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Subspace-based Identification of Infinite-dimensional 
Multivariable Systems from Frequency-response Data 

TOMAS MCKELVEY,+ HOSEYIN AKCAY * and LENNART LJUNG t 

A subspace-based identa@cation algorithm, which takes samples of an 
injinite-dimensional transfer function, is shown to produce estimates which 
converge to a balanced truncation of the system and is applied to real and 

simulated data with promising results. 
Ke.y Words-System identification; frequency-response data; infinite-dimensional systems; state-space 

Ahatra&-A new identification algorithm which identi- 
fies low complexity models of intlnitedimensional systems 
from equidistant frequency-response data is presented. The 
new algorithm is a combination of the Fourier transform 
technique with the recent subspace techniques. Given noise- 
free data, finite-dimensional systems are exactly retrieved 
by the algorithm. When noise is present, it is shown that 
identified models strongly converge to the balanced trun- 
cation of the identified system if the measurement errors 
are covariance bounded. Several conditions are derived on 
consistency, illustrating the trade-offs in the selection of 
certain parameters of the algorithm. Tkro examples are 
presented which clearly illustrate the good performance of 
the algorithm. Copyright @ 1996 Elsevier Science Ltd. 
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J--f 
transpose of A 
complex conjugate of A 
complex conjugate transpose 
ofA 
(AHA)-‘A” the Moore- 
Penrose pseudo inverse of full 
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zero matrix of size m x p 
Ciali, trace of A 
Jm, the Frobenius 
norm of A 
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ok = 0(0(k) 

O(1) 

flk = do(k) 

E 

w.p. 1 

ordered singular values of A, 
q 2 a2 2 . . . 
Hardy space of matrix-valued 
bounded analytic functions in 
the complement of the closed 
unit disc of the complex plane 
sup norm of G, equals sup, 
ok (G(@')) 
set of sequences in IRpxm such 
that IgO llgkll < 00 

set of sequences in IRm such 
that E&J Ibkll: < 00 

given two sequences of num- 
bers a& and B&, there exists an 
integer M and a constant K 
such that l/?&l I Kloc&l for all 
krM 
asymptotically bounded 
given two sequences of num- 
bers o(k and & lim&_, 
Ibkl/l~kl = 0 

asymptotically vanishing 
Hankel operator of a linear 
system G 
ordered Hankel singular values 
Ti(G) 2 I2(G) 2 . . . of a sys- 
tem G 
mathematical expectation op- 
erator 
with probability one 
modulus of continuity of trans- 
fer function G 

1. INTRODUCTION 

Identification of infinite-dimensional systems has 
been much studied recently both in the time do- 
main (Ljung and Yuan, 1985; Huang and Guo, 
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1990; Guo et al., 1990; Makill, 199 1; Jacobson 
et al., 1992; Hjalmarsson, 1993) and in the fre- 
quency domain (Helmicki et al., 1991; MPkila and 
Partington, 1991; Gu and Khargonekar, 1992). De- 
spite that low-order nominal models are preferred 
in most practical applications as in the design of 
model-based controllers, the true systems are usu- 
ally of high or infinite order with unmodeled dy- 
namics and random/deterministic noise. Thus, the 
basic task of system identification is to construct a 
simple nominal model based on the measured data 
generated from a complex system. 

Based on how the disturbances are character- 
ized, problem formulations in both domains can 
be divided into two categories. In the traditional 
stochastic formulations, the disturbances have been 
assumed to be random variables which lead to 
instrumental variable and prediction error meth- 
ods. See, for example, the books Ljung (1987) and 
Soderstriim and Stoica (1989). The least-squares 
method is the archetype for such methods. Then, 
under suitable conditions on the unknown system 
and exogenous noise, letting model orders increase 
as the size of data grows one hopes to approximate 
an infinite-dimensional system well. Such a proce- 
dure, called the black-box identification algorithm, 
having desired convergence properties is described 
by Ljung and Yuan (1985). In the deterministic 
problem formulations on the other hand, (Helmicki 
et al., 1991; Makila and Partington, 1991; Jacob- 
son et al., 1992; Gu and Khargonekar, 1992) the 
disturbances are treated as deterministic signals 
and a robust convergence notion requiring non- 
linear algorithms is introduced. The performance 
of the algorithm is measured by the worst-case 
identification error. The robust convergence simply 
refers to the property that worst-case errors vanish 
with increasing model order as noise amplitude is 
decreased and data size grows. 

In both approaches, a prejudice-free model set of 
high complexity is the underlying model structure. 
In most practical applications on the other hand, 
the model is required to be of restricted complexity 
despite the fact that the true system might have infi- 
nite order. Thus, model reduction is a complemen- 
tary step to the black-box identification. Besides the 
computational complexity, this step induces large 
approximation errors unless the system that has 
generated the data has a special structure, which 
has been overlooked in most identification stud- 
ies. The robust algorithms in the tim identification 
framework (Helmicki et al., 199 1; MakilH and Part- 
ington, 199 1; Gu and Khargonekar, 1992) deliver 
bounded errors as model complexity increases un- 
boundedly. However, the total error becomes large 
after model reduction. 

An alternative method is to directly realize low 

complexity models from the experimental data. 
In the traditional way, a system is modeled by a 
parametric transfer function which is the fraction 
of two polynomials with real coefficients and a 
nonlinear least-squares fit to the data is sought 
(Ljung, 1993; Pintelon et al., 1994b). The solu- 
tion to this nonlinear parametric optimization 
problem is obtained by iterations. During the last 
few years, some noniterative subspace-based algo- 
rithms which deliver state-space models without 
any parametric optimization have appeared in the 
literature (Verhaegen and Dewilde, 1992; Van Over- 
schee and De Moor, 1994). It is well known that 
models in canonical minimal parametrizations are 
numerically sensitive, particularly for high-order 
models, in comparison with state-space models in 
a balanced realization. Subspace-based algorithms 
are more robust to numerical inaccuracies than the 
canonically parametrized models since the model 
obtained is normally close to being balanced. 

The present paper deals with a frequency-domain 
identification problem. In this formulation, the 
experimental data are taken to be noisy values of 
the frequency-response of a system at a given set 
of frequencies. In a number of applications, as in 
the modal analysis area of mechanical engineering, 
lightly damped large structures with several inputs 
and outputs are frequently encountered and high- 
order models are needed to capture the dynamics 
of such systems. Sophisticated data analyzers and 
data acquisition equipment allow large amounts of 
time-domain data to be compressed into a small 
amount of frequency-response data. The step from 
time-domain measurements to frequency-response 
data provides noise reduction if the experimental 
conditions are carefully chosen, e.g. the use of pe- 
riodic excitation (Schoukens and Pintelon, 1991). 
The identification data can also be compiled from 
several different time-domain experiments which 
facilitates the determination of models which are 
accurate over a wide frequency band. 

Frequency-domain subspace algorithms (Juang 
and Suziki, 1988; Liu et al., 1994; McKelvey and 
Akcay, 1994) are based on the famous realization 
algorithm by Ho and Kalman (1966) or the version 
by Kung (1978). The realization algorithms in Ho 
and Kalman (1966) and Kung (1978) find a mini- 
mal state-space realization given a finite sequence 
of the Markov parameters. The Markov parame- 
ters or impulse-response coefficients of the system 
can be estimated from the inverse discrete Fourier 
transform (DFT) of the frequency-response data. 
The approach described by Juang and Suziki (1988) 
is exact only if the system has a finite impulse- 
response and therefore for lightly damped systems 
yields very poor estimates. This stems from the 
fact that the estimated impulse response, using a 
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finite number of frequency&ta, is subject to alias- 
ing effects if the system has an impulse response 
of infinite length. In McKelvey and Akcay (1994), 
the inverse DFT technique is combined with a 
subspace identification step yielding the true finite- 
dimensional system in spite of this aliasing effect of 
the estimated impulse response. The current paper 
reports extensions of the results by McKelvey and 
Akcay (1994) for the case of infinite-dimensional 
systems. 

We will now outline the contents of this paper. In 
Section 2, we formulate the problem. In Section 3, 
we present a new identification algorithm. Conver- 
gence properties of the new algorithm for noise- 
free data are studied in Section 4. In Section 5, the 
main result of the paper is presented. Section 6 con- 
tinues with a brief discussion on the identification 
of continuous-time systems and some practical as- 
pects on the implementation of the algorithm are 
discussed in Section 7. In Section 8, the properties 
of the new and several other algorithms are stud- 
ied by means of two examples. In the first example, 
five algorithms are tested on real data originating 
from a frequency-response experiment on a flexi- 
ble structure testbed at the Jet Propulsion Labo- 
ratory (JPL), Pasadena, California. The JPL-data 
are also used in the identification studies (Gu and 
Khargonekar, 1993; Bayard, 1994; McKelvey and 
Akcay, 1994; Friedman and Khargonekar, 1995). In 
the second example, we simulate a system described 
by Gu et al. (1989). Section 9 contains the conclu- 
sions. A preliminary version of this paper appeared 
as McKelvey ef al. (1995). 

