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space-B ased Multivariable System Identification 
from Frequency Response Data 
Tomas McKelvey, Hiiseyin AkCay, and Lennart Ljung, Fellow, ZEEE 

Abstract-Two noniterative subspace-based algorithms which 
identify linear, time-invariant MIMO (multi-inpuUmultioutput) 
systems from frequency response data are presented. The al- 
gorithms are related to the recent time-domain subspace iden- 
tification techniques. The first algorithm uses equidistantly, in 
frequency, spaced data and is strongly consistent under weak 
noise assumptions. The second algorithm uses arbitrary fre- 
quency spacing and is strongly consistent under more restrictive 
noise assumptions. Promising results are obtained when the 
algorithms are applied to real frequency data originating from 
a large flexible structure. 

I. INTRODUCTION 
INEAR systems are most often characterized in the 
frequency domain. The properties of a closed-loop system 

can, for single-input, single-output (SISO) systems, very accu- 
rately and intuitively be determined by studying the frequency 
response function. The classical lead-lag compensator design 
is done entirely by shaping the Nyquist plot or the Bode plot 
of the open-loop system. From this perspective, it is quite 
natural to also consider performing system identification in the 
frequency domain, i.e., determining low order, linear models 
given samples of the frequency response. In the classical 
identification literature [30], [50], direct frequency domain 
identification has received little attention. However, recently 
the interest for frequency domain techniques, following the 
classical stochastic approach, has increased [47]. 

Motivated from robust control, Helmicki et al. [21] for- 
mulated system identification in the frequency domain, also 
known as E ,  identification. Within this framework, a number 
of identification algorithms have emerged, see, e.g., [ 181, 
[39], and the references therein. Model validation in this 
framework has also been considered [43], [49]. Most model 
structures considered were of finite impulse response (FIR) 
type, and the objective was to obtain hard error bounds. This 
had several drawbacks in serious applications, especially in 
the identification of lightly damped systems, as illustrated 
clearly by the ARC testbed example in [ 151. This leads to 
the conclusion that model structures, capable of representing 
finite-dimensional rational transfer functions, are needed. 

Besides the need for a rational multivariable model of the 
system to be controlled, the modem tools for synthesis of 
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robust controllers need accurate and automatic methods for 
synthesis of multivariable parametric models given frequency 
response data. Particularly, in the D-K iteration algorithm 
[ 141, solving the p-synthesis problem, parametric models are 
identified from frequency data. The identified systems are used 
for dynamic scaling when determining the p-norm. 

Although all representations of a finite-dimensional linear 
system are equivalent, the state-space models stand out as 
the natural way of representing multivariable systems. Hence, 
most implementations of control synthesis tools use state-space 
representations. 

Recently, identification and control of large flexible struc- 
tures have received considerable attention [151, [28], [29], [6], 
[24], [23]. This type of system is also frequently encountered 
in the modal analysis area of mechanical engineering. Typi- 
cally such systems are lightly damped and quite often, as in the 
system analysis and control design of mechanical structures, 
high-order models with many inputs and outputs are needed. 

For structural design purposes, the finite element method 
provides accurate enough models. Then static and dynamic 
tests on the structure are performed to refine the finite element 
model. However, this traditional approach to model develop- 
ment may not be accurate enough if the intended use of the 
analytical model is to design a control system, since most 
modem multivariable control design techniques are based on 
state-space models of the systems. A direct method is then to 
realize the model from the experimental results. 

If time-domain measurements are available, a great number 
of algorithms exist in the literature. These algorithms can 
be classified either as iterative or noniterative. Among the 
iterative algorithms, we find the prediction error methods 
[30], [50], and among the noniterative we find the more 
recent subspace based algorithms [ 131, [56], [54]. Noniterative 
methods do not involve nonlinear parametric optimization. 
In particular, subspace-based algorithms deliver state-space 
models without the need for an explicit parameterization of 
the model set. Essentially, there is no difference between 
multi-input, multi-output (MIMO) system identification and 
SISO system identification for a subspace-based algorithm. 
The algorithms also deliver estimated models in a state-space 
basis, wherein the transfer function is insensitive to small 
perturbations in the matrix elements. This leads to the ability 
to identify high-order systems. In [57] and [12], subspace- 
based algorithms were analyzed with respect to consistency, 
and asymptotic expressions for the quality of the estimates 
were derived in [57]. 

In practice, information about a system is often charac- 
terized in terms of the frequency response of the system 
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at some discrete set of frequencies. If the excitation of the 
system is well-designed, e.g., periodic input or stepped-sine, 
each transfer function measurement, compiled from a large 
number of time-domain measurements, is of high quality. Data 
originating from different experiments can easily be combined 
in the frequency domain. See [l], [SI, 1411, and [47] for a 
discussion on the data acquisition and the statistical properties 
of the frequency response data. 

The problem of fitting a real-rational model to a given 
frequency response has been addressed by many authors, e.g., 
[47], [31], and [41]. In the traditional way, a system is modeled 
as a fraction of two polynomials with real coefficients, and a 
nonlinear least-squares fit to the frequency response data is 
sought. The solution to this nonlinear parametric optimization 
problem is obtained by iterative, numerical search. For certain 
noise models, such identificaliun rnetliods can be interpreted 
as statistical maximum-likelihood estimators and, as such, 
they are the frequency domain counterpart to the well-known 
time domain prediction error methods [30]. In an early result 
[26], and later refined in [46], a sequence of linear least- 
squares problems called SK-iterations are solved. However, 
SK-iterations are not guaranteed to terminate at the global 
minimum as indicated in [58]. A second drawback is the 
sensitivity of the poles and zeros of the system to polynomial 
factoring, if the system order is high. This deficiency can be 
reduced by introducing other parameterizations, e.g., orthog- 
onal polynomials 1111, [ l] ,  1441, the zero-pole-gain form, or 
the related RPM-parameterization [40]. 

On the other hand, the algorithm in [24] is noniterative and 
based on the famous Ho and Kalman realization algorithm [22] 
or Kung's smoothed version [2S]. In [24], the impulse response 
coefficients of the system, also called Markov parameters, 
are estimated applying the inverse discrete Fourier transform 
(IDFT) to the frequency response data. The realization al- 
gorithms [22], [25] find a minimal state-space realization 
given a finite sequence of Markov parameters. In [24], a 
recursive scheme to calculate the estimates of the Markov 
parameters is proposed. Their approach is exact only if the 
impulse response dies out completely within the number of 
given frequency points, in other words if the system has 
a finite impulse response and therefore for lightly damped 
systems yields very poor estimates. To perform the inverse 
DFT, the frequency data must also be uniformly spaced. A 
similar approach is described in [20], where the approximate 
Markov parameters obtained from the IDFT are taken as the 
finite impulse response of a system and then, as a second 
step, the model reduction technique of balanced truncation 
[37] is applied. In [6], Bayard suggests first fitting a high- 
order rational model to the data using the SK-iterations and 
then calculating Markov parameters of the high-order model. 
Next, a reduced-order model in the state-space form is obtained 
utilizing the realization algorithm of Ho and Kalman [22]. 

A new frequency domain approach proposed by Liu and 
coworkers [28] is a frequency domain counterpart of the time- 
domain subspace methods by De Moor and Vandewalle [ 131 
and Liu and Skelton [29]. Their approach does not require 
the data to be uniformly spaced in frequencies and also offers 
some frequency weighting capabilities. 

In this paper we will introduce two frequency domain iden- 
tification algorithrns and provide stochastic analysis regarding 
their consistency properties, i.e., if the estimates will converge 
to the true transfer function as the number of data tends to 
infinity. The two ;algorithms share some common features: 

Given samples of the frequency function, minimal MIMO 
state-space models are delivered by the algorithms. 
A key step is the extraction of a low-dimensional sub- 
space by the use of a truncated singular value decompo- 
sition of a noisy data matrix. 
The algorithms are noniterative. 
They are strongly consistent, i.e., when data are noisy, the 
estimated transfer function will converge to the correct 
one when the number of data tends to infinity. 
They are correct, i.e., any finite-dimensional rational 
transfer funcl.ion will exactly be estimated, given a finite 
number of data (depending on the model order). 

