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The properties of a closed-loop system can, for single-input,
single-output (SISO) systems, very accurately and intuitively be
determined by studying the frequency response function.

The classical lead-lag compensator design is done entirely
by shaping the Nyquist plot or the Bode plot of the
open-loop system.
From this perspective, it is quite natural to also consider
performing system identification in the frequency domain,
i.e., determining low order, linear models given samples of
the frequency response.
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Most modern multivariable control design techniques are
based on state-space models of the systems.

Algorithms using time-domain measurements:

Iterative or prediction error methods (Ljung:1999).

Non-iterative, i.e., subspace based algorithms (De Moor
and Vandewalle:1987,Verhaegen and Dewilde:1992, Van
Overschee and De Moor: 1994).

Non-iterative methods do not involve nonlinear parametric
optimization.
Subspace-based algorithms deliver state-space models
without the need for an explicit parameterization of the
model set.
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There is no difference between MIMO system identification
and SISO system identification for a subspace-based
algorithm.

Estimated models delivered in a state-space basis,
wherein the transfer function is insensitive to small
perturbations in the matrix elements, leading to the ability
to identify high-order systems.

Subspace-based algorithms analyzed with respect to
consistency, and asymptotic expressions for the quality of
the estimates derived (Viberg etal.: 1991, De Moor: 1993).
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If the excitation of the system is well-designed, each
transfer function measurement is of high quality. Data
originating from different experiments can easily be
combined in the frequency domain.

The problem of fitting a real-rational model to a given
frequency response has been addressed by many authors
(see, Pintelon etal.: 1994).

A system is modeled as a fraction of two polynomials and
a NLS fit to the frequency response data is sought. The
solution to this nonlinear parametric optimization problem
is obtained by iterative, numerical search, i.e.,
SK-iterations (Sanathanan and Koerner: 1963).
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A non-iterative algorithm based on Markov parameter
estimates proposed in Juang and Suzuki: 1988 yields very
poor estimates for lightly damped systems.

A frequency domain approach proposed by Liu and
coworkers (1994) is a frequency domain counterpart of the
time domain subspace methods by De Moor and
Vandewalle: 1987 and Liu and Skelton: 1993.
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Objectives

To introduce two new algorithms and provide stochastic
analysis regarding their consistency properties

The features:

Given samples of the frequency function, minimal MIMO
state-space models are delivered by the algorithms.
A key step is the extraction of a low-dimensional subspace
by the use of a truncated SVD of a noisy data matrix.
Non-iterative.
Strongly consistent.
Correct.
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G stable, MIMO, linear-time invariant, discrete-time system
with input-output properties characterized by the impulse
response coefficients gk through the equation:

y(t) =
∞∑

k=0

gku(t − k)

where y(t) ∈ Rp, u(t) ∈ Rm, and gk ∈ Rp×m.

The system is of finite order n.

State-space model:

x(t + 1) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t)

where x(t) ∈ Rn. Hüseyin Akçay Subspace-based Multivariable System Identification
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The frequency response is calculated as

G(ejω) =
∞∑

k=1

gke−jωk , 0 ≤ ω ≤ π

or for the state-space model it can be written as

G(ejω) = D + C(ejωIn − A)−1B.

If (A, B, C, D) has a minimal McMillan degree, the
extended observability matrix O and C defined by,
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O =


C

CA
...

CAq−1

 ∈ Rqp×n,

C =
[
B AB · · · Ar−1

]
∈ Rn×rm

both have full rank n for all values q, r ≥ n.
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Given: Noise-corrupted M samples of the frequency response

Gk = G(ejωk ) + nk , k = 1, · · · , M.

Find: An identification algorithm which maps data Gk to a
finite-dimensional transfer matrix ĜM(ejω) such that

1 with probability one (w.p.1),

lim
M→∞

‖ĜM −G‖∞ = 0 (1)

where ‖X‖∞ = supω σ1(X (ejω)) and σ1 denotes the largest
singular value.