2. PROBLEM FORMULATION 

In this section, we describe the low complexity 
identification problem of infinite-dimensional sys- 
tems from equally spaced frequency-response mea- 
surements. This problem formulation is a comple- 
ment to our previous finite-dimensional formula- 
tion (McKelvey and Akcay, 1994). We first focus 
on the discrete-time case and briefly discuss the 
continuous-time case in Section 6. 

Let G(z) denote the transfer function of a 
linear time-invariant (LTI), discrete-time, multi- 
input/multi-output (MIMO), &-BIB0 (bounded- 
input/bounded-output) stable real system. Then, 
GE3-&0. 

The input/output behavior of the system can be 
described by the impulse response coefficients gk 
through the equation: 

y(t) = 2 g/c& -k), 
k=O 

(1) 

where u(t) E IRm and y(t) E IRP are inputs and 
outputs, respectively, and gk E IRpXm. The fre- 

quency response of the system is calculated as 

G(de) = 2 gkeAiek, 058S7T. (2) 
k=O 

Since our systems are real (gk E IRPXm) the fie- 
quency response satisfies the usual complex conju- 
gate symmetry property 

G(e-je) = G*(ei’), 0 5 8 zz rr , (3) 

which will be used to get the frequency response on 
[n, 27rl. 

For practical purposes this type of infinite- 
dimensional model is rather useless since it is not 
possible to calculate v(t) knowing a finite amount 
of the past inputs and outputs, usually called the 
state of the system. For engineering purposes, a 
much more practical model is a state-space model: 

x(k + 1) = Ax(k) + &4(k), 

y(k) = Cx(k) + Du(k), (4) 

where x(k) E IR”. In this model y(k) can be cal- 
culated using only the state vector x(k) of length 
n and the current input u(k) which both are finite 
objects. The state-space model (4) is a special case 
of (1) with 

gk = CAk-‘B, k>O. I 

0, k = 0, 
(5) 

It is thus of practical interest to identify a finite- 
dimensional model (4) which is a good approxima- 
tion of the infinite-dimensional system (1). 

Some further assumptions must be imposed on 
the system to obtain good approximations A set 
of conditions can conveniently be stated in terms 
of the Hankel singular values of the system. Re- 
call that the Hankel operator of the system G with 
symbol I’ defined on e by 

(Iu)(t) ’ ~gt+i+*Util. t10 (6) 
i=O 

is a mapping into 4. Let I* be the adjoint of T. The 
Hankel singular values Ti(G) are defined to be the 
square roots of the eigenvalues of IT*. Let t(i and 
vi be the corresponding normalized eigenvectors of 
IT* and I’*T, respectively. The pair (vi, uf) is called 
the Schmidt pair and satisfies 

Tvi = Ii( G)ui, 

T*ui = T;:(G)vi. 

A system G is said to be Hilbert-Schmidt if its Han- 
kel singular values satisfy 

5 r;(G) < m 
k=l 

(7) 



888 T. McKelvey et al. 

and nuclear if 
00 

c rk(G) < *. 
k=l 

From (8) we see that all finite-dimensional linear 
systems form a subset of nuclear systems and nu- 
clear systems themselves are contained in the set of 
Hilbert-Schmidt systems. 

It is possible to identify these classes with 
impulse-response decay rates. Examples of sys- 
tems with Hilbert-Schmidt Hankel operators are 
systems with impulse responses which decay as 

IlgklI = O(k-?, a > 1. 

This is a result of the following identity: 

(9) 

m m 

c r;(G) = 1 '%kl12. (10) 
k=l k=l 

Other examples are systems with llgkll = 
0( 1 /k( log k)) . Bonnet (1993) showed that a suffi- 
cient condition for the nuclearity is given in terms 
of the decay rate for the impulse response as 

IlgkII = O(k’?, a > 3/Z. (11) 

Conversely, sufficient conditions for a system to 
have a Hilbert-Schmidt or nuclear Hankel opera- 
tor can be stated in terms of boundary behavior of 
the system transfer function and its derivatives. We 
refer the interested reader to the paper by Curtain 
(1985) for a discussion on the sufficient conditions 
for nuclearity. A full discussion of Hankel operators 
is beyond the scope of this paper. We summarize 
the requirement on G as a standing assumption. 

Assumption 1. The system G E 3fm has a continu- 
ous transfer function and a Hilbert-Schmidt Han- 
kel operator r 

m 
1 I-;(G) < CQ. 

k=l 

For a fixed given n, the Hankel singular values sat- 
isfy 

T,(G) > &l,I(G). 

Next we introduce a group of smoothness classes 
for periodic complex-valued functions. The mod- 
ulus of continuity for a complex-valued periodic 
function f on the unit circle is the function 

wf(t) i sup Ilf(e’“) - fCe’y)II. 
Ix-ylsr 

(12) 

Wesaythatf isofclassA,, (0 < o( I 1) ifwf(‘) = 
O(P) as t - 0. 

Optimal Hankel norm and balanced truncations 
are two popular model reduction techniques for nu- 
clear systems and they are known to produce the 
same upper bound on the approximation error by 

II G - GII m I2 g rk(Gh 
k=n+ 1 

(13) 

where repeated singular values are omitted in the 
sum and G,, is nth-order balanced truncation of G 
(Hinrichsen and Pritchard, 1990). 

In this paper, we will discuss methods to obtain 
low complexity models of the infinite-dimensional 
systems described above, given uniformly spaced 
experimental frequency-response data of the system 

Gk e G(&k”‘M) + ek; k=O M, ,..., (14) 

where the frequency-response measurement noise 
ek is assumed to satisfy some conditions. 

Assumption 2. The noise ek, k = 0, . . . , M are inde- 
pendent zero-mean complex random variables with 
uniformly-bounded second moments 

Since (13) is the best available bound on the ap- 
proximation error, our objective is to achieve the 
same bound on the identification error asymptoti- 
cally (with probability one), i.e. 

lim II&4 - Gllm I2 i rk(G) 
M-03 

w.p. 1, (16) 
k=n+l 

where G,,M is the nth-order identified model using 
M + 1 frequency data. 

The above objective is achieved by many algo- 
rithms. Examples are the so-called two-stage al- 
gorithms. The two-stage algorithms are black-box 
type algorithms. In the first stage of a two-stage 
algorithm, a linearly parametrized model struc- 
ture, is used to arrive at a pre-identified model 
and in the second stage, an nth order rational 
approximation to the pre-identified model gives 
G&M. We refer the reader to Heuberger et al. 
(1995) and references therein for some interesting 
parametrizations. Unless the model set is suitably 
parametrized, a lightly damped system yields high- 
order pre-identified models and hence the number 
of data and computations needed for the accuracy 
increase dramatically. Therefore, a potential iden- 
tification algorithm must have good performance 
for finite data sets in addition to satisfying (16). 
This is the case if the algorithm exactly retrieves 
the system when restricted to finite-dimensional 
systems and noise-free data of finite length. Such 
algorithms are called correct algorithms. 
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Given the problem formulation, there exist many 
algorithms with the aforementioned properties. In 
the next section, we present one such algorithm. 
Our algorithm is not necessarily optimal. We have 
not introduced an optimality criterion in this pa- 
per. Indeed, optimality depends on more restrictive 
assumptions than we have made on the system and 
noise. Our objective in this paper is to study con- 
sistency properties of a new algorithm and analyze 
the trade-offs in choosing the parameters to achieve 
consistency. 
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Jf i [b-lb %I,,x,], (25) 

4 e [ %lWp 4q-lb], (26) 

4 A [ 4 %xw,,] t (27) 

473 
4 4 O(,-l),“Xrn . [ 1 

(4) The resulting transfer function is 

G$&.&) 2 B + &z - d,-‘A. (29) 

We have the following result when Algorithm 1 
is applied to finite-dimensional systems and data is 
noiseless, i.e. ek = 0 in (14). 

3. STATE-SPACE MODEL IDENTIFICATION IN 
FREQUENCY DOMAIN 

In this section, we will introduce a new identifi- 
cation algorithm: 

Algorithm 1. 

(1) Expand the given frequency data (14) accord- 
ing to (3) as 

GM+ki G&k, k= l,...,M- 1 (17) 

and perform the 2M-point inverse DFT on the 
expanded data 

,. A gi = & *F’ ~~ ,$2rrikl2M, 

k=O 

i=o,...,q+r- 1 (18) 

to obtain the estimates of the impulse-response 
coefhcients gl. 

(2) Construct the q x r-block Hankel matrix 

and perform a singular value decomposition 
for Z$ as follows 

where $1 contains then dominant singular val- 
ues on the diagonal. 