The first algorithm is based on the classical state-space 
realization algorithms [59], [25]. The algorithm combines 
the IDFT and a modified realization algorithm. The second 
algorithm presented is the frequency domain equivalence to the 
time-domain projection method [ 131, [S6] and is related to the 
frequency domain algorithm 1281. This algorithm is applicable 
to data with arbitrary frequency spacing but is only strongly 
consistent if the noise covariance function is known. 

We will now outline the contents of this paper. In Section 11, 
we formulate the problem solved in the paper. A novel 
identification algorithm applicable when the frequency data 
are equidistant saimples of the frequency function is presented 
in Section 111. Analysis shows correctness and strong consis- 
tency for the algorithm. In Section IV, a second algorithm 
is presented whiich takes data with an arbitrary frequency 
spacing. Correctness is shown, and if the noise covariance 
function is known the algorithm is shown to be consistent. 
The relation between the two algorithms is discussed and 
an illuminating e rtample illustrates the consistency properties 
of the algorithms. Some practical aspects are discussed in 
Section V. If data are given as samples of a continuous 
time transfer function, the bilinear transformation can be 
applied to convert the problem to an equivalent discrete-time 
identification problem. Section VI describes in some detail 
how this is done. In Section VI1 an identification application 
is considered with measured data from a flexible structure. 
The example clearly indicates that the subspace methods are 
competitive compared to the iterative nonlinear least-squares 
methods. Section VI11 contains the conclusions. 

11. PROBLEM FORMULATION 

Assume that C: is a stable, MIMO, linear time-invariant, 
discrete-time system with input-output properties character- 
ized by the impulse response coefficients gk through the 
equation 

00 

k=O 

where y ( t )  E RP, u(t)  E R", and 91; E R p x m .  We also assume 
that the system is of finite order n, and can thus be described 
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by a state-space model for lightly damped systems and is further discussed in the next 
section. 

In the problem formulation only discrete-time systems are 
discussed. By use of the bilinear transformation and discrete- 

~ ( t  + 1) = Ax( t )  + Bu(t)  
g ( t )  = CX(t) + Du(t)  (2) 

time identification algorithms, continuous time models can be 
derived from samples of the frequency response of a contin- 
uous time system. We will return to this issue in Section VI. 

where y( t )  E RP, u( t )  E R", and ~ ( t )  E R". The state-space 
model (2) has the impulse response 

k = O  
g k  = {&B, k > 0. 

For the case when the true systems are infinite-dimensional, 
nice extensions have been reported in [36].  ( 3 )  

The frequency response of ( I )  is calculated as 
M 

G(e3") = x g h e - J " k ,  0 5 w 5 x (4) 
k=O 

which for the state-space model (2) can be written as 

G(e3") = C(e3" l -  A)-lB + D. ( 5 )  

In (4), j = J-1 is the imaginary unit. If the state-space 
realization (2) has a minimal McMillan degree, i.e., the transfer 
function G(e3") cannot be described by a model with fewer 
variables, the extended observability matrix 

r c i  

and the extended controllability matrix 

c = [ B  AB . . .  A'-lB]~RnXTm (7)  

both have full rank n for all values r ;  q 2 R.  

The problem is then as follows. 
Given: Noise-corrupted M samples of the frequency re- 

sponse function 

GI, = G(e jWk)  + n k ,  k = l , . . . , M  . (8) 

111. UNIFORMLY SPACED DATA 

This section is devoted to the case of uniformly spaced data. 
Assume that M + 1 frequency response data Gk on a set of 
uniformly spaced frequencies 

nk 
W k  = MI k = O , . . . , M  

are given. If the impulse response coefficients (3) are given, 
well-known realization algorithms can be used to obtain a 
state-space realization [22], [S9], [2S],  [23]. The algorithm 
presented in this section is closely related to these results, 
but uses the coefficients of the IDFT from samples of the 
frequency response function. 

Since G is a transfer function with a real valued impulse re- 
sponse (I), frequency response data on [0, x] can be extended 
to [x. 2x1 by taking the complex conjugate of the given data 
Gk which forms the first step of the identification algorithm. 

Algorithm 1: 
1) Extend the transfer function samples to the full unit 

circle 

where (.)* denotes complex conjugate. 
2) Let ht be defined by the 2M-point IDFT 

] i = 0 , . . . , 2 M - l  . 
1 2 M - 1  

Find: An identification algorithm which maps data GI, to 
a finite-dimensional transfer function GM (P )  such that with hz := ~ G k e 3 2 T z k l z M  

k=O 
probability one (w.P. 1) 2M 

(12) 
M i M  lim llGM - G/I, = o (9) 3) Let the block Hankel matrix I? be defined as 

where llXllw := s ~ p ~ + , ~ ~ o ~ ( X ( e 3 ~ ) ) ,  and 01 denotes the 
largest singular value. Algorithms with this property are called 
strongly consistent. 

We also require the algorithms to produce the true model if 
the noise is zero (711, = 0) given a finite amount of data M ,  
i.e., there exists some MO < 00 such that 

(10) 

Identification algorithms which satisfy (IO) are called correct. 
In the next two sections we present two algorithms which 
have these properties. Strong consistency is a most natural 
requirement for any useful algorithm. As the amount of data 
increases, the estimate should improve and asymptotically the 
correct model should be obtained. In practice any algorithm 
will have to use a finite amount of data. Then correctness of 
an algorithm becomes important. This is particularly important 

llGM - G/I, = 0, for all M > M ~ .  

with number of block rows q > n and block columns 
r 2 n. The dimension of H is bounded by q + r 5 2M. 

4) Calculate the singular value decomposition (SVD) of 
the Hankel matrix 

ri- = UCPT. 
5 )  Determine the system order n by inspecting the singular 

values and partition the SVD such that C8 contains the 
n largest singular values 

H =  [Us i?O]['s 0 CO 0 ] [go:]. (14) 
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6) Determine the system matrices A and 6 as Lemma 2: Let .A E W n X n ,  B E RnXm,  and define 

A = ( J l o S ) t J 2 o s  (15) X = [ ( z ~ I - A ) - ~ B  ( Z ~ I - A ) - ~ B . .  . ( z , I -A) -~B]  (23)  

C = J3U8 

where 

(16) distinct z;(zi # z j ,  i # j )  and 2;'s do not coincide with any 
of the eigenvalues of A. Then 

J1 = [ b l ) P  0(*-1)pxpI (17) rankX = n H ( A ,  B )  is controllable. 

53 = [I, O p x ( q - 1 ) p  I 
Prooj The proof is along the same lines as above by 

assuming the exisl.ence of a row vector C such that C X  = 0 
and noticing that the strictly Proper system c ( z I  - A)-lB 
can at most have ''l - 0 

Since we are interested in state-space realizations with real 
valued matrices, we will separate complex matrices into their 
real and imaginary parts. The following lemma shows that 
the full rank properties of a complex matrix are transferred to 
the compound malrix constructed from the real and imaginary 

J 2  = [ O ( q - - l ) p x p  b 1 ) P  1 

matrix, and xt = ( X T X ) - l X T  the Moore-Penrose 

(19) 

and I ,  denotes the i x z identify matrix, O,,, the i x j  zero 

pseudoinverse of the full column rank matrix^ X .  
7) Solve a least-squares problem to determine B and fi 

M 

', ' = arg B E R n X m  min [ I G k  - D  - A)-lB1l$ 
D E W P X m  k=O 

(20) 
where l l X l l ~  = XI, E, I x I , , ~ ~  denotes the Frobenius 
norm. 
The estimated transfer function is defined as 

G:"(z) = fi + C ( x 1 -  A)-%. (21) 

parts. Let Re X and Im X denote the real and imaginary part 
of X ,  respectively. 

Lemma 3: Let 2 E PXm, n > m. Then 

2 has full rank H [Ite Im '1 has full rank. 