2 The algorithm produces the true model if the noise is zero
(nk = 0) given a finite amount of data M, i.e., there exists
some M0 < ∞ such that

‖ĜM −G‖∞ = 0, for all M > M0. (2)
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Algorithms satisfying (1) are called strongly consistent.
–As the amount of data increases, the estimate should
improve and asymptotically the correct model should be
obtained.
Algorithms with the property (2) are called correct.
–In practice, only a finite amount of data is available.
Particularly important for lightly damped systems.
By use of the bilinear transformation, continuous-time
identification problem can be converted to a discrete-time
identification problem.
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An algorithm with uniformly-spaced data
Consistency analysis of the algorithm

Assume that M + 1 frequency response data Gk on a set of
uniformly spaced frequencies

ωk =
πk
M

, k = 0, · · · , M

are given.

If gk are given, well-known realization algorithm can be
used to obtain a state-space realization (Ho and Kalman:
1966; Kung: 1978; Juang and Pappa: 1985; Juang and
Suzuki: 1988).

– The algorithm to be proposed is closely related to these
algorithms, but uses the coefficients of the inverse DFT
from samples of the frequency response function.
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Algorithm 1
1. Extend the transfer function samples to the full circle

GM+k = G∗
M−k , k = 1, · · · , M − 1

where ()∗ denotes complex conjugate.
2. Let ĥi defined by the 2M-point IDFT

ĥi =
1

2M

2M−1∑
k=0

Gkej2πik/2M , i = 0, · · · , 2M − 1.

3. Let the block Hankel matrix Ĥ be defined as

Ĥ =


ĥ1 ĥ2 · · · ĥr

ĥ2 ĥ3 · · · ĥr+1
...

...
. . .

...
ĥq ĥq+1 · · · ĥq+r−1

 ∈ Rqp×rm
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with number of block rows q > n and block columns r ≥ n.
–The dimension of Ĥ is bounded by q + r ≤ 2M.

4. Calculate the singular value decomposition of the
Hankel matrix

Ĥ = ÛΣ̂V̂ T .

5. Determine the system order n by inspecting the singular
values and partition the SVD such that Σ̂s contains the n
largest singular values

Ĥ =
[
Ûs Ûo

] [
Σ̂s 0
0 Σ̂o

][
V̂ T

s
V̂ T

o

]
.

6. Determine the system matrices Â and Ĉ as

Â = (J1Ûs)
†J2Ûs, Ĉ = J3Ûs

Hüseyin Akçay Subspace-based Multivariable System Identification
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where

J1 =
[
I(q−1)p 0(q−1)p×p

]
,

J2 =
[
0(q−1)p×p I(q−1)p

]
,

J3 =
[
Ip 0p×(q−1)p

]
,

and Ii denotes the i × i identity matrix, Oi×j the i × j zero matrix,
and X † = (X T X )−1X T the Moore-penrose pseudo-inverse of
the full column rank matrix X .

7. Solve a least-squares problem to determine B̂ and D̂

B̂, D̂ = arg min
B∈Rn×m

D∈Rp×m

M∑
k=0

∥∥∥Gk − D − Ĉ(ejωk I − Â)−1B
∥∥∥2

F

Hüseyin Akçay Subspace-based Multivariable System Identification



Introduction
Problem Formulation

Uniformly-spaced data
Nonuniformly-spaced data

Practical aspects
Conclusions

An algorithm with uniformly-spaced data
Consistency analysis of the algorithm

where ‖X‖F = (
∑

k
∑

s |xks|2)1/2 denotes the Frobenius norm.

8. The estimated transfer function is defined as

ĜM(z) = D̂ + Ĉ(zI − Â)−1B̂.

• B and D appear linearly in G(z) for fixed A and C. Hence,
Step 7 has an analytical solution.

Uniqueness of the least-squares solution?
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Lemma Let A ∈ Rn×n, C ∈ Rp×n, M ≥ n and define

X =


C(z0I − A)−1 Ip
C(z1I − A)−1 Ip

...
...

C(zM I − A)−1 Ip

 ∈ R(M+1)p×(n+p)

with distinct zi (zi 6= zj , i 6= j) and zi ’s do not coincide with any
of the eigevenvalues of A. Then

rankX = n + p ⇔ (A, C) is observable.