(3) The system matrices are estimated as 

Theorem 1. Let G be a stable system of order n. 
Assume q > n, r 2 n and 2M 2 q + r. Suppose that 
M + 1 equidistant noise-free frequency-response 
measurements of G on [O, rr] are available and let I 
Gg.r.n,~ be given by Algorithm 1. Then 

* 
IlG,,.sn.~ - GIL = 0. 

Proof Since G is stable, it can be represented by 
the following Taylor series 

G(z) =D+C(zZ-A)-‘B=D+ tC,4k-1Z?z-k 
k=l 

(30) 

in the complement of the closed unit disk. From 
(14), (17), and (30) notice that & can be written as 

m 

kk = c gk+ZiM 

i-0 

i 

CAk--‘(I - PyB, 
k’ 1 = D + CA*&,-1 (I- AZM)-‘B, k = 0 ’ 

(31) 

where we used the identity 

gA2ihf = (Z_A*M)- 

i=O 
(32) 

The expression above for go shows that if 2, fi, and 
C are obtained from A, B, and C by a similarity 
transformation, then b given by (24) equals D. 

Next, by introducing the extended observability 
and controllability matrices 

C 
CA 

O,= 

[*I 

. , (33) 

&- 1 

c, = [ B AB . . . A’-‘B I 

observe that & can be factored as 

fi,, = O,(Z - AZM)-‘C, 

(34) 

(35) 
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for any realization of G. Minimality of the system 
implies that both C, and 0, are of rank n, and hence 
also &,, if r 2 n and q > n. Then, $2 = 0 in (20)) 
and the column range spaces of &,, 0, and 01 will 
be equal. Since (35) is valid for any realization, we 
take the realization which makes 6, = Ui. Then, 
in this realization, by utilizing the shift structure 
of d,, the matrices A and c are calculated by the 
formulae (21) and (22), respectively. Furthermore, 
from (20) and (35), we get 

e, G;’ = (I - A*M)-’ Cr, 

which gives the formula (23) for b. 

(36) 

n 

Notice that it suffices to let q = n + 1 and r = n to 
meet the requirements on r and q which imply that 
M = n + 1, and consequently n + 2 equidistant sam- 
ples of the frequency-response function on [O, rr] 
are required. Algorithm 1 is in the class of correct 
algorithms when applied to data from systems of 
finite dimension and uses a minimum amount of 
data among all such algorithms. This is a remark- 
able advantage with respect to black-box identifica- 
tion algorithms using linearly parametrized model 
sets. 

4. CONVERGENCE ANALYSIS FOR NOISE-FREE DATA 

In this section, we demonstrate that the transfer 
function computed from the system matrices of Al- 
gorithm 1 will converge to the nth-order balanced 
truncation of the identified system when the system 
is Hilbert-Schmidt, its transfer function is continu- 
ous, and data is noise-free. This is accomplished in 
two steps. In the first step of our analysis, the sys- 
tem is approximated by a finite-impulse response 
model and in the second step, matrix perturbation 
results are applied. 

Let G, denote the &h-order balanced truncation 
of G. A state-space realization of G,, is given by the 
formulae 

where 

-A 
A = U,’ J2 VI, (37) 

B k UFHJ4, (38) 

CA J3U,, (39) 

b 4 go, (40) 

Gn (z) 4 b + c(zZ - A)-‘& (41) 

vi 2 [ur * * - u,] (42) 

contains n normalized eigenvectors of IT* corre- 
sponding to Ii (G), . . . , I,(G) assuming I,(G) > 
I,,, i (G), where I is the Hankel operator of G and 
fi(G) are the Hankel singular values, H is the 

Hankel matrix formed from the impulse-response 
coefficients gl g2 . * . 

H fi g2 g3 ‘. . 

[ 1 , (43) 
. . . . . . . . . 

and 52, J3,J4 are defined as follows: 

(45) 

J3U1 : [*r(l) 2.42(l) * * -1. (46) 

By Hartman’s Theorem (Partington, 1988, Theo- 
rem 3.20), I is compact if and only if G is the pro- 
jection of a complex-valued function that is contin- 
uous on the unit circle into Hm . Hence, g E 4?;“’ 
and since Uk E 4?$ for all k in the Schmidt expan- 
sion of a compact operator, the infinite products 
above converge absolutely by the Cauchy-Schwarz 
inequality. Thus, A and B are well defined if I is 
compact. This particular realization differs from the 
balanced realizations described by Young (1986) or 
Bonnet (1993) only by a diagonal similarity trans- 
formation, i.e. scaling of the state variables. 

4.1. Finite-impulse response approximation 
We will now establish the convergence of the 

Hankel singular values and Schmidt pairs for com- 
pact Hankel operators Itk) converging to I. 

Lemma 1. Let Ick) be a sequence of compact Han- 
kel operators such that (lI(k) - Ill - 0, where I is 
the Hankel operator of a system G. Let I/k) and 
( vik’, uik’ ) denote, respectively, singular values and 
the Schmidt pairs of I(@ and Ii(G) and (vi, ui) those 
of I. Suppose that I,(G) > I,+r (G). Let VI be as 

in (42) and U2 fi [u,+ I u,+z . . . 1. Let U:k) 22 

1 
(k) 

UI *.. uik) 1. Then 

(1) 
t-4 

pt Ir;k) :Ti(G)l = 0 for all i. 

For all sufficiently large k, there exist a se- 
quence of nonsingular matrices Tck) E lR”‘” 
and a sequence of semi-infinite matrices Pck) 
such that IIP(k) llF - 0 and 

U, (k) = (U, + U2P(k’)T’k’. (47) 

Proof: See Appendix A. 

Using Lemma 1, we can establish that the sequence 
of balanced truncations of systems Gck) converges 
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to the balanced truncation of G if the sequence of 
the associated Hankel operators converges to T. 

Lemma 2. Let I’ck) be a sequence of compact Han- 
kel operators of systems Gtk) such that lII’(k) -Tll - 
0, where T is the Hankel operator of the system G. 
Let g and gck) denote the impulse responses of G 
and Gck), respectively. Assume that go = gh”. Let 
G$ and G,, denote, respectively, &h-order balanced 
truncations of Gck) and G. Then 

ProoJ: Let ;ick), Bck), cck), Bck) be the realization of 
GAk) computed by the formulae (37)-(40). 

Given three matrices A, C E lRmX” and B E 
lRnxp where n r p, the following inequalities deriv- 
ing from them will frequently be used. 

IIAIIF a,(B) I IlAG 5 IMIIF e(B). (48) 

or (A) o-,,(B) 4 01 (AB) I al (A) c-n(B), (49) 

fnm, laJ44 - ai(c)I s a (A - a. (50) 

See Theorem 3.9 for a proof of (48)-(49) and The- 
orem 4.11 for (50), both in Stewart and Sun (1990). 

From Lemma 1 

u,(k) = (U, + U@)T(k) & U,+(k), 

where I(P(k)II, - 0. Note that IIUillz = IIU/k’ll~ = 
1, i = 1,2; llJill2 = 1, i = 1, - - *, 4; and IIU~IIF I 
fi. Thus 

II((T’k’)T)-IA(k)(T(k))-l _ ,& 

= (I (0;k))TJ2U;k) - UrrJ2U, 11~ 

= II ( U/k))TJ2U2P(k) + (U2P’k’)TJ2U, llF 

< 2 IIP(k)llF - 0, - 

!I(( P)yw - BllF 

= IIU~(IYI’~’ - H)J4 + (U2Pm)TH’k’J411F 

< fi iirck) - rii + iimWk)ii - 0, - 

IJC - t(k)(T(k))-'II~ = IIJ&P’k’l)~ 

5 llm - 0. 

Factor Gtk) as 

G’k’ = ~M(T’k’)-I (,(T(k)(@))r)-1 

_((T(k))T)-l~(k)(T(k))-l -’ 
) 

x((~(k))T)-ljj(k) + g’k’ 
0 . 

Hence to finish the proof, it suffices to show that 
2-‘” (y-(k) )T - I,. From (U:k))TU/k) = I, 

(T(k) )T T’k’ = 1, _ (p(k) T’k’)Tp(k) T’k’ _ 1 n 

ask-m (51) 

and thus Ttk) ( Ttk) )T - Z “* 
n 

Lemma 1 and Lemma 2 imply only that r is a 
compact Hankel operator, which is fulfilled by the 
Hilbert-Schmidt condition in Assumption 1 since 
Hilbert-Schmidt Hankel operators are compact. 