Proofi Let Z = X + jY where X and Y are real 
matrices. 2 has full rank and is equivalent in that there exists 
no complex vectoir z = x + jy ,  where x and y are real valued 
vectors such that Z z  = 0. This is equivalent to saying that 
there exist no solutions x and y to the equations X x  - Y y = 0 
and X y  + Yx = 0 which in turn is equivalent to saying that 
there exists no vector v = [x' yTIT such that 

Notice that B and D appear linearly in the transfer 
function for fixed A and C. Hence, the optimization (20) 
has an analytical solution. The exact conditions when the 
least-squares problem in Step 7 has a unique solution are 
given by the following result. 

Lemma I :  Let A E R n X n ,  C E PXn,  M 2 n and define 

k 7 ( z ~ I -  A)-l  I, 1 
with distinct z, (2% # z3 ,  i # j )  and 2,'s do not coincide with 
any of the eigenvalues of A. Then 

rank X = n + p H ( A ,  C )  is observable. 

Proofi X is rank deficient if and only if there exists 
[E] # 0 such that 

X[g] = 0 * D + C(z,I - A)-'B = 0 ,  i = O,.. .M . 

This can only be true if either: i) G(z)  = D + C(zI  - A)-lB 
has M + 1 zeros at z,, or ii) G(z) -- 0 for all x. Case i) 
is impossible since the system is of order n and thus has at 
most n zeros. This implies G(z) 0. Recall that ( A ,  C) is a 
nonobservable pair if and only if it is possible to find a pair 

0 
The conditions in the lemma are naturally met when data are 

uniformly spaced in frequencies and we use ( A ,  C) which are 
observable and A stable. Uniformly spaced frequencies imply 
distinctness, and stability of A implies that the eigenvalues of 
A do not coincide with the frequency argument 2% = eJW%. 

(B ,  0)  # 0 such that G(z )  = 0. 

A dual result which we need later is as follows. 

It is the equivalent to saying that Q has full rank which implies 
0 

We are now ready to verify that Algorithm 1 is correct, i.e., 
satisfies property (10). 

Theorem I :  Let G be a stable discrete-time system of order 
n represented by (2 ) ,  and let GI, = G(eJ"'"/"), k = 0 , .  . . , M .  
Let the transfer function G"(eJ"') be given by Algorithm 1 
with q > n and r 2 n. Then for all M > n 

that all columns in Q are linearly independent. 

l\GM - GI(, = 0 

Proof: Denote by 0 and C the extended observability 
(6) and controllability (7) matrices from the system realization 
( A ,  B ,  C,  D). Let p(A) denote the spectral radius of A, i.e., 
p(A) := max{ /XI: X E X(A)}, where X(A) denotes the set of 
eigenvalues of A. Since G is a stable transfer function, it can 
be represented by the following Taylor series: 

00 

k=l 
00 
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Notice that h k  defined by (12) for k > 0 can be written as 

~ 2 M - l o o  oo 

and therefore H can be factored as 

I? = U ( I  - AZM)-lC. (24) 

From the dimensions of the factors in (24), it is clear that I? 
has a maximum rank of n. Furthermore, since the system is 
stable p(A) < 1, ( I  - A2") is always of rank n. Minimality 
of the system also implies that both C and 0 are of rank n, 
and hence also I?, if r 2 n and q > n. In (14), then 5: = 0 
which means that the column range spaces of H ,  U ,  and Us are 
equal. An extended observability matrix for some realization 
of G is then given by 6 = Us since there exists a nonsingular 
n x n matrix S such that 

^O = U, = us. 
U, is thus an extended observability matrix for a state-space 
realization (A,  6, C, D) which is similar to the original 
realization ( A ,  B, C, D) from (2). This proves (16). From 
the structure of 

we notice that JlU,A = J2US which proves (15) since JlU,  
has full rank. Hence, A and C are related to the original 
realization as 

A = S-'AS, C = CS. 

The equality between the state-space model and the fre- 
quency response can be written 

x[;] = 9  
where X is given by (22) and 

Since G is assumed to be stable (p(A)  < 1) and minimal, 
( A ,  C) is an observable pair and 

rank X = rank [E;] = n + p  

according to Lemma 1 and Lemma 3. Hence, B and D are 
well-defined and, by separating the real imaginary parts, given 
by 

= ["' E,] [:I 
where X is derived as in (22) using A and C, 

The estimated transfer function is thus 

G y z )  = D + C ( z I  - A)-'B 
= D + C S ( z 1 -  S-lAS)-lS-lB = G ( z ) .  

Letting q = n + 1, r = n, M = n + 1, we satisfy the 
size condition of the Hankel matrix (13) and the condition in 
Lemma 1. 0 

This result is by no means unique, and the same result 
is achieved by many identification algorithms such as an 
ARX model fitting to frequency data in a least-squares sense 
which is known as Levy's method [26]. The result is merely 
stated to make it clear that finite-dimensional rational transfer 
functions are exactly recovered, given a finite number of data. 
This is in contrast to algorithms wherein the estimated model 
parameters depend linearly on the measured data. Examples 
of such approaches are least-squares optimization of finite 
impulse response models or other types of model structures 
using orthogonal basis functions. For such models, the model 
order has to increase to infinity to exactly capture a finite- 
dimensional rational transfer function. The same deficiency is 
also present in the frequency domain identification algorithms 
[20], [24]. For a finite data set, the difference between algo- 
rithms which satisfy (10) and the ones which do not becomes 
more pronounced as the poles of the system move toward the 
unit circle. Hence, when identifying systems with very little 
damping, it is important to use an algorithm which is correct. 

From (12), notice that 
r27r 

where g k  from (3) is the kth impulse response coefficient of 
G. Thus, for noise-free data, H tends to a limit as 111 tends 
to infinity and equals to the Hankel matrix of the impulse 
response which is used in Kung's realization algorithm [25]. 

The state-space realization given by Algorithm 1 using 
noise-free data is balanced in the sense that the q-block row 
observability matrix U and the r-block column controllability 
matrix C satisfy 

= I, ĉ ĉ ' = (I - AZM)C,"(I  - (25)  

where 2, is given by (14). As 111, q, and r jointly tend to 
infinity, the products of (25) will converge to the observability 
and controllability Gramians, respectively, and the diagonal 
elements of 2, will converge to the Hankel singular values 
of the system. These facts are important when studying the 
properties of the algorithm when applied to data from infinite- 
dimensional systems [36]. 

A. Consistency Analysis 

If we adopt the view on the noise n k  in (8) as being 
stochastic variables, the estimated transfer function GM (2) 
will also be a stochastic variable. The aim of this section is to 
show that Algorithm 1 is strongly consistent (9). 

Let us assume that the noise term n k  is a zero mean complex 
random variable with covariance 
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and hence and a nonsingular matrix T E R" " (depending on E) such that 

(32 )  I/TAT-' - A/IF I et 

Here E denotes the expectation operator, ( . ) H  the complex 
conjugate transpose, and 6 k S  is the Kronecker delta. From (26) 
we see that the real and imaginary parts of 121, are assumed 
to be independent. Furthermore, assume that the covariance 
function is uniformly bounded 

Notice that (27) implies that the noise terms for different 
frequencies are independent. For more information on these 
types of complex noise models, see [9] and [47]. The assump- 
tions are rather weak and, for example, valid asymptotically 
if the frequency response is obtained as the empirical transfer 
function estimate and the time-domain noise signal is colored, 
see [30]. 

In the noisy case, the Hankel matrix is given by 

H = H + A H  (29) 

where fi is given by (13). Here H denotes the noise-free 
Hankel matrix originating from the true system, and A H  
represents the Hankel matrix of the noise part. In general, 
I? E lWqpXrm will be of full rank [= min(qp. mr) ]  due to the 
perturbation matrix A H .  If the largest singular value of A H  
is significantly smaller than the nth singular value of H ,  the n 
left singular vectors U, corresponding to the n largest singular 
values of I? will be close to the unperturbed counterparts, and 
the estimated system will be close to the true system. The SVD 
of the identification algorithm will thus have a noise threshold, 
and when the noise level increases over this level, the resulting 
estimates will not be reliable since the singular vectors in Us 
might change places. 

The consistency proof will be performed in two stages. 
First, we will show that the mapping from the data to the 
perturbation of the estimated A and C matrices is a locally 
continuous function of the Hankel matrix perturbation A H .  
Second, we show that A H  tends to zero w.p. 1 and that 
the estimates of B and D converge to their correct values, 
respectively. 

