
I.1. TECHNICAL BACKGROUND

Didier HENRION
henrion@laas.fr

Belgian Graduate School on

Systems, Control, Optimization and Networks

Leuven - April and May 2010



Linear algebra

Linear system of equations (LSE)

Ax = b

with given A ∈ Rm×n, b ∈ Rm and x ∈ Rn to be found

Can be solved by transforming A into some canonical form
e.g. triangular, diagonal..

Parametrization of all solutions along an affine subspace

x = x0 +Ny

with x0 ∈ Rn particular solution satisfying Ax0 = b

and N ∈ Rn×(n−r), a null-space basis for A, such that

AN = 0, rankA = r



Solutions

Either there are no solution

r < rank [A b]

or there is a unique solution

r = m = n

or there is an infinity of solutions

r < n

Computationally, testing the rank condition, finding a particular

solution and parametrizing all solutions can be achieved in one

shot with the singular value decomposition, svd in Matlab



SVD

Given A ∈ Rm×n, find U, S, V such that

A = USV T

and UTU = Im, V TV = In, S = diag si, si ≥ 0

Matrices U and V are orthogonal, they respect

the geometry of row and column subspaces

Denoting x̄ = V Tx and b̄ = UT b, our LSE becomes diagonal[
S11 S12
S21 S22

] [
x̄1
x̄2

]
=

[
b̄1
b̄2

]
with S11 ∈ Rr×r the nonzero part of S



Solving LSE via SVD

If S = S11 there is a unique solution

x = V S−1UT b

Otherwise if b̄2 6= 0 there is no solution

Otherwise there is an infinity of solutions

x = x0 +Ny

with

x0 = V

[
S−1

11 b̄1
0

]
, N = V

[
0

In−r

]



QR factorization

More economical than the SVD is the QR factorization

A = QR

where Q is orthogonal (QTQ = Im) and R is upper triangular

The LSE

Ax = b

is then triangularized

Rx = QT b

and solved by backward subsitution

Similarly we can find a basis for the null-space of A



Geometric interpretation

We have converted an affine subspace in implicit form

Ax = b

into an affine subspace in explicit or parametric form

x = x0 +Ny

Sometimes one formulation is more handy than the other

Later on we will enforce additional constraints

x ∈ K

where K is a convex cone (to be defined)



Symmetric matrices

Any A ∈ Rn×n has an eigenvalue decomposition
AV = V D

with D diagonal, and V non-singular (if A is nondefective), both
possibly complex-valued, see eig in Matlab

If A = AT is symmetric then V can be orthogonal (V TV = In)
A = V DV T

with D = diag di real and columns in V can be reordered such
that d1 ≥ d2 · · · ≥ dn, see also schur in Matlab

If A � 0 we say that A is positive semidefinite and then di ≥ 0

If A � 0 we say that A is positive definite and then di > 0,
see also chol in Matlab



Who is Cholesky ?

André Louis Cholesky (1875-1918) was a French military officer
(graduated from Ecole Polytechnique) involved in geodesy

He proposed a new procedure for solving least-squares triangu-
lation problems, just before falling for his country during WWI





Inner product

In Euclidean space Rn the inner product is defined as:

< x, y >= xTy =
∑
i

xiyi

The squared Euclidean norm, or two-norm, of vector x is then

‖x‖22 =< x, x >=
∑
i

x2
i

In the space of symmetric matrices of size n, isomorphic to

R
n(n+1)

2 , the inner product is defined as:

< X,Y >= trace (XY )

The squared Frobenius norm of matrix X is then

‖X‖2F =< X,X >=
∑
i

∑
j

X2
ij



Exact vs. approximate

A linear system of equations with rational data has a rational

solution = both input data and output data can be represented

exactly, or symbolically, on a computer

Some problems cannot be solved exactly, e.g. finding roots of

univariate polynomials of degree 5 or more

In this case one must resort to approximate data representation

and processing on the computer, using e.g. the IEEE floating

point arithmetic

Impact of approximations, or rounding errors, is quantified by

numerical analysis



Numerical algorithms

Matlab functions svd, eig, schur, qr and chol are implementations

of algorithms developed by numerical analysts

Core of Matlab = LINPACK, EISPACK (1984) LAPACK (2000)