We will now use a particular sequence of systems 
Gck) and relate their truncated balanced realizations 
to Algorithm 1. Consider the following truncation 
of g by finite impulse responses 

k-l 
G(k) 4 1 giz-i. 

i=O 
(52) 

Since 

i=l i=k 

it follows from Lemma 2 that 

lim IIGAk) - GnllaD = 0. 
k-m 

(54) 

The Hankel matrices of Gtk) have only finitely 
many nonzero elements contained in the following 
matrix 

g1 ’ ’ ’ gk-1 0 

H(k) 2 : *-. i i 

[ 1 gk-r .‘* 0 0 ’ 
(55) 

0 . . . 0 0 

Thus, Hankel singular values of Glk) coincide with 
the singular values of Hck) and the normalized 
Schmidt pairs are normalized right and left sin- 
gular vectors of II” extended by zero padding. 
An nth-order balanced truncation of Gck) can be 
obtained from the singular value decomposition of 
H’k’ 

where Zlk’ contains n dominant singular values, as 
follows: 

A k (k) T k (k) ,@k)=(J,U, ) J,U, , 

c(k) : JkU’k’ 
3 1 ’ 

(57) 

(58) 
j#k) & (@‘)TH(k)Jj;, 

b’k’ 4 go 

(59) 

(6’9 

N”kfiyk, $at (37) is a special case of (57) for 
(JI U, 1 - UITask- 00. 

The system matrices 2 and c of Algorithm 1 are 
calculated exactly by the same formulae as (57)- 
(59) except the factor ((flUr)TflUr)-’ in d which 
tends to In. Furthermore, if the magnitudes of the 
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eigenvalues of 2 are bounded away from one for all 
large M, then & will approximately be calculated by 
(59). Therefore, it can be claimed that when data are 
noise free, Algorithm 1 will converge to a transfer 
function described by the realization (57)-(60) if 
&, tends to ZY@) in the Frobenius norm. A couple 
of conditions on the system and the parameters 
q, r, M suffice to make II&,, - Hck) IIF - 0. The 
proof of this claim will be based on standard matrix 
perturbation results and is the topic of the next 
section. 

where Loo is the modulus of continuity of G(e@). 
Hence 

II& - &II; = i i Il$+t-I -a++, II2 
s=l f=I 

4.2. Perturbation analysis 
Recall that Gq,r.n,~ denotes the identified trans- 

fer function computed from Algorithm 1. We will 
complete our convergence analysis by showing 

lim 
q.‘.M-m 

II 6q;.r,n,M - GAq+r) I( m = 0 

when data are noise free and q and r are suitably 
chosen increasing functions of M. First, we need 
to derive some bounds on the Frobenius norm of 
the difference between the Hankel matrix Z?q,r of 
Algorithm 1 and the Hankel matrix composed of 
the impulse response of G. 

Let k = q + r in (52) and partition (55) as 

+,+r) e 

where H,, is q by r-block Hankel 
from impulse-response coefficients 

(61) 

matrix formed 

(62) 

By Assumption 1, we have 

3 m 

C IlAill~ < 1 i llgil12, 
i=l i=min{y,r) 

which tends to zero as q and r grow to infinity. 
Next observe that gi is a Riemann sum approxi- 

mation Of gi 

2n 

gi = & J G(ej’) die de. 

0 

Thus, gi - ii can be bounded as 

1 ZM-I 

x7 c sup II G(de) 
1~0 $lesy 

(63) 

-G(ej”““)II + llGllm sup Idie - 11 
05e5; 

I co+ + m’q; r, II GII mr (64) 

I2qr u&(G) 

+27-r qr(;;r)2 IIGllm. (65) 

If q and r are chosen to Satisfy J47’ wo(n/M) - 
0 and fl (q + r)/M - 0, then it follows that 

Cf=, IlAi(($ + II&,, - H,,Ili will tend to zero as q, r 
and A4 jointly tend to infinity. 

The next lemma provides perturbation bounds 
for invariant subspaces of a matrix when matrix di- 
mensions as well as matrix elements are perturbed. 

Lemma 3. Let X’ E IRmxp and X2 E IRq”, where 
q 2 r, q 2 m > n, and r 2 p > n. Partition X2 as 

L _I 

where Z E lRmxp. In the partition, Ai and A3 are 
omitted if p = r and A2 and A3 if m = q. Suppose 
that IIX’-Zll~+~~=, llAill$ I E. Performsingular 
value decompositions for X’ and X2 

_-yiL?[qiu;] ! O [ X;] [ $1. i= 1,2, (66) 

where singular values in & E lRnx” and Xi E 
lR(r-n)X(‘-n) are nonincreasing along the diagonals. 
Assume that 

4E < C&(X2) - 0,+,(X2). (67) 

Then, there exists a nonsingular matrix T E lRnx” 
and a matrix P E R(‘-“)x”, such that 

U,l = [r, Omx~~-rn)] (U: + U;P)T (68) 

IlPllF 5 
4E 

GlW2) - an+1 (X2) 

Prooj: See Appendix B. 

(69) 

4.3. Convergence result 
Now we use the perturbation results to obtain 

the following key lemma. 

Lemma 4. Suppose that it4 + 1 equidistant noise- 
free frequency-response measurements (14) of G on 
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[0, rr] are available. 
Suppose that 

Let G satisfy Assumption 1. 

where wo is the modulus of continuity of G. Let 
G,,r.n,~ be given by Algorithm 1. Then 

4 ,‘jn m II (!&.M - GAq+‘) II m = 0. (72) ,, - 

Proof Let k = q+r. we have liEIk,m Ilr(k’-I’ll = 0 
by (53). Then, from Lemma 1, u,,(H(~)) > T,(G)/2 
for all large k. Partition U/k) and Uik) as follows: 

[ ZJik) ZJY] g [ $ $1, (73) 

where ZJ,(p E IRqp xnm. From (61), (56) and (48), we 
have 

a,@‘) llu~;‘llF I 11 [u$‘$’ u:ik)z:k)] 

x V:k) V$“‘lT 1lF [ 
= II [A2 A31 lb - 0, (74) 

which shows that IIU,:k) 11~ - 0. Let xik) denote 

the last block row of U,(f). Then, by the Hilbert- 
Schmidt assumption on the system, we have 
11~‘~) 11~ - 0 from cl 

a,(H’k’) 11X(k) 11 Q F I 11 [,bk’$’ J&k)] 

x [Vi(k) ,k)lT llF 

= II [gq * - - gq+r 0 * * - 0 ] IIF 
- 0, (75) 

where y is the last block row of U$' . Next, we have 
from Lemma 3 and (73) 

01 = [Zqp OqPXV] 
(u/k) + @‘p(k)) T’k’ 

= (U/f) + @p’k’ ) T’k’ 

for some nonsingular matrix Tck) E IRnx” and 
Ptk) which tends to zero in the Frobenius norm as 

q,r,M - 00 by (71) and the Hilbert-Schmidt as- 
sumption on the system. Notice that ( T(k))T Tck’ - 
Z,, which implies Tck) (T(k))T - I,,. To see this, write 

z n = ( T(qT(z” + X)P, 

where 

1lXllF = 11 - (Ui$))TUi$) + ,u;:9TU$)P(k) 

+ (up P(k) )T u/f) 

+,u::)P(k))TU::)P(k)JIF - 0. 

Then 
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($0, ,‘JyO, = (T’k’)T(z” - (x;k’)Tnp 

+o(l))T’k’ 

=I, + o(l), 

(Jf~,)‘J;~, = (T(k))T((J;U/k))TJjk)U;k’ 

+o( 1)) Tck’ 

= (T’k’)T;i(k) T’k’ + o( 1). 

It follows that 

jI = ( T’k’)T,$k) Ttk’ + o( 1) I 

where (Jtk), Bck), cck), dck)) is the realization of 
Gtk) in (57 j(60). We derive the following expres- 
sions for the other matrices: 

4 = l?FfiqrJ; - ~2MtiTfiqrJ,r 

= (T(k))T(U;;))TH ,.J q ‘j+o(l) 

= ( T’k’)T( U/k’)TH(k) Jb” + o( 1) 

= (T(k))T#k) + o(l) 

Finally 

= @c)T(k) (rZn _ (T’k’)T,$k’T(k))-’ 

x(T(~))~~(~) + ga’ + o(l) 

= C(k) ((T(k)(T(k))T)-1 _ j(k))-’ 

+ghk’ + o( 1) 

= Gck’ + o( 1). 
n 

By combining the results in Lemma 2 and 
Lemma 4 with the triangle inequality we obtain 
the main result of this section. 

Theorem 2. Let G be a linear system satisfying As- 
sumption 1. Let wG from (12) be the modulus of 
continuity of G and assume q. r satisfy the condi- 
tions (70) and (71). Let G, be the balanced trunca- 
tion of G of order n. Let &,,M be given by Algo- 
rithm 1 using M + 1 noise-free frequency-response 
measurements (14) of G equidistantly spaced on 
[O, rrl. Then 

q Jl o3 II eq,r.n,M - G II m = 0. (76) *. - 

In the rest of this section, we will briefly discuss 
the class of systems considered in this paper and 
the convergence conditions. 