Let the SVD's of the unperturbed Hankel matrix be given as 

c, 0 v: 
H = P s  UO1[ 0 0 ]  [p] 

where E, has n positive singular values on the diagonal in a 
nonincreasing order. Since the system is assumed to have order 
n, H has rank n and the nth singular value of H ,  denoted by 
o n ( H ) ,  will be some positive number. 

Lemma4: Let G be a system of order n. Assume GI, is 
corrupted by noise such that 8 = H + AH with ~~AHIIF 5 
e ,  and H is the corresponding noise-free Hankel matrix. 
Furthermore, let ( A ,  C) be the state-space matrices of G in a 
realization such that 0 = U, in (30), apd let q, T ,  M satisfy 
the bounds given in Theorem 1. Let A and C be given by 
Algorithm 1. Then there exist constants c, c' > 0 

0 < E o  < a n ( H ) / 4  (31) 

for all E I t o .  
Pro08 Let 

Vo]  = [zit = E .  (34) 
E22 

From (34) we notice that IlEll~ = l l A H l l ~  5 e and also, 
(IEij 112 5 Eij l I~ since the spectral norm is upper bounded by 
the Frobenius norm. Therefore, it is clear that 

(5 = g.n(H) - I I ~ l l l l Z  - /IJ%llz 
L g n ( H )  - IlEllllF - I I E 2 2 I I F  

2 g n ( H )  - 2~ < $g,(H) > 0 (35) 

by assumption (31). We also have 

Then by [17, Th. 8.3.51 there exists a matrix P satisfying 

such that range(os) and range(Us +U,P) are equal. Since the 
range spaces are equal and U, is of full rank, there exists a 
unique nonsingular matrix T such that 

(36) Us = (U,  + UoP)T 

holds. 

where U, is given by (30). From (15) we obtain 
Let ( A .  B ,  G, D )  be the realization of G such that 0 = U,, 

A = ( J s ( U s  + U0P)T) tJ2(US + UoP)T 

 TAT-^ == ( J ~ ( U ,  + U J J ) ) ~ J ~ ( U ,  + u0p)  

which can be written 

where we used the fact that (XT)t = T-l(X)t. Since U, 
is an extended observability matrix of an nth-order minimal 
system, J1 U, is of full rank. The matrix 51 (U, + UoP) will 
thus also be of full rank for all sufficiently small values of E. 

From [17, Th. 5.3.11 we obtain for some constants c, €0 > 0 

1ITAT-l -  all^ I ct, VE < E O .  (37) 

The matrix 6 frorn (16) can be expressed as 

C = J3(Us + UoP)T 

which directly gives a constant c' > 0, such that 

I I C P  - C I / F  5 c't, V t  < € 0 .  (38) 

0 
Lemma 4 shows, that A and C (when suitably transformed) 

are continuous functions of H in the neighborhood of A and 
C. Hence, if A H  -+ 0 w.p. 1, then A -+ A and -+ C, 

After establishing this continuity result we can state the 
w.p. 1. 

main consistency theorem. 
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Theorem 2: Let G be a stable linear system of order n and 
let GI, be given by (8) where n k  satisfies the assumptions (26) 
and (28). Let G:"(z) denote the transfer function obtained by 
Algorithm 1 with q > n and r 2 n using M + 1 data points. 
Then, w.p. 1 

(39) 

Proof: Let ( A ,  B ,  C, D )  be the realization of G such 
that 0 = U, where U, is given by (30). From (12) and (13) 
we see that the elements of the Hankel matrix AH = I? - H 
are given by 

[ q z , ,  = Ahi+j-l (40) 

with 
- 2 M - 1  

These are all sample mean values of zero mean indepen- 
dent random variables with a common bound on the second 
moments. Applying [lo, Th. 5.1.21, we directly obtain 

lim Ahh = 0, w.p. 1 
MtCC 

which implies that 

since A H  has a fixed dimension qp x rm. By applying Lemma 
4, we obtain TAT-l -+ A and CT-' -+ C w.p. 1 for some 
nonsingular matrix T.  

The least-squares estimate of B and D in Step 7 of the 
algorithm is given by 

where 

C ( z o 1 -  A) 

-C(z:"I-A)  I, 

X =  

To simplify notation let us write 

T O B  
E =  [o I ]  [A]  

and let E = [BT CTIT, X ,  and G denote the noise-free 
counterparts. The estimation error is then given by 

- EI/F = ilXtG - XtGll~ 
- t  t I Il(X - Xt)Gllk + IlX (G - G)IIF. 

Using the result of Lemma 4 and simple calculations reveals 

that IIX - X t l l ~ .  = O ( M - 1 / 2 ~ )  for some M large enough. 
The second term can be expressed as 

- t  

for some bounded matrices C R  ( k )  and C I  ( k )  since all elements 

in X are bounded and the 2(M + 1) blocks in G - G are 
Re nk and Im n~,, k = 0, . . . , M - 1. The sum converges to 
zero w.p. 1 as M + 00 since each term is independent, of 
zero mean, and with bounded variance [lo]. Thus, using (42) 
and Lemma 4, we obtain, w.p. 1 

- t  

as M -+ x and the result follows, 

B. Alternative Ways of Calculating A 
Step 6 of Algorithm 1 (15) is based on the relation 

0 

which exactly holds in the noise-free case. Recall the block 
shift structure of the extended observability matrix (6). In the 
noisy case, the expression (15) is the solution to 

Implicit in this solution is the noise model 

JlU,A = J,Us + N 

and A minimizes the Frobenius norm of N .  This noise model 
is, howe?er, not consistent with the original equation since 
both JlU, and JzU, contain errors. With this more correct 
view we obtain the error model 

and the total least-squares (TLS) method can be applied [17] 

A = arg min IIPl N2311F. (43) 
A € R n x n  

( J~ U , + N , ) A =  J~ O s + ~ Z  

The TLS solution can be obtained by an SVD [17]. The 
TLS technique for calculating A is also found in the signal 
processing algorithm ESPRIT [45]. In [53] an overview of 
these methods is given. Practical experience shows similar 
performance for the least-squares solutions (15) and the total 
least squares (43) when applied to noisy data. 

By applying the array signal processing technique of 
weighted subspace fitting, the poles of the system, or 
equivalently the eigenvalues of the matrix A, can be optimally 
calculated given the statistical properties of the constructed 
extended observability matrix. In 1381 and [52] these ideas are 
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exploited in a system identification context. A disadvantage 
with weighted subspace fitting is the introduction of a 
nonlinear optimization step which has to be solved by iterative 
search. 

C. Summary 

In this section we have analyzed the noniterative frequency 
domain state-space identification algorithm described by Al- 
gorithm l. If the frequency data are noise free and generated 
by an nth-order system, we have shown that only n + 2 
equidistant frequency samples are required to exactly recover 
the true system. Asymptotic stochastic analysis shows that the 
algorithm is consistent if each measurement is perturbed by an 
independent stochastic noise term with bounded covariance 
function. 

IV. NONUNIFORMLY SPACED DATA 
In this section we will discuss an algorithm which is 

applicable for the case when samples of the frequency response 

G k = G ( e j W k ) + n k ,  I c = l , . . . , M  

are given at arbitrary, distinct frequencies. The algorithm can 
be interpreted as a direct frequency domain formulation of the 
time-domain subspace algorithm [56] and has some connec- 
tions with a frequency domain algorithm presented in [28]. The 
contribution of this section is to present how to incorporate 
covariance information into the algorithm and to perform 
stochastic analysis revealing the consistency properties. The 
resulting algorithm is consistent for a much larger class of 
noise sources in comparison with the algorithm in [28]. The 
algorithm and analysis are an extension of the results presented 
in [34] and [35]. A similar algorithm for the case of data from 
a continuous time system has also recently appeared [55]. 

