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Introduction

A subspace-based identification algorithm, which takes
samples of an infinite-dimensional transfer function, is shown to
produce estimates which converge to a balanced truncation of
the system.

@ Identification of infinite-dimensional systems studied in
time-domain in Ljung and Yuan: 1985; Huang and Guo:
1990, Hjalmarsson: 1993.

@ In frequency-domain studied in Helmicki etal.: 1991;
Makild and Partington: 1991; Gu and Khargonekar: 1992.

@ Despite that low-order nominal models are preferred in
most practical applications as in the design of
model-based controllers, the true systems are usually of
high or infinite order with unmodeled dynamics and
random/deterministic noise.
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Introduction

@ Thus, the basic task of system identification is to construct
a simple nominal model based on the measured data
generated from a complex system.

Based on how the disturbances are characterized, problem
formulations can be divided into two categories:

@ Stochastic formulation leading to instrumental variable and
prediction error methods (Ljung: 1997, S6destrom and
Stoica: 1989). "The least-squares method".

© Deterministic formulation leading to "robustly convergent"
non-linear algorithms (Helmicki etal.: 1991, Gu and
Khargonekar: 1992).
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Introduction

@ In both approaches, a prejudice-free model set of high
complexity is the underlying model structure.

@ In most practical applications, the model is required to be
of restricted complexity despite the fact that the true
system might have infinite order. Thus, model reduction is
a complementary step to the black-box identification.

e Besides the computational complexity, this step induces
large approximation errors.
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Introduction

@ An alternative method is to directly realize low complexity
models from the experimental data.

@ Nonlinear parametric optimization (Ljung: 1993, Pintelon et
al.: 1994b) where the solution is obtained by iterations.

e Non-iterative subspace-based algorithms delivering
state-space models without any parametric optimization
(Verhaegen and Dewilde: 1992, Van Overschee and De
Moor: 1994).

@ Models in canonical minimal parametrizations are
numerically sensitive for high-order models, in comparison
with state-space models in a balanced realization.

@ Subspace-based algorithms are more robust to numerical
inaccuracies than the canonically parametrized models
since the model obtained is normally close to being
balanced.
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Introduction

@ Frequency-domain subspace algorithms (Juang and
Suziki: 1988, Liu etal.: 1994, McKelvey etal.,: 1996 based
on the realization algorithms by Ho and Kalman (1966) and
Kung (1978).

e Ho and Kalman: 1966 and Kung: 1978 find a minimal
state-space realization given a finite sequence of the
Markov parameters estimated from the inverse discrete
Fourier transform (DFT) of the frequency-response data.

e Juang and Suziki: 1988 is exact only if the system has a
finite impulse response, therefore for lightly damped
systems yields very poor estimates.

o In McKelvey etal.: 1994, the inverse DFT technique is
combined with a subspace identification step yielding the
true finite-dimensional system in spite of this aliasing effect.

e Current work reporting extensions of McKelvey etal.: 1996
to infinite-dimensional systems.
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Problem Formulation

@ G stable, MIMO, linear-time invariant, discrete-time system
with input-output properties characterized by the impulse
response coefficients g, through the equation:

=" guu(t — k) (1)
k=0

where y(t) € RP, u(t) € R™, and g, € RP*™.

oo
=Y g™, 0<w<m

Gle ™) = G*(¢¥), O<w<m.
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Problem Formulation

@ For engineering purposes, a more practical model is a
state-space model:

x(k+1) = Ax(k)+ Bu(k),
y(k) = Cx(k)+ Du(k)

where x(t) € R".
@ The state-space model is a special case of (1) with
[ D, k=0,
9k = CA-1B, k> 0.

@ |dentify a finite-dimensional model which is a good
approximation of the infinite-dimensional system (1).
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Problem Formulation

System assumptions

Some further assumptions must be imposed on the system to
obtain good approximations.

The Hankel operator of G(z) with symbol I' is defined on /7' by
o)
th+:+1 u(i t>0
=0

is a mapping into /5. Let I'* be the adjoint of T.
2

The Hankel singular values I';(G) are defined to be the square
roots of the eigenvalues of I'T*.