The Hilbert-Schmidt assumption on the sys- 
tem merely implies that llgkll = o( 1 / 3). The set 
of Hilbert-Schmidt systems is not contained in 
3f, (Duren, 1970, Exercise 6-7 in Chapter 6). On 

the other hand, even if #fxrn is not contained in 
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the set of Hilbert-Schmidt system. For example, 
the system described by 

gk= -$, fork= l,24,34..., 

1 0, otherwise, 

is in 4?i but not in the set of Hilbert-Schmidt sys- 
tems since CF=i kgf = 00. We can generate many 
interesting examples considering sequences which 
tend to zero extremely slowly and the gap between 
nonzero elements are arbitrarily large. These exam- 
ples clearly illustrate that Assumption 1, imposed 
on the identified system is rather weak and satisfied 
by some systems with frequency responses charac- 
terized by a modulus of continuity tending to zero 
extremely slowly. 

Recall the condition fl WG(n/M) - 0. This 
condition implies that for the convergence result to 
hold the number of data must increase faster than 
the size of the Hankel matrix at a rate determined 
by the modulus of continuity. 

To appreciate this condition, consider now the 
class of systems characterized by their impulse- 
response decay rates llgkll = O(k-9. If o( > 1, 
such systems are Hilbert-Schmidt and in &‘I. The 
modulus of continuity of a system in this class is 
estimated by the following lemma. 

Lemma 5. Assume that llgkll = O(kea) for some 
a > 1. Then, G(eie) E Amin(z,a)-l. 

ProoJ: Assume o( 5 2. For some constants ci, we 
have 

5 kllgkII I cl ,f k’-O 5 c2 r&YdX = O(N2-*). 
&=I &=I 1 

Thus, G(eie) E A,_, (Duren, 1970, Exercise 1 in 
Chapter 5) . 

n 

Hence, for this class, we have a convergence re- 
quirement 

qr = o(M2a-2) for 1 < cx I 2. (77) 

This requirement drops out for a > 2 since we al- 
ready have M > q, r. Lemma 5 is sharp. Thus, as o( 
gets closer to one, more and more data are required 
for the convergence to take place. 

The condition (70) becomes q = o&f”*) if r = 
O(q) and for o( > 3/2, (77) reads off q = 004~~‘). 
Therefore, with the choice q = O(r), we observe 
that q must satisfy q = o(M”~) if o( > 312 and q = 
o(M”-‘) if 1 < a < 3/2. Recall that if o( > 3/2, 
the system is nuclear, Hence, for nuclear systems 
characterized by o( > 312, the only convergence 
requirement is q = o(M’l*) if q = O(r). 

5. CONSISTEiNCY ANALYSIS 

In this section, we show that Algorithm 1 is 
strongly consistent. The consistency proof will be 
performed via two lemmas. First using our con- 
vergence results in Section 4, we will show that 
Algorithm 1 is strongly consistent provided that 
the system Hankel matrix is consistently estimated. 
Next, we derive further size conditions on the 
system Hankel matrix to obtain consistency. To il- 
lustrate the trade-offs, the results are applied to the 
systems (9). At the end of this section, two other 
related consistent algorithms are briefly discussed. 

The matrix I& in (19) is a linear function of the 
noisy data Gk. Since the noise term ek in (14) is 
additive in Gk, it will be additive in &. Let E,, 
denote the part of the Hankel matrix (19) that has 
its origin in 6% in (14). Then, E,,, is given by 

El*.* f?r 

Ey, 2 ; . . . ; 

[ I 

, (78) 
1 
ey . . . &j+r-I 

where 

A 
eM+k = eG+ k = 1, . . . , kf - 1, 

2M- 1 

pi 6 & 1 ek ei2~ik12M, i = 0, . . . ,q+r- 1. 
k=O 

The frequency-response noise ek, k = 0, . . . , M 
is assumed to be independent, zero-mean complex 
random variables with a bounded covariance func- 
tion. For more information on complex noise mod- 
els, see Brillinger (1981) and Schoukens and Pin- 
telon (1991). 

Lemma 6. Let the assumptions in Theorem 2 hold 
with the addition that the data are noisy, i.e. ek # 0. 
Let E,, be given by (78) and let G,,r,n,M be given by 
Algorithm 1. Then 

,,$m, 11 (&,n,M - G II m = 0, W-p. 1 (79) 

if 

,,J@_ Il&ll~ = 0, w-p. 1. (80) 

ProojY See Appendix C. 

Lemma 7. Let E,, be given by (78) where ek, satisfy 
Assumption 2. Let r and q increase to infinity at 
rates at most 0(&i? (log&f)+) for some /3 > l/2. 
Then 

qJpm llE,,,ll~ = 0, W.P. 1. 631) ,. - 

ProojY Without loss of generality, we may assume 
that the system is single-input/single-output. Let 
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w = 2M and #(i + m) = 2rr(i + m - 1). The lm-th 
element of E,,, is then 

We have by (82) 

w-l w-l 

E IS,(l + m)I’= 1 c E(ekeT) d(k-‘)*(‘+m)‘w 
k=O I=0 
w-1 

= 1 Elekl’ 5 i?w, (83) 
k=O 

where we used the following relation for the conju- 
gate symmetric complex noise 

~(Q.#$,+k) = &$_k) = 0, k = 1, . . *, M - 1. 

Hence, for each E > 0 by Chebyshev’s inequality 
(Chung, 1974) 

=---&i i EIS,(I+m)12 ’ 
I=lm=l 

I cd -. 
WE2 

Taking a subsequence &, we get 

(84) 

(85) 
w 

since q and r are at most O(&%? (logM)-8), /3 > 
l/2. Hence, by Borel-Cantelli’s Lemma (Chung, 
1974), we have 

IlSuJ IlF - - 0, 
W2 

w.p. 1 as w - 00. (86) 

We have thus proved the desired result for a sub- 
sequence. Now it will be extended to the whole se- 
quence. For & < k < (w + 1)2 from 

we have 

E &(l + m) - &(I + m)12 

d-1 
2 

s 2,5 c ei [@N+m)i/k _ &d+m)ild 

+2jy ‘f$ eiel+(l+mWk 1 2 

s Sl?$ sin ‘(I+ m, ’ + 4Rw 
W > 

Let 

D,(i + m) k 

max 
w%k<(w+l)z 

l&(1 + m) - S,,J(~ + m)l . (87) 

Then we have 

E [d,(i + m)] 

[ 

(w+1)2-1 

I E 1 I&(/+m) -&z(1+m)12 
k=mJ+l 1 I SR [8rr2(q + r)2 + w] w 

and consequently applying Chebyshev inequality, 
we obtain that 

P(llDwll~ > de> I J$ i E [@$L: m)l 
/=I m=l 

I 8Rqr [8n2(q + r)2 + w] 
WV 

It follows as before that 

II DwIIF 
- - 0, 

W2 
w.p. 1 as w - 00. (88) 

For & < k < (w + 1 )2 from the following inequality 

Isk(l+ m)l I IS+(I + 41 + D,U + m) 
k d 

t 
t89j 

we get 

II&IIF s II&SGIIF + IIa&ll~ 
W2 w2 . (90) 

W 

Hence, from (86) and (88), (80) follows. 
W 

It is possible to get rates faster than O(m) for 
q and r in the lemma if higher-order moments of 
the noise are bounded. In particular, if the noise 
is uniformly bounded, the rate o(M) for q and r 
is attained. When q = O(r), however, by (70), the 
growth rates of q and r are limited by o(M’j2). 
Then, (70) is satisfied with q = O(m (logM)-8) 
for some /I > l/2. 

Combining Theorem 2, Lemma 6 and Lemma 7, 
we obtain the following main result of the paper. 

Theorem 3. Let G be a linear system satisfying As- 
sumption 1. Let wG from (12) be the modulus of 
continuity of G. Assume q, r satisfy the condition 
(71) and be at most O(m (logM)-8) for some 
fl > l/2. Let G, be the balanced truncation of G 
of order n. Let Gg,r,n,~ be given by Algorithm 1 
using M + 1 frequency-response measurements of 
G equidistantly spaced on [ 0, TT] . Let the measure- 
ment noise I?k in (14) satisfy Assumption 2. Then 

lim lI&,cn,~ - Gnlloo = 0, w.p. 1. (91) 
q.r.M--m I 4ii [8n2(q + r)2 + w]. 
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Furthermore if the Hankel operator of G is nuclear, 
i.e. satisfies (8), then 

m 

,;$n o. ]]Gq,r,n.~ - Gllo;, I 2 1 IXG) W.P. 1, 
II - 

k=n+ I 

(92) 

where repeated singular values are omitted in the 
sum. 