We will first outline the algorithm and discuss why the noise 
covariance information has to be known a priori and how 
to incorporate it to yield consistent estimates. An algorithm 
will then be presented which uses the QR-factorization as 
an efficient implementation. Two theorems which summarize 
the discussion will be presented, and the relation between 
Algorithm 1, the algorithm in this section, and the algorithm 
[28] will be shown. The section is concluded by present- 
ing an example illustrating the consistency properties of the 
algorithms. 

A. The Algorithm 

space equations (;!) 
Consider the discrete Fourier transform (DFT) of the state- 

eJ"X(w) = A X ( w )  + B U ( w )  

Y(w) = C X ( w )  + DU(w)  

where X ( w ) ,  U ( u ) ,  and Y ( w )  denote the transformed time- 
domain signals. If we denote by X i ( w )  the resulting state 
transform when Ul(w) = e;, the unit vector with one in the ith 
position, and define the compound state matrix as 

X C ( w )  = [ X ' ( w )  X2(w) * * * X " ( w ) ]  E cnxm 
we can describe thie transfer function in the state-space form 

e j 'dXc(w)  = A X c ( w )  + B 
G(ejw) = C X c ( w )  + D. (44) 

By recursive use of (44) and (6) we obtain the relation 

where r is the lower triangular block Toeplitz matrix with the 
impulse response defined as 

Let us form a matrix from the frequency response samples 
G; as shown in (47) at the bottom of the page, and con- 
formably, let N denote a matrix with the same structure as 
G but with n; inserted instead of G;. Furthermore, define the 
block Vandermonde matrix derived from the frequencies as 
(48) shown at the bottom of the page, where the subscript m 
indicates the size of the blocks. Finally, denote the ordered 
collection of all ciompound states as 

. (49) E C n x m M  
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From (45)-(49) we obtain the matrix equation such that 

G =  OXc +TW,+ N 

Since we assume the system to be minimal, ( A ,  B )  is a 
controllable pair and Lemma 2 shows that Xc has full rank 
n. The matrix product O X c  is thus of rank n and has a range 
space equal to 0. 

When the number of samples increases, the number of 
columns in G will increase. Since 0 is a real matrix, we are 

relation involving only real valued matrices 

U 

H ( e 2 w k )  = 0, k = 1,. . ' ,  M 

where 
interested in the real range space and can convert (50) into a q--l 

H ( z )  = D + C ( d  - A)-'B + x E k Z k  5 0. 

[Re G Im GI = 0 [ R e x C  Im Xc] 
-v 

6 X 

+ [Re W ,  Im W,] + [ReN I"]. (51) 

W J v  
-- 

When W ,  and Xc are matrices of full rank, the transposed 
version of Lemma 3 shows that W and X also have full rank. 

Let us first consider the noise-free case which implies that 
N = 0. If the term rW in (51) also were zero, the range 
space of 4 would equal the range space of 0 if q > n and 
M 2 n and a straightforward factorization as in Algorithm 
1 would yield an extended observability matrix similar to 
0. However, if the number of columns is sufficiently large, 
there exist matrices, when multiplied from right in (50), which 
cancel the term rW but retain the important information. One 
such matrix is the projection onto the nullspace of W and is 
given by 

k=l 

This can only be true if either: 1) Each element in the rational 
vector W ( z )  has M zeros at zk, or ii) H ( z )  = O for all 
z .  Case i) is impossible since each element of H ( z )  has at 
most n + q - 1 zeros. This implies case ii), and consequently 
C(z1  - A)- lB  5 0. Recall that (A ,  B )  is a noncontrollable 
pair if and only if it is possible to find a vector C # 0 such 

U 
If the frequencies are distinct, the number of data satisfies 

M 2 q+n, and (A ,  B) is controllable, the row spaces of W ,  
and Xc do not intersect. By applying Lemma 3 we conclude 
that the two row spaces of W and X do not intersect and 
the range space of OW' coincides with the range space of 
0. By using the singular value factorization of OW' and 
proceeding according to the Steps 5-7 in Algorithm 1, we 
obtain a state-space model which is similar to (A ,  B ,  C, -0). 

Let us now return to the normal case when n/ # 0. After 
the projection we obtain the relation 

that C ( z 1 -  A)-lB = 0. 

and we obtain 

GW' = 0XW' 

The range space of 4WL equals the range space of (3 unless 
rank cancellations occur. A sufficient condition for the range 
spaces to be equal is that the intersection between the row 
spaces of W and X is empty. In most analyses of time-domain 
subspace methods this is stated as an assumption. However, 
here we can present sufficient conditions in terms of the data 
and the system. 

Lemma 5: Let M 2 q + n, W ,  and XG be given by (48) 
and (49) with distinct frequencies w, such that eJwt $2 X(A). 
Then 

rank [:3] = qm + n 

In the generic case GWL will be of full rank qp > n, 
and some type of approximation is necessary to obtain a good 
estimate of the observability range space. By using the singular 
value decomposition of OW', the n left singular vectors, 
corresponding to the n largest singular values, form a strongly 
consistent estimate of the range space of 0, if two conditions 
hold (w.P. 1) [12] 

i) 

lim OXW'(NW')* = 0 (54) M-03 \-,.-/ 

S ( M )  

ii) 

H 
for some scalar a. 

Let us first investigate condition i). First note that 
WL(WL)* = W'. Since W has full rank, all elements 
in WL will be bounded and we can express the elements of 
S ( M )  in (54) by 

( A ,  B) is a controllable pair. 

Prooj? Equation (44) implies that X c ( w )  = (eJ"1  - 

A)-'B. [F;] is rank deficient if and only if there exists a 
row vector 1 M 

[S(M)]a3 = G x c z ( k . ) R e n k  + c:J(k) Imnk  
[ D  El . . .  E,-1 C ]  # 0 k = l  
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for some bounded real constants c E ( k ) ,  c? j (k ) .  From the zero 
mean assumption and the boundedness of the moments of n k  

and the limit result [ I O ,  Th. 5.1.21, we conclude that 

and we conclude as before that NNT + ENNT w.p. 1 
as M ---f 30. We have established that P ( M )  converges to 
its mean value as M tends to infinity. Sufficient conditions 

lim [S(M)] , j  = 0, w.p. 1, V i ,  j. 
M-CC 

By using the explicit expression of (52), P ( M )  in (55) 
naturally divides into two terms 

P ( M )  = NNT + NWT(WWT)-'WNT. (56) 

By the assumption of distinct frequencies, WWT > c l  for 
some constant e, and hence the elements of (WW')-' are 
bounded. The block elements of the second matrix in (56) are 
of the form 

[NW'( W W T )  -lWNT],, 

which guarantee that 

E P ( M )  ---f a l  

are that Rk = air for all k and wk = 2?r(k - l)/M, k = 
1, . . . , M [35].  Halwever, if the covariance function is known, 
we can weigh the; row space of GW' with a matrix K E 
i w 4 P x Q P  satisfying 

KKT = aRe(W,diag(Rl, Rz,...,Rnir)W;) (60) 

for some a > 0. The matrix K can be found by a Cholesky 
factorization given the covariance data Rk. The weighted 
version of (53) then becomes 

1 M M  K-'LJ4' = K - l U X W I  + K-lNWL. (61) 

This weighted version satisfies the requirement (55 )  since w.p. 
= - x F : c z ( k .  I )  Re n k  Re nT + c i j  ( k ,  1 )  Imnk ImnT 

k=ll=l 
M2 

+e?(k,  1)RenkImnT +c,',n(k, Z)ImnkRenT 1 

for some constants c n ( k ,  Z ) ,  c,',(k, I ) ,  cG'(k, Z ) ,  c,jR(k, 1 )  
which are bounded since W has full rank and bounded 
elements. The second moment of these block elements are 
bounded as 

,? 

for some bounded constants cz, if we add the assumption 
that n k  have bounded fourth-order moments. By applying 
Chebyshev's inequality and the Borel-Cantelli lemma [ 101, 
we conclude that this term also converges to zero w.p. 1. 

By recognizing that N = W ,  diag (121, . . . . n ~ ) ,  the first 
term in (56) is simply 

K-l.h?'VL(K-lNWL)T + a-'] 

as M + ca. The n left singular vectors Us corresponding to 
the n largest singular values of K-'GW' will form a strongly 
consistent estimate of K-lU. The observability range space is 
then simply recovered by KU3. By using the same continuity 
result as employeld in the proof of Theorem 2, we conclude 
that the outlined algorithm is strongly consistent. 

