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Interpolation of matrix valued rational functions analytic at
infinity from frequency domain data ...

1 Lagrange interpolation studied by Antoulas and Anderson
using a tool called Löwner matrix also with additional
constraints such as bounded real, positive real etc.

2 Generating system approach studied by Antoulas, Ball,
Kang, Willems, Gohberg, and Rodman.

3 Applications of interpolation theory to control and system
theory and estimation (see, for example, the monographs:
Ball, Gohberg, and Rodman; Nikolski).
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Consider a multi-input/multi-output, linear-time invariant
discrete-time system represented by the state-space equations:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x(t) ∈ Rn is the state, u(t) ∈ Rm and y(t) ∈ Rp are the
input and the output.

Transfer function

G(z) = D + C(zIn − A)−1B

is stable and {A, B} and {A, C} are controllable and observable.
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Given: samples of G(z) and its derivatives at L distinct points
zk ∈ D

d jG(zk )

dz j = wkj , j = 0, 1, · · · , Nk ; k = 1, 2, · · · , L.

Find: (Â, B̂, Ĉ, D̂), a minimal realization of G(z).

Lagrange-Sylvester rational interpolation problem.

• Obvious solution! Reduce the problem first to a system of
independent scalar problems and obtain a minimal solution by
eliminating unobservable or/and uncontrollable modes.
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• (Bi)tangential and contour integral versions treated for
example, in Ball, Gohberg, and Rodman.

• Related problems: Nonhomogeneous interpolation with
metric constraints; Nevanlinna-Pick interpolation; Partial
realization.

Hüseyin Akçay A SUBSPACE-BASED METHOD FOR SOLVING LAGRANGE-SYL



Background
Problem Formulation

Subspace-based algorithm
Main Result

Examples
Conclusions

Derivation of the algorithm
Projection onto the observability range space
Extracting A and C matrices
Extracting B and D matrices from data
Summary of the subspace-based interpolation algorithm

Outline

1 Background
2 Problem Formulation
3 Subspace-based algorithm

Derivation of the algorithm
Projection onto the observability range space
Extracting A and C matrices
Extracting B and D matrices from data
Summary of the subspace-based interpolation algorithm

4 Main Result
Comparison of the algorithm with existing methods

5 Examples
6 Conclusions

Hüseyin Akçay A SUBSPACE-BASED METHOD FOR SOLVING LAGRANGE-SYL



Background
Problem Formulation

Subspace-based algorithm
Main Result

Examples
Conclusions

Derivation of the algorithm
Projection onto the observability range space
Extracting A and C matrices
Extracting B and D matrices from data
Summary of the subspace-based interpolation algorithm

Take the z-transform of the state-space equations:

zX (z) = AX (z) + BU(z)

Y (z) = CX (z) + DU(z)

where X (z) denotes the z-transforms of x(k) defined by

U(z)
∆
=

∞∑

k=0

u(k) z−k .

Let Xj(z) be the resulting state z-transform when u(k) = ej .
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Define the compound state z-transform matrix:

XC(z)
∆
= [X1(z) X2(z) · · · Xm(z)] .

Then, G(z) can implicitly be described as

G(z) = CXC(z) + D

with

zXC(z) = AXC(z) + B.

By recursive use, we obtain the relation

zkG(z) = CAkXC(z) + Dzk +
k−1∑

j=0

CAk−1−jBz j , k ≥ 1.
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The impulse response coefficients of G(z):

gk =

{
D, k = 0;

CAk−1B, k ≥ 1.

Thus,

zkG(z) = CAkXC(z) +
k∑

j=0

gk−j z j , k ≥ 0.
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Hence,



G(z)
zG(z)

...
zq−1G(z)


 = OqXC(z) + Γq




Im
zIm

...
zq−1Im




where

Oq
∆
=




C
CA
...

CAq−1


 , Γq

∆
=




g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...
gq−1 gq−2 · · · g0


 .
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Oq, extended observability matrix, has full rank n if (C, A)
is observable and q ≥ n.

Let

Zq(z)
∆
=




1
z
...

zq−1


 , Jq,2

∆
=




0 · · · 0
1 0
0 1 0
...

. . .
...

0 · · · 1 0



∈ Rq×q,

Jq,1 = Iq, J 0
q,2 = Iq.
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Jq,2 obtained by shifting the elements of Jq,1 one row
down and filling its first row with zeros.