Let u; and v; be the corresponding normalized eigenvectors of
T and ', respectively.
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Problem Formulation

The pair (v;, u;) is called the Schmidt pair and satisfies
rvi = Ti(G)u;,
Mu = Ti(G)v.
A system G is said to be Hilbert-Schmidt if its Hankel singular
values satisfy

and nuclear if

@ All finite-dimensional linear systems form a subset of
nuclear systems and nuclear systems themselves are
contained in the set of Hilbert-Schmidt systems.
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Problem Formulation

These classes can be identified with impulse-response decay
rates.
@ G has Hilbert-Schmidt Hankel operator if
gkl = O(k™),  a>1

or
19|l = O(1/(klog k))
which follows from the identity

>_TRG) = Y Klgl
k=1 k=1
@ A sufficient condition for the nuclearity (Bonnet: 1993)
19kl = O(k™),  a>3/2.



Problem Formulation

@ Conversely, sufficient conditions for a system to have a
Hilbert-Schmidt or nuclear Hankel operator can be stated
in terms of boundary behavior of the system transfer
function and its derivatives (Curtain:1985)

Assumption 1 The system G € H, has a continuous transfer
function and a Hilbert-Schmidt Hankel operator I'. For a fixed n,
the Hankel singular values satisfy

Fn(G) > Thi1(G).

@ Let f be a complex-valued periodic function on the unit
circle. Its modulus of continuity is defined by
wi(t) = sup |[f(e*) —f(e¥)].
[x—y|<t
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Problem Formulation

@ fisofclass A, (0 < a <1)ifws(t) = O(t*) as t — 0.

@ Optimal Hankel norm and balanced truncations are two
popular model reduction techniques for nuclear systems:

1Gn = Gl <2 ) Tk(G) @)
k=n+1

where repeated singular values are omitted in the sum and
G, is nth-order balanced truncation of G (Hinrichsen and
Pritchard: 1990).
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Problem Formulation

Noise assumptions

Data: Gy = G(/™ /M) + g, k=0,---,M.
Assumption 2 The noise e, k =0, --- , M are independent
zero-mean complex random variables with uniformly-bounded

second moments

R« =E{ecef} <R,  Vk.
@ Obijective: to achieve (2) with probability one:

Jim (|G~ Gloe <2 Y Th(G)  wpl,  (3)
k=n+1

where GmM is the nth-order identified model.
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Subspace-based algorithm

Algorithm 1
@ 1. Expand the transfer function samples to the full circle

GM+k:G7\</I_ka k:1,,M—1
and perform the 2M-point inverse DFT

1 2M—1 o
G =g > GReZEM =0, g1
k=0

to obtain the estimates of g;.
@ 2. Construct the g x r-block Hankel matrix

G & &
I:Iqr: 9.2 9.3 gr.—H
99 Gg+1 - Og+r—1

Huseyin Akgay Subspace-based Identification



Subspace-based algorithm

and perform an SVD for Hyr as follows

f Ty M1 E 0 2
N TIHIIE

where ¥ contains the n dominant singular values.

@ 3. Determine the system matrices as

A= (J70)1 0,
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Subspace-based algorithm

o

= JgU17
= (I-AMs, VL,
_ QO _ CAZM—1(I_I2\2M)—1 B,

o W

where

J1q [/(q 1)p q 1)pxp}
Jg [O(Q 1)pxp CH)p} )
Jg [/ pX(q1 ]

Js .
4 0(r 1)m><m ]
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Subspace-based algorithm

@ 4. The estimated transfer function is

Ggram(z) =D+ C(zI - A)7'B.

Theorem 1 Let G be a stable system of order n. Assume
g>n,r>nand2M > q + r. Suppose that M + 1 equidistant
noise-free frequency-response measurements of G on [O, 7]
are available and let G, , » be given by Algorithm 1. Then

1Gg.r.nm — Glloo = 0.
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Subspace-based algorithm

@ Let g = n+1 and r = nto meet the requirements on r and
g which imply that M = n+ 1, and consequently n+ 2
equidistant samples of the frequency-response function on
[0, 7] are required.

@ Algorithm 1 is in the class of correct algorithms when
applied to data from systems of finite dimension and uses
a minimum amount of data among all such algorithms.

@ Remarkable advantage with respect to black-box
identification algorithms which use linearly parametrized
model structures and satify (3).
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Noise-free data case
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Convergence analysis
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

Theorem 2 Let G be a linear system satisfying Assumption 1.
Let wg be the modulus of continuity of G and assume that g
and r satisfy the conditions

(i) q,r,M—oo
g q,»mwe< s

Let G, be the balanced truncation of G be the balanced
truncation of order n. Let G%,,,,,,M be given by Algorithm 1 using
M + 1 noise-free frequency-response measurements of G
equidistantly spaced on [O, 7]. Then

im |G — Gpllos = 0.
q,r,M—>oo|| q,r,n,M n||oo
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

@ The Hilbert-Schmidt assumption on G merely implies that
lgk|l = o(1/vk). The set of Hilbert-Schmidt systems is not
contained in H., (Duren: 1970, Exercise 6-7 in Chapter 6).

e (7™ is not contained in the set of Hilbert-Schmidt systems
either. Example:

_ ) g fork=1,2%3%.,
Gk = 0, otherwise.

lglli = 3524 k2 < oo while 3252 4 k|g|? = co.