A numerically efficient way of forming GW' is to use the 
QR-factorization 

F] = [2 [%I 
A simple derivati'on yields 

with the expected value 
Let us summarizle the outlined method into the following 
algorithm. 

ENNT = Re (W, diag ( R I ,  . . . , R,) W,"). 

We will now establish that NNT converges to its expected 
value w.p. 1.  Consider 

N J V ~  - E N N ~  (58) 

Algorithm 2: 
1) Given data rTk, w k ,  and Rk, form the matrices G, w,,, 
2 )  Calculate the QR-factorization 

and K .  

which is zero mean. Let 

t k  = nkn? - R k .  

Then € k  is zero mean and has bounded second moments, since 

that the ( i ,  j ) th  block element in the matrix (58) is given by 

(59) [NN" - ENNT],, = ~ x C , , ~ ( k ) € k  

for some constants ~ % , ~ ( k )  which are bounded since all ele- 
ments in W ,  are bounded. The expression (59) is a sum of 
zero mean random variables with bounded second moments 

3) Calculate thie SVD 

n k  has bounded fourth moments. It is straightforward to see KP1R22 = UkVT. (63)  

4) Determine the system order n by inspecting the singular 
values and l~irtition the SVD such that C, contains the 1 "  

k=l n largest singular values 
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5 )  Determine the system matrices A and 6' as 

where Ji are defined by (17)-(19). 
6) Solve a least-squares problem to determine I? and D 

M 

6, B =arg min C/JEI;~'~ 
B t R " X m -  
D t R P X m  k = l  

. (GI,  - D - C(egukI  - A)plB)li$. (67) 

7) The estimated transfer function is defined as 

G y z )  = D + C ( z I  - A)-% (68) 

In the least-square solution in Step 6, we weigh with 
the inverse of the covariance factor tp make optimal 
use of the covariance information. If A and C had not 
been estimated from data, (67) would be the minimum 
variance estimate or the best linear unbiased estimate 
(BLUE) of B and D.  Of course, the same weighted 
least-squares step could also be used in Algorithm 1. 

Let us summarize the discussion on the noise-free case into 
a theorem on correctness. 

Theorem 3: Let G be a stable system of order n and GI;,  
k = 1, . . . , M be noise-free samples of the transfer function 
G(ej") at M distinct frequencies W k .  Furthermore, let q > n, 
MO 2 n + q, and K E R4Px4P be any nonsingular matrix. 
Finally, let G M ( z )  be given by Algorithm 2. Then 

for all M 2 MO. 
The consistency properties in the preceeding discussion are 

summarized in the following result. 
Theorem 4: Let G be a stable system of order n. Let 

GI, = G(e juk )  + n k ,  IC = 1 , . . . , M  be noisy samples of 
the transfer function at M distinct frequencies wk.  Let n k  

satisfy (26)-(28) and have bounded fourth-order moments. 
Furthermore let q > n, K be given by (60), and G"(z) be 
given by Algorithm 2. Then, w.p. 1 

The possibility to use nonequidistantly spaced samples in the 
algorithm has a price. For the algorithm to be consistent, the 
relative variance at each frequency has to be known a priori. 
This knowledge is necessary to derive the weighting matrix K .  

B. Relation Between the Algorithms 

This section will show how the two presented algorithms, 
Algorithm 1 and Algorithm 2, are related to each other. To 
make any comparison meaningful, let us consider the case 
with data sampled equidistantly in frequency covering the full 
unit circle wk = 27rk/M, it = 0,. . . , M - 1. Also let us 
assume the data are noise free, and we let K = I .  

In Algorithm 2 the observability range space is determined 
from 

G W ~  E C q p x m M  

which is a matrix where the number of block columns grows 
as the number of data increases. In the case with equidistant 
frequencies, it is easy to derive another matrix W such that 
WW = 0. It is easy to verify that the matrix (69), shown at 
the bottom of the page, has this desired property. Notice that 
G W l  is a matrix with fixed dimensions qp x rm, independent 
of M ,  the number of data. Furthermore, the (21, i2)th block 
entry of GW 

-1 

- _ L  

- 1 .  is given by 

~ M-1 

which we recognize from (12) as the M-point inverse DFT of 
the full frequency response data, and we directly see that 

fi = GW1 

where & is defined by (13). Algorithm 2 with this particular 
choice of annihilator matrix (69) is thus equal to Algorithm 1. 
The key difference between Algorithm 1 and Algorithm 2 is 
what type of matrix is used to annihilate the influence of the 
term rW,. In the equidistantly spaced case, we use a matrix 
of size m M  x mr in Algorithm 1, while Algorithm 2 uses the 
maximal rank annihilator which is of size m M  x mM.  In the 
nonuniformly spaced case we cannot a priori derive a smaller 
matrix since then there is a risk that we not only annihilate 
W ,  but also cancel some of the row space of X c .  

The frequency domain method described in [28] is related 
to Algorithm 2 presented above. The algorithm in [28] uses 
the samples of the Fourier transform of the input and output 
signals (U(WI , ) ,  Y (wI , ) )  to determine data matrices corre- 
sponding to G and W,. If we consider the single-input case 
with uniform excitation for all frequencies, U ( w k )  1, and 
extend the Fourier transform samples U ( w k )  and Y(wI,) with 

r I ,  I ,  I ,  1 . . .  
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Fig. 1. Magnitude of system and error transfer functions. 

their corresponding negative frequency values 

the data matrices in Algorithm 2 (G and W,) and the ones 
in the algorithm [28] will coincide. In their algorithm the 
observability range space is determined from the matrix 

G W A G ~  E c q p x q p .  (70) 

If the columns in G and W ,  are ordered in a particular way, 
(70) is a real matrix [28] and the extraction of the real and 
imaginary parts, as done in Algorithm 2, becomes superfluous. 
However, since the algorithms in [28] do not utilize any 
correction for the noise variances, it is only consistent if the 
frequencies are equidistantly spaced and the noise covariance 
function is constant and proportional to the identity matrix 
(see [35] and [33]). 

C. Illustrative Example 

This section describes an identification example based on 
simulated data. From the results of the example we will clearly 
see the difference between the two algorithms. Particularly, we 
will see the necessity to know the noise covariance function 
if Algorithm 2 is employed. 

1)  Experimental Setup: Let the true system G(x) = D + 
C(z1  - A)- lB  be a fourth-order system described by the 
state-space model 

0 -0.6129 0.0645 
0 -6.4516 -0.7419 

0.8876 0.4494 0 
A = [  -04494 ‘0 0.7978 0 

0 

r0.22471 
0.8989 

= I0.0323 I 
L0.1290 1 

C = [0.471!3 0.1124 9.6774 1.61291 

D = 0.9626. 

We assume M -+ 1 uniformly spaced experimental data are 
given as 

G k  = G ( . Z k )  + H ( Z k ) e k ,  Z k  = e’Tk/M, k = 0 , .  . . , hf 
where the noise term H ( i & ) e k  is composed of a noise transfer 
function H ( z ) ,  given by a second-order state-space model 

H ( z )  = C, + (21 - A,)-lB, + D, 

with 

01.6296 0.0741 - 1.11 
An = [-7.4074 0.48151 ’ 
C, = [1.6300 0.07401, D, = 0.356 

- [22.2] 

and e k  being independent complex normally distributed ran- 
dom variables with unit variance. The variance for each 
frequency is given by R k  = I H ( z k ) I 2 .  The magnitudes of 
G(x) and H ( x )  are depicted in Fig. 1. 

In our study, we will consider four different identification 
algorithms: 

AI:  Algorithm 1; 
A2: Algorithm ‘2 without knowledge of R k ;  

A2wi: Algorithrn 2 with knowledge of R k ;  

LS: Levy’s least-squares method [26]. 
Recall that Algorithm 1 does not use any explicit noise 

information. Levy’s algorithm is included since it is also in 
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Fig. 2. 
over the 100 estimated models are shown for the four identification cases. 