Let Jq,j denote the matrix obtained by j − 1 repeated
applications of this process to Jq,1.

Note the following relations

Jq,j =

{
J j−1

q,2 , j ≤ q
0, j > q.

Hüseyin Akçay A SUBSPACE-BASED METHOD FOR SOLVING LAGRANGE-SYL



Background
Problem Formulation

Subspace-based algorithm
Main Result

Examples
Conclusions

Derivation of the algorithm
Projection onto the observability range space
Extracting A and C matrices
Extracting B and D matrices from data
Summary of the subspace-based interpolation algorithm

Thus,

Γq =

q−1∑

j=0

Jq,1+j ⊗ gj

A compact expression:

Zq(z) ⊗ G(z) = OqXC(z) +

q−1∑

j=0

[J j
q,2 ⊗ gj ] [Zq(z) ⊗ Im] .

• Forms the basis of the frequency domain subspace
identification algorithms (McKelvey, Akçay, and Ljung; 1996).
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(Subspace ID: evaluate this equation at a set of distinct
points on the unit circle and stack into columns of long
matrices yielding a matrix equation affine in Oq. Then,
recover the range space of Oq by a projection.)

Differentiate Zq(z) ⊗ G(z) l times with respect to z:

H(l)
q (z) =

l∑

j=0

(
l
j

) [
Z

(j)
q (z) ⊗ G(l−j)(z)

]

= Oq
dlXC(z)

dzk +

q−1∑

j=0

[J j
q,2 ⊗ gj ]

[
Z

(l)
q (z) ⊗ Im

]
, l ≥ 0
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where

Hq(z)
∆
= Zq(z) ⊗ G(z).

Augment Hq(zk ) and the first Nk derivatives of Hq(z) at zk in a
data matrix:

Hk
∆
=

[
Hq(zk ) H ′

q(zk ) · · · H(Nk )
q (zk )

]
, k = 1, · · · , L.
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A compact expression for Hk in terms of the elementary
matrices:

DNk+1
∆
=




0 1 0 · · · 0
0 2

0 · · ·
...

. . . Nk

0 · · · 0



∈ R(Nk+1)×(Nk+1)

and

Wk
∆
=

[
Zq(zk ) Z ′

q(zk ) · · · Z
(Nk )
q (zk )

]
, k = 1, · · · , L,
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is derived as

Hk =

Nk∑

j=0

1
j!

[Wk D
j
Nk+1] ⊗ wkj , k = 1, · · · , L.

• Dj
Nk+1 = 0 for all j > Nk .

An alternative compact expression for Hk :

Hk = Oq Xk +

q−1∑

j=0

[J j
q,2 ⊗ gj ] [Wk ⊗ Im], k = 1, · · · , L
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where

Xk
∆
=

[
XC(zk ) X ′

C(zk ) · · · X (Nk )
C (zk )

]
, k = 1, · · · , L.

The derivatives of Zq(z)?

Let

Tq
∆
=




0! 0 · · · 0
0 1! · · · 0
...

...
. . .

...
0 0 · · · (q − 1)!


 ∈ Rq×q.
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Then, it is easy to verify that

dlZq(z)

dz l = TqJ
l
q,2T

−1
q Zq(z), l ≥ 0.

Now, collect Hk , Xk , and Wk in the compound matrices:

H
∆
= [H1 H2 · · · HL] ,

X
∆
= [X1 X2 · · · XL] ,

W
∆
= [W1 W2 · · · WL] .

Hence,

H = Oq X +

q−1∑

j=0

[J j
q,2 ⊗ gj ] [W ⊗ Im].
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An equation involving only real-valued matrices

Ĥ = Oq X̂ +

q−1∑

j=0

[J j
q,2 ⊗ gj ]F

where

Ĥ
∆
= [ReH ImH] ,

X̂
∆
= [ReX ImX ] ,

F
∆
= [ReW ImW] ⊗ Im.
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Total number of interpolation conditions:

N ∆
=

∑

k :zk∈R

(Nk + 1) +
∑

k :zk∈C−R

2(Nk + 1).

Ĥ ∈ Rpq×mN , F ∈ Rmq×mN , and X̂ ∈ Rn×mN .

The first stage is complete: Ĥ is affine in Oq!
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The projection matrix onto the null space of F :

F⊥ ∆
= ImN −FT (FFT )−1F

Then,

ĤF⊥ = Oq X̂F⊥.