@ Assumption 1 imposed on the system is rather weak!
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Noise-free data case
Consistency analysis

Convergence analysis
9 4 Two related consistent algorithms

Convergence condition /qrwg(m/M)

Suppose ||gk|| = O(k~—®). If & > 1, such systems are
Hilbert-Schmidt and in ¢;. Moreover,

Lemma Assume that ||gx|| = O(k~“) for some a > 1. Then,
G(€") € Amin2,0}-1-

@ Hence, for this class, we have a convergence requirement
gr=o(M?**72),  forl<a<2
which drops out for « > 2 since have M > q,r.

@ Lemma 5 is sharp. Thus, as « gets closer to one, more and
more data are required for the convergence to take place.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

@ Let r = O(q). Then, condition (i) in Theorem 2 reads off
q = o(v/M) and for the class in the lemma, condition (ii) in
Theorem 2 becomes g = O(M>~1).

_ { o(VM), a>3/2,
9=\ oMoy, 1 <a<3/2

@ For nuclear systems characterized by o > 3/2, the only
convergence requirement is g = o(v'M) if g = O(r).
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Noise-free data case
Consistency analysis

Convergence analysis
9 4 Two related consistent algorithms
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

Theorem 3 Let G be a system satisfying Assumption 1. Let wg
be the modulus of continuity of G. Assume q, r satisfy condition
(i) in Theorem 2 and be at most O(v/M(log M)~?) for some

B > 1/2. Let G, be the balanced truncation of G of order n. Let
Gg,,,m,\,, be given by Algorithm 1 using equidistantly spaced

M + 1 frequency-response measurements of G on [0, 7]. Let e
satisfy Assumption 2. Then

q7r’|[i‘/,rrl)oo HGq7r7n7M - GnHOO = O7 Wpl

Furthermore if the Hankel operator of G is nuclear, then

o0
lim |G — Gyl <2 (G p.1.
q,r,M—oco || q,r,n,M n”oo = k§_1 k( )’ w.p

where repeated singular values are omitted in the sum.



Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

Corollary Let G be a system satisfying Assumption 1. Assume
that ||gk|| = O(k—?) for some « > 1. Let g and r be at most
O(v'M(log M)~?) for some 3 > 1/2 and satisfy

gr = o(MPmin{e:2}-2) | et G, ., m be given by Algorithm 1
using equidistantly spaced M + 1 frequency-response
measurements of G on [0, 7]. Let e, satisfy Assumption 2. Let
G be the balanced truncation of G of order n. Then

lim |G — Gpllo =0 p.l.
qu’M_on q,r,n,M n”oo ) w.p

Furthermore, if o > 3/2 then

(o)
lim |G ~ < p.1.
o 1| Garnm Gnuoo_zk_zn+1 (@),  wpl

where repeated singular values are omitted in the sum.



Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

@ Assume q = O(r), then the consistency condition in

Corollary 1 is
[ o(Ma—Ty, if « <3/2,
9=\ o(WM(logM)=0); 8> 1/2, ifa>3/2.

o If a < 3/2, rates for g and r depend on the smoothness of
the system impulse response.

e For the nuclear systems characterized by « > 3/2, rates
are determined by approximation errors caused by the
measurement noise.

Huseyin Akgay Subspace-based Identification



Noise-free data case
Consistency analysis

Convergence analysis ; q
9 vS! Two related consistent algorithms

Outline

e Convergence analysis

@ Two related consistent algorithms
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

@ Let A, C be calculated as in Algorithm 1, B as

A e o /
B=s,V] { m }
T 0(r71)m><m
and D = 9o- This algorithm, which we call Algorithm 2,
studied in a modal analysis context by Juang and Suziki
(1988) is a biased algorithm. Indeed, Example 1 illustrates
poor performance of Algorithm 2 on real data of finite
length when it is applied to lightly damped systems.
e The bias term vanishes asymptotically and the algorithm

yields truncated balanced realizations of the identified
system under same assumptions in Theorem 3.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