Key concepts:

• conditioning

• stability

• complexity

J. H. Wilkinson (1960s), N. J. Higham (2002)



original data
exact computation

exact solution

numerical solution

backward error

algorithm

condition number

data

forward error

perturbed data exact computation

x

F

y = F (x)

?

ȳ = y+?

= F̄ (x) = F (x̄)

F̄

x̄ = x + ε

ε

backward
error

forward
error

numerical
computation

≤ ×

F



Conditioning

Property of the input data, not of the algorithm

A large condition number means that

the data are sensitive or ill-conditioned

A very-large or infinite condition number corresponds to

an ill-posed problem

Sometimes good conditioning estimates are available



Stability

Property of the algorithm, not of the input data

A small backward error corresponds to
a numerically stable algorithm

A stable algorithm, when applied to well-conditioned data, results
in a small forward error, hence the numerical solution is reliable

A stable algorithm, when applied to ill-conditioned data, may
generate a large forward error and hence an unreliable numerical
solution

Conversely, an unstable algorithm, when applied to well-conditioned
data, may also generate a large forward error



Complexity

Floating point operation (flop) count

Asymptotic estimate as function of problem size

O(n3) = k3n
3 + k2n

2 + · · ·

notation O(.), order of, indicates dominating term

For example, discrete Fourier transform (DFT) of n points,

implemented directly, has complexity O(n2), whereas fast Fourier

transform algorithm, fft in Matlab, has complexity O(n logn)

Algorithms svd, eig, schur, chol have all complexity O(n3),

but their constant factor k3 varies



Complexity

With numerical computation, complexity estimates may also

involve the required accuracy ε, for example O(
√
n log ε−1)

When asymptotic complexity is a polynomial function of problem

size, we say that the algorithm is polynomial-time

When no polynomial-time algorithms exist, there may still be

exponential-time algorithms to solve the problem, for example

finding 0/1 solutions to a linear system of equations with integer

data



Convexity and cones

Set K is convex if the line segment between any two points in
K lies in K: ∀x1, x2 ∈ K, λx1 + (1− λ)x2 ∈ K, ∀λ, 0 ≤ λ ≤ 1

The convex hull of a set K is the set of all convex combinations
of points in K: conv K = {

∑
i λixi : xi ∈ K, λi ≥ 0,

∑
i λi = 1}

A set K is a cone if for every x ∈ K and λ ≥ 0 we have λx ∈ K

So convex cones are invariant under addition and multiplication
by a nonnegative constant



Open and closed sets

A set K is open if, when starting from any point in K, one can
move by a small amount in any direction while staying in K

A set K is closed if its complement is open

A set K ⊂ Rn is called compact if it is closed and bounded

Examples:
• the interval [0,1] is closed in R
• the interval (0,1) is open is R
• the interval [0,1) is neither open nor closed in R
• the empty set is both open and closed (clopen)
• the set of rational numbers between 0 and 1 is closed in Q
but not in R



Dual cone

Let K ⊂ Rn be a cone

Then the set

K? = {y ∈ Rn : yTx ≥ 0 for all x ∈ K}

is its dual cone

K? can be viewed as the set of nonnegative linear maps on K

K? is always a closed convex cone

If K itself is a closed convex cone, then K?? = K



Dual set

Let K ⊂ Rn be a set containing the origin

Then the set

Ko = {y ∈ Rn : yTx ≤ 1 for all x ∈ K}

is its polar set, and the set

K? = −Ko = {y ∈ Rn : 1 + yTx ≥ 0 for all x ∈ K}

is its dual set

Compare with dual cone: nonhomogeneous coordinates