• Range(ĤF⊥) = Range(Oq) if no rank cancelations occur!
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• Sufficient condition: " Range(FT )
⋂

Range(X̂ T ) = Empty . "

Lemma 1 Suppose that N ≥ q + n and the eigenvalues of A do
not coincide with the distinct complex numbers zk . Then,

rank

[
F

X̂

]
= qm + n ⇐⇒ (A, B) controllable.

• Since A is stable, Range(ĤF⊥) = Range(Oq).
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QR-factorization

[
F

Ĥ

]
=

[
R11 0
R21 R22

] [
QT

1
QT

2

]
.

ĤF⊥ = R22QT
2 ,

Use R22 ∈ Rpq×m(N−q) in the extraction of the observability
range space since QT

2 is a matrix of full rank.
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Use the singular value factorization of ĤF⊥ to get A and C:

ĤF⊥ = ÛΣ̂V̂ T

=
[
Ûs Ûo

] [
Σ̂s 0
0 Σ̂o

] [
V̂ T

s

V̂ T
o

]

where Σ̂s ∈ Rn×n. Let

Â = (J1Ûs)
†J2Ûs, Ĉ = J3Ûs

where X † = (X T X )−1X T and

J1 =
[
I(q−1)p 0(q−1)p×p

]
,

J2 =
[
0(q−1)p×p I(q−1)p

]
,
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J3 =
[
Ip 0p×(q−1)p

]
.

If (C, A) is observable, (J1Ûs)
† exists if and only if q > n.

Then, from Lemma 1 for some T ∈ Rn×n,

Â = T−1AT , Ĉ = CT .
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Repeated application of the differentiation formula

d
dz

X−1 = −X−1 dX
dz

X−1

to XC(z) = (zIn − A)−1B yields the derivatives of G(z):

G(j)(z) = δ0j D + (−1)j j! C(zIn − A)−j−1B, j ≥ 0

where δks is the Kronecker delta.

The derivatives are linear in B and D for given A and C.
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Let

Gk
∆
=




wk0

wk1
...

wkNk


 , G

∆
=




G1

G2
...
GL


 .

Yk
∆
=




C(zk In − A)−1 Ip
−C(zk In − A)−2 0

...
(−1)Nk Nk ! C(zk In − A)−Nk−1 0


 , Y

∆
=




Y1

Y2
...
YL



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Determine B and D by solving the linear LS problem:

B̂, D̂ = arg min
B,D

∥∥∥∥Ĝ − Ŷ

[
B
D

]∥∥∥∥
2

F

provided that Y is not rank deficient where

Ĝ
∆
=

[
ReG
ImG

]
∈ RpN×m,

Ŷ
∆
=

[
ReY
ImY

]
∈ RpN×(n+p),
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A sufficient condition

Lemma 2 Suppose that N > n and the eigenvalues of A do not
coincide with the distinct complex numbers zk . Then,

rankY = p + n ⇐⇒ (C, A) observable.

• If N ≥ q + n and q > n, then

B̂ = T−1B, D̂ = D

and
Ĝ(z)

∆
= Ĉ(zIn − Â)−1B̂ + D̂ = G(z).
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Algorithm
1 Given the data, compute the matrices Ĥ and F .
2 Perform the QR-factorization.
3 Calculate the singular value decomposition with ĤF⊥

replaced by R22.
4 Determine the system order by inspecting the singular

values, and partition the singular value decomposition
such that Σ̂s contains the n largest singular values.

5 With J1, J2, and J3, calculate Â and Ĉ.
6 Solve the least-squares problem for B̂ and D̂.
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Comparison of the algorithm with existing methods

Theorem Consider the above algorithm with the noise-free
frequency domain data of a discrete-time stable system of
order n. If N ≥ q + n, q > n, then the quadruplet (Â, B̂, Ĉ, D̂) is
a minimal realization of G(z).

Extends an interpolation result in McKelvey, Akçay, and
Ljung (1996) for uniformly spaced points on the unit circle
to arbitrary interpolation points in the complement of the
open unit disk (including derivatives).
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Comparison of the algorithm with existing methods

Differences between the algorithm and the Löwner matrix
based approach (Anderson and Antoulas; 1990):

Formation of the data matrices

Determination of the minimal order.

Similarities between the algorithm and the Löwner matrix
based approach (Anderson and Antoulas; 1990):

Both rely on the factorization of the data matrices as a
product of two matrices related to the observability and
controllability concepts.