When data are uniformly-spaced and we use (A, C) which
are observable and A is stable, the conditions in the lemma
are naturally met.
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A dual result

Lemma Let A ∈ Rn×n, B ∈ Rn×m, and define

X =
[
(z1I − A)−1B z2I − A)−1B · · · (znI − A)−1B

]
with distinct zi (zi 6= zj , i 6= j) and zi ’s do not coincide with any
of the eigevenvalues of A. Then

rankX = n ⇔ (A, B) is controllable.

A, B, C, D are all real matrices since gk is real-valued.
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The full rank properties of a complex matrix are transferred to
the compound matrix constructed from the real and the
imaginary parts:

Lemma Let Z ∈ Cn×m, n > m. Then,

Z has full rank ⇔
[

ReZ
ImZ

]
has full rank.

Algorithm 1 is correct.

Theorem 1 Let G be a stable discrete-time system of order n
and let Gk = G(ejπk/M), k = 0, · · · , M. Let ĜM(ejω) be given by
Algorithm 1 with q > n and r ≥ n. Then for all M > n

‖ĜM −G‖∞ = 0.
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This result is by no means unique, i.e., the same result is
achieved by many identification algorithms such as Levy’s
method (1959).
Algorithm 1 exactly recovers finite-dimensional rational
transfer functions from a finite number of data in contrast to
algorithms wherein the estimated model parameters
depend linearly on the measured data. The difference
between algorithms becomes more pronounced as the
poles of the system move toward the unit circle.
In the limit, Kung’s realization algorithm, i.e.,

lim
M→∞

ĥk = gk .
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(Â, B̂, Ĉ, D̂) is balanced:

ÔT Ô = I, ĈĈT = (I − Â2M)Σ̂2
s(I − Â2M)T .

As M, q, r →∞, Ô and Ĉ converge to the observability and
the controllability Gramians and the diagonal elements of
Σ̂s converge to the Hankel singular values of G(z).
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Noise assumptions.

Brillinger: 1981; Schoukens and Pintelon: 1991.

1 nk is a zero-mean complex random variable with
covariance

E
[

Renk
Imnk

]
[RenT

s ImnT
s ] =

[ 1
2Rk 0
0 1

2Rk

]
δks.

2 The covariance function is uniformly bounded

Rk ≤ R.
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– The noise terms for different frequencies are independent.

– The real and imaginary parts of nk are independent.

Theorem 2 Let G be a stable linear system of order n and let
Gk be its samples corrupted by nk . Let ĜM(z) denote the
transfer function obtained by Algorithm 1 with q > n and r ≥ n
using M + 1 data points. Then, w.p.1

lim
M→∞

‖ĜM −G‖∞ = 0.
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Alternative ways of calculating A

Step 6 of Algorithm 1 is based on the relation

J1ÛsÂ = J2Ûs

which exactly holds when nk = 0, and in the noisy case

J1ÛsÂ = J2Ûs + N,

Â minimizes the Frobenius norm of N:

Â = arg min
A∈Rn×n

‖J1ÛsA = J2Ûs‖F .

Inconsistent with the original equation since both J1Ûs and
J2Ûs contain errors!
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With this more correct view we obtain the error model

(J1Ûs + N1)Â = J2Ûs + N2

and the total least-squares (TLS) method can be applied:

Â = arg min
A∈Rn×n

(J1Ûs+N1)Â=J2Ûs+N2

‖[N1 N2]‖F .

– The TLS technique for calculating A is also found in the signal
processing algorith ESPRIT (Roy and Kailath: 1989).

Hüseyin Akçay Subspace-based Multivariable System Identification
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– Similar performance observed in practice for both the LS and
the TLS methods when applied to noisy data.

– The poles of the system, or the eigenvalues of A, can be
optimally calculated given the statistical properties of Ô by
applying the array signal processing technique of weighted
subspace fitting (Swindlehurst etal.: 1995). A disadvantage is
the introduction of a nonlinear optimization step.
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We will develop an algorithm which is applicable for the case
when samples of the frequency response

Gk = G(ejωk ) + nk , k = 1, · · · , M

are given at arbitrary, distinct frequencies.