@ In the third algorithm, which we call Algorithm 3, g; are
estimated as in Algorithm 1 and a pre-identified model is
calculated by

k
Gpi(Z) = ZQ,’ZH.
i=0

The nth-order identified model is obtained from Gpi by a
recursively implemented balanced truncation technique.
Thanks to the FIR structure!

e Algorithm 1 contains Algorithm 3 as a special case. Thus,
Algorithm 3 is also consistent under the assumptions of
Theorem 3 though it is biased for finite data sets. (Algorithm
1 yields the nth-order balanced truncation of G‘pi).
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence analysis

@ The bias error of Algorithm 3 has two components:

@ the first-stage error |G — G‘pi||OO
@ approximation error: |Gy — Gl|oo-

The total error is bounded above by the sum of |G — G‘piHoo
and ||Gyi — Gl|we. In the same example, Algorithm 3
performs poorly on the same data due to large
approximation errors.

@ In the choice of a potential identification algorithm, the
posterior error caused by model reduction and correctness
in addition to asymptotic properties must be taken into
account.
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identification Examples

@ Algorithm 1 differs from McKelvey etal.: 1996, which we
call Algorithm 4, only in the calculation of B and D:

2M—1
B.D=arg min > |G- G(e™M)|z
BeRnxm N
DeRpxm =0
where B R .
G(z) =D+ C(zl- C)'B.

@ Algorithm 4 is also correct and uses minimal data when
restricted to finite-dimensional systems, In Algorithm 1, B
and D were modified to obtain truncation error formula
while maintaining correctness of Algorithm 2.
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identification Examples

@ The least-squares procedure to estimate BandDisa
particular case of the NLS identification algorithm where A
and C as well are estimated. The NLS is not suitable for
narrow band data if model fit is measured in the H.,-norm.

@ To reduce model mismatch, model orders should be
increased. As this happens, pole-zero sensitivity of the
model increases. Example 1 of this section illustrates a
model error fluctuation at high orders for the NLS.

@ Since Algorithm 1 and Algorithm 4 yield identical
asymptotic poles, the asymptotic performance of Algorithm
4 should be expected between the NLS and Algorithm 1.
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identification Examples

Example 1 Real data set obtained at the Jet Propulsion
Laboratory, Pasadena, California originating from a
frequency-response experiment on a flexible structure.

e The JPL-data consist of a total of M = 512 complex
frequency samples in the frequency range [ 1.23,628] and have
several lightly damped modes.

¢ The discrete-time models matching the given frequency
response were constructed applying zero-order hold sampling
equivalence and five algorithms.

oq=r="512.
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identification Examples

Plot of |GM — G||m.cc = Max.,, |GM(e'“x) — Gy| for different model orders and

algorithms in Example 1.

r—_‘".".a.‘lxitnlnﬁ

1w " N L
o Mgt *egse,, - .
Mg 2
.
. Ng3d | L
v Mg d *es e
© NLS
! ” 35 0 45

Huseyin Akgay Subspace-based Identification



identification Examples

@ Algorithm 3 was tested by Friedman and Khargonekar:
1995 on the JPL-data.

@ The pre-identified model had a finite-impulse response
represented by 1024 coefficients and was reduced by a
recursively implemented model reduction procedure. (With
this choice of model order, the data are entirely explained
by the model!)

@ The use of an FIR model as an intermediate step in the
identification leads to less accurate models as compared
with a direct approximation of a rational model to the given
data using a correct algorithm.
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identification Examples

Example 2 Consider the problem of approximating

’
o s+1-e2s

G(s) (4)

with a finite-dimensional linear model (Gu etal.: 1989).
@ 512 uniformly spaced noise-free frequency-response data
on [0, 7] derived from (4) by use of the bilinear map.
@ g = r = 512 which gives the maximal size Hankel matrix.

@ Aprroximation errors: 1st order: 3.1 x 10~2 of Algorithm 1
versus 3.2 x 1072 of Gu etal.: 1989; 24th-order:
1.4 x 1078 of Algorithm 1 versus 7.9 x 1072 of Gu etal.:
1989; 27th-order: 2.4 x 10~ 12 of Algorithm 1.
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identification Examples

Plot of |GM — G|lm,~ for different model orders in Example 2 using Algorithm 1

with "x" and without "o" projecting unstable eigenvalues of A into the unit disk.




Conclusions

@ We presented a correct, frequency domain
subspace-based algorithm yielding w.p.1 balanced
truncations of the identified system.

@ Two examples were used to illustrate the properties of
different algorithms and to show the practical applicability
of the algorithms.
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