Results from Monte Carlo simulations using data length M = 1600. The mean values of the magnitudes of the transfer function errors calculated 

Average llGM - Gllm 
A1 A2 A2wi LS 

1.7340 1.2388 0.9207 3.3410 

the class of noniterative methods which are correct. However, 
by common knowledge, it is not a consistent method except for 
a very particular noise model. The method is still a commonly 
used method mostly because of its simplicity. 

To examine the consistency properties of the four cases we 
perform Monte Carlo simulations estimating the system, given 
the samples Gk, using different noise realizations of e&, and 
making the frequency grid denser and denser, i.e., increasing 
M .  Data lengths of 100, 200, 400, 800, and 1600 frequency 
samples will be used. For each data length, 100 different noise 
realizations are generated, and the algorithms estimate 100 
models. To assess the quality of the resulting model both the 
supremum norm of the estimation error M 

100 

as well as the H2 norm 

Average IIGM - Gll: 
A1 A2 A2wi LS 

0.1580 0.1434 0.0365 0.5334 

are determined for each estimated model and averaged over 
the 100 estimated models. 

2 )  Estimation Results: As expected from the analysis, Al- 
gorithm l and Algorithm 2 with covariance information yield 
the best performance. The simple least-squares algorithm has 
the worst performance. In Table I, the averaged maximum 
identification error is presented. The results indicate that 
Algorithm 2 without the covariance information and the LS 
algorithm are not consistent for this noise model which is 
predicted by the analysis. In Fig. 2, the error magnitudes, 
averaged over the 100 identification experiments, are shown 
for the four identification cases. 

TABLE I 
MONTE CARLO SIMULATIONS COMPARING THE FOUR ALGORITHMS THE 

ESTIMATION ERROR DECREASES SIGNIFICANTLY AS THE NUMBER OF 
IDENTIFICATION DATA INCREASES FOR MODELS ESTIMATED WITH 

ALGORITHM 1 AND ALGORITHM 2 WHEN USING THE COVARIANCE 
INFORMATION (COLUMN A2wi). THE LER TABLE SHOWS THE AVERAGED 

SUPREMUM ERROR, AND THE RIGHT TABLE THE AVERAGED H2 ERROR 

200 0.9708 0.9870 0.6059 3.3772 
400 0.5631 0.8781 0.4472 3.3798 
800 0.3659 0.8085 0.3211 3.3962 : 1600 0.2603 0.7651 0.2317 3.3977 

V. PRACTICAL ASPECTS 

A. Estimating Models of Different Orders 

When facing a practical identification problem many models 
of different orders are estimated and compared to find a 
suitable “best” model. In the presented algorithms most of 
the computational effort lies in the SVD factorization (14) 
for Algorithm 1 and in the QR-factorization and the SVD for 
Algorithm 2. Given the factorization (14), all models of order 
less than q are easily obtained from the rest of the algorithms 
by letting n range from 1 to q - 1. Hence, the choice of 
appropriate model order can easily be accomplished by direct 
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comparison of a wide range of models with different orders at 
a rather low computational cost. 

B. Guaranteeing Stability 

Many times, stability is a most desirable feature of the 
estimated model. A stable A (all eigenvalues inside the unit 
circle) can be guaranteed by the following procedure [32]: 

The price paid is that the method will not yield the true A 
matrix even for he noise-free case unless the true system has 
a finite impulse response or if q 4 cc. 

We would like to suggest a different approach to guarantee 
stability by adding an extra projection Step 5b) after (15). In 
this step all unstable eigenvalues are projectcd into the unit 
circle. The idea can be implemented in the following way. 

Transform A to the complex Schur form with the eigen- 
values A, on the diagonal. 
Project any diagonal elements (eigenvalues) satisfying 
1 < IX,I 5 2 into the unit disc by A, := A, (& - 1). 
Eigenvalues with magnitude IX,I > 2 are set to zero. 
Eigenvalues on the unit circle can be moved into the unit 
disc by changing the magnitude of the eigenvalue to 1 - E 

for some small positive t, i.e., A, := A,(I - t). 

Finally transform A back to its original form before 
proceeding further to determine B and D.  

This way of imposing stability does not suffer from con- 
sistency problems when identifying stable systems since only 
unstable eigenvalues are affected. A second advantage is that 
the magnitude of the frequency response is approximately 
unchanged by the projection. 

VI. IDENTIFICATION OF CONTINUOUS-TIME MODELS 

Most real world processes subject to modeling are of 
continuous-time character. However, measured input and out- 
put signals of the process are almost without exception in 
sampled form. If a discrete-time model is sought, the modeling 
is straightforward since the measured data are in sampled form. 
If, on the other hand, a continuous-time model is desired, two 
options are available. Either we assume that the input signal 
is piecewise constant between the sampling instants, which 
is known as the zero order hold (ZOH) assumption, or we 
assume that the input signal is band limited (BL) such that 
the continuous-time signals exactly can be reconstructed from 
the given samples. 

To estimate continuous-time domain models under the ZOH 
assumption is straightforward if the following assumptions 
hold [42]: 

The input signal u( t )  is constant between the sampling 
instants. 
The continuous-time system is proper, i.e., 
limu-mG(jw) < 00. 

The magnitudes of the imaginary parts of the poles and 
zeros of the system are less than the Nyquist frequency 
( x / T ) .  

A discrete-time model can be estimated using the sampled 
data, and the continuous-time model is obtained by inverse 
ZOH-sampling of the discrete-time system. These observations 
hold both for tirne domain as well as frequency domain 
methods. 

The BL assumption, as already mentioned, means that the 
input and output signals have no power above the Nyquist 
frequency. The estimation problem for general excitation sig- 
nals should be performed in the time domain and is rather 
involved [48]. For the case of periodic excitation, the modeling 
is considerably simplified by considering identification in the 
frequency domain [42]. Under the BL assumption the DFT 
of the input and output signals equal their continuous-time 
transforms and the relation 

Y ( W k )  G ( J w ~ )  - 
U(Wk 1 

holds exactly. A continuous-time transfer function G(s)  can 
thus directly be fitted to the frequency data. 

It is well known that the parameter estimation problem is 
better conditioned for discrete-time transfer functions since 
powers of tJW form a natural orthogonal basis [7]. By use of 
the bilinear transformation, the continuous-time identification 
problem can be solved in the discrete domain without intro- 
ducing any approximation errors since the supremum norm 
1 1  . 1 I o 3  is invariant under the bilinear transformation. 

A. The Bilinear Transformation 

s domain to the z domain as 
The bilinear transformation maps the complex values in the 

2 ( Z  - 1) s = -  
T ( z  + 1) 

2 + sT 
2 - s T '  

with the inverse 

21- 

The parameter T is a parameter in which the user is free 
to specify under constraint that 2/T is not a pole of the 
continuous-time system [2] and can be seen as a sort of 
sampling period. 

If the continuous-time transfer function is given by G(s) ,  
the bilinear transformation gives the discrete-time transfer 
function 

G(-) 2 ( Z  - 1) = G d ( z ) .  
T ( z  + 1) 

The bilinear transformation maps poles and zeros in the left 
half-plane into the unit circle, while the right half-plane is 
mapped to the complement of the unit disc. The poles and 
zeros on imaginary axis are mapped onto the unit circle. 
Stability properties are thus preserved. 

The important feature of the bilinear transformation is 
that the frequency response is invariant if we prewarp the 
frequency scale. Let the continuous-time transfer function be 
evaluated at j w ,  and let the bilinear transformed discrete-time 
transfer function be evaluated at e J W i ,  then it holds that [3] 
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if 

t an  ( ~ $ 1 2 )  = w k ~ / 2 .  

Hence, given samples of a continuous-time transfer function 
Gk at frequencies w k ,  the samples of the corresponding 
bilinear transformed discrete-time transfer function can be 
obtained simply as 

Gf = GI;, k = I,...,hf (71) 

VII. IDENTIFICATION OF A FLEXlBLE TRUSS STRUCTURE 

where atan denotes the inverse of tan. After the discrete-time 
transfer function is estimated, the continuous-time transfer 
function is obtained through the inverse map 

If samples of the input and output Fourier transforms are the 
primary data, the same approach can be applied. 