Theorem 3 shows that any Hilbert-Schmidt sys- 
tem with a continuous transfer function can be 
identified consistently if suitable rates for q and r 
are chosen. Note the two competing rates: almost 
square root a (logM)-“2 and (~o(rr/M))-’ 
when r = O(q). The former is related to measure- 
ment noise and the latter to approximation errors 
caused by aliasing. 

When applied to the class of systems (9) Theo- 
rem 3 yields the following important result. 

Corollary 1. Let G be a linear system satisfying As- 
sumption 1. Assume that the impulse response of 
G satisfies ]]gk]] = O(kTa) for some (x > 1. Let q 
and r be at most O(m (logM)-@) for some p > 
l/2 and satisfy qr = o(M2min(a~2)-2). Let &,,M 
be given by Algorithm 1 using A4 + 1 frequency- 
response measurements of G equidistantly spaced 
on [0, r-r]. Let the measurement noise ek in (14) 
satisfy Assumption 2. Let G,, denote the balanced 
truncation of G. Then 

y )p m II&,n,~ - Gnllm = 0, W.P. 1. (93) ,, - 

Furthermore, if o( > 312 then 

,;@im I6;y.r.n.M - Gllw 52 1 l-k(G) w.p. 1, ,I - 
k=n+l 

(94) 

where repeated singular values are omitted in the 
sum. 

Assuming q = O(r), then the consistency condi- 
tion in Corollary 1 becomes 

i 

o(M”_‘), if o( < 312, 
’ = O(&? (logM)-B); B > l/2, if o( L 3/2. 

Hence, if o( < 312, rates for q and r depend on the 
smoothness of the system impulse response. For the 
nuclear systems characterized by o( > 312, rates are 
determined by approximation errors caused by the 
measurement noise. 

5.1. Two related consistent algorithms 

We introduce two more algorithms as follows. 

Let Ai, c be calculated as in Algorithm 1, b from 

. e 

B = c’ v &?I 

[ I O(r_,)mxm (95) 

and i> = 20. This algorithm, which we call Algo- 
rithm 2, was studied in a modal analysis context 
by Juang and Suziki (1988). It is a biased algo- 
rithm. Indeed, Example 1 illustrates poor perfor- 
mance of Algorithm 2 on real data of finite length 
when it is applied to lightly damped systems. How- 
ever, the bias term vanishes asymptotically and the 
algorithm yields truncated balanced realizations of 
the identified system under the system and noise 
assumptions of Theorem 3. 

In the third algorithm, which we call Algo- 
rithm 3, the impulse-response coefficients gr are 
estimated as in Algorithm 1 and a pre-identified 
model is calculated by 

Gpi 6 j&-i. (96) 
i=O 

The nth-order identified model is obtained by 
model reduction by balanced truncation from zlpi. 
Algorithm 3 is a special case of the two-stage algo- 
rithms outlined by Gu and Khargonekar (1992), 
where the pre-identified model structure is allowed 
to be infinite-impulse response to counter possible 
worst-case noise. Owing to finite-impulse response 
structure, Gpr can be reduced by a recursively im- 
plemented balanced truncation technique. Inter- 
estingly, Algorithm 1 contains Algorithm 3 as a 
special case. For when applied to the Hankel matrix 

Algorithm 1 yields the nth-order balanced trunca- 
tion of &pi. Thus, Algorithm 3 is also consistent 
under the assumptions of Theorem 3 though it is 
biased for finite data sets. 

The bias error of Algorithm 3 has two com- 
ponents: the first-stage error I] G - G,,lpi]] o. and the 
approximation error I] &pi - GII oil. The total error 
is bounded above by the sum of l]G - G]], and 
II G - Gpi]],. In the same example in Section 8, Al- 
gorithm 3 performs poorly on the same data due 
to large approximation errors. The example demon- 
strates that in the choice of a potential identification 
algorithm, the posterior error caused by model re- 
duction and correctness in addition to asymptotic 
properties must be taken into account. 
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6. IDENTIFICATION OF CONTINUOUS-TIME 
SYSTEMS 

Most processes subject to modeling are of 
continuous-time character. However, measured in- 

However, the spacing required is approximately 
logarithmic which is often used when describing 
continuous-time transfer functions. 
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put/output signals are almost without exception 
sampled. We can distinguish between two differ- 
ent modeling goals. Either a discrete-time model 
is sought which accurately describes the sampled 
properties of the system or a continuous-time 
model is desired which accurately describes the 
true continuous-time input/output properties of 
the system. 

For the case of discrete-time modeling the re- 
sults in this paper are directly applicable if we 
see the zero-order hold (ZOH) equivalence of 
the (infinite-dimensional) continuous-time system 
as an infinite-dimensional discrete-time system. 
Frequency-response data, for this modeling phi- 
losophy, can accurately be found using periodic 
excitation and the discrete Fourier transform. 

If a continuous-time model is required, two dif- 
ferent approaches can be identified. If the dynam- 
ics of the system (poles and zeros) are below the 
Nyquist frequency, a continuous-time model can 
be found by using the inverse zero-order hold sam- 
pling. In this case, first, a discrete-time model is 
identified from data and, secondly, a continuous- 
time model is obtained by inverse ZOH sampling. 
A second approach is to excite the system with a 
periodic input signal which is band-limited, i.e. no 
signal power above the Nyquist frequency. In this 
case the discrete Fourier transform of the sampled 
input-output data (U (ok), Y (ok)) satisfies the sim- 
ple relation (for normalized frequencies), see Pin- 
telon et al. (1994a) 

y(&k) 
G(_i&) = v(ek). 

Hence, samples of the continuous-time transfer 
function are directly obtained from the Fourier 
transform of one period of the periodic signals. A 
third (but expensive) way of obtaining samples of 
the continuous transfer function is to use stepped 
sine excitation, i.e. for each frequency a sinusoid is 
applied and amplitude and phase are measured. If 
samples of the continuous transfer function are at 
hand, the results of this paper again hold if the data 
are transformed to discrete-time by the bilinear 
transformation z = g. A discrete-time model is 
estimated and converted back to continuous time 
by the inverse bilinear transformation. The trans- 
formation of data from continuous time to discrete 
time is equal to the mapping of continuous-time 
frequencies 8” to discrete-time frequencies 8 ac- 
cording to tan(8/2) = @T/2. Equidistant spacing 
of discrete-time ftequencies requires nonequidis- 
tant spacing of the continuous-time frequencies. 

7. ALGORITHMIC ASPECTS 

7.1. Computational complexity 

When facing a practical identification problem, 
many models of different orders are estimated and 
compared in order to find a suitable “best” model. 
In the presented algorithm, most of the compu- 
tational effort lies in the SVD factorization (20). 
Given the factorization (20) all models of order 
less than q are easily obtained from the rest of the 
algorithm by letting the model order n range from 
1 to q - 1. Hence, the choice of appropriate model 
order can easily be accomplished by direct compar- 
ison of a wide range of models with different orders 
at a low computational cost. 

In the choice of model order, the size of the sin- 
gular values of & provides some useful informa- 
tion. They converge to the Hankel singular values 
of the system, see the Proof of Lemma 6. The sum 
of the neglected singular values in $2 together with 
(13) will thus give an indication of the magnitude 
of the approximation error. 

7.2. Stability issues 

Stability is often a desirable feature of the esti- 
mated model. Algorithm 1 does not guarantee sta- 
bility of the estimated models when using a finite 
number of noisy frequency data. However, stability 
can be ensured by adding an extra projection step 
after (21). In this step all unstable eigenvalues of A 
are projected into the unit circle. This idea can be 
implemented in the following way: 

Transform 2 to the diagonalform (or complex 
Schur form if a is defective), with the eigen- 
values hi on the diagonal. 
Project any diagonal elements (eigenvalues) 
satisfying 1 < lhil I 2, into the unit disc 

by hi b hi( 6 - 1). Eigenvalues with mag- 
nitude l&l > 2 are set to zero. Eigenvalues 
on the unit circle can be moved into the unit 
disc by changing the magnitude of the eigen- 
value to 1 - e for some small positive e, i.e. 

& ’ Ai(1 - E). 
Finally transform 2 back to its original form 
before proceeding further to determine B and 
B. 

This way of imposing stability does not change 
the consistency of the algorithm when identifying 
stable systems since only unstable eigenvalues are 
affected. A second advantage is that the magni- 
tude of the frequency response is approximately un- 
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changed by the projection. 
A stable 2 (all eigenvalues inside the unit circle) 

can be also guaranteed by the following procedure 
(Maciejowski, 1995): 

Of course, this step should only be applied when the 
original A is unstable since it gives a biased estimate. 