The algorithm is a direct frequency domain formulation of
the time-domain subspace algorithm in Verhaegen and
Dewilde: 1992.
It has some connections with a frequency domain
algorithm presented in Liu etal.: 1994.
The consistency of the algorithm will be established for a
much larger class of noise sources in comparison with the
algorithm in Liu etal.: 1994.
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Take the discrete Fourier transform of the state-space
equations:

ejωX (ω) = AX (ω) + BU(ω)

Y (ω) = CX (ω) + DU(ω)

where X (w), U(ω), and Y (ω) denote the transformed
time-domain signals. Let X i(ω) denote the resulting
state-transform when U(ω) = ei .

Define the compound state-transform matrix:

X C(ω) =
[
X 1(ω) X 2(ω) · · · X m(ω)

]
∈ Cn×m.
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The transfer function G(z) can be described in the state-space
form

ejωX C(ω) = AX C(ω) + B,

G(ejω) = CX C(ω) + D.

By recursive use, we obtain the relation
G(ejω)

ejωG(ejω)
...

ej(q−1)ωG(ejω)

 = OX C(ω) + Γ


Imejω

ejωIm
...

ej(q−1)ωIm


where Γ is the lower triangular block Toeplitz matrix defined by
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Γ =


D 0 · · · 0

CB D · · · 0
...

...
. . .

...
CAq−2B CAq−3 · · · D

 ∈ Rpq×mq.

Form a matrix from the frequency response samples

G =
1√
M


G1 G2 · · · GM

ejω1)G1 ejω2G2 · · · ejωM GM
...

...
. . .

...
ej(q−1)ω1G1 ej(q−1)ω2G2 · · · ej(q−1)ωM GM

 ∈ Cqp×mM

and let N denote a matrix with the same structure as G with ni
inserted instead of Gi .

Hüseyin Akçay Subspace-based Multivariable System Identification



Introduction
Problem Formulation

Uniformly-spaced data
Nonuniformly-spaced data

Practical aspects
Conclusions

The algorithm with nonuniformly-spaced data
Analysis of the algorithm

Define the block Vandermonde matrix

Wm =
1√
M


Im Im · · · Im

ejω1 Im ejω2 Im · · · ejωM Im
...

...
. . .

...
ej(q−1)ω1 Im ej(q−1)ω2 Im · · · ej(q−1)ωM Im

 ∈ Cqm×mM .

Then, we have the matrix equation

G = OX C + ΓWm + N.

Since the system is minimal, (A, B) is a controllable pair
and from the dual lemma rank(X C) = n. Hence,
rank(OX C) = n and range(OX C) = range(O).
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A relation involving only real valued matrices

[ReG ImG]︸ ︷︷ ︸
G

= O [ReX C ImX C ]︸ ︷︷ ︸
X

+Γ [ReWm ImWm]︸ ︷︷ ︸
W

+ [ReN ImN]︸ ︷︷ ︸
N

.

When Wm and X C are matrices of full rank, W and X also
have full rank.

Projection matrix onto the nullspace of W:

W⊥ = I −WT (WWT )−1W.

After the projection, we obtain the relation

GW⊥ = OXW⊥ +NW⊥.

Hüseyin Akçay Subspace-based Multivariable System Identification
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When N = 0, range(GW⊥) = range(O) unless rank
cancellations occur. A sufficient condition is that the
intersection between the row spaces of W and X is empty.

Lemma Let M ≥ q + n. Assume that the frequencies ωi are
distinct and not in the spectrum of A. Then,

rank
[

Wm
X C

]
= qm + n ⇔ (A, B) controllable.

When N = 0, range(GW⊥) = range(O) and a state-space
model similar to (A, B, C, D) can be obtained proceeding
according to Steps 5-7 in Algorithm 1.

Hüseyin Akçay Subspace-based Multivariable System Identification
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GW⊥ is generically of full rank qp > n. Some type of
approximation is necessary to obtain a good estimate of the
observability range space.

The n left singular vectors corresponding to the n largest
singular values of GW⊥ form a strongly consistent estimate
of range(O) (De Moor: 1993) if w.p.1,

(i) lim
M→∞

OXW⊥(NW⊥)T = 0

(ii) lim
M→∞

NW⊥(NW⊥)T = αI

for some scalar α.
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Condition (ii) is satisfied if Rk = αI for all k and the frequencies
are equally spaced.