State-Space Models: For state-space models, the bilinear 
transformation between 

G ( s )  = R + C(s1-  A)-'B 

and 

G d ( z )  = Dd + Cd(z I  - Ad)- lBd 

can, e.g., be described by the matrix relations [2] 

which imply 
2 
T 

A = - ( I  + Ad) - l (Ad  - I )  
2 

B = -(I + 
V T  

2 
C = ---Cd(I + Ad)-' 

D = Dd - C d ( I  + 
V T  

(73) 

(74) 

This particular choice of transformations has an additional 
advantage. The observability and controllability Gramian ma- 
trices as well as the Hankel singular values are invariant under 
the bilinear transfonnations (73) and (74) [ 161. Particularly, 
a balanced realization remains balanced after the bilinear 
transformation. This implies that the transformations retain the 
system in a well-conditioned basis if the original system is 

Although theoretical analysis is indispensable when de- 
veloping new identification methods, practical experience is 
probably even more important. The real world is neither linear, 
nor are measurement errors stochastic variables drawn from 
some probability distribution. 

This section deals with identification of linear models from 
measured data. The experimental data originates from a flexi- 
ble mechanical structure which has a large number of lightly 
damped vibrational modes. We use the new algorithms as well 
as some classical methods. This enables a fair comparison. 

A. The Data 

This application considers the identification of the trans- 
fer function between a force-actuator and an accelerometer 
located on a flexible mechanical structure. The structure is 
the advanced reconfigurable control (ARC) testbed at the Jet 
Propulsion Laboratory (JPL), Califomia Institute of Technol- 
ogy, Pasadena, California. The ARC testbed is a mechanical 
truss structure with several active struts and accelerometers at 
different locations. 

The frequency data are obtained with a sampling frequency 
of 200 Hz using a multisine input [47] with 512 equidistant 
spectral lines. The frequency response data are shown in 
Fig. 3. As clearly seen from the phase plot in the figure, 
the frequency response data below 8 Hz is only noise. The 
response above 8 Hz appears to have a rather high signal-to- 
noise ratio. A quick look at the magnitude curve reveals about 
16 dominant peaks. 

3. QualiQ Measures 

To assess the quality of estimated models, we will use two 
measures based on the fit between the data and the model. 
The maximum error 

lIGiw - Gllm,m = maxlGM(eJwk) - Gkl (75) 
W k  

and the root-mean-square error (rms) 

C. Model Order Determination 

We start by trying to determine an appropriate model order. 
We do this by the technique of cross-validation [51]. The 
data set is divided into two disjoint sets, the estimation data 
and the validation data. The division is made such that every 
second frequency response sample is put in the estimation 
set and every other in the validation set. Frequency response 
samples at frequencies below 8 Hz are removed from the 
validation data since these are only noise. By only using 
the estimation data, models of different orders are estimated. 
From the validation data the model error is determined at 
the frequency points of the validation data. The underlying 
assumption is that if the model order is low, the error on 
validation data will decrease as the model order increases until 

given in a balanced realization. an appropriate model order is found 



MCKELVEY et al.: SUBSPACE-BASED MULTIVARIABLE SYSTEM 975 

Measured Frequency Response 
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Fig. 3. 
100 Hz. The sampling frequency is 200 Hz. 

Measured frequency response of the ARC testbed at JPL. The frequency response is given at 512 equidistant frequency points between 0 and 

Estimation error on validation data 

15 20 25 30 35 40 45 
Model order 

Fig. 4. Model errors (76) calculated on independent validation data plotted versus order of the estimated models using Algorithm 1. 

Using Algorithm 1, a sequence of models of order 10-42 
are estimated. The frequency response of each estimated model 
is calculated at the frequencies of the validation data and the 
rms enor (76) is determined using the validation data set. The 
results s e  shown in Fig. 4. From the graph we can see no 

"knee" in the error curves, which, if present, would indicate 
an appropriate model order [50]. Instead the model error (on 
an average) decreases slowly with increasing model orders. 
The result indicates that the frequency data has a high signal- 
to-noise ratio and the best linear model has a high dimension. 
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Fig. 5.  Estimation errors for four different methods. The error is calculated using the estimation data. 

D. A Comparison Study The rms error for all four methods behave similar as the shown 

Let us study the performance of the two new algorithms 
in comparison with some established estimation procedures. 
As estimation data we use all 512 frequency samples. The 
procedures we compare are the simple linear least-squares 
estimate (LS) introduced by Levy [26] and the nonlinear least 
squares (NLS) estimate. The LS estimate is calculated by 
minimizing 

M 

using two polynomials a ( z ,  0) and b(z ,  6') with a monic and 
B being the polynomial coefficients. The estimated model 
is G ( z )  = b ( z ,  i ) / a ( z ,  0) .  The NLS estimate uses the LS 
estimate as an initial model before proceeding with Gauss- 
Newton iterative search to find the minimum of 

The LS and NLS estimation algorithms are implemented in the 
command invfreqz in MATLAB's Signal Processing Toolbox 

Models of order 20 to 42 are estimated using all four 
approaches. The dimension of the Hankel matrix I? (13) in 
Algorithm 1 is chosen to be 512 x 512 and the number of rows 
in G for Algorithm 2 is chosen to be 250. These choices give 
the best accuracy. The resulting maximum errors calculated on 
the estimation data are shown in Fig. 5 .  The performance of 
Algorithm 1 and Algorithm 2 are significantly better than the 
two other least-squares methods. We notice an erratic behavior 
of the NLS estimate which probably is due to local minima. 

~271. 

maximum error. 
The same data has been used by Gu and Khargonekar [19] 

and Friedman and Khargonekar [15]. In [19] they estimate 
discrete-time stable models with an algorithm inspired by the 
recent theory of identification in Xm. They use SK iterations 
as a first step and fail to use the second step (which is 
needed for the algorithm to be robustly convergent). For model 
orders 24 and 42, they obtain maximum errors 13 and 6.1, 
respectively. In [15] the Fourier coefficients are used as an 
FIR model which is reduced, by FIR balanced truncation, to 
a 24th-order rational model with an approximate maximum 
error of 22. The maximum errors obtained by Algorithm 1 
are 13.2 and 2.3, for models of order 24 and 42, respectively. 
This clearly indicates that the use of an FIR model as an 
intermediate step in the identification leads to less accurate 
models as compared with a direct approximation of a rational 
model to the given data using a correct algorithm. 

Bayard has also successfully estimated models from these 
data using polynomial models [SI. However, in [SI the es- 
timated transfer functions are shown without any explicit 
quantitative results. 

Finally we conclude by showing the excellent fit obtained 
for the 42nd-order model estimated with Algorithm 1. The 
estimated stable transfer function is shown in Fig. 6. 

E. Summary 

High-order models have successfully been estimated from 
real measured data, using the new algorithms. The application 
shows that high-order state-space models of high quality 
easily are derived with the two algorithms. By using these 
subspace algorithms we obtain high-quality models without the 



MCKELVEY ef al.: SUBSPACE-BASED MULTIVARIABLE SYSTEM 977 

Measured Frequency Response and Estimated Model 
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Norm. Frequency 

Fig. 6. Measured frequency response and estimated model using Algorithm 1. The model is stable and of order 42 

need for an explicit parameterization or an iterative nonlinear 
optimization. 

VIII. CONCLUSIONS 

In this paper, we have developed two simple state-space 
identification algorithms to identify linear MIMO systems 
from samples of the frequency response function. We have 
shown that both algorithms are correct. The first algorithm 
which uses data sampled at equidistantly frequencies is shown 
to be strongly consistent if the noise is zero mean and 
has a covariance function which is uniformly bounded. The 
consistency of the second algorithm is dependent on the a 
priori knowledge of the noise covariance function. However, 
this algorithm can use an arbitrary frequency spacing. The 
algorithms were used to identify a high-order flexible structure 
and a comparison with a nonlinear least-squares iterative 
algorithm was made. The results show that the new subspace 
algorithms outperform the nonlinear least-squares algorithm, 
for these data, and are therefore a viable alternative to classical 
iterative methods. 
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