8. IDENTIFICATION EXAMPLES 

The algorithm outlined in the previous section 
differs from McKelvey and Akpy ( 1994), which we 
call Algorithm 4, only in the calculation of & and 
B: 

ZM-I 

b, b = arg min 
nEk+m 1 II Gi - G(ejnilM)(I:, (97) 

oEnpXm i=o 

where 

C?‘(z) = D + &I - A)-‘B. (98) 

Algorithm 4 is also correct and needs only mini- 
mal data when restricted to finite-dimensional sys- 
tems, In Algorithm 1, B and i> were modified to 
obtain truncation errors in (16) while maintaining 
correctness of Algorithm 2 over finite-dimensional 
systems. 

The least-squares procedure (97) to estimate B 
and b is a particular case of the nonlinear least- 
squares identification algorithm (NLS) where d 
and e also are estimated. The NLS is not suitable 
for narrow band data if model fit is measured in 
the 3f--norm. To reduce model mismatch, model 
orders should be increased. As this happens, pole- 
zero sensitivity of the model increases. Example 1 
of this section illustrates a model error fluctuation 
at high orders for the NLS. Since Algorithm 1 and 
Algorithm 4 yield identical asymptotic poles, the 
asymptotic performance of Algorithm 1 should be 
expected between the NLS and Algorithm 1. 

Example 1. We will use a real data set obtained at 
the Jet Propulsion Laboratory, Pasadena, Califor- 
nia. The data origin from a frequency-response ex- 
periment on a flexible structure. The JPL-data con- 
sist of a total of M = 512 complex frequency sam- 
ples in the frequency range [ 1.23,628] and have sev- 
eral lightly damped modes. The discrete-time mod- 
els matching the given frequency response were con- 
structed applying zero-order hold sampling equiv- 
alence and five algorithms. In the data set the static 
gain, GO, is missing and was estimated by visual in- 
spection of the transfer function to be -0.04. The 
size of the Hankel matrix A,, is taken as q = r = 

Fig. I. Plot of I/G - &llm.m for different model 
orders and algorithms in Example 1. 

512. In Fig. 1, the error between the predicted, 
G(ej& 1, and measured, Gk, frequency responses 

IIG - ‘%,m 4 mfx 1 Gk - G(e”“) I 

is plotted for different estimated models with or- 
ders ranging from 20 to 44. In the estimation, Algo- 
rithms l-4 and the NLS are used. Notice the bias 
for Algorithm 2 and the fluctuation of the NLS es- 
timates at high orders. This example clearly shows 
the relevance of using either Algorithm 1 or Algo- 
rithm 4 to estimate B and D. The three subspace 
algorithms delivered stable models for all estimated 
model orders. If the model order is further increased 
some eigenvalues of d matrix move outside the unit 
disc and the models become unstable. 

A two-stage nonlinear identification algorithm 
outlined by Gu and Khargonekar (1992) was tested 
on the JPL-data by Friedman and Khargonekar 
(1995). In Friedman and Khargonekar (1995) the 
second stage of the algorithm was eliminated due to 
the numerical difficulty in reducing very high-order 
rational systems. Thus the resulting algorithm is 
Algorithm 3 which is a linear, black-box type. The 
pi-e-identified model had a finite impulse response 
represented by 1024 coefficients and was reduced by 
a recursively implemented model reduction proce- 
dure. With this choice of model order, the data are 
entirely explained by the model. For a comparison, 
we included the results obtained by Friedman and 
Khargonekar (1995) in Fig. 1 (Algorithm 3). This 
clearly indicates that the use of an FIR model as an 
intermediate step.in the identification leads to less 
accurate models as compared with a direct approx- 
imation of a rational model to the given data using 
a correct algorithm. 

Example 2. We will consider the problem of ap- 
proximating the infinite-dimensional transfer func- 
tion 
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x 

Fig. 2. Plot of IIG - el[,m for different model 
orders in Example 2 using Algorithm 1 with “x” 
and without “on projecting unstable eigenvalues 

of d into the unit disc. 

G(s) = 
1 

s + 1 - e-2-” 

I. 

30 

with a finite-dimensional linear model, This par- 
ticular problem has also been studied by Gu et al. 
(1989). As in Gu et al. (1989), we use 512 uniformly 
spaced noise-free frequency-response data on [ 0, rr ] 
derived from (99) by use of the bilinear map. In 
Fig. 2, 11 G- ell,,m is plotted for model orders rang- 
ing from 1 to 28 and Algorithm 1 shown by “x” on 
the figure and Algorithm 1 with the added projeo 
tion of all unstable eigenvalues into the unit disc as 
discussed in Section 7 shown by “0”. Here we take 

4 .zr= 512 which gives the maximal size Hankel 
matrix. From the figure we notice a deviation at 
model orders 2 1,23,24,25, and 26 which are due to 
the unstable initial models which after the projec- 
tion give an increased model error. The first-order 
approximation has the error 3.1 x 10m2 to be com- 
pared with the first-order model in Gu et al. (1989) 
with error 3.2 x 10e2. The error is reduced by in- 
creasing the model order. The 24th-order stable ap- 
proximation of Algorithm 1 has a quite small error 
1.4 x 10m6 to be compared with the 24th-order ap- 
proximant obtained by Gu et al. (1989) with error 
7.9 x 10b3. A further increase of the model order to 
n = 27 gives the almost negligible error 2.4 x 10-12. 

9. CONCLUSIONS 

In this paper, we presented a correct, frequency- 
domain subspace-based identification algorithm 
yielding w.p. 1 a state-space model with a trans- 
fer function equal to the balanced truncation of 
the identified system under a range of conditions 
on the measurement errors and the parameters q 

and r of the Hankel matrix H,,. For practical use, 

an extension of the algorithms are also outlined 
which guarantees stability of the estimated models. 
Two examples were used to illustrate the proper- 
ties of different algorithms and show the practical 
applicability of the algorithms. 
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APPENDIX A. PROOF OF LEMMA 1 

This lemma was partly proven by Glover et al. (1988) (Ap 
pendix 2) for distinct singular values case given an arbitrary 
sequence of compact operators on Hilbert space converging in 
norm to a compact operator. The proof here is extended for 
the repeated singular values case. 

Given any two compact operators S and T with singular 
values vf(S) and ci(T), we have from Corollary 1.5 in Part- 
ington (1988) 

Ui(S+ T) 5 Ui(S) + al(T) 

and 
Ui(S) 5 ci(S + T) + @l(T). 

Being a limit of compact operators, r is compact. Substitute 
rck) for S and r - rck) for T. Thus 

lrjk) - c(c)1 5 Wk) - rll - 0. 

For the second part, suppose that Tl(G) = = &,,(G) > 
(k) A T,,,+l(G). Fix i 5 m and write ui = z:;bl rjf)u, + xik’, where 

(xjk’, u,) = 0 so that llx~“‘II = dm. Then 

b(k) = iiu-(k))*tdjk)ii 5 lir*ujk)ii + Wk9* -r*ii 

= II 2 ri(G)rl:)v, + r*xik) II + llrck) - rll 
/=I 

= @(a z @I’ + ilr*xjk)li2P2 + Wk) - rii 
I=I 

5 (T:(G) f @I2 + T~+l(G)(l - 5 @12))“2 
I=I /=I 

+iiPk) - rii, 

since (r*dk) , , v/) = (x;k’,k’,v,) = I’/(G)(xjk’,u,) = 0, I = 
I;... m. Hence 

T:(G) 5 Irjf)12 + T~+l(G)(l - g @12) 
/=I /=I 

(k) 2 cr, _ IIr(k) _ r11)2 

2 (rl(c) - 2Wk) - rw2. 

Thus 

a(c) - 2wk) -rib2 -r:+l(~) _ , 
r:(G)-r;+l(G) 

as k-m. 

It follows that llx~“‘II - 0 for each i I m as k - 00. 

Let VII = A [ul . . . u,], c$’ 2 [uik) ..a u?‘], and 

Xl 0 [X\k) . . . &‘]. Let R1 denote the matrix with el- 

ements [Rl]!, i r(f)_ Then, we have shown that I$’ can 

be decomposed as 9, (k) = VII RI + XI for some XI that is 
orthogonal to the columns of 91 and 11x1 lip = o(l). From 
(R’)*R’ = I, - X:X1, we have R’(R’)T = I,,, + o(1). 

Consider now the following Hilbert-Schmidt expansions of 
r and rs: 

r = rl(c) gc., vrbr + f Tr(c)(-. vrh, 
/=I /=m+l 

r(k) = i I;(k) ( ., ,.I”) jUjk) 
00 

+ 1 r/k)(., vjk))ul(k) 

and let 

/=I /=m+l 
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I=m+ I 

Let p be the multiplicity of E,,+!(G). If llf - Poll - 0, the 
previous procedure can be applied to the leading singular val- 
ues and the Hi1bert-Schmidt pairs of r and fck) to obtain 

U,(i) 0 UlzR2 + X2 for some R2 E RPXP and X2 that is or- 
thogonal to the columns of Uts and II Xjll~ = o( I ), where 

Ul2 6 [urn+1 . . . u,,,+p] and U$’ fi [u$i, . - - u$ip]. Fur- 

thermore, R2(R2)’ = Ip + o(l). Continue this procedure until 
m(G)( ., v&9 is not contained in f. Let R’ 0 . . . Ri oR2.m. 