The solvability conditions are the same.
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Numerical example

System in the state-space representation:

A =




−0.5 0.5 0 0
−0.5 −0.5 0 0

0 0 0.5 0
0 0 0 −0.25


 , B =




1 0 0
1 1 0
0 −1 0
1 1 1


 ,

C =

[
1 1 1 0
0 1 0 1

]
, D =

[
1 −1 0
0 1 1

]
.

i.e, n = 4, p = 2, m = 3. This system has the transfer function:
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G(z) =




z2 + 3z + 1.5
z2 + z + 0.5

G12(z) 0

G21(z) G22(z)
z + 1.25
z + 0.25




where

G12(z) = −
z3 + 0.5z2 + 0.5z + 0.75

z3 + 0.5z2 − 0.25
,

G21(z) =
2z2 + 1.25z + 0.5

z3 + 1.25z2 + 0.75z + 0.125
,

G22(z) =
z3 + 3.25z2 + 2.5z + 0.75

z3 + 1.25z2 + 0.75z + 0.125
.
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Interpolation data:

z1 = 1 + i , z2 = 1 − i , N1 = N2 = 0, z3 = 2, N3 = 4

w10 =

[
1.9333 −0.8667 0
0.8878 1.9545 1.4878

]

−

[
0.5333 −0.4000 0
0.5236 0.6569 0.3902

]
i ,

w20 =

[
1.9333 −0.8667 0
0.8878 1.9545 1.4878

]

+

[
0.5333 −0.4000 0
0.5236 0.6569i 0.3902

]
i ,
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w30 =

[
1.7692 −1.2051 0
0.7521 1.8291 1.4444

]
,

w31 =

[
−0.2840 0.2433 0
−0.2804 −0.3395 −0.1975

]
,

w32 =

[
0.2003 −0.4251 0
0.2084 0.2757 0.1756

]
,

w33 =

[
−0.2000 0.9844 0
−0.2333 −0.3341 −0.2341

]
,

w34 =

[
0.2456 −2.8518 0
0.3531 0.5390 0.4162

]
.
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q = 5 =⇒ N = 9; N ≥ q + n, q > n.
Results:

Â =




0.5204 −0.1361 0.3199 0.5352
0.0882 −0.4983 0.4848 −0.1035
0.0052 0.0820 −0.4810 0.7195

−0.0295 0.1919 −0.3546 −0.2911


 ,

Ĉ =

[
0.8460 0.2123 −0.2149 −0.3233

−0.0721 0.8069 0.5289 0.1046

]
,

B̂ =




1.0502 −0.5390 −0.0816
2.8626 1.8321 0.9041

−0.1545 1.0984 0.4896
−1.4555 −0.9375 0.0547


 ,

D̂ =

[
1.0000 −1.0000 −0.0000

−0.0000 1.0000 1.0000

]
.

• (Â, B̂, Ĉ, D̂) ∼ (A, B, C, D). (Max. error: 5.9746 × 10−14).
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Finding Q-Parameter

Example: Active suspension design for a quarter-car model

Closed-loop transfer function:

Tzw = G11 + G12(Y − MQ)M̃G21, Q ∈ RH∞, (1)

where Tzw ∈ R3×1; Y , M, M̃ ∈ RH∞ are some matrices in a
double coprime factorization of G22 over RH∞; and G11, G12,
G21, G22 are some (open loop) block matrices.

Problem: find a Q ∈ RH∞ satisfying (1) given Tzk w (s).

Tzl w , l 6= k are uniquely determined by Tzk w (trade-offs).
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Tzk w and/or its derivatives are subject to certain
interpolation conditions at s = 0, s = ∞, and some finite
and nonzero invariant frequencies.

Quite often a Tzk w with desirable features and satisfying (1)
and the interpolation conditions can be constructed.

Solution: evaluate (1) and/or its derivatives at a set of
sufficiently many and arbitrarily selected frequencies to
formulate a bitangential interpolation problem. Next, use the
subspace-based algorithm to obtain a minimal realization of Q.
(Türkay and Akçay; 2008).
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A new algorithm for the Lagrange-Sylvester interpolation of
rational matrix functions analytic at ∞ was introduced.

A necessary and sufficient condition in terms of the total
multiplicity of the interpolation nodes for the existence and
uniqueness of a minimal interpolant was formulated.

The algorithm is insentitive to inaccuracies in the
interpolation data.
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