dual optimum is $y_1=-1$

There is a nonzero duality gap here

Theorem of the alternatives

Consider primal feasibility problem

$$g_i(x) \geq 0$$

and dual feasibility problem

$$f(y) < 0, y \ge 0$$

with dual function $f(y) = \sup_{x \in I} y_i g_i(x)$

Dual feasible implies primal infeasible

Proof: if x^* is primal feasible then $f(y) = \sup_x \sum_i y_i g_i(x) \ge \sum_i y_i g_i(x^*)$ and hence $f(y) \ge 0$ for all $y \ge 0$

Separating hyperplanes in convex analysis

Can be generalized in the context of convex conic programming..

Farkas' lemma

When solving a primal/dual conic problem

$$\begin{array}{lll} \inf & c^T x & & \sup & b^T y \\ \mathrm{s.t.} & Ax = b & x \in K & & \mathrm{s.t.} & c - A^T y \in K \end{array}$$

in the absence of a duality gap, then either

- x is optimal and y certifies optimality, i.e. $b^Ty=c^Tx$, or
- y is optimal and x certifies optimality, i.e. $c^Tx = b^Ty$, or
- there is no $x \in K$ with Ax = b and this is certified by y, i.e. $b^Ty > 0$ and $-A^Ty \in K$, or
- there is no y such that $c-A^Ty\in K$ and this is certified by x, i.e. $c^Tx<0$, Ax=0, $x\in K$

Either we find a feasible point or we certify that no such point exists

LMI duality

In the LMI formulation, the primal problem is actually in dual SDP form (confusing indeed..)

$$p^*$$
 = $\inf_x c^T x$
s.t. $F(x) = F_0 + \sum_i x_i F_i \succeq 0$

with dual LMI in primal SDP form

$$d^{\star} = \sup_{Z} \operatorname{trace} -F_{0}Z$$

s.t. $\operatorname{trace} F_{i}Z = c_{i}$
 $Z \succeq 0$

Primal (resp. dual) not strictly feasible iff there exists a certificate of infeasibility provided by the dual (resp. primal)

Theorem of alternatives for LMIs

For the LMI mapping

$$F(x) = F_0 + \sum_i x_i F_i$$

Exactly one statement is true

- there exists x s.t. F(x) > 0
- there exists a nonzero $Z=Z^T\succeq 0$ s.t. trace $F_0Z\leq 0$ and trace $F_iZ=0$ for i>0

Useful for detecting infeasibility of LMIs

Rich literature on theorems of alternatives for generalized inequalities, e.g. nonpolyhedral convex cones

S-procedure

S-procedure: frequently useful in robust and nonlinear control, is an outcome of the theorem of alternatives

There exists no nonzero complex vector x such that

$$x^*A_ix \ge 0, i = 1, \dots, p$$

if there exist real numbers $y_i \geq 0$ such that

$$\sum_{i=1}^{p} y_i A_i < 0$$

If there exists x_0 such that $x_0^*A_ix_0 > 0$ for some i, the converse also holds

- when p = 2 for real quadratic forms
- ullet when p=3 for complex quadratic forms