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Primal and dual

For primal problem

p? = infx g0(x)
s.t. gi(x) ≤ 0

define Lagrangian

L(x, z) = g0(x) +
∑
i

zigi(x) = [g0(x) g1(x) g2(x) · · ·][1 z1 z2 · · ·]T

and Lagrange dual function

f(z) = inf
x

L(x, z)

where z is a dual multiplier

Function f is always concave even if primal problem is nonconvex



Weak duality

Define dual problem

d? = supz f(z)
s.t. z ≥ 0

which is always convex since f is concave

Weak duality always holds: p? ≥ d? because

f(z) ≤ g0(x) +
∑
i

zi gi(x)︸ ︷︷ ︸
≤0

≤ g0(x)

for any primal feasible x and dual feasible z

The difference p? − d? ≥ 0 is called duality gap



Strong duality

Sometimes, assumptions ensure that strong duality holds:

p? = d?

An example is Slater’s constraint qualification assuming a strictly

feasible convex primal (or dual) problem



Geometric interpretation of duality

Consider the primal optimization problem

p? = infx g0(x)
s.t. g1(x) ≤ 0

with Lagrangian L(x, z) = g0(x) + zg1(x)

dual function f(z) = infx L(x, z)

and dual problem

d? = supz f(z)
s.t. z ≥ 0



Geometric duality
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Lagrangian L(x, z) = g0(x) + zg1(x) is a supporting line with

(negative) slope −z, whose intersection with g1(x) = 0 axis gives

dual function f(z) = infx L(x, z)



Geometric duality
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Three supporting lines, including the optimum z? yielding d? < p?

(duality gap = no strong duality here)



Complementary slackness

Suppose that strong duality holds, let x? be primal optimal and
z? be dual optimal, then

g0(x?) = f(z?)

= infx

(
g0(x) +

∑
i z?

i gi(x)
)

≤ g0(x?) +
∑

i z?
i gi(x?)

≤ g0(x?)

from which it follows that z?
i gi(x?) = 0

This is complementary slackness: z?
i > 0 =⇒ gi(x?) = 0

or equivalently gi(x?) < 0 =⇒ z?
i = 0

In words, the ith optimal multiplier is zero
unless the ith constraint is active at the optimum



KKT optimality conditions

Assuming that functions gi are differentiable and that strong

duality holds, then the gradient of Lagrangian L(x, z?) over x

vanishes at x?:

gi(x?) ≤ 0 (primal feasible)
z?
i ≥ 0 (dual feasible)

z?
i gi(x?) = 0 (complementary)
∇g0(x?) +

∑
i z?

i∇gi(x?) = 0

Necessary Karush-Kuhn-Tucker conditions

satisfied by any primal and dual optimal pair

For convex problems, KKT conditions are also sufficient



Equality constraints

Multipliers corresponding to equality constraints are unconstrained:

p? = infx g0(x)
s.t. hj(x) = 0

gi(x) ≤ 0

Lagrangian L(x, y, z) = g0(x) +
∑

j yjhj(x) +
∑

i zigi(x)
dual function f(y, z) = infx L(x, y, z)
dual problem

d? = supy,z f(y, z)
s.t. z ≥ 0

no constraint on multiplier vector y



LP duality

Primal LP

p? = infx cTx
s.t. Ax = b

x ≥ 0

dual function

f(y, z) = infx(cTx + yT (b−Ax)− zTx)

=

{
bTy if c−ATy − z = 0
−∞ otherwise

Dual LP

d? = supy bTy

s.t. z = c−ATy ≥ 0



SDP duality

Primal SDP

p? = infX trace CX
s.t. trace AiX = bi

X � 0

dual function

f(y, Z) = infX (trace CX +
∑

i yi(bi − trace AiX)− trace ZX)

=

{
bTy if C − Z −

∑
i yiAi = 0

−∞ otherwise

Dual SDP

d? = supy bTy
s.t. Z = C −

∑
i yiAi � 0



Example of SDP duality gap

Example
Consider the primal semidefinite program

inf x1

s.t.

 0 x1 0
x1 x2 0
0 0 1 + x1

 � 0

with dual
sup y1

s.t.

 −y2 (1 + y1)/2 −y3

(1 + y1)/2 0 −y4

−y3 −y4 −y1

 � 0

In the primal necessarily x1 = 0 (x1 appears in a row with zero diagonal entry)
so the primal optimum is x1 = 0

Similarly, in the dual necessarily (1+y1)/2 = 0 so the dual optimum is y1 = −1

There is a nonzero duality gap here



Theorem of the alternatives

Consider primal feasibility problem

gi(x) ≥ 0

and dual feasibility problem

f(y) < 0, y ≥ 0

with dual function f(y) = supx
∑

i yigi(x)

Dual feasible implies primal infeasible

Proof: if x∗ is primal feasible then f(y) = supx
∑

i yigi(x) ≥∑
i yigi(x∗) and hence f(y) ≥ 0 for all y ≥ 0

Separating hyperplanes in convex analysis

Can be generalized in the context of convex conic programming..



Farkas’ lemma

When solving a primal/dual conic problem

inf cTx
s.t. Ax = b x ∈ K

sup bTy

s.t. c−ATy ∈ K

in the absence of a duality gap, then either

• x is optimal and y certifies optimality, i.e. bTy = cTx, or
• y is optimal and x certifies optimality, i.e. cTx = bTy, or
• there is no x ∈ K with Ax = b and this is certified by y, i.e.
bTy > 0 and −ATy ∈ K, or
• there is no y such that c − ATy ∈ K and this is certified by
x, i.e. cTx < 0, Ax = 0, x ∈ K

Either we find a feasible point or
we certify that no such point exists



LMI duality

In the LMI formulation, the primal problem is actually in dual
SDP form (confusing indeed..)

p? = infx cTx
s.t. F (x) = F0 +

∑
i xiFi � 0

with dual LMI in primal SDP form

d? = supZ trace − F0Z
s.t. trace FiZ = ci

Z � 0

Primal (resp. dual) not strictly feasible iff there exists
a certificate of infeasibility provided by the dual (resp. primal)



Theorem of alternatives for LMIs

For the LMI mapping

F (x) = F0 +
∑
i

xiFi

Exactly one statement is true
• there exists x s.t. F (x) � 0
• there exists a nonzero Z = ZT � 0 s.t.

trace F0Z ≤ 0 and trace FiZ = 0 for i > 0

Useful for detecting infeasibility of LMIs

Rich literature on theorems of alternatives for

generalized inequalities, e.g. nonpolyhedral convex cones



S-procedure

S-procedure: frequently useful in robust and nonlinear control,
is an outcome of the theorem of alternatives

There exists no nonzero complex vector x such that

x∗Aix ≥ 0, i = 1, . . . , p

if there exist real numbers yi ≥ 0 such that

∑p
i=1 yiAi ≺ 0

If there exists x0 such that x∗0Aix0 > 0 for some i,
the converse also holds
• when p = 2 for real quadratic forms
• when p = 3 for complex quadratic forms