If the covariance function is known, the row space of GW⊥ can
be weighted with a matrix K ∈ Rqp×qp satisfying

KKT = αRe(Wpdiag(R1, · · · , RM)WH
p ) (3)

for some α > 0.

The matrix K can be found by the Cholesky factorization
given the covariance data Rk .
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The weighted version satisfying the requirement (ii) is

K−1GW⊥ = K−1OXW⊥ + K−1NW⊥.

The n left singular vectors Ûs corresponding to the n
largest singular values of K−1GW⊥ form a strongly
consistent estimate of K−1O. The observability range
space is then recovered by KÛs.
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A numerically efficient way of forming GW⊥

Perform a QR-factorization:[
W
G

]
=

[
R11 0
R21 R22

] [
QT

1
QT

2

]
.

Then, GW⊥ = R22QT
2 .

Since QT
2 is a full rank matrix, GW⊥ ∼ R22.
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Algorithm 2
1. Given the data Gk , ωk , and Rk , form the matrices
G, Wm, and K.
2. Calculate the QR-factorization[

ReWm ImWm
ReG ImG

]
=

[
R11 0
R21 R22

] [
QT

1
QT

2

]
.

3. Calculate the SVD

K−1R22 = ÛΣ̂V̂ T .

4. Determine the system order by inspecting the singular
values, and partition the SVD such that Σ̂s contains the n
largest singular values.

K−1R22 =
[
Ûs Ûo

] [
Σ̂s 0
0 Σ̂o

][
V̂ T

s
V̂ T

o

]
.
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5. Determine the system matrices Â and Ĉ as

Â = (J1KÛs)
†J2KÛs, Ĉ = J3KÛs.

6. Solve the least-squares problem to determine B̂ and D̂.

B̂, D̂ = arg min
B∈Rn×m

D∈Rp×m

M∑
k=1

∥∥∥R−1/2
k (Gk − D − Ĉ(ejωk I − Â)−1B)

∥∥∥2

F
.

7. The estimated transfer function is defined as

ĜM(z) = D̂ + Ĉ(zI − Â)−1B̂.
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Theorem 3 Let G be a stable system of order n and Gk ,
k = 1, · · · , M be noise-free samples of the transfer function
G(ejω) at M distinct frequencies ωk . Furthermore, let q > n,
M0 ≥ n + q, and K ∈ Rqp×qp be any nonsingular matrix. Finally,
let ĜM(z) be given by Algorithm 2. Then,

‖ĜM −G‖∞ = 0, for all M ≥ M0.

Theorem 4 Let G be a stable system of order n. Let
Gk = G(ejωk ) + nk , k = 1, · · · , M be noisy samples of G at M
distinct frequencies ωk . Let nk satisfy the noise assumptions
and have bounded fourth-order moments. Furthermore let
q > n, K be given by (3), and ĜM(z) be given by Algorithm 2.
Then, w.p.1

lim
M→∞

‖ĜM −G‖∞ = 0, for all M ≥ M0.
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Relations between the algorithms

Suppose ωk are uniformly spaced and cover the full unit
circle. Assume that nk = 0 and K = I.

In Algorithm 2, the observability range space is determined
from GW⊥ ∈ Cqp×mM where a maximal rank annihilator of
W is used. With equidistant frequencies, the following

W̃⊥ =
1√
M


Im Im · · · Im

ej2π/M Im ej4π/M Im · · · ej2πr/M Im
...

...
. . .

...
ej2π(M−1)/M Im ej4π(M−1)/M Im · · · ej2πr(M−1)/M Im


also annihilates W; yet, it is the smallest rank annihilator
among all annihilators of W.
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Moreover,
Ĥ = GW̃⊥.

Algorithm 2 with this particular choice of the annihilator
matrix coincides with Algorithm 1.
Algorithm in Liu etal.: 1994 coincides with Algorithm 2 in
the special case that the the Fourier transform of the input
signal equals identity at all frequencies. It is only
consistent when the frequencie are equidistantly spaced
and the noise covariance function is constant and
proportial to the identity matrix.
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A stable A can be guaranteed by the following procedure
(Maciejowski:1995):

Â = Û†
s

[
J2Ûs
0p×n

]
.