[ I, . . . . ‘. . . 
Thus, we obtain by this procedure 

U:“’ =UlR+X 

for some R E Rnxn and X such that RRT = I, + o(1) and 
IlXllP = o(1). Then, orthogonal decomposition of X into UI 
and U2 yields 

(” v, = VI (R + UTX, + U&X, g 7Jl Ttk) + U2.Y. 

From our construction, Tck) is invertible since it is a perturbed 
block diagonal matrix of invertible matrices and the amount of 
perturbation is bounded by II Xll~. Next, S has the property 
IlSll~ = o( 1). Since Ttk) is invertible, UxS can be further 

factorixedas u2s = Us(S(T(k)))-‘)T(“. Set P(k) p S(T(k))_‘. 
Furthermore, llfik) 11~ -. 0 since u&F”)) - 1. This completes 
the proof provided that llf - fgk)ll - 0 which is equivalent to 

jJ rjk) (x, VI") ) ujk) - Tl(G) $cx, Vfho, vx E 12 
I-I I=1 

for llr - rcO II - 0. Because rck) - r, we have for each I 5 m 

(x, vjk)) = (x, (r(k9*ujk9 = (Pk)x, i $)tdi + ~j”) 
i=l 

(rx,t4) +0(i) = g$)h vi) + o(i). 
I=1 

Thus 

= rl(G) ~:(X. Vi)Uj + O(1). 

i=l 

APPENDIX B. PROOF OF LEMMA 3 

We will prove for q > m and r > p since equality cases are 
included. Let 

21 a x’ Omx(r-p) 

-[ O(q-noxr 1 

and Uii denote the matrix containing n left singular vectors 
of 1’ as in (66). Nonxero singular values of Xi and 2, are 
equal. Thus, a,@) > 0 and 0; must be in the form 

0” = [ o(,_:px.] @.I) 

for some U/ in (66). Let y 4 u.(X2) - a,,+, (X2) and 

[ $1 (2’ - x2) [ v: vz ] = [ 2: ;; ] = E. (B.2) 

From (B.Z), we notice that llEll~ = 11X’ - X2)If 5 E and also 
lIEi/ 112 I IlEijllF since the spectral norm is upper bounded by 
the Frobenius norm. Therefore, it is clear that 

6 b Y - II&1112 - l&2112 2 Y - IIEIIIIF - IlEull~ 

> y - 2E > y/2 

by assumption (67). We also have 

IIEZI E;I;llF < g < 1 
6 Y 2’ 

Then, by Theorem 8.3.5 in Golub and Van Loan (1989) there 
exists a matrix P satisfying 

such that range spaces of 0; and Uf + U$P are equal. Since 
the range spaces are equal and Uf is of full rank there exists 
a unique nonsingular matrix T such that 

0; = (Uf + U,zP)T. 

The equalities (B.l) and (B.3) give (68). 

(B.3) 

APPENDIX C. PROOF OF LEMMA 6 

First, observe that a lower bound M* 5 M yields lower 
bounds q(M*) 5 q and r(M*) s r since q and r are given two 
increasing functions. Therefore, we will consider fixed values 

only for M in what follows. Let H& 4 &, - &, denote the 

noise-free part of fir, in (19) and A,. B.v, C,. Dx, system matrices 
estimated from H& and 20 by Algorithm 1. 

As M - 00, we have lif(Q+‘) -I’ll - 0, where G(9+‘) denotes 
truncated impulse response in (52). Recall that the Hankel 
singular values of G(9+‘) coincide with the singular values of 
H(Q+‘) in (55). Then, by Lemma 1, it follows that ar(&9+‘)) - 
b(G) for all i as A4 - 00, where oi(a(r+‘)) are the singular 
values of H(9+‘) and G(G) the Hankel singular values of G. Set 

fi.r h U;r 09PW 

( 
0 I rpxrm OrpxQm 

Under the hypothesis of the lemma, ll& - H(9+‘)llp - 0 
as M - 00, which implies u.(H&) - u9(PZ(9+‘)) and 

Un+l W&) - a,+~ (N(9+‘)) as M - 00 since the singular 

values of H& and i? are the same. Therefore, there exists a 
number MI such that for all M z MI 

o,,(H&) - o,,+l (H;) > ; (f,,(G) - L+I ((3). 

By Theorem 2, Gs c C&Z. - A,)-‘B, + D,y converges to 
G,, = r?(zI,, - d)-‘B + b as M - m where d. 8, c, b are 
the system matrices in (37)-(40). In particular, the spectra1 

radius of A, (0 p(A,), radius of the smallest disk at the origin 
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containing all eigenvalues of A,) is bounded away from one 
for all suIIiciently large M since balanced truncations of G are 
stable ,i.e. p(j) < 1 and eigenvalues of A, converge to those 
of 2. Hence, choose Mz > Mr such that for all M 1 Mz 

1 + PM 
pL4.J < -y-. 

Finally 

d(ZZ” - A,-‘B + B 

= CyT (zl, - T-lA,vT)-’ TTB,v 

+& + O(E) +0(l) 

Next we apply Lemma 3 with X’ = Z&, and X2 = Hi,. 

Suppose llH& - Z&ll~ I E for all M z Mz and E 5 (I,,(G) - 
&,+t(G))/8. Then there exists a P E W(~“-n)xn and a T E 
lRnx” satisfying 

= C, (zZ, - A,y)-’ TTTB,, + &, + O(E) + o(I) 

= G., + (20 - D,d + O(E) + o(1). 

and 

0, = (v; + U;P,T Cl) 

/pllF < T,,(G) -“r,+,(G) e ’ ‘e* (C.2) 

where Us E Rrppx” and Vi E lRe~‘x(““-n) are formed from I 
normalized left singular vectors of H$ as in (20) for C& and 

Z&. Note that (C.1) and (C.2) hold for all M and E provided 
M 2 Mz and E 5 (f.(G) -f,,+l(G))/8 although P and T may 
also depend on M and l . 

To sum up, there exist two numbers Mz and E and an absolute 
constant cl such that for all M 2 Mz and e 5 E 

ll&,,IIF s E * 116 - Gsllm 5 llko - &ll + Cl.5 + O(M 

for some sequence OLM which tends to zero as M - m. Since 
G,V converges to G,,, we have 

IIG - Gnllm 5 BM 

for some sequence fin tending to zero as M - 00. Given E 5 E, 
choose a number M* > Mz such that a~ + /3w 5 E. Then 

Now we proceed as in the Proof of Lemma 4. First, from 
(Cl) we get TTT = Z. + G(E) or TTT = Z, + G(E). From 

IIE,,IIF s c and 1120 -&II 5 E; 

M~M*~IIG-Gnllm~(2+c,)~;M)M*. 

Thus, for the events above, we get 

(J;‘ir,,T_@, = TT(JfU;,‘@,sT + O(E). 

(.@,)TJjo, = TT(.ZfU;)T@$‘T f O(E). 

it follows that which implies 

d = T-‘(.@;)+.Z#T + O(E) = T-‘A,T + O(E). 

Hence, p(A) 5 P(A,~) + O(E) < (I + p(A))/2 + O(E). Thus, 
choose 5 5 (f,,(G) -I,,+t(G))/8 to satisfy p(i) < p < 1 for all 
E 5 .5. Then, 2ZM = O(fiZM) = o( 1) for all E 5 5 and M z Mz. 
We derive the following expressions for the other matrices: 

Prob (llE,,,jl~ > E i. 0.) +Prob (Ilie - D,Vll > E i. 0.) 

Z?= Ij:itZ~J~-ziZMl?&J; = TT(U,s,‘H;.Z; + O(E) +0(l) 

= TTZ& + O(e) + o(1). 

c = 40, = J$;‘T + O(E) = GT + O(E), 

b=&+oo(l). 

where i. o. stands for “infinitely often”. It is known that a 
sequence of random variables XM converges to zero w.p. 1 as 
M--ifandonlyifforeache>O,Prob(lX~l>e i.o.)= 
0 (Chung, 1974). Hence, the desired result will follow from 
this inequality and the hypothesis if it holds that & - D,v - 0 

w.p. I. Note that &I - D,y is the sample mean of extended 
frequency-response noise which is an independent sequence of 
covariance-bounded random variables. Thus, g - D,s - 0 w.p. 
IasM-Wm. 

rProb(II~-G,II,>(2+cl)E i.o.), 