The price paid is that the method will not yield the true A matrix
even for he noise-free case unless the true system has a finite
impulse response or if q →∞.

We would like to suggest a different approach to guarantee
stability by adding an extra projection Step 5b. In this step all
unstable eigenvalues are projected into the unit circle. The idea
can be implemented in the following way.
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Transform A to the complex Schur form with the
eigenvalues λi on the diagonal.
Project any diagonal elements (eigenvalues) satisfying
1 < |λi | ≤ 2 into the unit disc by λi = λi

(
2
|λi | − 1

)
.

Eigenvalues with magnitude λi | > 2 are set to zero.
Eigenvalues on the unit circle can be moved into the unit
disc by changing the magnitude of the eigenvalue to 1− ε
for some small positive ε, i.e., λi = λi(1− ε).
Finally transform Â back to its original form before
proceeding further to determine B̂ and D̂.
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1 ZOH: A discrete-time model can be estimated using the
sampled data, and the continuous-time model is obtained
by inverse ZOH-sampling of the discrete-time system.

2 The bilinear transformation

s =
2(z − 1)

T (z + 1)
.

1 The frequency response is invariant if the frequency scale
is prewarped.

2 The observability and the controllability Gramians, hence
the Hankel singular values, are invariant under the bilinear
map. Balanced realizations remain balanced, hence
well-conditioned.
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The data

This application considers the identification of the transfer
function between a force-actuator and an accelerometer
located on a flexible mechanical structure. The structure is the
advanced reconfigurable control (ARC) testbed at the JPL. The
ARC testbed is a mechanical truss structure with several active
struts and accelerometers at different locations.

The frequency data obtained with a sampling frequency of 200
Hz using a multisine input with 512 equidistant spectral lines.
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Measured frequency response of the ARC testbed at JPL.
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Quality measures

To assess the quality of estimated models, we will use two
measures based on the fit between the data and the model:

1 The maximum error

‖ĜM −G‖m,∞ = max
ωk

|ĜM(ejωk )−Gk |

2 and the root-mean-square error (rms)

‖ĜM −G‖m,2 =

√√√√ 1
N

N∑
k=1

|ĜM(ejωk )−Gk |2.
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Model Order Determination

The data set is divided into two disjoint sets: the estimation
data and the validation data. The division is made such that
every second frequency response sample is put in the
estimation set and every other in the validation set.

By only using the estimation data, models of different orders
are estimated. From the validation data the model error is
determined at the frequency points of the validation data. The
underlying assumption is that if the model order is low, the error
on validation data will decrease as the model order increases
until an appropriate model order is found.
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Model errors calculated on independent validation data plotted versus order of

the estimated models using Algorithm 1.

Hüseyin Akçay Subspace-based Multivariable System Identification



Introduction
Problem Formulation

Uniformly-spaced data
Nonuniformly-spaced data

Practical aspects
Conclusions

Guaranteeing stability
Identification of continuous-time models
Identification of a flexible truss structure

A comparison study

Let us study the performance of the two new algorithms in
comparison with the LS estimate introduced by Levy and the
NLS estimate.

The LS estimate is calculated by minimizing

VLS(θ) =
M∑

k=1

|Gka(ejωk , θ)− b(ejωk , θ)|2.

The NLS estimate uses this estimate before proceeding with
Gauss- Newton iterations to minimize

VNLS(θ) =
M∑

k=1

|Gk −
b(ejωk , θ)

a(ejωk , θ)
|2.
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Estimation errors for four different methods.
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Measured frequency response and estimated model using Algorithm 1. The

model is stable and of order 42.
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Two simple state-space identification algorithms to identify
linear MIMO systems from samples of the frequency
response function were developed.
Both algorithms were shown to be correct.
The first algorithm uses uniformly-spaced data and is
strongly consistent if the noise is zero mean and has a
uniformly bounded covariance function.
The consistency of the second algorithm is dependent on
the a priori knowledge of the noise covariance function.
However, it can use an arbitrary frequency spacing.
The algorithms were used to identify a high-order flexible
structure and a comparison with a nonlinear least-squares
iterative algorithm was made.
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